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Abstract
Scaling the test-time compute of large language
models has demonstrated impressive perfor-
mance on reasoning benchmarks. However,
existing evaluations of test-time scaling make
the strong assumption that a reasoning system
should always give an answer to any ques-
tion provided. This overlooks concerns about
whether a model is confident in its answer, and
whether it is appropriate to always provide a
response. To address these concerns, we ex-
tract confidence scores during reasoning for
thresholding model responses. We find that
increasing compute budget at inference time
not only helps models answer more questions
correctly, but also increases confidence in cor-
rect responses. We then extend the current
paradigm of zero-risk responses during eval-
uation by considering settings with non-zero
levels of response risk, and suggest a recipe for
reporting evaluations under these settings.1

1 Introduction

Scaling up language model inference-time com-
pute using lengthy chains of thought has deliv-
ered impressive results on mathematical reasoning
benchmarks that resisted training compute scal-
ing (DeepSeek-AI et al., 2025; Muennighoff et al.,
2025). These results, however, are reported in the
zero-risk response setting: with no penalties for
incorrect answers, the system always guesses even
when it is not confident in its answer. In practice,
this behavior is not always desirable.

Many question answering settings associate in-
correct answers with measurable costs, ranging
from low-risk responses found in game shows (Fer-
rucci et al., 2010) to high-stakes responses that can
alter people’s lives (Northpointe, 2017). Selective
question answering addresses these challenges by
allowing a model to refrain from answering ques-
tions which it might answer incorrectly (Kamath

1Code released at https://github.com/wjurayj/final_answer
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Figure 1: DeepSeek R1-32B’s accuracy is a function
of compute budget and confidence threshold. In-
creased confidence thresholds generally yield increased
accuracy at the cost of response rate, while increased
compute budgets sometimes decrease accuracy as they
increase response rate. The vertical axis measures the
accuracy of answered questions at a compute budget
and confidence threshold. Color indicates the propor-
tion of questions that are answered; in redder regions,
the model is more likely to answer, whereas in bluer
regions the model is less likely to answer.

et al., 2020). This requires a selection function,
which considers risk tolerance, coverage goals, and
candidate answer confidence to decide whether a
prediction should be given (Geifman and El-Yaniv,
2017). Knowing when not to answer is a critical
quality for systems to collaborate effectively with
humans (Verma et al., 2023), especially for test-
time scaling systems that must constantly decide
between refusing to answer and expending further
compute to search for a possible solution.

To help address this issue, we evaluate test-time
scaling models using a simple class of selection
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Figure 2: Confidence thresholds on test-time scaling. (left) When the confidence threshold is 0, the model answers
100% of questions. This is the only performance curve that is reported by test-time scaling research. (center) At a
moderate threshold, more frequent absentions allow higher response accuracy. (right) At a high threshold, small
amounts of test-time compute deliver very high accuracy at low answer rates, while test-time scaling provides more
answers at the cost of answer accuracy.

functions that reject questions if a model is not
confident in its answer after expending its com-
pute budget. We evaluate these systems at different
compute budgets, showing a new axis of model per-
formance that answer accuracy alone struggles to
measure. We suggest a class of utility functions that
represent various levels of error risk to empirically
measure the performance of these systems in set-
tings where incorrect answers are penalized. Evalu-
ation in these settings shows how compute scaling
affects confidence in existing systems. Based on
these insights, we propose a standard method for
measuring model performance in settings with non-
zero response risk. In summary we:

• Conduct the first evaluation of LLM test-time
compute scaling on selective question answer-
ing, finding that increasing inference compute
can help models distinguish between their cor-
rect and incorrect answers. (Section 3)

• Introduce evaluation settings that penalize in-
correct answers and allow abstentions to help
holistically evaluate models capable of scaling
test-time compute. (Section 4)

• Invite the community to report test-time scal-
ing performance on selective question answer-
ing under “Jeopardy Odds”, which incentivize
confidence calibration by penalizing incorrect
answers while rewarding correct answers.

2 Methods

We explore how increasing compute budgets affects
a model’s performance on question answering tasks

at different confidence thresholds. The choice of
a budget and threshold is a test-time decision. We
describe methods to quantify the two factors below:

Compute Budget refers to the amount of com-
pute expended by the model at inference time. In
all cases, we quantify a model’s budget by counting
the number of tokens in its reasoning trace. We use
methods proposed by Muennighoff et al. (2025)
to strictly enforce compute budgets. Specifically,
we ignore any predicted end-of-thinking delimiters
and instead append the token “Wait” if a model
attempts to end its reasoning trace before reach-
ing the budget, and we force decode the end-of-
thinking delimiter once the budget is reached.

Confidence Threshold refers to the uncertainty
of the model in its decoded answer. We quan-
tify a model’s confidence as the sum of the log-
probabilities corresponding to the answer tokens.2

For a confidence threshold, our selection func-
tion (Geifman and El-Yaniv, 2017) only accepts
answers that the model delivers with confidence
greater than its threshold, abstaining otherwise.

3 Experiments

3.1 Experimental Setup
We evaluate Deepseek-R1-32B (DeepSeek-AI
et al., 2025) and s1 (Muennighoff et al., 2025)
due to their exhibited test-time scaling capabil-
ities and open-weight checkpoints, and choose

2Every answer in our dataset is a 3-digit number between
000 and 999, so consists of the same number of tokens.
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Figure 3: Test-time scaling improves confidence in correct answers on R1-32B (left) and S1-32B (right). Each
dot represents the model’s confidence in an answer after spending a fixed amount of compute. Indigo series are
correct answers, while orange series are incorrect. Dotted lines plot confidence trajectories for 10 randomly selected
questions, emphasizing how confidence in correct versus incorrect answers changes with test-time compute. Note
that individual answers may turn from orange to indigo if the model changes its prediction after thinking longer.

AIME 2024 and 2025 as our primary evaluation
dataset. This dataset contains 60 hard math prob-
lems on which performance substantially benefits
from larger compute budgets, making it a popular
benchmark for evaluating test-time scaling. Addi-
tional experiments on GPQA (Rein et al., 2024) are
included in Appendix B. We test the set of confi-
dence thresholds {0.0, 0.5, 0.95} across compute
budgets within the range [500, 8000], incrementing
by 100 tokens. For a given budget and threshold,
we report the accuracy of answered questions, treat-
ing never answering as yielding accuracy 0. As the
number of answered questions differs across confi-
dence thresholds, we note that accuracies are not
directly comparable between models and compute
budgets.

We use widely available open-source libraries
to run our experiments, including HuggingFace
Transformers (Wolf et al., 2020) and vLLM (Kwon
et al., 2023) for language model inference, and the
Language Model Evaluation Harness (Gao et al.,
2024) to sample reasoning chains at temperature
0 and 32-bit precision. In particular, we use the
variant of this library released by Muennighoff et al.
(2025), and run a subset of the experiments that
they run. We run experiments on 4 H100 GPUs.

3.2 Results

Figure 2 compares the accuracy of answers pro-
vided by R1-32B and S1-32B at different test-time
compute budgets. When the confidence threshold
is 0, models answer every question, so accuracy
increases consistently with compute budget. We
observe that these subplots are slices of a surface

parameterized by compute budget and confidence
threshold, shown in Figure 1. While higher confi-
dence thresholds prevent the model from answering
at low budgets, scaling compute at high thresh-
olds delivers a larger volume of accurate answers.
However, at higher confidence thresholds increased
compute budget can actually decrease answer accu-
racy. This decrease in accuracy of yielded answers
does not necessarily reflect decreased performance
at higher budgets, but instead that the additional
questions answered are less likely to be correct than
those answered at lower budgets.

To investigate whether excessive thinking harms
accuracy drops by pushing models to abandon cor-
rect answers, we plot how a model’s confidence
in individual answers moves over time. Figure 3
shows the answer confidences given by both mod-
els at varying compute budgets, colored according
to their correctness, with a curve fit to the distribu-
tion. We note that as compute budget increases, the
average confidence of its correct answers increases
even as additional correct answers are discovered.
Notably, this is not a universal property of test-time
scaling models: S1-32B does not separate its cor-
rect answers from its incorrect answers as well as
R1-32B.

4 Utility

4.1 Motivation

When refusal to answer is an option, accuracy can
be trivially optimized by a system that answers
extremely infrequently. Thus, a useful metric must
capture both the accuracy of answers provided and
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the system’s propensity to provide answers. Many
real world scenarios reward correct answers, but
incur measurable costs for incorrect answers. We
show our results involving confidence thresholds
can be adapted to these settings.

Given a model M and an instance x of a task t,
we define a utility function f to be

f(M, x) =





1 M answers x correctly
0 M abstains from answering x

rt M answers x incorrectly

We can assume the reward for correct answers is
1 without loss of generality due to scaling. While
there exist scenarios where refusing to answer also
incurs a cost, this paper will only discuss the con-
sequences when no extra cost is incurred; the con-
clusions we draw can be extended to these cases.

4.2 Problem Scenarios
We discuss three settings with varying risk levels:

• Exam Odds (rt = 0): There are no costs in-
curred by incorrect answers. These are tasks
where guessing isn’t punished and the model
should always try to provide a solution.

• Jeopardy Odds3 (rt = −1): The cost of an
incorrect answer is equal to the reward for a
correct answer. In these scenarios, no answer
at all is preferable to an incorrect answer.

• High-Stakes Odds (rt = −20): The cost of
an incorrect answer far outweighs the reward
for a correct answer. In this case, the model
should answer only if absolutely certain.

4.3 Results
We keep the same experimental setup as described
in Section 3.1. Rather than reporting accuracy,
we instead report the utility in the three scenarios
above, shown in Figure 4. We focus on the Jeop-
ardy setting because it highlights why a system
might choose not to answer; results in the other
settings are in Appendix A.

The Exam setting’s utility function does not dis-
tinguish refusal from incorrectness, so optimal per-
formance is achieved trivially at confidence thresh-
old to 0 so that every question gets the model’s best
guess. In the Jeopardy setting, however, this is non-
trivial. We illustrate the complete function mapping
compute budget and confidence threshold to Jeop-
ardy performance in Figure 4: the checkered lines

3Inspired by the wagers made in the game show’s ‘Final
Jeopardy’ stage
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Figure 4: Utility Surface of DeepSeek R1-32B for
Jeopardy. The vertical axis indicates performance in
the Jeopardy setting at different compute budgets and
confidence thresholds. The color indicates the propor-
tion of questions that are answered, as in Figure 1. The
horizontal plane divides positive and negative utility re-
gions of the operating curve. The checkered lines show
the confidence slices that we compare to s1 in Figure 5.

on this surface indicate the two slices that compose
R1-32B’s portion of Figure 5. We do not suggest
that our choice of 0.95 is the optimal threshold for
this task, or even that a threshold is the right ap-
proach to confidence calibration. Rather, we apply
this naive method to show how test-time scaling
for selective classification can benefit a practical
question-answering setting.

We see on the left of Figure 2 that in the com-
monly reported Exam Odds, R1-32B and S1-32B
scale comparably at threshold 0. In Jeopardy Odds,
selective question answering at threshold 0.95 dra-
matically improves performance for both models.
Additionally, although the two models scale compa-
rably at Exam Odds, R1-32B substantially outper-
forms S1-32B at larger budgets in this new evalua-
tion setting. Previous work overlooks this compar-
ison. We call on future test-time compute scaling
research to report optimal utility at Jeopardy Odds
in addition to Exam Odds, to help readers under-
stand performance across confidence demands.

5 Related Work

As scaling training compute has become pro-
hibitively expensive (Hoffmann et al., 2022), mod-
els that scale performance with test-time compute
have become a new frontier (Snell et al., 2024;
Wu et al., 2025). These methods have delivered
state-of-the-art results on hard reasoning tasks us-
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ing lengthy chains of thought (DeepSeek-AI et al.,
2025; Muennighoff et al., 2025). Current work in
this space optimizes for question answering tasks
which do not penalize incorrectness, ignoring set-
tings that favor refusal over wrong answers (Fer-
rucci et al., 2010; Rajpurkar et al., 2018; Kamath
et al., 2020). We draw motivation from methods
for cost-sensitive learning (Mienye and Sun, 2021)
and selective classification (Geifman and El-Yaniv,
2017), which navigate penalties for failure. These
settings reward confidence calibration, which can
be critical for effective collaboration with human
experts (Verma et al., 2023). We are the first to
investigate how serialized test-time compute helps
models identify when they should not answer.

Figure 5: Jeopardy utility scales differently across
models and thresholds. Performance of S1-32B and
R1-32B in the Jeopardy odds setting under different con-
fidence thresholds. Although S1 is competitive at lower
budgets when the confidence threshold is 0, a higher
threshold shows R1’s superior scaling performance in a
selective setting.

5.1 Test-time Scaling

Many methods for scaling test-time compute have
been explored. These include searching over pos-
sible generations (Wang et al., 2024), sampling
many completions and selecting the best answer
among them (Wu et al., 2025), making gradient
updates at inference time (Akyürek et al., 2024;
Li et al., 2025), using reinforcement learning to
incentivize generating chains of thought before an-
swering (DeepSeek-AI et al., 2025), and simply
fine-tuning on longer chains of thought (Muen-
nighoff et al., 2025). Our work considers mod-
els fine-tuned on very long reasoning chains, and
augments them with the ability to refuse to an-
swer questions where they lack confidence. Con-
current work finds that such models can learn to
predict when their answers are unlikely to be cor-
rect (Zhang et al., 2025; Huang et al., 2025), but do
not show how this affects performance as additional

compute is expended. In contrast, we show how
model confidence scales with test-time compute,
and demonstrate its value for optimizing perfor-
mance in settings that allow refusal to answer.

5.2 Selective Question Answering

Refusing to answer is an important option in many
prior works on question answering. SQuAD 2.0
included this feature by asking questions which
have no answer, although they treat abstaining
from answering as a correct answer in these unan-
swerable cases (Rajpurkar et al., 2018). Game-
show based research efforts use an approach more
closely aligned with ours, which penalizes systems
for answering incorrectly to encourage abstentions
when a system cannot develop sufficiently high
confidence (Ferrucci et al., 2010; Ferrucci, 2012;
Boyd-Graber and Börschinger, 2020; Rodriguez
et al., 2021). Related to quiz game settings is re-
search into selective classification, which evaluates
models performance across the coverage-accuracy
curve, rather than at single point (Geifman and
El-Yaniv, 2017). These approaches can be useful
for avoiding costly errors in high-pressure domains
(Khan et al., 2018), under distribution shift (Ren
et al., 2023), or when designing systems that defer
to expert humans when it lacks confidence that its
input will be helpful (Mozannar and Sontag, 2020).
Recent research in language modeling has investi-
gated training language models to refuse to answer
(Cao, 2024), and this capacity for refusal has be-
come a point of competition among top industrial
labs (Wei et al., 2024). However, this line of work
does not investigate this behavior in sequential test-
time scaling models on reasoning intensive tasks,
where a model might find a confident answer given
higher compute budgets.

6 Conclusion

We highlight a region of performance that is cur-
rently unexplored by test-time scaling research. We
encourage the test-time scaling community to adopt
these insights by reporting model scaling perfor-
mance on benchmarks at both Exam Odds and
Jeopardy Odds, to highlight their systems ability
to scale confidence with test-time compute. Future
work should focus on efficiently allocating test-
time compute to meet confidence demands, and
could investigate how test-time confidence scaling
models should decide between extending reasoning
and deferring to human experts.
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Limitations

The selection function we implement is based en-
tirely on the likelihood that a large language model
assigns a series of tokens after thinking, which
is not necessarily the optimal method for model
confidence estimation. Furthermore, the Chain-of-
Thought scaling method we apply may struggle to
generalize to problem types that a model has note
The method we use for ‘budget forcing’ (Muen-
nighoff et al., 2025) may diminish performance by
abruptly truncating chains of thought and driving
the model outside of its training distribution. Con-
current work has introduced more elegant forms of
compute budget control (Aggarwal and Welleck,
2025; Hou et al., 2025). Furthermore, we do not
consider how compute costs might be incorporated
in the model’s utility function, which could encour-
age increased energy consumption. Finally, we
recognize that by evaluating only on English ques-
tions and answers, we may miss model capabilities
or weaknesses in lower-resource languages or in
multilingual settings.
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A Appendix
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Figure 6: (above) S1-32B’s answer accuracy is a func-
tion of compute budget and confidence threshold.
This plot corresponds to the R1-32B plot in Figure 1.
(below) Utility surface of S1-32B for Jeopardy. This
plot corresponds to the R1-32B plot in Figure 4.
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B GPQA Experiments

GPQA consists of 448 graduate level multiple
choice questions in the fields of physics, biology,
and chemistry. These questions are considered
“Google-proof”, in that skilled non-experts with
access to the open internet struggle to answer them.
We run experiments on the ‘Diamond’ subset of
this dataset, which consists of the 198 questions
which had the clearest answers to domain experts,
while being the most difficult for non-experts to an-
swer; this subset has also served as a benchmark for
test-time scaling language models (Muennighoff
et al., 2025). Our experiments on GPQA follow

Figure 7: Additional Model Comparisons. We addi-
tionally compare performance of S1-32B and R1-32B in
the Exam Odds (above) and High-Stakes Odds (below)
settings under different confidence thresholds. Like
Jeopardy odds depicted in Figure 5, High-Stakes Odds
illustrates a performance distinction at high confidence
thresholds that is not evident from conventional Exam
odds.

the same basic procedure described in Section 3,
except that we stop evaluate token budgets in range
[500, 4000].

As with AIME, Figure 8 shows how models
can increase performance by only answering when
highly confident. Notably, there is very little gap
between thresholds 0 and 0.5 on GPQA, owing to
its multiple choice format. Moreover, whereas R1-
32B outperformed S1-32B at all confidence thresh-
olds, R1-32B only exceeds S1-32B at a confidence
threshold of 0.95.

Figure 9 shows performance at Jeopardy odds
of R1-32B (above) and S1-32B (below). Although
both models perform similarly at low thresholds,
R1-32B’s superior test-time scaling behavior be-
comes evident at higher confidence thresholds, al-
lowing it to achieve higher peak utilities compared
to S1-32B. This gap is reflected in the slices shown
in Figure 10. We also note that the slices of the sur-
face are nearly identical at lower confidence thresh-
olds below 0.25. This is likely due to the multiple
choice format of GPQA; when the model does not
know the answer to a question, it assigns roughly
equal probability to the four possible answers.
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Figure 8: Confidence thresholds on test-time scaling. (left) When the confidence threshold is 0, the model answers
100% of questions. This is the only performance curve that is reported by test-time scaling research. (center) At a
moderate threshold, more frequent absentions allow higher response accuracy. (right) At a high threshold, small
amounts of test-time compute deliver very high accuracy, while test-time scaling provides more answers at the cost
of answer accuracy. We treat the decision to never answer as yielding accuracy 0.

Confidence Threshold

0.0
0.2

0.4
0.6

0.8
1.0

Compute Budget 500
1000

2000
4000

Utility

0.2

0.1

0.0

0.1

0.2

Utility

0.2 0.4 0.6 0.8
Proportion of Questions Answered

Figure 9: Utility surfaces of R1-32B (above) and S1-
32B (below) for Jeopardy utility on GPQA. Utility is
a function of compute budget and confidence threshold.
These plots mirror the surfaces in Figure 4 and Figure 6.
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Figure 10: Jeopardy utility on GPQA scales differ-
ently across models and thresholds. Performance of
S1-32B and R1-32B on GPQA in the Jeopardy odds
setting under different confidence thresholds. While S1
is competitive in the case when threshold is 0, a higher
threshold shows R1’s superior scaling performance.
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