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Abstract

Large language models (LLMs) achieve strong
performance but suffer from slow and costly
inference. Existing acceleration methods of-
ten lead to noticeable performance degrada-
tion, while Mixture-of-Experts (MoE) models
require extensive computational resources. In
this paper, we propose LO-MoE, a lightweight
MOoE approach using LO-regularization to accel-
erate dense LLMs nearly without performance
loss. Our method introduces a cluster confu-
sion matrix for domain-aware dataset curation
and applies dynamic batching for efficient train-
ing. Experiments show that LO-MoE achieves
up to 2.5x speedup over dense models while
maintaining competitive performance, outper-
forming existing LLM acceleration baselines.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable intelligence across various tasks (Ope-
nAl et al., 2024; Gemini-Team et al., 2024; Dubey
et al., 2024; Jiang et al., 2023; DeepSeek-Al et al.,
2025; Yang et al., 2024), including question answer-
ing, mathematics, coding, and content generation.
A key insight into their success is the parameter
scaling law (Kaplan et al., 2020), which suggests
that increasing model size enhances performance
across diverse tasks, potentially advancing artificial
general intelligence (AGI) (Bubeck et al., 2023).
However, larger LLMs incur high inference costs,
leading to slower generation speeds and increased
computational expenses. Thus, optimizing LLM
inference efficiency has become a critical challenge
for both academia and industry.

Various approaches have been proposed to ac-
celerate LLM inference, which can be categorized
into three main techniques: (1) Quantization, in-
cluding GPTQ (Frantar et al., 2023), SmoothQuant
(Xiao et al., 2023), AWQ (Lin et al., 2024b) and
DuQuant (Lin et al., 2024a), reduces precision by
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converting weights and activations from floating-
point to lower-bit integer formats, significantly im-
proving efficiency. (2) Model pruning, such as
LLM-Pruner (Ma et al., 2023) and LLM-Shearing
(Xia et al., 2024), removes redundant parameters
based on predefined criteria to compress models
and accelerate inference. (3) Knowledge distil-
lation (Gu et al., 2024; Feng et al., 2024), like
reverse-KD (Gu et al., 2024) and Chain-of-Thought
(CoT) Distillation (Feng et al., 2024), transfers
knowledge from large LLMs to smaller ones using
distillation techniques (Hinton et al., 2015), reduc-
ing computational demands. While these methods
achieve substantial speedup, they often come at the
cost of performance degradation, posing challenges
for real-world deployment.

Recently, sparsely gated Mixture-of-Experts
(MoE) models (Cai et al., 2024), particularly in
transformer-based large language models, have sig-
nificantly improved inference speed optimization.
MOoE operates on a simple yet effective principle:
different model components, known as experts, spe-
cialize in distinct tasks or data aspects. For a given
input, only relevant experts are activated, reduc-
ing computational costs while leveraging a vast
pool of specialized knowledge. This scalable and
flexible approach aligns with the scaling law, en-
abling larger model capacities without proportional
computational overhead. However, current MoE
training focuses on training from scratch or up-
cycling dense LL.Ms, both requiring vast compu-
tational resources and high-quality corpora. For
instance, DeepSeek-V3 (DeepSeek-Al et al., 2024)
and Qwen2.5-Max (Yang et al., 2025) were pre-
trained on 14.8T and 20T tokens, respectively, with
additional fine-tuning, making them costly and less
accessible. In contrast, little research has explored
leveraging MoE to accelerate inference using a
small-scale training corpus (e.g., tens of billions of
tokens) while maintaining performance compara-
ble to dense LLMs. This direction is particularly ap-
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Figure 1: Overview of the LO-MoE Architecture, which includes three main stages: (1) cluster confusion matrix
based sampling, (2) expert formation using LO regularization, and (3) dynamic batching for MoE training. The
figure above illustrates the process of building an LO-MoE with four experts over n iterations of dataset sampling.

pealing for large-scale industrial applications with
cost-sensitive deployment constraints.

To address this issue, we propose LO-MoE,
a mixture-of-experts (MoE) model built via LO-
regularization (Louizos et al., 2018) using a small,
curated 30B-token corpus. Our approach has two
key components: (1) LO-regularization selects crit-
ical hidden dimensions in transformer MLPs to
form experts. (2) A cluster confusion matrix
(CCM)-based sampling method curates the train-
ing corpus and schedules dynamic batching. Us-
ing the BGE-M3 encoder (Chen et al., 2024) and
K-means clustering (Jin and Han, 2010), we ex-
tract diverse semantic domains from RedPajama
(Weber et al., 2024) to construct expert-relevant
sub-datasets. A gating mechanism and dynamic
batching optimize training. LO-MoE achieves 2.5x
inference speedup with no obvious performance
loss across four benchmarks. Our contributions are
as follows: 1) We introduce a novel MoE build-
ing method leveraging LO-regularization, enabling
efficient LLM inference acceleration with mini-
mal training cost. 2) We propose a CCM-based
corpus curation and dynamic batching strategy for
effective MoE training. 3) Extensive experiments
validate the efficiency of our method in achieving
inference speedup while maintaining performance.

2 Preliminary
2.1 LoO-regularization

LO-regularization (Louizos et al., 2018) is a pow-
erful technique for feature selection and parameter
pruning in neural networks. It imposes a penalty

on parameters that deviate from zero, without addi-
tional constraints. This approach enhances model
efficiency by eliminating unnecessary computa-
tions and resources, as irrelevant parameters are
pruned and thus not computed. For a given weight
matrix W € R™*" a mask matrix Z € 0,1" is
employed to derive a reduced weight g(W, Z) €
R™ ™Y where g selects n0 < n columns from W
using Z. Due to the non-differentiable nature of
Z, optimizing it is challenging. To address this,
the binary hard concrete function is introduced for
LO-regularization, as shown in Equation 1.
u~U
s = Sigmoid((log(u) — log(1 — u) + loga)/b)
§=s((—7)+~
z = min(1, max(0,5))

ey

The uniform distribution I/ is defined over the
interval [0,1]. We set the hyper-parameters as
b =083, ¢ = 1.1, and v = —0.1 by follow-
ing Louizos et al. (2018). Using the learned z,
we estimate the proportion of retained weights as
= Smgf). To effectively control the desired
retention ratio r for a given weight matrix W, we
employ a Lagrangian multiplier (Wang et al., 2019),

as described in Equation 2.
Ly, = M7 —7) + Ao (F —1)?

2)

We initialize the learnable parameters \; and
A2 to 0 in our experiments. In our approach, r
represents the retention ratio of the feed-forward
network (FFN) up-projection dimension.
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2.2 Mixture of Expert

Mixture of Experts (MoE) (Cai et al., 2024) em-
ploys a modular architecture comprising a gating
network and multiple expert networks to enhance
efficiency and performance through parameter scal-
ing. This architecture partitions the model into sev-
eral experts, each specializing in specific subsets of
input data. MoE utilizes a gating mechanism with a
router to dynamically select the appropriate experts
for processing incoming inputs, allowing the model
to concentrate on relevant features while minimiz-
ing unnecessary computations. In our approach,
the router is implemented as a linear projection
layer Wyouter € RN MoE incorporates two
auxiliary losses (Equation 3), such as the load bal-
ancing loss Lpgiance (Fedus et al., 2022) and the
router Z-Loss Lz (Zoph et al., 2022), to promote
a balanced distribution of inputs among experts.
These losses penalize high values in the logits pro-
duced by the gating network, encouraging a more
even allocation of tokens to experts.

£omav = Eba%ance + )\ﬁz
Lbalance = Zizi\[(ﬁ - (%))2 3)
j
L.=4Y7og(XN em™))

Here ¢; represents the tokens of the i expert,
and N denotes the number of experts. The batch
contains B tokens. The logit for the 5" token from
the i'" expert, as determined by the router module,

is denoted as x(] )

3 Approach
3.1 Cluster Confusion Matrix based Sampling

Given a pretraining corpus, we construct training
datasets via the following steps: 1) Randomly sam-
ple a small subset without replacement and use the
BGE-M3 encoder (Chen et al., 2024) to extract
dgy-dimensional semantic vectors for each sample.
2) Apply the K-means clustering algorithm (Jin
and Han, 2010) to the semantic vectors to identify
K centers C' € RE*%sv Divide the small subset
into K folds and sample m instances from each
fold to form a dataset Dg; = { Dy, , ..., Ds, } for
domain semantic learning, where |D;, | = m for
1 < k < K. 3) Repeat steps 1 and 2 for Q it-
erations to obtain () x K centers and () datasets.
For the [!" iteration (I = {1,2,...,Q}), the clus-
ter centers are C'(!) € REK*dsv and the constructed
dataset is DLE,?

We define the clustering confusion matrix
(CCM) as per Equation 4, where 6 = 0.1 is a
hyperparameter, C; represents the i center vector,

and CCM|i,l] denotes the clustering confusion
value for the i'" center at iteration /. The hypoth-
esis posits that the semantic domain distance for
the i*" center between C; and C’Z-(l) can be assessed
using bidirectional inter-clustering (f; and f5) and
intra-clustering (f3) cosine similarity. A larger se-
mantic domain distance indicates that DS) from
the [*" iteration divides domains more distinctly.
We compute the domain semantic distance using
Equation 5 and reorder the () datasets based on

d(l) In addition to the initial D(?), our datasets
ord(l)

now include () — 1 ordered datasets D , Where
ord(l) is the order index.
COMIi I = (fi+ f2) = f3
S5, ) = & SpELC etmsim(@i)
alis) = & TR ermsmenc’) @)
Zk K szm(C( ) C(l>)
f3 (7'7 l) d

Zk K esim(Cy,Cy)

6 i=K
)+ > coMii,

i=1

dg) = maz(CCM][:,

S

IO

3.2 Expert Construction via L0-regularization

We construct the experts using pretrained check-
points of dense LLMs. The intermediate size of the
feed forward network (FFN) layer is d;:, and we
apply a mask Z € R%nt. For each domain subset
D, (k € {1,2,...,K}) derived from the initial
Dg?), we employ the LLM pretraining loss L,
along with the LO-regularization loss, as specified
in Equation 1, to select € (0,1)*100% of the
dimensions from d;;¢, following Equation 6.

Eemp = Ellm + £l0 (6)
To ensure stable training, we gradually adjust r
from 100% to the target ratio r'®9¢t, We freeze
all non-MLP parameters of dense LLMs, and the
LO-regularization-based training yields K experts,
each specialized for distinct semantic domains.

3.3 Dynamic Batching for MoE Training

To train the MoE to effectively select appropriate
experts based on inputs, we follow Equation 7,
where L, is defined in Equation 3. The MoE is
initialized with K pre-trained experts and a router
for each MoE layer.

L = Lim + Louyz @)

We employ a two-loop batch construction strat-
egy during training: 1) domain semantic distance

rd(l)

scheduling, where we begin with D;’l having a
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lower dgs; 2) multi-domain gathering scheduling,
. ord(l) . .
where samples in D, are arranged in a cyclic
sequence order 7}, 2, ...,z and we select px K
(p = {1,2,3,...}) samples to form a batch. This
scheduling offers two advantages: 1) In the initial
iterations, the MoE rapidly learns to select appro-
priate experts since the domain samples in Dy; have
been previously encountered by the experts. Con-
sequently, the sequence-level selection capabilities
of routers are effectively initialized. 2) As train-
ing progresses, the domains in D;’;d(l) gradually
transition to different semantic spaces, encourag-
ing routers to select multiple experts for each input
sample. This enhances the token-level selection

capabilities of the routers.

4 Experiments
4.1 Experimental Setup

Dataset. We train on the RedPajama dataset (We-
ber et al., 2024), a replicated pre-training corpus
for LLaMA models, following prior work (Xia
et al., 2024). Evaluation is conducted on four pub-
lic benchmarks: MMLU (Hendrycks et al., 2021),
GSMSK (Cobbe et al., 2021), HumanEval (Chen
et al., 2021), and BigBench Hard (BBH) (Suzgun
et al., 2023). Each benchmark evaluates distinct
aspects of model performance, offering insights
into the strengths and limitations of LLMs.
Baselines. To assess effectiveness and versatil-
ity, we evaluate our method on three open-source
LLMs: Llama-3-8B (Dubey et al., 2024), Mistral-
7B (Jiang et al., 2023), and Qwen2-7B (Yang et al.,
2024). Comparisons include LO-regularized MoEs,
original LLMs, and inference optimization tech-
niques such as GPTQ quantization (Frantar et al.,
2023), LLM Shearing pruning (Xia et al., 2024),
and RKD + CoT knowledge distillation (Gu et al.,
2024; Feng et al., 2024). For CCM, we run 21 iter-
ations, collecting 30B tokens. Experiments use a
cluster/expert size of K = 64 with linear warmup,
annealing, and a peak learning rate of 1e-4. Further
details are in Appendix A.2.

Implementation Details. We train our model
using the FSDP framework', employing a layer-
wise wrapping policy with the Zero-3 parameter
sharding strategy, without CPU offloading. For in-
ference during evaluation, we utilize the SGlang
framework?, which is highly optimized for the ef-
ficient execution of both dense LLMs and MoEs.

"https://pytorch.org/docs/stable/fsdp.
html

https://github.com/sgl-project/sglang

All baseline models in our experiments utilize the
same SGlang inference framework, ensuring a fair
and consistent comparison of inference speeds.
Our method is framework-agnostic and can sim-
ilarly be implemented using other inference frame-
works (e.g., VLLM?). The primary source of in-
ference acceleration in our work is the proposed
LO-regularization-based MoE architecture, not the
inference framework itself. To ensure a fair compar-
ison, we strictly adhere to the original evaluation
settings for each benchmark. To support future
research, we will release our curated dataset and
code to enhance the reproducibility of our work.

4.2 Main Results

Table 1 presents the model with the highest per-
formance under our settings. The LO-MoE consis-
tently achieves a 2-2.5x inference speedup across
all base LLMs. Additionally, LO-MoE maintains
performance comparable to the base LLMs across
four benchmarks, with the LO-MoE variant of Mis-
tral even demonstrating a 1% average performance
improvement. Table 2 compares these results with
other inference acceleration baselines, which, de-
spite achieving some speedup, exhibit noticeable
performance degradation.

4.3 Ablation Study

Table 3 presents the ablation study on the CCM
module, dynamic batching, and LO-regularization.
Removing the K-means clustering from the CCM
module results in a performance decline, underscor-
ing the importance of effective sub-dataset curation.
For dynamic batching, substituting it with random
order or random batch scheduling also leads to de-
graded performance.

In the context of MoE expert construction, we re-
place LO-regularization with four alternative meth-
ods: 1) Random MoE (Zhu et al., 2024): Selects
MLP dimensions randomly, serving as a baseline
to assess the necessity and effectiveness of dimen-
sion selection in expert construction, 2) Magnitude
(Sun et al., 2023)): Selects the most influential ele-
ments in the weight matrix, improving upon tradi-
tional magnitude pruning by considering both the
weights and their corresponding input activations
using the L2 norm, 3) OBS (Frantar et al., 2021;
Frantar and Alistarh, 2022)): Identifies the most
critical dimensions using the OBS Hessian matrix,
which encapsulates second-order derivative infor-
mation of the loss function with respect to model

*https://github.com/vllm-project/vllm
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Model MMLU GSM8K HumanEval BBH Average Speedup
Llama-3-8B 66.6 56.0 335 57.7 53.5
Llama-3-8B w/ LO-MoE 66.3 559 33.7 572 533 2.0x
Mistral-7B 64.1 522 29.3 56.1 504
Mistral-7B w/ LO-MoE 64.8 53.6 31.1 55.9 514 2.1x
Qwen2-7B 70.3 79.9 51.2 62.6 66.0
Qwen2-7B w/ LO-MoE 70.4 80.5 52.0 61.5 66.1 2.5x

Table 1: Evaluation of different LLMs on MMLU, GSM8K, HumanEval and BBH benchmarks.

Model MMLU GSMS8K  Speedup
Qwen2-7B 70.3 79.9 -
LO-MoE 70.4 80.5 2.5x
GPTQ 67.8 73.8 1.8x
LLM Shearing 68.2 75.5 2.6x
RKD + CoT 61.2 60.2 5.1x

Table 2: Comparison with other inference acceleration
baselines. We employ Qwen2-7B as the base LLM.

Model MMLU GSMSK
LO-MoE 70.4 80.5
CCM w/o K-means 68.2 78.1
w/ random order batching 68.2 75.5
w/ random batch batching 66.6 77.1
Random MoE 48.1 69.6
Magnitude 52.6 69.1
OBS 68.4 74.1
SVD 55.2 73.8

Table 3: Ablation study of CCM and LO-regularization.
We conduct experiments on MMLU and GSMS8K
datasets with Qwen2-7B.

parameters. This approach is crucial for both prun-
ing and quantization, as it helps retain the weights
that most significantly impact model performance,
4) SVD (Wang et al., 2024)): Decomposes the
weight matrix using singular value decomposition
and selects the most significant columns. By retain-
ing the largest singular values, it reduces param-
eter count while preserving essential information.
This truncation minimizes compression loss, and
layer-wise updates further fine-tune the model to
maintain accuracy. The results demonstrate the
superiority of LO-MoE over them.

Model MMLU  #Para.(B) Speedup
LO-MoE 70.4 23.3 2.5x
CCM Tter. (Q = 2) 68.2 23.3 2.5x
CCM Iter. (Q = 5) 68.8 23.3 2.5x
CCM TIter. (Q = 10) 69.7 23.3 2.5x
Expert size (K = 8) 50.9 4.8 4.6x
Expert size (K = 32) 69.2 12.7 3.2x

Table 4: Hyper-parameter tuning of sampling iterations
(@) and cluster size (K), keeping 2.8B activated parame-
ters for LO-MoE. Qwen2-7B is the base LLM. #Para.(B)
is the number of model parameters.

4.4 Discussion

Our approach involves two critical hyperparame-
ters: the sampling iterations ) in CCM curated
datasets and the expert size K in MoE. Table 4 pro-

vides a detailed overview of hyperparameter tun-
ing. Increasing the number of iterations for CCM
enhances performance but also demands greater
computational resources. We find that an initial
iteration plus 20 additional iterations suffice to op-
timize model performance. While increasing the
number of experts improves performance, it also
reduces inference speed. Therefore, we select an
appropriate expert size to balance performance en-
hancement and LLM acceleration.

Besides, the optimal number of clusters (K) pri-
marily depends on the characteristics of the pre-
training corpus; thus, it may not directly transfer
to other experiments if the corpus differs signif-
icantly. We recommend applying our method to
pre-training corpora with abundant topical diversity,
such as RedPajama, which contains millions of do-
mains. In such corpora, a larger K can effectively
cluster more specialized subsets, enabling CCM
to be more effectively applied when constructing
LO-MoE models.

To assess model size impact, we conducted fur-
ther experiments using a 1.5B-parameter Qwen2
model with 64 experts, achieving a 2x speedup
without performance degradation. However, due to
computational resource constraints, we have not yet
experimented with larger models (e.g., 70B param-
eters). We hypothesize that larger LLMs could po-
tentially achieve even greater speedups. We leave
the verification of this hypothesis for larger-scale
models as future work.

5 Conclusion and Future Work

In this paper, we propose a novel Mixture-of-
Experts based approach to accelerate LLM infer-
ence, leveraging clustering confusion matrix for
dataset curation, LO-regularization for expert selec-
tion, and dynamic batching for efficient training
with only 30B tokens. Our method achieves a 2.5x
speedup over dense LLMs, outperforming strong
baselines nearly without performance loss. Future
work will explore scaling our approach to larger
LLMs and expanding the corpus size to further en-
hance LO-MOoE performance beyond dense LLMs.
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Limitations

We did not compare our method with MoEs such
as DeepSeek-MoE (Dai et al., 2024), Qwen-MoE
(Qwen-Team, 2024), and Mixtral (Jiang et al.,
2024), which scale up model parameters in dense
models with immense computational costs, process-
ing trillions of tokens. In contrast, our approach
utilizes only 30B tokens, making it more compa-
rable to baseline post-training inference speedup
methods.

Despite the promising results, several limitations
remain: (1) The dataset for training each expert is
selected via sequence-level semantic clustering, in-
troducing exposure bias since MoE expert selection
is performed at the token level. (2) The method
does not explicitly measure inter-expert differences,
potentially leading to redundant parameters that
hinder LO-MoE’s inference acceleration. Future
work should explore token-level dataset partition-
ing to mitigate exposure bias. Additionally, novel
learning paradigms are needed to reduce parameter
redundancy and enhance expert routing efficiency.
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A Appendix

This section provides further details on the model
architecture, experimental setup (including evalua-
tion tasks, baselines, and hyperparameter settings),
and implementation details.

A.1 Model Architecture

Table 5 presents the detailed architecture of the
baseline models and LO-MoE. All models incorpo-
rate group query attention (GQA) (Ainslie et al.,
2023) within the self-attention layer. For the LO-
MoE models, the bottom 4 layers (for Qwen2) and
8 layers (for Mistral and Llama3) are configured
as dense layers, while the remaining layers are
transformed into MoE layers. We select the top-2
experts for each input token.

A.2 Experimental Setups

Evaluation Tasks. We assess performance on
four public benchmarks: MMLU (Hendrycks et al.,
2021), GSMS8K (Cobbe et al., 2021), HumanEval
(Chen et al., 2021), and BigBench Hard (BBH)
(Suzgun et al., 2023).

* MMLU (Massive Multitask Language Under-
standing) (Hendrycks et al., 2021) comprises
57 tasks spanning diverse subjects, includ-
ing STEM (Science, Technology, Engineer-
ing, and Mathematics), humanities, social sci-
ences, and specialized domains such as law
and ethics.

¢ GSMS8K (Grade School Math 8K) (Cobbe
et al., 2021) is a benchmark designed to as-
sess the mathematical reasoning capabilities
of LLMSs, containing 8,500 high-quality ele-
mentary math word problems.

¢ HumanEval (Chen et al., 2021) evaluates the
code generation capabilities of LLMs through
164 programming tasks, each requiring the
model to generate a function that satisfies a
given set of test cases.

* BBH (BIG-Bench Hard) (Suzgun et al., 2023)
is a subset of the larger BIG-Bench dataset,
consisting of 23 highly challenging tasks de-
signed to exceed the capabilities of current
LLMs. These tasks demand creative problem-
solving and deep domain expertise.

Baselines. We compare the LO-regularized MoEs
with the original LL.Ms and other LLM inference

optimization methods, including the quantization
baseline GPTQ (Frantar et al., 2023), the model
pruning baseline LLM Shearing (Xia et al., 2024),
and the knowledge distillation baseline RKD + CoT
(Gu et al., 2024; Feng et al., 2024).

e GPTQ (Frantar et al., 2023) is a block-wise
quantization method that extends traditional
power-of-two quantization by allowing non-
uniform bin widths, enabling a better approx-
imation of the original floating-point value
distribution.

* LLM-Shearing (Xia et al., 2024) employs
structured pruning to construct lightweight,
structured LLLMs from pretrained checkpoints.
It jointly removes attention heads, layers, feed-
forward networks (FFNs), and hidden dimen-
sions in an end-to-end manner to optimize
efficiency.

* RKD + CoT: We apply RKD (Gu et al., 2024)
to distill the CoT (Feng et al., 2024) capabil-
ities of Qwen2-7B into Qwen2-1.5B. RKD
(Gu et al., 2024) aligns the student model
with the teacher’s distribution using reverse
Kullback-Leibler divergence (KLD), encour-
aging the student to focus on the most proba-
ble outcomes. This helps preserve the quality
of the student model’s predictions by distilling
Chain-of-Thought (CoT) reasoning from the
teacher model.

Hyper-parameter Setting. The detailed hyper-
parameter settings are presented in Table 7. This
includes the hyper-parameters for the clustering
confusion matrix (CCM) as well as those for MoE
training.

A.3 Comparison with DuQuant

To further validate our method, we compare it with
DuQuant (Lin et al., 2024a), a recent quantization
technique targeting outlier activations in large lan-
guage models (LLMs). DuQuant uses rotation and
permutation to redistribute outliers, aiming to sim-
plify quantization and improve robustness. We eval-
uate it on the LLama-3-8B model using MMLU
(Hendrycks et al., 2021) and GSMS8K (Cobbe et al.,
2021) benchmarks. As shown in Table 6, DuQuant
suffers noticeable performance degradation, high-
lighting its limitations. In contrast, our LO-MoE
method performs better under the same setting,
demonstrating superior accuracy preservation.
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Model Parameters(B) Layer Hidden Q/KV FFN MoE FFN Experts
Llama-3-8B 7.5 32 4096 32/8 14336
Llama-3-8B w/ LO-MoE 25.1/3.2 32/24 4096 32/8 14336 1024 64:2
Mistral-7B 7.1 32 4096 32/8 14336
Mistral-7B w/ LO-MoE 24.7/2.9 32/24 4096 32/8 14336 1024 64:2
Qwen2-7B 7 28 3584 28/4 18944
Qwen2-7B w/ LO-MoE 23.3/2.8 28/24 3584 28/4 18944 1280 64:2

Table 5: Detailed model architecture parameters. We denote the total and activated parameters of the MoEs, as
well as the total layers and MoE layers, using the format “32/24”, etc. All models utilize GQA, and we present the
query/key-value heads. “FFN” refers to the dense decoder MLP size, while “MoE FFN” indicates the intermediate
size of the expert for the MoE layer. The total and activated experts are represented as “64:2”, etc.

Model MMLU GSMSK SpeedUp
Llama-3-8B 66.6 56.0 -
Llama-3-8B w/ LO-MoE 66.3 55.9 2.0x
DeQuant/W4A4 57.9 51.6 0.46x
DeQuant + LWC/W4A4 62.2 51.1 0.46x

Table 6: Performance comparison of LO-MoE and DuQuant on MMLU and GSMS8K benchmarks. Llama-3-8B
is the base LLM. Due to the lack of DuQuant support in SGlang, we tested inference speed using naive PyTorch
transformers (batch size = 64, sequence length = 1200). Without optimized kernels, DuQuant is slow (0.46x
speedup), but future SGlang support could make it comparable to GPTQ (1.8x speedup).

CCM Hyper-parameters

Q
K

dsv
(0)
Dsl

O

sl

[>1

21

64

1024

12B tokens;
DY ~0.15B
0.9B tokens;
IDY| ~ 0.007B

MoE Training Hyper-parameters

Sequence length
Learning rate
Warmup ratio (expert)
Warmup ratio (MoE)
Warmup type
Annealing ratio
Annealing type
Batch tokens

ain Eq. 7

B in Equation 5

Ain Eq. 3

Training epoch

4096
le-4
0.2
0.06
Linear
0.1
Cosine
512K
0.01
0.5

0.3

1

Table 7: Hyper-parameters for CCM and MoE training.
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