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Abstract

The evaluation of text generated by large lan-
guage models (LLMs) remains a challenge for
question answering, retrieval augmented gener-
ation (RAG), summarization, and many other
natural language processing tasks. Evaluat-
ing the factuality of LLM-generated responses
is particularly important in medical question
answering, where the stakes are high. One
method of evaluating the factuality of text is
through the use of information nuggets (answer
keys). Nuggets are text representing atomic
facts that may be used by an assessor to make
a binary decision as to whether the fact repre-
sented by said nugget is contained in an answer.
Given that manual nugget extraction is expen-
sive and time-consuming, recent RAG shared
task evaluations have explored automating the
nuggetization of text with LLMs. In this work,
we explore several approaches to nugget gener-
ation for medical question answering and eval-
uate their alignment with expert human nugget
generation. We find providing an example and
extracting nuggets from an answer to be the
best approach to nuggetization. While, overall,
we found the capabilities of LLMs to distill
atomic facts limited, Llama 3.3 performed the
best out of the models we tested.

1 Introduction

Evaluation of automatically generated answers is a
major bottleneck in the development of question-
answering approaches. Although a need for new
evaluation approaches was noticed as soon as the
system-generated answers became more complex
and abstract (Chen et al., 2019), to date, there
are no widely accepted evaluation metrics to ap-
proximate human judgments on the quality and
other aspects of the generated answers. The TREC
2024 Retrieval Augmented Generation track eval-
uation (Pradeep et al., 2024) revisited the nugget-
based evaluation originally developed for judging
answers to definition questions in the 2003 ques-
tion answering track (Voorhees, 2004). Briefly, a

nugget-based evaluation is a two-step process. In
the first step, the assessors create a list of atomic
facts (nuggets) that must be present in an answer
for the answer to be judged correct and complete.
In the second step, the assessors manually map
each statement in a system-generated answer to the
nuggets. Various performance metrics may then
be computed. For example, the TREC 2024 RAG
track labeled nuggets as supported, partially sup-
ported, or not supported by the answer and then
computed the system scores by summing the scores
of all nuggets and dividing the sum by the number
of nuggets. Most importantly, the evaluation has
shown correlations between scores derived from an
automatic nugget evaluation and a manual nugget
evaluation. This supports the belief that LLMs can
be used to support evaluations as long as LLMs are
not generating the ground truth (Soboroff, 2024).
To that end, we explore various approaches to the
first step of the evaluation - LLMs’ ability to gener-
ate atomic factual statements (c¢f. Table 1). This is
particularly important in medical question answer-
ing, where, although infrequently, as demonstrated
by the results of the 2024 TREC BioGen track eval-
uation, generated answers may contain inappro-
priate and potentially harmful information (Gupta
et al., 2024).
The contributions of this work are as follows:

* We manually generate nuggets for the 2024
BioGen track topics.

* We propose a series of automated nugget-
generation approaches considering the ques-
tion, answer, and relevant documents.

* We evaluated the capabilities of LLMs’ to gen-
erate nuggets.

Related work: Nugget generation could be
viewed as a form of outline generation in two dif-
ferent settings: 1) a model or a person generating
the nuggets has access to a set of answers or docu-
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Query: "What will mutation in runx2 affect in the
Sfuture?"

Answer: "The effect of the runx2 mutation depends
on the kind of the mutation. This gene mostly af-
fects bone development. Mutations can cause bone
deformities, height lower than expected, extra teeth
and other dental problems..."

Manually Extracted Nuggets:

1. Affects (runx2 mutation, bone development)

2. Cause (runx2 mutation, bone deformities)

3. Cause (runx2 mutation, height lower than ex-
pected)

4. Cause (runx2 mutation, extra teeth)

5. Cause (runx2 mutation, dental problems) ...
LLM (Llama 3.3) Generated Nuggets:

1. Runx2 mutation affects bone development

2. Runx2 mutation can cause bone deformities

3. Runx2 mutation can result in lower than ...

4. Runx2 mutation can lead to extra teeth

5. Runx2 mutation can cause other dental problems

Table 1: An example of nuggets extracted by a human
and LLM for the same query and answer pair.

ments containing information needed to generate
the answer; 2) the model or person are provided
only with the question and have to generate the
outline using their background knowledge. While,
to the best of our knowledge, work on direct nugget
generation is limited to the above RAG evaluation
and an evaluation in which the initial set of test
nuggets is generated using ChatGPT (Dietz, 2024;
Farzi and Dietz, 2024), the related work on out-
line generation includes story generation (Wang
and Kreminski, 2024) and natural language out-
line for code generation (Shi et al., 2024). For
medical question answering, nugget-based evalu-
ation was revisited in the evaluation of answers
to questions about COVID-19 asked by patients
and clinicians (Goodwin et al., 2022). The nuggets
were generated manually in this evaluation. Other
evaluations that leverage fact extraction were pro-
posed for questions about biographies (Min et al.,
2023) and medical question answering (Wang et al.,
2024).

2 Methods

2.1 Manual Nugget Generation

For the purpose of having ground truths to eval-
uvate LLM generated nuggets against, we provide
expert-curated, manually generated nuggets for the

2024 BioGen track topics. Nuggets were captured
from 40 ground truth answers. Each nugget was
captured as a semantic triplet in Predicate (subject,
object) form. Nuggets were identified by manually
assessing the atomic facts represented in each sen-
tence and their corresponding predicate, subject,
and object. Some sentences may contain multiple
atomic facts, for example, sentences comprising
multiple phrases conjoined by a coordinating con-
junction or lists. In such cases, the semantic triple
is identified for each phrase or item in the list and
recorded separately. Predicates were normalized
across the dataset by mapping to a list of expert-
curated predicates deemed to be complete in their
coverage of the dataset and in conveying repre-
sented facts. Each medical concept contained in
either the subject or object was associated with
a Concept Unique Identifier (CUI) from the Uni-
fied Medical Language System (UMLS) (Lindberg
et al., 1993). These associations were made by
manually assessing the closest match, if any, from
the UMLS Metathesaurus Browser. Some facts
required more complex nugget structures includ-
ing, but not limited to, "if, then" clauses and com-
parisons. These nuggets preserve the underlying
logical structure from the answer. We generated
a total of 498 nuggets from 40 question-answer
pairs which has an average of 12.45 nuggets. Each
nugget was reviewed by at least two reviewers.

2.2 LLM-based Nugget Generation

Model Architectures: We tested both pop-
ular open-source and proprietary models for
nugget generation. The list of models includes
Llama (Grattafiori et al., 2024), Gemma (Riviere
et al., 2024), Mistral (Jiang et al., 2023), Phi (Ab-
din et al., 2024), Qwen (Qwen et al., 2025), Vi-
cuna (Chiang et al., 2023), Falcon (Almazrouei
et al., 2023), DeepSeek (DeepSeek-Al et al., 2025),
GPT (OpenAl et al., 2024), Gemini (Team et al.,
2023), and Claude!. For some families of models,
we included both larger and smaller versions.

Generation Strategies: We developed extensive
strategies to generate the nuggets by considering
different inputs to the LLMs. Specifically, we used
questions, reference answers, and cited documents
provided for each assertion in the reference answer.
We instructed the models to generate the appropri-
ate nuggets. The detailed strategies are as follows:
(1) Question: In the first strategy, we only pro-

"https://www.anthropic.com/claude/sonnet
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vide the question to the LLMs and instruct them to
generate all pertinent nuggets that directly address
the user’s query. We started with the zero-shot
approach and extended our experiments to the few-
shot approach to enable in-context learning, where
we provide an example question and corresponding
nuggets in the prompt to direct the model toward
better performance. We call this strategy () (zero-
shot) and ()1 (one-shot).

(2) Question + Answer: We aim to assess LLMs’
capability of distilling nuggets from the ground-
truth answers. We hypothesized that LLMs are
expected to perform well in this setting and it can
be considered an upper bound for the first strategy.
Similar to the first strategy, we devise two strate-
gies (zero and one-shot) and call them QA and
QA;.

(3) Question + Documents: Following the suc-
cess of the retrieval augmented generation (RAG)
approach in BioGen (Gupta et al., 2024), we de-
vised another strategy in which the relevant doc-
uments, along with the question, were passed as
input to the LLMs. To get the relevant documents,
we used the two-stage approach, in which we first
used BM2S5 to retrieve the top 100 relevant docu-
ments from the BioGen 2024 PubMed corpus, and
then re-ranked and selected the top 10 relevant doc-
uments using GraphMonoT5 approach (Gupta and
Demner-Fushman, 2024). We aimed to investigate
the role of input documents in the model’s capa-
bility of refining the final nuggets. Toward this,
we developed two variants of this approach. In the
first variant, we feed all the retrieved documents
together to the model, and in the second variant,
we feed each document sequentially and instruct
the model to refine the nuggets and produce the
final nuggets at the end of the iteration. We call
the former variant QQ RD,;; and the latter Q RD s¢q.
We also extended this strategy to the ground-truth
documents and used the cited documents associ-
ated with each assertion in the reference answer.
We call these variants QG D,;; (all documents to-
gether) and QG Ds., (sequential documents).

(4) Question + Answer + Documents: Sim-
ilar to the Question + Documents strategy, we
devise other strategies where we include the
ground-truth answer in the sequential processing
of documents (QRDseq, @G Dseq) and all docu-
ments together (QRD;;, QGDyy;) settings, and
call them (QARD ey, QAGD,ey) and (QARD y;,
QAGD,;) for sequential processing of documents
and all documents together, respectively.

We have provided all the prompts and experi-
mental details in the Appendix.

2.3 Evaluation Metrics

For a given question (), and its ground-truth
nuggets Y = {y1, 92, ..., ym} and model nuggets
X = {x1,29,...,x,} of the size m and n respec-
tively, we aim to match each nugget X; € X to one
of the ground-truth nuggets y; € Y. We formu-
late the nuggets matching as an assignment prob-
lem, where we first compute the semantic similar-
ity sim(w;, y;) = cosine(emby,, emb,;) between
z; € X and y; € Y and create a similarity matrix
S € R™*™. We then group all the elements of
matrix S and sort them in descending order. Iter-
atively, we assign each z; to y; if, S;; >= 6, and
x; and y; have not been assigned. We continue the
process until all z; (having sim(.) >= ) has been
assigned. We keep track of each assigned y; and en-
sure each y; is mapped to at most one x; while max-
imizing global similarity. Once the assignment is
done, we compute precision p = @ and recall
r= |X2Y|, and F1-score, where | X NY'| denotes
the number of generated nuggets that match the
ground-truth nuggets. For computing semantic sim-
ilarity, we use the SentenceTransformer (Reimers
and Gurevych, 2019) model?.

3 Results and Discussion

Key Results:  Table 2 shows the experimental
results of multiple generation strategies at the opti-
mal?® value of threshold 6. For the Question strat-
egy, the Llama 3.3 (70B) model obtained the maxi-
mum F1-score of 34.03% in zero-shot setting. On
the Question + Answer strategy, which can be con-
sidered as an upper-bound for the LLMs, the Llama
3.3 (70B) model achieved a maximum F1-score of
76% in one-shot setting. Under Question + Docu-
ment strategy, all the LLMs exhibited suboptimal
performance and showed a maximum of 34.11%
F1-score with the Gemini 2.0 Flash model, where
all the relevant documents along with the question
are provided as input to the model. On the Ques-
tion + Answer + Documents strategy, the Qwen
2.5 (72B) model achieved a maximum F1-score
of 62.95% where the relevant documents (one at a
time until all the documents finished), along with

2ht’cps: //huggingface.co/sentence-transformers/
all-MinilM-L6-v2

The optimal value (0.7) was determined by manual com-
parison of 10 different sets of LLM and ground-truth nuggets.
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Models Question Question + Answer Question + Documents Question + Answer + Documents
Q() Ql QAO QAI QGDall QRDall QGD.seq QRDseq QAGDall QARDall QAGDseq QARDseq
DeepSeek-R1 (7B) | 17.28 19.11 | 34.07 53.61 9.86 7.95 16.91 5.82 9.68 8.85 13.3 5.61
DeepSeek-R1 (70B) | 25.56 28.39 | 62.97 68.1 14.3 8.55 19.53 13.82 10.82 10.87 339 28.36
Falcon 3 (7B) 25.67 24.54 | 54.42 44.83 13.16 9.37 25.24 17.21 14.52 11.56 45.36 43.23
Falcon 3 (10B) 235 2821 | 51.76 60.32 13.69 9.87 21.73 13.22 12.41 9.01 47.61 48.76
Gemma 2 (9B) 2391 2393 | 504 62.03 11.67 10.95 19.07 17.95 13.1 11.21 43.38 37.19
Gemma 2 (27B) 27.11 2742 59.61 65.16 14.0 9.52 18.42 13.09 13.03 13.32 34.15 31.39
Llama 3.2 (3B) 19.15 15.52| 37.14 50.32 13.6 11.56 18.36 11.37 15.17 8.82 39.52 41.57
Mistral Small (24B) | 26.97 28.65 | 41.02 67.41 12.56 9.04 21.25 17.16 13.62 8.34 38.53 32.85
Phi-4 (14B) 26.57 2632 | 61.84 66.33 12.68 9.23 26.29 15.68 124 10.98 39.03 37.11
Qwen2.5 (7B) 2243 2596 | 64.38 65.2 11.24 7.86 20.43 12.56 11.21 9.13 34.11 25.69
Qwen2.5 (72B) 2839 34.52 | 6745 72.68 10.96 8.64 29.34 24.39 12.3 9.31 56.41 62.95
Vicunal.5 (7B) 1771 21.13 | 53.54 41.12 73 427 13.43 12.4 7.72 6.32 36.31 36.33
Vicunal.3 (33B) 1848 23.15 | 55.24 60.63 8.15 5.07 15.93 9.61 7.33 6.32 32.53 23.08
Llama 3.3 (70B) 34.03 33.45 | 68.32 76 17.53 10.94 29.37 22 18.29 12.72 39.1 44.8
GPT-40 3348 31.22 | 64.03 69.82 29.63 20.16 24.55 21.17 7.63 10.2 24.39 44.17
Gemini 2.0 Flash 33.14 35.32 | 56.05 72.55 34.11 15.29 8.81 19.85 50.83 43.68 32.64 31.02
Claude 3.5 Sonnet 27.08 163 | 66.11 67.86 33.17 17.44 17.16 16.56 51.48 43.82 47.87 46.18

Table 2: Performance comparison of various open and closed-source LLMs on the task of nugget generation under
different generation strategies. All the results are reported here denote the F1-score.

the question and answer, are provided as input to
the model.

Discussion and Findings: We observed a sig-
nificant performance gap among the generation
strategies. The best model’s performance differ-
ence between Question + Answer and Question is
41.97%. Similarly, we recorded a performance dif-
ference between Question + Answer and Question
+ Document as 41.89%. With the ground-truth doc-
uments as well, the GPT-40 obtained an F1-score
of 29.63% compared to its counterpart Question
strategy with an F1-score of 33.48%. Similar ob-
servations are made for most of the open-source
LLMs, except for the Gemini 2.0 Flash model,
where the difference between Question + Docu-
ments (34.11) and Question (33.14) strategy is not
significant.

We observed that smaller models (3B-14B) tend
to obtain lower performance compared to their
counterpart larger models. The study also re-
veals that LLMs lack the capability of accurately
generating or extracting nuggets for the health-
related query. Table 2 exhibits the performance
of Question strategy that tests the LLMs’ knowl-
edge in generating the nuggets for the given ques-
tion, which does not achieve the anticipated per-
formance. For the Question + Answer strategy,
where the ground-truth answer was given to the
model to extract the nuggets, it only achieves the
F1-score of 76% which highlights LL.Ms limitation
in accurately distilling the atomic facts from the
answer. LLMs showed similar behavior when the
documents were given to the model for generat-
ing/extracting the nuggets.

1.00 1.00 Model
92 0.90 Qwen2.5 (728)

GPT-40
Llama 3.3 (708)

e
@
°

0.20
0.60

Qo QAy QGDay Qo QAy
Strategy

092 092 0.70 0.66 067

\\

Qo QA QGDay Qo QAy QGDay
Strategy Strategy

Figure 1: Performance comparison of different models
under different generation strategies on multiple human
evaluation criteria.

Human Evaluation: = We also performed an
extensive human analysis on the LLM-generated
nuggets on multiple evaluation criteria.  For
the human evaluation, we chose the top-3 best-
performing LLMs across multiple settings. We
evaluated a total of 320 model-generated nuggets
with 37 ground-truth nuggets for three diverse ques-
tions across three different settings: (g, Q A1, and
QG Dy We evaluate the quality of each nugget
on the following criteria: (a) Correctness: whether
the generated nugget is correct (2), partially correct
(1), and incorrect (0); (b) Completeness: whether
the generated nugget is misleading (-1), not re-
quired (0), Okay, but not required (1), and re-
quired (2); (c) Precision: portions of the gener-
ated nuggets that are correct; (d) Recall: portions
of the ground-truth nuggets covered in the gen-
erated nuggets. We computed all the aforemen-
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tioned scores for each question and averaged them
to report (Fig. 1) the overall scores. The human
evaluation of completeness and correctness criteria
reveals that under the ground-truth answers (Q A;
strategy) all three LLMs’ performance was better,
only the question (()) strategy obtained the sub-
optimal performance. The evaluation also high-
lights that automatic precision and recall are highly
aligned with manual precision and recall.

4 Conclusions

This work presented a comprehensive study on
generating nuggets for health-related questions us-
ing various open and closed-source LLMs. Firstly,
we manually formulated nuggets for BioGen 2024
topics and thereafter, we devised multiple nugget
generation strategies to assess the capability of
LLMs under different settings. We found that most
LLMs obtained sub-optimal performance on the
task which demonstrates the challenge involved
with nugget generation, and we believe that our
manual-created nuggets will promote further re-
search in this direction.

Ethics Statement

The health-related questions and reference answers
used in this study are publicly available within the
Text REtrieval Conference (TREC) 2024 data.

Limitations

While the BioGen 2024 dataset covers a broad
range of question topics and intents sourced out
of popular health-related searches, it is not exhaus-
tive. Subsequently, our findings on the LLMs’ abil-
ity to generate nuggets in zero-shot settings apply
to information needs covered in the data: clinical
decision-support, factoid, and treatment and envi-
ronment effects. The manual nugget evaluation
approach outlined above can be used in the future
to expand the data.

Another limitation of the data is a single refer-
ence answer. While the bulk of the nuggets must be
present in any answer, some of the automatically
generated nuggets could have been present in alter-
native answers. For example, if the existing refer-
ence answer list surgery as a treatment option, with-
out specifying the best procedures, automatically
generated nuggets that name specific surgeries will
not get any credits for these nuggets. While this
may somewhat lower the scores, it should not affect
the model ranking, as the same approach is used for

all models. In the future, more than one reference
answer would be desirable to base the evaluation
on a nugget pyramid (Marton and Radul, 2006).
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A Models

Table 3 is an exhaustive list of the models tested
in our experiments with their versions and approxi-
mate number of parameters.

Model Version / Size

Llama 3.2 3B*

Llama 3.3 70B?

Gemma 2 9BS, 27B7

Mistral Small 24B8

Phi-4 14B°

Qwen2.5 7B'0 72B!!

Vicuna; s 7B 12

Vicuna 3 33B13

Falcon 3 7B, 10B"3
DeepSeek-R1 7B, 70B!7

GPT-40 gpt-40-2024-08-068
Claude 3.5 Sonnet | claude-3-5-sonnet-20240620'°
Gemini 2.0 Flash | gemini-2.0-flash?®

Table 3: A list of the models tested in our experiments.

4https://huggingface.

2-3B-Instruct

Shttps://huggingface.

3-70B-Instruct

®https://huggingface.
7https://huggingface.
8https://huggingface.

co/meta-1lama/Llama-3.
co/meta-1lama/Llama-3.
co/google/gemma-2-9b-it

co/google/gemma-2-27b-it
co/mistralai/

Mistral-Small-24B-Instruct-2501

9https://huggingface.
1Ohttps://huggingface.

5-7B-Instruct

11https://huggingface.

5-72B-Instruct

2https://huggingface.
13https://huggingface.
14https://huggingface.

Falcon3-7B-Instruct

15https://huggingface.

Falcon3-10B-Instruct

https://huggingface.

co/microsoft/phi-4
co/Qwen/Qwen2.

co/Qwen/Qwen2.
co/lmsys/vicuna-7b-v1.5
co/lmsys/vicuna-33b-v1.3
co/tiiuae/

co/tiiuae/

co/deepseek-ai/

DeepSeek-R1-Distill-Qwen-7B

7https://huggingface.

co/deepseek-ai/

DeepSeek-R1-Distill-L1lama-70B
18https://openai.com/index/hello—gpt—4o/
19https://www.anthropic.com/claude/sonnet
Dhttps://deepmind. google/models/gemini/flash/

B Details of Experimental Setup

Details of LLM Prompting To test the capabili-
ties of LLMs to generate and extract nuggets, we
prompted each model with a series of approaches.
Table 4 contains the prompt used for (g, the zero-
shot variation of our Question strategy. Table 5
contains the prompt used for () Ay, the zero-shot
variation of our Question + Answer strategy. Ta-
ble 6 contains the prompt used for ()1, the one-shot
variation of our Question strategy. Table 7 con-
tains the prompt for () A1, the one-shot variation of
our Question + Answer strategy. Table § contains
the prompt for QG D, and QRD,;, our Ques-
tion + Document strategies with all ground-truth
documents and all retrieved documents, respec-
tively. Table 9 contains the prompt for QRD;.,
and QG D, our Question + Document strate-
gies with sequential ground-truth documents and
sequentially retrieved documents, respectively. Ta-
ble 10 contains the prompt for QAGDg,; and
QARD,;;, our Question + Answer + Document
strategies with all ground-truth documents and all
retrieved documents, respectively. Table 11 con-
tains the prompt for QARDg.; and QAGDgq,
our Question + Answer + Document strategies
with sequential ground-truth documents and se-
quentially retrieved documents, respectively.

Each prompt contains some combination of
query (q), answer (a), context (c), and initial nugget
list (i) variables. The query and answer variables
were substituted with each query and answer from
the BioGen 2024 dataset. For the settings with all
documents, the context variable was substituted
with a list of the abstracts from all documents for
the query separated by a new line character. For
the settings with sequential documents, the context
variable was substituted with a single abstract. The
prompt for the sequential documents settings also
contained the initial nugget list variable. This vari-
able was initially "None" and then was substituted
with the list of nuggets produced by the model pro-
vided with the previous abstract. For the sequen-
tial documents settings, the models were prompted
once with each abstract and only the final list of
nuggets was recorded. All models were prompted
with their default settings (e.g. temperature).
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SYSTEM: You are NuggetGenerateLLLM, an Al assistant specialized in generating all information nuggets
that are required to completely answer a given query. A nugget is an atomic fact.

USER: Generate all the information nuggets that are required to completely answer the query given below.
Each nugget must contain one, and only one, fact. A nugget must be as concise and as specific as possible.
A nugget cannot contain a list, each element in a list must be its own nugget. Each nugget must directly
answer the query. The list of nuggets must not contain redundant information. Return a list of nuggets
such that each nugget is on a new line. Do not number or bullet the list. Do not include anything in your
response except for the list of nuggets. Here is an example of the output format:

nuggetl

nugget2

Query: q
LLM:
nuggetl
nugget?2

Table 4: Prompt for Q).

SYSTEM: You are NuggetExtractLLLM, an Al assistant specialized in extracting information nuggets
from a given answer. A nugget is an atomic fact.

USER: Generate all the information nuggets that are required to completely answer the query given below.
Each nugget must contain one, and only one, fact. A nugget must be as concise and as specific as possible.
A nugget cannot contain a list, each element in a list must be its own nugget. Each nugget must directly
answer the query. The list of nuggets must not contain redundant information. Return a list of nuggets
such that each nugget is on a new line. Do not number or bullet the list. Do not include anything in your
response except for the list of nuggets. Here is an example of the output format:

nuggetl

nugget2

Query: q
Answer: a
LLM:
nuggetl
nugget2

Table 5: Prompt for Q Ag.
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SYSTEM: You are NuggetGenerateLLM, an Al assistant specialized in generating all information nuggets
that are required to completely answer a given query. A nugget is an atomic fact.

USER: Generate all the information nuggets that are required to completely answer the query given below.
Each nugget must contain one, and only one, fact. A nugget must be as concise and as specific as possible.
A nugget cannot contain a list, each element in a list must be its own nugget. Each nugget must directly
answer the query. The list of nuggets must not contain redundant information. Return a list of nuggets
such that each nugget is on a new line. Do not number or bullet the list. Do not include anything in your
response except for the list of nuggets. Here is an example of the output format:

nuggetl

nugget2

Here is an example query: Why is transferrin and iron low in covid patients but ferritin high?
This is the list of nuggets that should be generated for this query:

Lymphocytes and viruses compete for iron.

Lymphocytes need iron for cellular response.

Lymphocytes need iron for humoral response.

Viruses need iron to replicate.

Infection lowers iron levels in the blood.

Infection increases ferritin levels in the blood.

High ferritin is associated with increased mortality.

Iron homeostasis needs ferritin.

Ferritin is involved in physiologic processes.

Ferritin is involved in pathologic processes.

High ferritin indicates response to inflammation.

High ferritin levels are linked to poor outcomes of COVID-19.

Iron depletion therapy showed anti-viral activity in the COVID-19 pandemic.
Iron depletion therapy showed anti-fibrotic activity in the COVID-19 pandemic.
Query: q

LLM:

nuggetl

nugget2

Table 6: Prompt for ;.
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SYSTEM: You are NuggetExtractLLM, an Al assistant specialized in extracting information nuggets
from a given answer. A nugget is an atomic fact.

USER: List all of the information nuggets in the answer given below that are required to completely
answer the query. Each nugget must contain one, and only one, fact from the answer. A nugget must be
as concise and as specific as possible. Each element in a list must be its own nugget. Each nugget must
directly answer the query. The list of nuggets must not contain redundant information. Return a list of
nuggets such that each nugget is on a new line. Do not number or bullet the list. Do not include anything
in your response except for the list of nuggets. Here is an example of the output format:

nuggetl

nugget2

Here is an example query: Why is transferrin and iron low in covid patients but ferritin high?
This is the list of nuggets that should be generated for this query:
Lymphocytes and viruses compete for iron.

Lymphocytes need iron for cellular response.

Lymphocytes need iron for humoral response.

Viruses need iron to replicate.

Infection lowers iron levels in the blood.

Infection increases ferritin levels in the blood.

High ferritin is associated with increased mortality.

Iron homeostasis needs ferritin.

Ferritin is involved in physiologic processes.

Ferritin is involved in pathologic processes.

High ferritin indicates response to inflammation.

High ferritin levels are linked to poor outcomes of COVID-19.

Iron depletion therapy showed anti-viral activity in the COVID-19 pandemic.
Iron depletion therapy showed anti-fibrotic activity in the COVID-19 pandemic.
Query: q

Answer: a

LLM:

nuggetl

nugget2

Table 7: Prompt for QA;.
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SYSTEM: You are NuggetGenerateLLM, an Al assistant specialized in using context to generate all
information nuggets that are required to completely answer a given query. A nugget is an atomic fact.
USER: Use the context provided to generate all the information nuggets that are required to completely
answer the query given below. Each nugget must contain one, and only one, fact. A nugget must be as
concise and as specific as possible. A nugget cannot contain a list, each element in a list must be its own
nugget. Each nugget must directly answer the query. The list of nuggets must not contain redundant
information. Return a list of nuggets such that each nugget is on a new line. Do not number or bullet the
list. Do not include anything in your response except for the list of nuggets. Here is an example of the
output format:

nuggetl

nugget2

Query: q
Context: ¢
LLM:
nuggetl
nugget2

Table 8: Prompt for QG D,y and QRD ;.

SYSTEM: You are NuggetGenerateLLLM, an Al assistant specialized in using context to update a list of
all information nuggets that are required to completely answer a given query. A nugget is an atomic fact.
USER: Use the context provided to update the list of information nuggets, if needed. The list should
contain all nuggets that are required to completely answer the query given below. If no list of nuggets is
provided, generate a list of nuggets. Each nugget must contain one, and only one, fact. A nugget must be
as concise and as specific as possible. A nugget cannot contain a list, each element in a list must be its
own nugget. Each nugget must directly answer the query. The list of nuggets must not contain redundant
information. Return a list of nuggets such that each nugget is on a new line. Do not number or bullet the
list. Do not include anything in your response except for the list of nuggets. Here is an example of the
output format:

nuggetl

nugget2

Query: q

Context: ¢

Initial Nugget List: i
LLM:

nuggetl

nugget2

Table 9: Prompt for QG Dseq and QRD .
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SYSTEM: You are NuggetGenerateLLLM, an Al assistant specialized in using context to generate all
information nuggets that are required to completely answer a given query. A nugget is an atomic fact.
USER: Use the context provided to generate all the information nuggets that are required to completely
answer the query given below. Each nugget must contain one, and only one, fact. A nugget must be as
concise and as specific as possible. A nugget cannot contain a list, each element in a list must be its own
nugget. Each nugget must directly answer the query. The list of nuggets must not contain redundant
information. Return a list of nuggets such that each nugget is on a new line. Do not number or bullet the
list. Do not include anything in your response except for the list of nuggets. Here is an example of the
output format:

nuggetl

nugget2

Query: q
Answer: a
Context: ¢
LLM:
nuggetl
nugget2

Table 10: Prompt for QAG D,y and QARD ;.

SYSTEM: You are NuggetGenerateLLLM, an Al assistant specialized in using context to update a list of
all information nuggets that are required to completely answer a given query. A nugget is an atomic fact.
USER: Use the context provided to update the list of information nuggets, if needed. The list should
contain all nuggets that are required to completely answer the query given below. If no list of nuggets is
provided, generate a list of nuggets. Each nugget must contain one, and only one, fact. A nugget must be
as concise and as specific as possible. A nugget cannot contain a list, each element in a list must be its
own nugget. Each nugget must directly answer the query. The list of nuggets must not contain redundant
information. Return a list of nuggets such that each nugget is on a new line. Do not number or bullet the
list. Do not include anything in your response except for the list of nuggets. Here is an example of the
output format:

nuggetl

nugget2

Query: q

Answer: a

Context: ¢

Initial Nugget List: i
LLM:

nuggetl

nugget2

Table 11: Prompt for QAGDseq and QARD s,
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