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Abstract

Unsupervised cross-domain keyphrase genera-
tion (KPG) is crucial in real-world natural lan-
guage processing scenarios. However, the ac-
curacy of up-to-date approaches is limited by
the distribution shift between source and target
domain, which stems from the cross-domain
field. Large language models (LLMs) offer
potential for the cross-domain keyphrase gen-
eration tasks due to their strong generalization
abilities, facilitated by providing demonstra-
tions relevant to the target task. Nevertheless, it
is often difficult to obtain labeled samples from
the target domain. To address this challenge,
this paper aims to seek rational demonstrations
from the source domain, thereby improving
the LLMs’ ability in the unsupervised cross-
domain keyphrase generation setting. Specifi-
cally, we design a novel domain-aware retrieval
model on the source domain. Guided by in-
sights from domain generalization theory, we
introduce two generalization terms, one for
cross-domain relevance and another for each
domain consistency to better support retrieval
of rational demonstrations. By the retrieved
source-domain demonstrations and distance-
based relevant score, the proposed approach
achieves optimal accuracy. Comprehensive ex-
periments on widely used cross-domain KPG
benchmarks demonstrate our approach’s state-
of-the-art performance and effectiveness.

1 Introduction

Keyphrase Generation (KPQG) is critical in identify-
ing discriminative information (Meng et al., 2017;
Shao et al., 2024; Boudin and Aizawa, 2024). As
a fundamental natural language generation (NLG)
task, keyphrase generation facilitates a wide vari-
ety of downstream applications, including docu-
ment clustering (Hulth and Megyesi, 2006; Chiu
et al., 2020), information retrieval (Ushiku et al.,
2017; Boudin et al., 2020) and text summariza-
tion (Wang and Cardie, 2013). However, in real

* Corresponding author.

Technical websites

SUEISIP AN

Web pages

Different keyphrase datasets

Figure 1: we treat the KP20k train dataset as the source
domain, and using MMD to measure the degree of the
distribution shift between different datasets.

world scenarios, e.g. news articles (Gallina et al.,
2019), web pages (Xiong et al., 2019), technical
question-answer website (Yuan et al., 2020), ob-
taining labels can be challenging due to the reliance
on domain expertise, or even infeasible because of
the strict privacy constraints. Deploying keyphrase
generation model in these scenarios often occurs
in cross-domain KPG setting, e,g., first training
KPG models on source tasks and then generaliz-
ing to target tasks (Gulrajani and Lopez-Paz; Wiles
et al.). What is notable is that distribution shift is
an inevitable phenomenon in cross-domain KPG.
As depicted in Figure 1, we treat the KP20k train
dataset (Meng et al., 2017) as the source domain,
and adopt Maximum Mean Discrepancy (MMD)
(Kim et al., 2016) to measure the degree of the dis-
tribution shift. Higher MMD values between each
two datasets indicate increased requirements for the
model’s generalization capabilities. For example,
compared to academic domain datasets, such as In-
spec (Hulth, 2003), Krapivin (Krapivin and March-
ese, 2009), and NUS (Nguyen and Kan, 2007), the
MMD distance is significantly larger for other do-
main datasets (e.g., OpenKP (Xiong et al., 2019),
KPBiomed (Houbre et al., 2022)). This makes
generalizing the KPG model in cross-domain set-
ting more challenging than in standard generation,
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where a robust decision boundary is sufficient. An
effective strategy to alleviate distribution shift is
the use of large language models (LLMs), where la-
beled samples are used as prompts to facilitate the
generation of target domain keyphrases. However,
even annotating a limited number of samples can
be prohibitively expensive, and often impractical
due to the need for expert annotators (Chau et al.,
2020; Boudin and Aizawa, 2024). How to effec-
tively leverage existing labeled source domain sam-
ples to prompt LLLMs in unsupervised cross-domain
KPG is a crucial problem that deserves in-depth
exploration. In this work, we propose a seeking
rational demonstration (SRD) approach for enhanc-
ing LLMs’ ability in unsupervised cross-domain
KPG. The SRD approach is designed based on
DPR (Dense Passage Retrieval) model (Karpukhin
et al., 2020). Specifically, we randomly select 20%
samples from KP20k train datasets and target test
dataset as the query set, with the rest as candi-
date set. We then construct positive and negative
samples by computing the relevance of each query-
candidate sample pair. However, there is no guar-
antee of accuracy when mapping the target query
samples to the rational KP20k train samples dur-
ing test time when facing distribution shift. As
such, we introduce the domain projection simula-
tion (DPS) with two new losses based on domain
generalization theory to alleviate distribution shift
between training and test phrases. The first loss is a
domain projection loss based on the MMD distance,
which helps learn more domain-invariant features
and mitigates distribution shift. The second one
is a domain characteristic loss that encourages the
learnable train distribution to be orthogonal in the
representation space, thus increasing the diversity
and preventing domain characteristic vanished.
Our contributions are three-fold:

* We quantify the distribution shift phenomenon
when applying LLMs to unsupervised cross-
domain KPG. To the best of our knowledge,
this is the first work that introduces domain
generalization with LLMs in KPG.

* We investigate both theoretically and empir-
ically how domain generalization technique
can help with distribution projection, and thus
alleviating distribution shift.

* Experimental results demonstrate that our
SRD approach performs better than up-to-
date baselines on widely used cross-domain

KPG test datasets. The processed test
datasets, codes and experimental results
will be upload at https://github.com/
chrischowfy/SRD/.

2 Realted Work

Current keyphrase generation tasks primarily fo-
cus on academic article domain, encompassing
both supervision (Meng et al., 2017; Ye et al.,
2021; Shao et al., 2024; Kang and Shin, 2024)
and unsupervison (Shen et al., 2022; Boudin and
Aizawa, 2024) fashions. AutoKeyGen (Shen et al.,
2022) is the first work to explore the unsupervised
keyphrase generation task, which trains a sequence-
to-sequence model to extract present keyphrases
and synthesize absent keyphrases using a phrase
corpus. After that, UOKG (Do et al., 2023) extends
AutoKeyGen in open-domain setting, which gen-
erates keyphrases that represent the core concept
of the source text. Another related work is domain-
adaptive keyphrase generation (Meng et al., 2023),
however, it requires a few labeled samples from
the target domain for fine-tuning. Another related
direction is keyphrase generation in low-resource
settings (Wu et al., 2022; Garg et al., 2023). Ex-
isting researches often employ target domain data
pretraining (Wu et al., 2022) and data augmentation
(Garg et al., 2023) to enhance keyphrases genera-
tion capabilities in low-resource contexts. However,
in the era of large language models, considering the
challenges of fine-tuning LLLMs and computational
expenses, there is an urgent need for new research
approaches to address the problem of unsupervised
cross-domain keyphrase generation.

Recently, LLMs perform well in unsupervised
keyphrase generation (Martltnez-Cruz et al., 2024).
Notably, when provided with an in-context prompt
that contains a few relevant samples from the target
domain, LLMs can further enhance their keyphrase
generation performance in target domain (Jiang
et al., 2024). However, in real-world scenarios, ac-
quiring labeled target samples is non-trivial. This
motivates our work: how to effectively prompt
LLMs using labeled source domain samples to
improve keyphrase generation across different do-
mains.

3 Methodology
3.1 Problem Settings

Formally, the unsupervised cross-domain KPG task
is a text generation problem conditioned on both
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Figure 2: Overview of the seeking rational demonstrations (SRD) approach for unsupervised cross-domain KPG.

the target domain input and a set of source domain
demonstrations:

y = argmax P(y } z¢, Retrieve(zs, S), 6)7 (€))
y

where z; € Dy is the unlabeled target-domain
input, Retrieve(-,-) denotes a retrieval function
that selects relevant demonstrations from the la-
beled source-domain samples S, and © denotes
the LLMs’ parameters. Note that no labeled target-
domain data is available, the generalization capac-
ity of the model is crucially depends on the quality
of its retrieved source-domain samples under dis-
tribution shift.

3.2 Basic Retrieve Module

As shown in Figure 2, to efficiently retrieve ratio-
nal demonstrations for unsupervised cross-domain
KPG, we first build a basic dual-encoder retrieval
module based on the DPR model (Karpukhin et al.,
2020). The module includes two encoders, which
can map both query text and candidate text into
vector representations.

Constructing Positive & Negative Pairs. Since
the KP20k train dataset does not explicitly pro-
vide positive or negative sample pairs, we manu-
ally construct them by analyzing the keyphrases
of each sample. Specifically, let k. and k; be the
keyphrases of samples = and s, respectively. The
relevance score is defined as:

Rel(z, s) = a-simemped (Kz, ks)+(1—a)-Jaccard (k. , ks ),
2
where simemped (K2, ks) denotes the semantic sim-
ilarity and Jaccard(k,, k) is the Jaccard similar-
ity. If Rel(z, s) exceeds a global threshold 71, we
classify (x,s) as a positive (matched) pair, and
otherwise treat it as a negative (unmatched) pair.

Self-supervised Demonstrations Evaluator. We
design a self-supervised evaluator utilizing the
KP20k train dataset to assess the efficacy of re-
trieved demonstrations. We divide KP20k into two
disjoint subsets: the pseudo-source domain Dp and
pseudo-target domain Dy. The former is used to
simulate the source domain for retrieval purposes,
and the latter is used to mimic the unlabeled target
domain scenario. We then train a regression model
to learn a function mapping the triplet (x, e, y")
to a quality score S, where x represents the abstract
text in the pseudo-target domain, e indicates the
retrieved examples, and y®" are the keyphrases
generated by a LLM. Let y™ denote the ground-
truth keyphrases for x in the pseudo-target domain.
The quality score s of y&" is computed by the Eq.2,
i.e., s = Rel(y&", y™f). More details can be found
in Appendix A.1 Implementation Details.

3.3 The Risk of Distribution Shift

We first give the distribution shift measured by H-
divergence (Ben-David et al., 2010):
du(Ds,Dy) =2sup| Pr [h(z) =1]— Pr [h(z)=1]|,
hep @~Ds z~Dy

3
where classifier o : X — {0, 1} is a labeling func-
tion on each domain sample. Next, the ideal target
domain D; is assumed that lies in the source do-
main convex hull A (Albuquerque et al., 2019).
Under this assumption, the risk €;(h) on the target

domain D, is upper-bounded (Albuquerque et al.,
2019; Chen et al., 2019) by:

K
er(h) < mies(h) + v+ )
i=1

The first term is the risks over source domains,
which can be minimized by empirical risk mini-
mization. The second term 7 is the H-divergence
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between the ideal target D; and the real target do-
main D;. The third term could be disregarded as it
is negligibly small. In this paper, we focus on the
first and second terms to alleviate distribution shift
in unsupervised cross-domain KPG.

3.4 Distribution Projection Simulation

Since there is distribution shift existed between
source and target domain, we attempt to mitigate
the ensuing cross-domain risk by domain general-
ization theory. Specifically, we employ MMD (Kim
et al., 2016) as a kernel-based criterion that directly
measures the similarly between the source and tar-
get samples in its representation space. By guid-
ing the encoder to produce more domain-invariant
features, we reduce adverse effects of distribution
shift and thus improve generalization in unsuper-
vised cross-domain KPG. In each training iteration,
we select a mini-batch of labeled source domain
samples {z7,y’}", C D, and unlabeled target
domain samples {2%}_, C D;. Using the kernel
function k(-, -), the squared MMD is computed as:

1

=T 2 FF@D. f@D) +

i,‘j:vl
iF# ]

MMD?*(D,, D;) =

n(n —1)

n

2 R(FED, F@D) = —= 303 (), f(ah)),

7LJ#:11 i=1j=1

(5
where f(-) is the encoder’s mapping from input text
to a feature vector, k(-, -) is the radial basis function
kernel with k; ; = k(x;, ;) = exp(—7||z; —z;),
v is a hyperparameter (Kim et al., 2016). MMD
imposes a domain-invariance constraint on the en-
coders’ representations. In this way, the features
between the source and target domain samples
align more closely, which are crucial for accurate
keyphrase generation under distribution shift. How-
ever, a naive reduction of MMD operates on mean
embedding feature of each sample, which may be
insufficient to characterize sample mapping (Vayer
and Gribonval, 2023). Hence, we also incorpo-
rate domain-specific features into the encoders that
retain critical domain cues.

Preserving Domain Characteristics via Orthog-
onality. To further impose domain features into
the encoders, we introduce two sets of mean and
variance vectors:{/j, o} } for the source domain
samples, and{u}, o} } for the target domains sam-
ples. We design a domain (orthogonality) loss to

enforce these vectors to remain domain-specific:
Mo M g o
gl Ml

+ (O]

Ldomain =

o3l Tl

where || - || is the vector norm, and - is the dot
product. By forcing the normalized means and
variances from the source and target to be approxi-
mately orthogonal, we ensure that while we reduce
overall distribution divergence, each domain main-
tains its own “style” (i.e., domain-specific signals).

3.5 Training

We train the dual-encoder retriever by combining
traditional contrastive loss (Karpukhin et al., 2020)
with the standard MMD alignment. The overall
objective is to minimize:

mgin [ﬁcontrastive+/\1 MMD? (Ds, De)+ A2 £domain] » (D

where 0 is the parameter of the retriever, and A\; and
Ao are hyperparameters balancing the three terms.
By jointly minimizing the contrastive loss and do-
main relevant loss, we reduce the distribution shift
(thus addressing the second risk term in Eq. (4))
while preserving crucial domain characteristics in
both source and target domains.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on five public
domain KPG datasets, namely DUC-2001, KPTi-
mes, OpenKP, StackExchange and KPBiomed. The
detailed statistic is depicted in Table 1.

Datasets Type Test docs | #Kps/doc | % Absent | Api_llm
StackExchange (Yuan et al., 2020) | Technology | 2000 2.65 48.78 300
DUC-2001 (Wan and Xiao, 2008) | News 308 8.06 2.7 300
KPTimes (Gallina et al., 2020) News 2000 5.07 54.2 300
OpenKP (Xiong et al., 2019) Web 2000 231 11.62 300
KPBiomed (Houbre et al., 2022) Medicine 2000 5.38 38.74 300

Table 1: Statistic of cross-domain test datasets.

Baselines and Metrics We compare our ap-
proach with AutoKeyGen (Shen et al., 2022) and
UOKG (Do et al., 2023), which are the only
two standard baselines on unsupervised cross-
domain keyphrase generation. Furthermore, we re-
implement CopyRNN (Meng et al., 2017), One2set
(Ye et al., 2021) and DeepKPG (Wu et al., 2023)
as supervised baselines. The subscript in Table 2
indicates the standard deviation (e.g., 9.47 denotes
9.40+0.7).We also adopt several LLM backbones
to evaluate our approach. Following UOKG, we
use the F1 @K and Recall @K as evaluation metrics,
where K is the number of predicted keyphrases to
be considered. We only use KP20k to seek rational
demonstrations.
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Present keyphrase generation
Methods StackExchange DUC-2001 KPTimes OpenKP KPBiomed Average
F1@3 | F1@5 | F1@3 | FI@5 | FI@3 | FI@5 | FI@3 | FI@5 | FI@3 | F1@5
AutoKeyGen 13.7¢ | 14.62 | 6.65 9.1; | 111y | 11.5; | 8.95 9.1 | 1291 | 15.24 13.70
UOKG 16.2; | 18.3, | 16.07 | 18.7; | 12.27 | 13.17 | 13.35 | 11.77 | 1443 | 14.64 14.85
CopyRNN 249, | 22.63 | 7.3, 8.7y | 1735 | 1744 | 1092 | 10.3; | 21.73 | 22.8 16.39
One2Set 1823 | 1544 | 7.9 9.17 | 10.82 | 6.43 6.53 6.1 | 20.77 | 20.92 12.20
DeepKPG 16.3; | 11.4¢ | 13.15 | 11.13 | 15.75 | 11.55 | 16.17 | 11.49 | 30.84 | 24.75 16.21
Qwen2.5-14b 1.8, 1.27 8.45 6.83 4.59 3.16 7.6 5.45 5.44 4.15 4.83
Llama3.3-70b 5.0 344 | 2135 | 19.15 | 13.14 | 9.87 | 19.97 | 14.55 | 20.9¢ | 19.4 14.64
ChatGPT-3.5 5.4y 4.1; | 2157 | 21.73 | 1254 | 9.3; | 19.13 | 13.7¢ | 18.0 | 16.85 14.21
GPT4o 9.9, | 7.20 | 26.64 | 27.25 | 201, | 1645 | 23.95 | 17.24 | 29.3, | 26.15 | 20.39
DeepSeek 5.43 3.7¢ | 21.63 | 21.95 | 11.0o | 8.53 | 16.59 | 12.2y | 184y | 17.23 13.64
Ours(Qwen2.5-14b) | 17.83 | 14.37 | 25.23 | 26.15 | 14.2 | 10.45 | 22.6¢ | 20.13 | 25.87 | 24.6o | 20.11
Ours(ChatGPT-3.5) | 16.8y | 12.15 | 24.5; | 25.1p | 16.95 | 14.65 | 24.74 | 18.6¢ | 27.4; | 25.17 | 20.58
Ours(GPT40) 23.1, | 16.13 | 27.2, | 28.8, | 28.9; | 23.6; | 29.2, | 224, | 33.05 | 32.7; | 26.50
Ours(DeepSeek) 21.25 | 14.94 | 29.1y | 29.0, | 27.7, | 22.75 | 27.1, | 19.6, | 31.3; | 30.05 | 25.26
Absent keyphrase generation

Methods R5 R10 RS R10 R5 R10 RS R10 RS R10 | Average
AutoKeyGen 0.95 1.0 - - 0.2y 0.2; 0.13 0.31 0.4 0.82 0.49
UOKG 1.9, 2.85 - - 1.14 113 0.3y 0.53 1.4y 2.25 1.41
CopyRNN 2.59 3.7y - - 0.64 0.8 0.14 0.14 0.83 1.23 1.22
One2Set 1.1, 1.55 - - 0.35 0.31 0.15 0.23 0.82 0.85 0.64
DeepKPG 2.2 2.31 - - 1.35 1.45 2.31 2.4 2.9y 3.03 2.23
Qwen2.5-14b 0.2y 0.2; - - 0.52 0.74 3.13 3.03 0.74 0.75 1.14
Llama3.3-70b 2.9, 3.2; - - 2.31 2.31 7.63 7.8 3.29 3.51 4.10
ChatGPT-3.5 2.39 3.04 - - 4.1 4.2 9.9¢ 9.44 1.82 1.8¢ 4.56
GPT4o 6.53 7.54 - - 7.7 8.1 9.82 | 10.63 | 4.2 4.33 7.34
DeepSeek 3.1 3.23 - - 5.8 6.0y 9.84 9.71 2.9; 2.9y 5.42
Ours(Qwen2.5-14b) | 6.7 6.34 - - 2.1y 1.93 8.4y 8.93 4.03 3.94 5.28
Ours(ChatGPT-3.5) | 4.94 5.2 - - 6.8 7.29 9.9y | 1243 | 3.9 4.79 6.88
Ours(GPT4o0) 8.8, 9.1, - - 12.3; | 1343 | 12.1; | 12.7; | 5.33 5.85 9.94
Ours (DeepSeek) 8.7, 94; - - 109, | 11.1, | 12.3; | 12.85 | 4.6, 4.8y 9.33

Table 2: Performances of cross-domain test datasets (%).

4.2 Comparisons to the State-of-the-art
Methods

Table 2 shows the performance of different meth-
ods on the five cross-domain test datasets, the pro-
posed SRD method consistently performs better
than the SOTA methods across multiple datasets.
Ours(GPT40) method exceeds ChatGPT-3.5 by
12.29% and 5.38% in absolute average values on
present and absent keyphrase generations. The
metrics of ChatGPT-3.5 and Ours (ChatGPT-3.5)
(14.21 vs. 20.58) indicate reasonable demonstra-
tions significantly enhance the accuracy in unsu-
pervised cross-domain KPG. Furthermore, we also
find that LLMs tend to weaken their generation
capabilities on free-form text, while reasonable
demonstrations effectively mitigate this negative
impact. Besides, we can see that the DeepSeek
model is competitive with GPT40 (26.50/9.94 vs.
25.26/9.33) on present and absent keyphrase, in-
dicating the high cost-effectiveness of the former.

4.3 Sampling Ratio Analysis

Figure 3 shows the performance of various propor-
tions of sample selections: 5%, 10%, 20%, 30%,
and 40%. It is observed that a lower proportion of
the query set results in insufficient training diver-
sity, thereby constraining the overall effectiveness
of KPG. As the proportion increases, the perfor-
mance of KPG improves accordingly, reaching its

Present Keyphrase: F1@5
—

2
Ratios

Absent Keyphrase: R@10

Figure 3: Performances under different ratios (%).

peak around the 30% inclusion mark. This sug-
gests that the optimal query set proportion likely
lies between 20% and 30%. However, when the
proportion is increased to 40%, the query set tends
to accumulate redundant or highly similar samples.

5 Conclusion

In this work, we present a new perspective for un-
supervised cross-domain KPG with prompts LLMs
to enhance its generalizability. We propose a novel
seeking rational demonstrations (SRD) approach,
which is the first work that introduces domain
generalization on retrieve model for unsupervised
cross-domain KPG. We design MMD driven distri-
bution project loss and orthogonality loss beyond
the mapping of positive and negative samples. Ex-
tensive experiments demonstrate the better perfor-
mance and the effectiveness of the proposed seek-
ing rational demonstrations approach.
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6 Limitations

In addressing the practical distribution shift chal-
lenges faced by large language models in unsuper-
vised cross-domain PKG, i.e., the difficulty of ob-
taining labeled target domain samples for prompt-
ing, this paper proposes a seeking rational demon-
stration approach. Using the Maximum Mean Dis-
crepancy (MMD) distance as a metric for dispar-
ity, this approach retrieves highly relevant samples
from the source domain to serve as demonstrations
for the target samples. The main limitations of
this paper are as follows: 1. The setup of the eval-
uator is rather rudimentary. Due to the unavail-
ability of labeled samples from the target domain,
only source domain samples are used. When en-
countering domains that significantly differ from
the source domain, this may impact the selection
of demonstrations and thus affect the quality of
unsupervised cross-domain keyphrase generation.
Future work could explore joint optimization of
retriever and evaluator. 2. This approach does not
involve optimizations for domain generalization of
the large language model itself. If domain-specific
instruction fine-tuning could be applied to the lan-
guage model, it is believed that the model perfor-
mance could be further enhanced.
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A Appendix

A.1 Implementation Details

Basic Retrieve Module. To efficiently retrieve
suitable demonstrations for unsupervised cross-
domain keyphrase generation (KPG), we first build
a basic dual-encoder retrieval module based on the
DPR model'. The module consists of two encoders,
which can map both query text and candidate text
into vector representations.

Constructing Positive & Negative Pairs. Since
the KP20k train dataset does not explicitly provide
positive or negative sample pairs, we manually con-
struct them by analyzing the keyphrases of each
sample in the dataset. Specifically, let k, and ks be
the keyphrase sets of two samples x and s, respec-
tively. We first apply linguistic preprocessing such
as case normalization and stemming” to reduce
word-level discrepancies. We define the Jaccard
similarity as:

k|

Jaccard(ks, ks) = k. Uk.|’

(®)
A potential limitation of the Jaccard similarity
is that keyphrases with low or zero lexical overlap
may still have high semantic similarity (e.g., “deep
learning” vs. “neural networks”). To better capture
deep semantic relationships, we additionally em-
ploy an embedding-based metric. Each keyphrase
is encoded into a vector ey, or ey, with gte-large?
embedding model. We compute the cosine similar-
ity between ey, and e, . The relevance score is
defined as:
Rel(z, s) = a-simgpped (Ka, ks)+(1—a)-Jaccard (k. ks ),
©
where 0 < a < 1 is a balancing coefficient. If
Rel(z, s) exceeds a global threshold 1, we classify
(x, s) as a positive (matched) pair, and otherwise
treat it as a negative (unmatched) pair.

Self-supervised Demonstrations Evaluator. To
assess the efficacy of retrieved demonstrations in
enhancing keyphrase generation within an unla-
beled target domain, we design a self-supervised
evaluator utilizing the KP20k train dataset. We
divide KP20k into two disjoint subsets: the pseudo-
source domain Dps and pseudo-target domain Dy
with K-means algorithm*. The former is used to

"https://github.com/facebookresearch/DPR/

2We use the NLTK toolkit to do processing. https: //www.
nltk.org/

*https://huggingface.co/thenlper/gte-large

*https://scikit-learn.org/

simulate the source domain for retrieval purposes,
and the latter is used to mimic the unlabeled tar-
get domain scenario. We then train a regression
model with RoBERT2" to learn a function mapping
the triplet (x, e, y") to a quality score §, where
x represents the abstract text in the pseudo-target
domain, e indicates the retrieved examples, and
y&" are the keyphrases generated by LLM. Let
y™f denote the ground-truth keyphrases for x in
the pseudo-target domain. The quality score s of
y&" is computed by the defined evaluation metric
in Eq.9, i.e., s = Rel(y®", y™'). Formally, let fy
represent the evaluator, the training objective is to
minimize the mean squared error (MSE) between
5 and s:

mein E(xyeyygen’yref)NfD |:(f0 (X7 €, ygen) - 5) 2] , (10)

where D is the dataset constructed from both D
and Dp,;. We use multiple checkpoints of the trained
retrieval module to obtain various y2®" to better
train the regression model.

Expermental Details. We use the open-source
instruction fine-tuned LLMs as backbone. That
is Qwen-2.5-14b° and LLama-3.3-70b-4bit’. We
also use several LLMs with commercial API, that
is ChatGPT-3.5%, GPT40’ and DeepSeek!®. The
temperature is set to be 0.4. We set the hyperpa-
rameters with the KPTimes validation dataset. The
learning rate is 3e-5 and the optimizer is AdamW.
We retain only the top 2 demonstrations to prompt
the LLMs, avoiding that an excessive number of
examples would introduce significant additional
overhead. We train the model on 2 A40 48GB
GPUs and use a cosine scheduler with a 2% warm-
up period for 3 epochs. The ratio o in Eq.9 is set
to be 0.8, the global threshold ~; is set to be 0.70.

A.2 Ablation Study

We perform comprehensive ablation studies based
on the DeepSeek model to show the effectiveness
of the components through the performance on the
three different domain test datasets.

» Zero-shot: This variant only generates
keyphrases without demonstrations.

Shttps://huggingface.co/FacebookAl/roberta-base

®https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

"https://huggingface.co/ibnzterrell/Meta-Llama-3.3-70B-
Instruct-AWQ-INT4

8gpt-3.5-turbo-0613

°gpt-40-2024-11-20

0deepseek/deepseek-chat
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e Random-D: This variant randomly selects
samples from the KP20k train dataset to
prompt the DeepSeek model.

¢ Embed-D: This variant solely uses semantic
similarity to select samples from the KP20k
train dataset to prompt the DeepSeek model.

* w/o MMD: this variant removes the MMD
loss during the training of the retrieval mod-
ule.

* w/o Orthogonality: this variant removes the
Orthogonality loss during the training of the
retrieval module.

e w/o MDD + Orthogonality: This variant only
uses contrastive loss to train the retrieval mod-
ule.

From Table 3, we can conclude that: The perfor-
mance of zero-shot is the worst, indicating that
while large language models exhibit strong gen-
eralization ability, they struggle to leverage this
advantage when facing samples from new domains.
The performance of random-D shows only a lim-
ited improvement over zero-shot, suggesting that
inaccurate prompts are ineffective in enhancing the
performance of large language models. Embed-D
performs better than random-D. It indicates that
semantically similar samples provide meaningful
assistance to large language models.

Compared to the Embed-D method, the re-
sults of w/o MMD, w/o Orthogonality, and w/o
MMD+Orthogonality are even better, highlighting
the effectiveness of the proposed “seek rational
demonstration” approach in this paper. This ap-
proach, through the retrieval and evaluation mod-
ules, is able to provide large language models
with the most reasonable sample examples, thereby
significantly enhancing their unsupervised cross-
domain keyphrase generation ability.

A.3 In-domain Sample Evaluation

Our SRD method is specifically designed for the
unsupervised cross-domain KPG task. For small-
scale labeled target domain samples (e.g., 10 la-
beled target domain samples), we can directly use
the target domain supervised samples as prompts,
integrating them into our SRD method. To evaluate
the experimental effects, we designed the following
experiments with DeepSeek model:

Present keyphrase generation
StackExchange KPTimes

KPBiomed

Methods FI@3 Fl@5 | FI@3 Fl@5 | Fl@3 FI@s
Zero-shot 54 3.7 11.0 8.5 18.4 17.2
Random-D 63 34 | 175 105 | 86 181
Embed-D 189 89 | 232 208 | 287 255
Ours 212 149 | 277 227 | 313 300
Ours(w/o MMD) 196 102 | 268 211 | 279 273
Ours(w/o Orthogonality) 19.8 128 274 21.5 30.1 283

Ours(w/o MDD+Orthogonality) | 18.2 9.4 254 17.6 274 266

Absent keyphrase generation
StackExchange KPTimes KPBiomed
R@5 R@I0 | R@5 R@I0 | R@5 R@I0

Methods

Zero-shot 3.1 32 58 6.0 2.9 2.9
Random-D 3.7 32 5.7 5.9 32 29
Embed-D 6.6 7.1 7.4 9.2 3.8 3.1
Ours 8.7 94 10.9 11.1 4.6 4.8
Ours(w/o MMD) 75 7.1 9.2 9.4 39 4.6

Ours(w/o Orthogonality) 81 1.5 9.8 10.5 4.2 51
Ours(w/o MDD+Orthogonality) | 6.8 6.5 8.4 8.9 4.2 4.3

Table 3: Ablation study of our SRD approach across
three benchmark datasets. Best scores in bold, second-
best underlined.

Present keyphrase generation
StackExchange KPTimes

KPBiomed

Methods Average

Fl@3 Fl1@5 | Fl@3 Fl1@5 | F1@3 Fl1@5
Ours 21.2 14.9 271 227 31.3 30.0 24.63
Random-T 22.1 15.3 27.5 23.6 30.8 29.9 24.87

Ours+few-shot | 23.2 16.5 29.5 24.4 33.1 31.6 26.38
Absent keyphrase generation

Methods StackExchange KPTimes KPBiomed Average
R@5 R@10 | R@5 R@10| R@5 R@I0

Ours 8.7 9.4 10.9 11.1 4.6 4.8 8.25

Random-T 8.6 10.1 10.5 11.8 45 5.7 8.53

Ours+few-shot | 10.5 11.2 11.7 12.5 6.3 6.5 9.78

Table 4: In-domain evaluation across three benchmark
datasets.

* Random-T: It selects the first 10 samples from
the validation sets of their respective datasets,
then randomly choose 2 samples as target do-
main demonstrations to evaluate the genera-
tive capability of the LLMs.

* Ours+few-shot: We add 2 randomly selected
labeled target domain samples as demonstra-
tions.

From Table 4, we can observe that: The SRD is
slightly inferior to supervised target domain KPG,
indicates that demonstrations from the same do-
main have a significant impact on the KPG via
LLMs. The SRD+few-shot yields the best results,
suggesting that equipping SRD with labeled target
domain samples further enhances its KPG capabili-
ties. We infer that, in the context of unsupervised
cross-domain KPG, the absence of relevant target
domain information usually make it challenging to
surpass supervised cross-domain KPG tasks. The
assistance of a few-shot approach undoubtedly en-
hances our method significantly.

A.4 MMD for evaluating distribution shift
between two different datasets

The maximum mean discrepancy (MMD) is a mea-
sure of the difference between distributions P and
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Q, given by the supremum over a function space
F of differences between the expectations with re-
spect to two distributions. Given n samples from P
as X = {x; ~ P,i € [n]}, and m samples from Q
as Z = {z; ~ Q,i € [m]}, the following is a finite
sample approximation:

MMD(F, P,Q) = chlelg(EXNP[f(X)] an
= Eyv~e[f(Y))).

Inspired by the sampling technique for inter-
pretable machine learning (Kim et al., 2016), we
adopt the squared maximum mean discrepancy
(MMD) between S and P with a kernel function &
to measure the discrepancy between them:

1
MMDi(J—",S,P)Z@ > k(siss)

S;,Sj €S

2
ISIP] 2

S;E€ES,p; €T

1
+W Z k (pi,pj) -

pi,P; EP

k(sipi)  (12)

It is clear that MMD?(F,P,Q) > 0 and
MMD?(F, P,Q) = 0 iff. P is indistinguishable
from Q on the RHKS F.

When F is a reproducing kernel Hilbert space
(RKHS) with kernel function k£ : X x X — R, the
supremum is achieved at (Gretton et al.):

f@) =Exiwp [k (2, X)] - Exng [k (@, X)], (13)

and the witness function is approximated as:

f@)= = S km) - X[j]k(az,z». (14)
VIS

i€(n]

The function 14 is also known as the witness func-
tion as it measures the maximum discrepancy be-
tween the two expectations in F.

A.5 Prompt Templates

For the zero-shot setting of LLMs for unsupervised
cross-domain PKG, we use the following prompt
template.

Please generate accurate present and
absent keyphrases in lowercase for
the given sample.

###Samplettt:
"text": "{text}"
**Please only output at least five

present and absent keyphrases with
standard JSON format.**

Given the retrieved demonstrations, we can use
the following prompt template for unsupervised
cross-domain PKG.

Please refer to the demonstrations
generate accurate present and absent
keyphrases with lowercase for the given
sample.

{demonstrations_case}

###Sample#titi

"text”: "{text}"

The MMD distances between the
demonstrations and the sample are {MMD}
**%*0nly output present and absent
keyphrases with standard JSON format.
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