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Abstract

Predicting semantic textual similarity (STS) is
a complex and ongoing challenge in natural
language processing (NLP). Over the years,
researchers have developed a variety of su-
pervised and unsupervised approaches to cal-
culate STS automatically. Additionally, vari-
ous benchmarks, which include STS datasets,
have been established to consistently evaluate
and compare these STS methods. However,
they largely focus on high-resource languages,
mixed with datasets annotated focusing on re-
latedness instead of similarity and contain au-
tomatically translated instances. Therefore, no
dedicated benchmark for multilingual STS ex-
ists. To solve this gap, we introduce the Mul-
tilingual Semantic Textual Similarity Bench-
mark (MUSTS), which spans 13 languages,
including low-resource languages. By evalu-
ating more than 25 models on MUSTS, we
establish the most comprehensive benchmark
of multilingual STS methods. Our findings
confirm that STS remains a challenging task,
particularly for low-resource languages.

1 Introduction

Semantic textual similarity (STS) measures the ex-
tent to which two sentences convey the same mean-
ing (Cer et al., 2017). Automatically measuring
STS is a foundational natural language understand-
ing (NLU) problem relevant to numerous appli-
cations (Mu and Lim, 2024), including machine
translation (Wieting et al., 2019; Ranasinghe et al.,
2020), text summarisation (Majumder et al., 2024),
question answering (Mitkov et al., 2023), and in-
formation retrieval (Iida and Okazaki, 2021).
Over the years, researchers have developed var-
ious supervised and unsupervised approaches to
calculate STS, ranging from training recurrent
neural networks (RNNs) (Mueller and Thyagara-
jan, 2016; Ranasinghe et al., 2019b), fine-tuning
pre-trained language models (Chandrasekaran and
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Mago, 2021) and prompting large language mod-
els (LLMs) (Chen et al., 2023). The organisation
of SemEval shared tasks from 2012 to 2017 has
fuelled the development of these neural network
architectures (Cer et al., 2017; Agirre et al., 2016,
2015, 2014, 2013, 2012).

Natural language understanding (NLU) bench-
marks such as GLUE (Wang et al., 2018) have
been introduced to enable the systematic evalua-
tion and comparison of STS methods. The multi-
lingual adaptation of GLUE in languages such as
Korean (Park et al., 2021), Japanese (Kurihara et al.,
2022), and Sinhala (Ranasinghe et al., 2025) also
included STS tasks. From the multilingual bench-
marks, the Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2023) includes 12
STS datasets spanning multiple languages, making
it a valuable resource for multilingual text similar-
ity evaluation (Su et al., 2023). However, despite its
widespread adoption, several notable weaknesses
are associated with the STS datasets included in
MTEB.

(i) Language Coverage - None of the languages
in the STS datasets of MTEB benchmark are low-
resource (Muennighoff et al., 2023). According to
Joshi et al. (2020), they all fall into the resource-
rich ‘Winners’ or ‘Underdogs’ categories. Conse-
quently, it remains uncertain how the top models
in MTEB would generalise into low-resource lan-
guages as unsupervised STS methods.

(ii) Text Similarity vs. Relatedness - Several STS
datasets in MTEB, including Polish (Dadas et al.,
2020) and Finnish (Kanerva et al., 2021) have been
annotated with a focus on relatedness rather than
similarity. While similarity involves paraphrasal
or entailment relations, relatedness accounts for all
of the commonalities that can exist between two
sentences (Abdalla et al., 2023; Morris and Hirst,
1991). As a result, datasets focused on relatedness
cannot be classified as STS datasets.
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Language Family |Train| |Test| Reference Source MTEB
Arabic Afro-Asiatic (Semitic) 1080 250 Cer et al. (2017) SNLI X
Brazilian Portuguese Indo-European (Romance) 2500 2000 Fonseca et al. (2016) SICK X
Czech Indo-European (Slavic) 925 500 Sido et al. (2024) News X
English Indo-European (Germanic) 5750 1380 Cer et al. (2017) SNLI v
French Indo-European (Romance) 600 410 Cardon and Grabar (2020) Wikipedia & Vikidia X
Japanese Japonic 12500 1460 Kurihara et al. (2022) YJ Caption v
Korean Koreanic 5750 1380 Ham et al. (2020) SNLI X
Portuguese Indo-European (Romance) 2500 2000 Fonseca et al. (2016) SICK X
Romanian Indo-European (Romance) 5750 1380 Dumitrescu et al. (2021) SNLI v

I Serbian Indo-European (Slavic) 953 239 Batanovic et al. (2018) paraphrase.sr X

I Sinhala Indo-European (Indo-Aryan) 5000 100 Kadupitiya et al. (2016) SICK x
Spanish Indo-European (Romance) 1620 250 Cer et al. (2017) SNLI v

I Tamil Dravidian 2500 100 Nilaxan and Ranathunga (2021) SICK X

Table 1: Overview of the languages included in MUSTS, listing the language, language family, dataset size (train
and test), reference, source, and whether the dataset is part of MTEB. We group the language into high-resource I,
mid-resource , and low-resource I based on Joshi et al. (2020).

(iii) Machine Translations - Several STS datasets
in MTEB, such as German and Russian, were gen-
erated by machine translations of English STS
datasets without post-editing. These datasets
risk propagating translation errors and introducing
stylistic biases that affect model training and eval-
uation (Mahfuz et al., 2025; Hettiarachchi et al.,
2025). As a result, the validity of using these
datasets for model evaluation remains questionable
(Mager et al., 2018).

Although some of these limitations are accept-
able for an embedding evaluation benchmark like
MTEB (Muennighoff et al., 2023), they prevent
the datasets within MTEB from being suitable as
an STS benchmark. Therefore, in this research, we
compile MUSTS: MUItilingual Semantic Textual
Similarity Benchmark addressing the limitations
mentioned above. Furthermore, we evaluate several
popular unsupervised and supervised STS methods
on MUSTS and report the results.

The main findings of the paper are;

e LLM prompting and LLM-based encoders pro-
vide the best results as unsupervised STS methods
for high and mid-resource languages. However, for
low-resource languages, simple STS methods like
smooth inverse frequency (Arora et al., 2017) and
earlier transformer-based sentence encoders like
LaBSE (Feng et al., 2022) outperform LLMs.

e MTEB ranking does not reflect in MUSTS,
encouraging more low-resource language inclusion
in multilingual benchmarks.

e Training transformers provide the best results
for STS even for low-resource languages, aligning
with the other regression-based NLP tasks (Qian
et al., 2024; Ma et al., 2024).

2 MUSTS: Multilingual Semantic
Textual Similarity Benchmark

Table 1 shows datasets in 13 languages that we
identified fulfilling our requirements to be included
in MUSTS. More statistics are available in Ap-
pendix D. We assign each language into one of the
three categories following Joshi et al. (2020), where
‘Winners’ are high-resource, ‘Underdogs’ are mid-
resource and the rest are low-resource. Compared
to MTEB, MUSTS provides a better coverage in
mid and low-resource languages as it includes lan-
guages like Sinhala and Tamil (De Silva, 2019).

Unlike MTEB, MUSTS only contains datasets
that followed STS annotation guidelines from
Agirre et al. (2013) (Appendix A) without mix-
ing with other concepts such as relatedness and
paraphrasing. While some languages, such as Por-
tuguese (Fonseca et al., 2016) and Sinhala (Kadupi-
tiya et al., 2016), include sentences from the SICK
dataset (Marelli et al., 2014), which focus on se-
mantic relatedness, they were reannotated for the
STS labels. From the STS datasets that were
machine-translated from an English source, such
as Sinhala (Kadupitiya et al., 2016) and Tamil (Ni-
laxan and Ranathunga, 2021), we only include
those that have undergone a post-editing process.
Finally, we restrict our selection to STS datasets
published in peer-reviewed papers.

Eliminated Datasets While Faroese (Snab-
jarnarson et al., 2023) and Bengali (Shajalal and
Aono, 2018) STS datasets satisfy MUSTS criteria,
they contain less than 1000 instances. As MUSTS
aims to evaluate supervised models as well, we de-
cided not to include datasets with less than 1000
instances.
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3 Methods

We evaluated the following unsupervised and su-
pervised STS methods on MUSTS.

3.1 Unsupervised STS Methods

3.1.1 Vector Averaging

The first unsupervised STS method averages the
word embeddings of both sentences and computes
their cosine similarity. We used three multilingual
transformer models; XLM-R Large (Conneau et al.,
2020), RemBERT (Chung et al., 2021), and infoXLM
Large (Chi et al., 2021) to obtain embeddings. For
the words which are split into sub-tokens by a par-
ticular tokeniser, we used the first sub-token em-
bedding as the word’s representation.

3.1.2 Smooth Inverse Frequency

Taking the average of word embeddings in a sen-
tence gives equal weights for words such as but,
just, etc. Smooth Inverse Frequency (SIF) ad-
dresses this in two steps (Arora et al., 2017);

(i) Weighting: SIF computes a weighted average
of word embeddings, where each word is weighted
by 5wy With a which we set to 0.001 and p(w)
as the word’s estimated frequency in a reference
corpus. For these experiments, we used HPLT
(de Gibert et al., 2024).

(ii) Common Component Removal: It then com-
putes the principal component of these embeddings
across sentences and removes their projections onto
the first principal component, reducing noise from
frequent words like stop words.

After these two steps, we compute the cosine sim-
ilarity between the two embeddings (Ranasinghe
et al., 2019a). We employed the same multilingual
transformer models used in §3.1.1 in SIF too.

3.1.3 Sentence Embeddings

We also utilised multilingual sentence encoders
to generate sentence embeddings and calcu-
late the cosine similarity to represent the STS.
Specifically, we used LaBSE (Feng et al., 2022),
all-MinilLM-L12-v2, and LASER (Heffernan et al.,
2022) as the sentence encoders.

3.1.4 LLM Prompting

Following recent advances in NLP, we evalu-
ated LLMs for measuring STS using a prompt-
based approach. We conducted experiments
with two recently released multilingual LLMs:

Llama-3.1-8B-Instruct (Touvron et al., 2023)
and Mistral-8B-Instruct (Jiang et al., 2023), us-
ing four prompting strategies.

(i) Zero-shot (ZS): We asked the models to predict
similarity solely by following instructions without
providing any examples.

(ii) Few-shot-English (FS-En): Under this vari-
ant, we provided five English examples randomly
chosen from the training dataset with similarity
scores spread across the entire range (0-5).

(iii) Few-shot-Monolingual (FS-Mono): Unlike
FS-En, we provided the model with five examples
in the same language as the given sentence pair for
measuring STS. We used the same approach as (ii)
to subsample training data.

(iv) Few-shot with Chain of thoughts (FS-CoT):
We provided the model with a small set of exam-
ples, each demonstrating a series of intermediate
reasoning steps that break down the task for better
understanding. We utilised six English examples
using the explanations in Table 3 in the Appendix
A.

We adapted the original prompt templates from
Wang et al. (2024a) and refined them based on our
initial experiments. More details on prompt design
and our prompts are provided in Appendix B.

3.1.5 LLM-Encoders

We also employed the top six LLM-based em-
bedding models in MTEB leaderboard as of
December 2024. Namely, they are NV-Embed-v2
(Lee et al., 2024), bge-en-icl (Li et al., 2024),
stella_en_1.5B_v5, SFR-Embedding-2_R,
gte-Qwen2-7B-instruct (Li et al., 2023) and
gte-Qwen2-1.5B-instruct (Li et al., 2023).
We compute the cosine similarity between the
embeddings corresponding to the two sentences to
represent the similarity.

3.2 Supervised STS Methods

3.2.1 Transformers

As the first supervised STS approach, we concate-
nated training sets from all the languages from
MUSTS and trained three multilingual transformer
models; XLM-R Large (Conneau et al., 2020),
RemBERT (Chung et al., 2021), and infoXLM Large
(Chi et al., 2021). The architecture and the configu-
rations are available in Appendix C.1.

333



Low-resource

Mid-resource High-resource

Se Si Ta Ar  BrPt Cz Ja Ko Pt Ro En Es Fr | Avg
§3.1.1 Word Vector Average
XLM-R Large 0246 0259 0335 0460 0416 0265 0388 0394 0420 0318 0383 0.384
RemBERT 0370 0.120 0242 0336 0439 0254 0387 0362 0450 0.406 0.390
infoXLM Large | 0475 0204 0322 0424 0370 0450 0389 0490 0.427 0.440
§3.1.2 Smooth Inverse Frequency
XLM-R Large 0.193  0.266 0.461 0.294 | 0.459 0.400 0.464
RemBERT 0.261  0.197 0.438 0.245 = 0459 0415
infoXLM Large 0336 0.426 0.426

§3.1.3 Sentence Encoders
LaBSE

MinilM-L12-v2

LASER

0.087  0.258

0.201

0.292

§3.1.4 LLM Prompting
Llama-3.1-8B-Instruct ZS
Llama-3.1-8B-Instruct FS-En
Llama-3.1-8B-Instruct FS-Mono
Llama-3.1-8B-Instruct FS-CoT
Mistral-8B-Instruct ZS
Mistral-8B-Instruct FS-En
Mistral-8B-Instruct FS-Mono
Mistral-8B-Instruct FS-CoT

0.396
0.414

0.276
0.360

0.364
0.085
0.313
0.327
0.342

0.354
0.256
0.351
0.311

§3.1.5 Top LLM-based Encoders on MTEB (Muennighoff et al., 2023)

NV-Embed-v2 0343  0.397
bge-en-icl 0292 0.322
stella_en_1.5B_v5 0.124  0.341
SFR-Embedding-2_R 0399 0.334
gte-Qwen2-7B-instruct 0280  0.397
gte-Qwen2-1.5B-instruct 0312 0.353

§3.2.1 Training Transformers
XLM-R Large

RemBERT

infoXLM Large

§3.2.2 Training LLM-based Encoders
stella_en_1.5B_v5 -

0.392

gte-Qwen2-1.5B-instruct 0.420

Table 2: Spearman (r) correlation between model predictions and human annotations. The best result for each
language (any method) is in bold, and the best unsupervised result is underlined.

3.2.2 Training LLM-Encoders

We also selected two small LLM-Encoders that
could be trained on an NVidia L40 48G GPU. We
concatenated training sets from all the languages
from MUSTS and trained these encoders using
the sentence transformers architecture (details in
Appendix C.2) (Reimers and Gurevych, 2019). We
specifically used gte-Qwen2-1.5B-instruct and
stella_en_1.5B_v5.

4 Results and Analysis

Table 2 shows the Spearman correlation between
predictions of each model and human annotations.
We describe our main findings in the following list.

(i) LLMs as Unsupervised STS Methods - The
results show that both LLM-based unsupervised
STS approaches, encoders and prompting, pro-
vide excellent results in mid and high-resource lan-
guages. Interestingly, some of these LLMs do not
even directly support languages such as Czech and

Romanian, yet they provide impressive results for
the STS task. LLM-based encoders jointly out-
performed prompting in nine out of ten mid/high
resource languages. Finally, there is no clear win-
ner among the four prompting strategies. However,
we notice FS-Mono provides better results than
FS-En in the majority of languages.

Both LLM-based encoders and prompting do
not perform well in low-resource languages, par-
ticularly Sinhala and Tamil. Interestingly, SIF, a
simple STS method, produced competitive results
compared to LLM-based methods in low-resource
languages. From the experimented unsupervised
methods, LABSE (Feng et al., 2022) provided the
best results for low-resource languages.

(ii) MUSTS ranking vs. MTEB Ranking - The
results in row §3.1.5, Table 2 show that model
ranking in MTEB is not reflected in MUSTS. For
instance, SFR-Embedding-2_R, the fourth-ranked
model in MTEB, ranked first among the text em-
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bedding models in MUSTS. We attribute this dis-
crepancy primarily to the language coverage of
MUSTS and suggest that NLP benchmarks should
incorporate low-resource languages for a fairer
evaluation.

(@ii) Supervised STS Models - Training trans-
former models provided the best results for STS.
Among the multilingual transformer models tested,
info-XLM Large achieved the highest perfor-
mance across all 13 languages.

Interestingly, fine-tuning LL.M-based encoders
on MUSTS using the Sentence Transformers archi-
tecture did not lead to overall improvements. How-
ever, it did enhance performance in low-resource
languages. We believe that techniques such as
contrastive instruction tuning (Wang et al., 2024b)
should be further explored to achieve better results.

5 Conclusions

In this paper, we compiled MUSTS, the most com-
prehensive multilingual STS benchmark up to date.
MUSTS spans over 13 languages and includes
carefully selected STS datasets in terms of task def-
inition and human annotations. We make MUSTS
publicly available together with the fine-tuning and
the evaluation code, as well as a public leader-
board!.

We evaluated more than 25 STS approaches on
MUSTS. Our results showed that STS remains a
challenging task, especially for low-resource lan-
guages. Furthermore, we show that LLM-based
methods thrive in the STS task for mid and high-
resource languages but struggle in low-resource
languages. Our findings highlight the need for fair
multilingual evaluations in STS.

Limitations

We only used the models that could be experi-
mented on an NVidia L40 48G GPU. Due to these
computational limitations, we did not experiment
with the larger models. Larger models may perform
differently in this STS task.

The examples used in the few-shot scenarios
(§3.1.4) were randomly sampled since we do not
have the knowledge to prepare good-quality exam-
ples for all languages. Results might be different
if these examples were carefully chosen by native
speakers.

'Available at https://github.com/TharinduDR/MUSTS

Ethical Considerations

All the datasets released with MUSTS are publicly
available with a CC BY 4.0 licence. Furthermore,
all the models that we experimented with in this pa-
per are publicly available in HuggingFace (Lhoest
et al., 2021).
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A Annotation Guidelines

All the datasets in MUSTS follow the annotation
guidelines in Table 3.

The two sentences are completely equivalent, as they
mean the same thing.

The bird is bathing in the sink.
Birdie is washing itself in the water basin.

The two sentences are mostly equivalent, but some
unimportant details differ.

Two boys on a couch are playing video games.
Two boys are playing a video game.

The two sentences are roughly equivalent, but some
important information differs/missing.

John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

The two sentences are not equivalent, but share some
details.

They flew out of the nest in groups.
They flew into the nest together.

The two sentences are not equivalent, but are on the
same topic.

The woman is playing the violin.
The young lady enjoys listening to the guitar.

The two sentences are completely dissimilar.

0 | The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 3: Similarity scores with explanations and English
examples from Agirre et al. (2013).

B Prompts

As a starting point, we used the prompt tem-
plates provided by Wang et al. (2024a), developed
through a comprehensive experimental study, as
the basis for our study. We made a few key updates.
First, we revised the task description to explicitly
mention ‘semantic textual similarity’ to avoid con-
fusion with syntactic similarity, which our initial
experiments suggested could occur when using just
the term ‘similarity’. We also added a new sen-
tence to each prompt to clarify the expected output,
aiming to reduce post-processing errors when ex-
tracting the scores. Table 4 summarises the final
prompt templates.

C Supervised STS Models

C.1 Training Transformers

We trained the transformer models using the archi-
tecture in Figure 1.

e All our models use the AdamW (Loshchilov
and Hutter, 2019) optimiser with a weight decay
of le-8, learning rate of 2e-5, a warmup ratio of
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task_description:

Determine the semantic textual similarity between the follow-
ing two sentences (S1, S2). The score should be ranging from
0.0 to 5.0, and can be a decimal.

Strategy | Prompt

ZS {task_description} Return the score only follow-
ing the prefix ‘Score:” without any other text or

explanations. S1: {sentencel} S2: {sentence2}

FS Five demonstration examples:
Example 1:
S1: Ebola UK: NHS staff ‘panicked’ after
suspected Ebola cases.
S2: UK says investigating 2 suspected MERS
cases.
Score: 0.0
Example 2:
{task_description} Return the score only
following the prefix ‘Score:” without any other
text or explanations. S1: {sentencel} S2:
{sentence2}

FS-CoT {task_description} Return the explanation and

score only following the prefixes ‘Explain:” and
‘Score:” without any other text.

Six demonstration examples with explana-
tion for each:

Example 1:

S1: The black dog is running through the snow.
S2: A race car driver is driving his car through
the mud.

Explain: S1 and S2 are completely dissimilar.
Score: 0.0

Example 2:

S1: {sentencel} S2: {sentence2}

Table 4: Prompt templates used for experiments

0.06 from the training data and are trained for
five epochs with a batch size of 32 (gradient ac-
cumulation is applied when needed), and a max-
imum length of 512 tokens. The values of the
hyper-parameters (including the number of train-
ing epochs) were set to fixed values in order to
ensure consistency between all the models.

e All the models were evaluated while training
using a development set that had one-fifth of the
rows separated from the training set before the start
of the training process.

e The best checkpoints were selected on the de-
velopment set. We use the Spearman correlation as
the checkpoint selection criterion.

e We trained our models on an NVidia L40 48G
GPU. All models were trained with half-precision

'
a -

Transformer

Sentence 2

Sentence 1

Figure 1: Architecture for using Transformers in STS.

(fp16) using the default PyTorch implementation.

C.2 Training LLM-based Encoders

We trained the LLM encoders using the architecture
in Figure 2.

Figure 2: Architecture for using Transformers in STS.

e All models were trained using the same configu-
rations mentioned in Appendix C.1, apart from the
learning rate and warmup ratio, which were set to
le-6 and 0.1, respectively.

D MUSTS Statistics

In the following figures, we show label distribution
and token overlap for each language.
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