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Abstract

Entity linking involves normalizing a men-
tion in medical text to a unique identifier in
a knowledge base, such as UMLS or MeSH.
Most entity linkers follow a two-stage process:
first, a candidate generation step selects high-
quality candidates, and then a named entity
disambiguation phase determines the best can-
didate for final linking. This study demon-
strates that leveraging a large language model
(LLM) as an entity disambiguator significantly
enhances entity linking models’ accuracy and
recall. Specifically, the LLM disambiguator
achieves remarkable improvements when ap-
plied to alias-matching entity linking methods.
Without any fine-tuning, our approach estab-
lishes a new state-of-the-art (SOTA), surpass-
ing previous methods on multiple prevalent
biomedical datasets by up to 16 points in ac-
curacy. We released our code on GitHub at
https://github.com/ChristopheYe/llm_disamb.

1 Introduction

The biomedical domain is an information-rich
and highly specialized field, characterized by vast
amounts of domain-specific knowledge and intri-
cate terminologies. Unlike named entity recogni-
tion (NER), which focuses on identifying entity
mentions in text, biomedical entity linking (EL)
goes a step further by mapping these mentions to
unique identifiers in a structured knowledge base
(KB). This distinction is critical, as biomedical
texts often contain extensive synonyms, polysemy,
and abbreviations, where the same concept may be
expressed in multiple ways, or a single term may
refer to different entities depending on context. Ef-
fective EL is essential for resolving these ambigu-
ities, enabling more precise information retrieval
(Lee et al., 2016), improving knowledge discovery
(Wang et al., 2018), and facilitating downstream
tasks such as automated data annotation and cura-
tion. By strengthening EL systems, researchers can

Figure 1: LLM as Entity Disambiguator.

unlock more efficient data integration, enhance text
mining applications, and accelerate advancements
in biomedical research and healthcare.

Various methods have been applied to biomedi-
cal EL. Alias-matching approaches align mentions
with entities based on lexicographical properties.
This includes models like SciSpacy (Neumann
et al., 2019), MetaMap (Aronson and Lang, 2010)
or SapBERT (Liu et al., 2021). Contextualized
EL learns vector representations (Vaswani et al.,
2023) of entities by leveraging the contextual in-
formation from the mention and try to match it to
an entity description. This includes models like
KRISSBERT (Zhang et al., 2022), ClusterEL (An-
gell et al., 2021) or ArboEL (Agarwal et al., 2022).
These representations are typically employed to
generate a list of high-quality candidates for a men-
tion, which are then refined using a re-ranker (Wu
et al., 2020).

Large language models (LLMs) have recently
shown promise in various biomedical Natural Lan-
guage Processing (NLP) (Tian et al., 2023) appli-
cations. However, for information extraction tasks
like entity recognition, their performance still lags
significantly behind the previously cited models
(Jahan et al., 2024).

Prior work has leveraged LLMs as external tools
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to enhance data quality for improved entity nor-
malization. For instance, Borchert et al. (2024)
simplifies entity mentions by rephrasing long or
complex terms into more general or concise forms
before candidate generation, while Chen employs
LLMs to generate high-quality augmented data, im-
proving the performance of traditional biomedical
entity linking models. Garda and Leser (2024) in-
tegrates LLM-powered homonym disambiguation,
which resolves ambiguous entity names by append-
ing clarifying descriptors, and candidate sharing,
which enhances training by leveraging contextu-
ally related mentions within the same document.
However, no prior work has fully integrated LLMs
as a core component of the entity linking pipeline
itself.

This is primarily due to a lack of domain-specific
knowledge and tendencies toward hallucination.
However, with sufficient information, LLMs could
potentially leverage their general understanding of
text to perform the normalization. In this work,
we explore the use of LLMs for biomedical entity
disambiguation task.

This paper contributes the following :

• LLM is introduced as a entity disambigua-
tor for named entity disambiguation, building
on top of the existing methods for candidate
generation.

• LLM entity disambiguation achieved con-
sistent improvements for alias-matching EL
models. It outperformed previous SOTA for
several datasets with a remarkable gain of 16
points in GNormPlus.

• The method can be seamlessly integrated into
existing EL models without requiring addi-
tional training.

2 Methodolody

2.1 Entity Linking model for candidate
generation

The first step of our approach involves generat-
ing candidates using EL models. While multiple
models are available, we will concentrate on the
top-performing model in each category: SapBERT
for alias-matching EL and ArboEL for contextual-
ized EL.

SapBERT (Liu et al., 2021) selects top candi-
dates by computing cosine similarity between the

test mention and all aliases in the database, us-
ing enhanced embedding representations. ArboEL
(Agarwal et al., 2022) first trains a bi-encoder to
improve embedding representations using men-
tion–mention coreference signals. This is followed
by a cross-encoder training that scores each can-
didate by concatenating the test mention with the
candidate’s context. The top-k candidates are then
selected based on these scores.

2.2 Disambiguation step with LLMs
2.2.1 The mention
To fully leverage the capabilities of the LLM, it’s
crucial to provide the mention along with its sur-
rounding context, ensuring the model has access to
the maximum amount of relevant information. We
formatted the mention for the LLM as follows:

cleft [ENTITY START] m [ENTITY END] cright

where cleft and cright represent the left and right
contexts of the mention m.

2.2.2 The entity
Similarly, to ensure maximum reliability, we pro-
vided the entity along with its relevant data to the
LLM in the following dictionary format:

1 entity_data = {
2 "cui": entity.cui ,
3 "name": entity.name ,
4 "types": entity.types ,
5 "aliases": entity.aliases ,
6 "definition": entity.definition ,
7 }

- cui: Concept Unique Identifier

- name: Entity name

- types: Entity Types

- aliases: Entity aliases

- definition: Entity definition

2.2.3 In-context Learning
In-context learning (Dong et al., 2024) is an
approach in natural language processing (NLP)
where LLMs make predictions based on contexts
enriched with a few examples. It has been shown
that incorporating such examples in the prompt
can enhance model performance. To optimize the
selection of examples, we employed a RAG-like
system (Lewis et al., 2021) that retrieves the most
relevant examples from the training set to include
in the prompt.

Specifically, the LLM predicts the response to
the query x by conditioning on k training examples
{(xi, yi)}ki=1 in the prompt :
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ŷ = LLM(x|x1, y1, · · · , xk, yk)

To find the most relevant examples for a given
query, we first embed all mentions along with their
surrounding context from the training set using
a sentence embedding model (Gao et al., 2022).
We then create an index using Faiss (Douze et al.,
2024) for faster and more efficient retrieval. Dur-
ing inference, we embed the query (the mention
along with its context) and retrieve the most similar
mentions from the corpus for the LLM to process.

3 Results

The performance of LLMs as entity disambiguators
was evaluated across multiple biomedical datasets.
Prior work has typically relied on supervised learn-
ing using BERT-base models for entity linking
tasks. In a comprehensive evaluation, Kartchner
et al. (2023) identified SapBERT as the most ef-
fective alias-matching model, and ArboEL as the
strongest contextualized model. These results were
also later confirmed by Bathala et al. (2025) in their
benchmarking package. Based on these evidences,
our assessment is conducted by applying LLMs to
these two leading approaches.

Performance was evaluated using five different
models : Meta-Llama-3.1-8B-Instruct (Touvron
et al., 2023), Mistral-Nemo-Instruct-2407 (Jiang
et al., 2024), Qwen2.5-7B-Instruct (Bai et al.,
2023), GPT-4o-mini and GPT-4o (team, 2024).

All LLMs were prompted using a greedy-
decoding strategy; temperature was set to 0.

A comprehensive description of the experimen-
tal setup is provided in Appendix A.1 to ensure
reproducibility of the experiments. This includes
the exact details of the prompt used to obtain the
correct CUI and the top-k candidates (Appendix
A.1.1), along with the analysis of the impact of
the number of candidates (Appendix A.1.3) and
number of examples (Appendix A.1.4) to include
in the prompt.

3.1 Datasets
The experiments were carried out on five prevalent
biomedical datasets coming from BigBio (Fries
et al., 2022) : NCBI-Disease (Dogan et al., 2014),
GNormPlus (Wei et al., 2015), NLM Chem (Dogan
et al., 2021a), NLM Gene (Dogan et al., 2021b),
and Medmentions-ST21PV (Mohan and Li, 2019).

Details on the datasets are provided in Table 1.
The corresponding ontologies are MEDIC

(Davis et al., 2019), Entrez (Maglott et al., 2005),

Dataset Train Mentions Test Mentions Ontology

NCBI-Disease 6,881 960 MEDIC

GNormPlus 6,252 3,223 Entrez

NLM-Chem 37,999 11,660 MeSH

NLM-Gene 15,553 2,729 Entrez

MM-ST21PV 203,282 40,143 UMLS

Table 1: Datasets used for evaluation.

MeSH (Lipscomb, 2000), and UMLS (Bodenrei-
der, 2004).

3.2 With Alias-Matching EL

The impact of LLMs as entity disambiguators is
illustrated for alias-matching EL methods using
SapBERT. All results are detailed in Table 2.

When the base model performs well, with accu-
racy and recall@20 being close, the LLM’s impact
is minimal. For instance, on the NCBI-Disease
dataset, accuracy improves slightly, while recall@5
remains unchanged.

However, when the initial model struggles, in-
tegrating an LLM can significantly boost perfor-
mance. For instance, SapBERT fails to effectively
differentiate aliases in gene-centric datasets like
GNormPlus and NLM-Gene, as indicated by the
large gap between its accuracy and recall@20.
Using GPT-4o as a disambiguator improved Sap-
BERT’s accuracy on GNormPlus from 19.1% to
74.8% and recall@5 from 56.6% to 83.8%, sur-
passing the previous SOTA by 16% in accuracy
and 19% in recall@5.

SapBERT struggles to distinguish between mul-
tiple gene entities sharing the same alias. However,
since candidates with the same alias are ranked
closely, the correct entity often appears shortly
after in the list. By leveraging contextual informa-
tion, the LLM can distinguish the correct entity
more efficiently addressing this limitation.

GPT-4o is the top-performing disambiguator for
alias matching EL models, outperforming smaller
7B-12B models. However, it is noteworthy that
these "small" open-source LLMs still provide sig-
nificant improvements and even surpass the previ-
ous state-of-the-art (SOTA) in many scenarios.

The reported SOTA numbers are based on the
results we obtained from re-running the models
ourselves using the BioEL package with default
parameters (Bathala et al., 2025), not the ones orig-
inally reported by (Kartchner et al., 2023).
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Base: SapBERT Base model +
Llama3

Base model +
Mistral

Base model +
Qwen2.5

Base model +
GPT-4o-mini

Base model +
GPT-4o SOTA

@1 @5 @20 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

NCBI-Disease 0.752 0.899 0.924 0.781 ↑ 0.835 ↓ 0.782 ↑ 0.852 ↓ 0.791 ↑ 0.899 0.783↑ 0.887 ↓ 0.790 ↑ 0.869 ↓ 0.771 0.820

GNormPlus 0.191 0.566 0.862 0.444 ↑ 0.780 ↑ 0.482 ↑ 0.770 ↑ 0.365 ↑ 0.772 ↑ 0.386 ↑ 0.761 ↑ 0.748 ↑ 0.838 ↑ 0.585 0.647

NLM-Chem 0.754 0.876 0.889 0.842 ↑ 0.876 0.833 ↑ 0.879 ↑ 0.849 ↑ 0.876 0.849 ↑ 0.879 ↑ 0.859 ↑ 0.879 ↑ 0.790 0.856

NLM-Gene 0.072 0.344 0.824 0.314 ↑ 0.659 ↑ 0.324 ↑ 0.571 ↑ 0.251 ↑ 0.599 ↑ 0.251 ↑ 0.556 ↑ 0.497 ↑ 0.668 ↑ 0.559 0.751

MM-ST21PV 0.594 0.771 0.794 0.667 ↑ 0.776 ↑ 0.664 ↑ 0.787 ↑ 0.675 ↑ 0.785 ↑ N/A N/A N/A N/A 0.685 0.798

Table 2: Comparison Accuracy (Recall@1) and Recall@5 between initial base model SapBERT and after applying
different LLM disambiguators. N/A : Not Available due to prohibitive cost considerations. SOTA model is ArboEL.

x : Best result / x : Beat SOTA / ↑ : Improvement over base / ↓ : Degradation from base

Base: ArboEL Base model +
Llama3

Base model +
Mistral

Base model +
Qwen2.5

Base model +
GPT-4o-mini

Base model +
GPT-4o

@1 @5 @20 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

NCBI-Disease 0.771 0.820 0.838 0.760 ↓ 0.816 ↓ 0.749 ↓ 0.821 ↑ 0.767 ↓ 0.822 ↑ 0.764 ↓ 0.833 ↑ 0.758 ↓ 0.837 ↑

GNormPlus 0.585 0.647 0.659 0.580 ↓ 0.649 ↑ 0.585 0.646 ↓ 0.600 ↑ 0.647 0.600 ↑ 0.652 ↑ 0.618 ↑ 0.654 ↑

NLM-Chem 0.790 0.856 0.863 0.815 ↑ 0.849 ↓ 0.806 ↑ 0.847 ↓ 0.821 ↑ 0.849 ↓ 0.830 ↑ 0.853 ↓ 0.815 ↑ 0.852 ↓

NLM-Gene 0.559 0.751 0.778 0.549 ↓ 0.700 ↓ 0.549 ↓ 0.714 ↓ 0.550 ↓ 0.726 ↓ 0.538 ↓ 0.736 ↓ 0.537 ↓ 0.726 ↓

MM-ST21PV 0.685 0.798 0.811 0.649 ↓ 0.735 ↓ 0.641 ↓ 0.767 ↓ 0.686 ↑ 0.790 ↓ N/A N/A N/A N/A

Table 3: Comparison Accuracy (Recall@1) and Recall@5 between initial base model ArboEL and after applying
different LLM disambiguators. N/A : Not Available due to prohibitive cost considerations. ArboEL is SOTA model.

x : Best result / x : Beat SOTA / ↑ : Improvement over base / ↓ : Degradation from base

Figure 2: Embedding Space of Candidates from Alias
Matching (left) and Contextualized EL model (right)

3.3 With Contextualized EL

The impact of LLMs as entity disambiguators was
demonstrated for contextualized EL methods using
ArboEL. The results are detailed in Table 3.

When applied to contextualized EL, the results
show minimal improvement for the best model and
even degrade for others. This happens because the
base model already handles mentions effectively
when the correct CUIs are included in the candi-
date list, as it is also considering the contextual
information of the mention.

3.4 Performance disparity

The performance gap between contextualized and
alias-matching EL models stems from their dif-
fering approaches. Alias-matching methods often
achieve higher recall at large recall levels by cap-
turing a broad range of potential matches based
on surface similarities (e.g., aliases or synonyms),
without filtering out even when the candidates are
totally different.

Context-aware models, while generally more
precise, tend to offer less improvement in recall@k
at larger k values. These models are designed to
sharply distinguish between correct and incorrect
entities, creating a large gap between top-ranked
candidates and those deemed contextually different.
While this helps in pinpointing the correct entity,
it often discards candidates that deviate from the
expected answer. As a result, if the correct answer
is not initially ranked high due to contextual ambi-
guity, it may be pushed far down the ranking for
appearing too dissimilar.

Consequently, context-aware models may miss
the correct candidate in large pools, where alias-
matching methods would still retain it, even if
ranked lower.

Figure 2 provides an example of such scenario :
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while alias-matching EL produced a diverse set of
top-ranked candidates, (e.g., "Pregnancy in Diabet-
ics," "Glycosuria," "Diabetes Insipidus") contex-
tualized EL generated candidates that were more
closely related and grouped together in the rank-
ings. (e.g., "Diabetes Insipidus," "Diabetes In-
sipidus, Neurogenic," "Diabetes Insipidus, Nephro-
genic")

Further results on error analysis, performance
disparity in low-data slices and data leakage risks
are available in Appendix A.2

4 Conclusion and Future Work

Entity linking is crucial in knowledge-driven NLP,
particularly in scientific and biomedical domains,
where accurately mapping textual mentions to spe-
cific concepts is essential for extracting meaning-
ful insights and advancing research. This study
introduced a novel approach that utilized LLMs
as entity disambiguators for biomedical EL. The
proposed methodology demonstrated a significant
performance improvement when integrated with an
alias-matching-based EL model, as evidenced by
experiments conducted on five standard biomedi-
cal EL datasets. Notably, this approach requires no
fine-tuning, making it highly adaptable as LLMs
continue to evolve in robustness and scalability. A
promising direction for future work is the devel-
opment of a retrieval mechanism to identify ad-
ditional high-quality candidates when the correct
entity is absent from the initial candidate set due
to omissions by the underlying EL model.

5 Limitations

This method has demonstrated substantial effec-
tiveness in enhancing the performance of alias-
matching EL models. However, its application to
contextualized EL models can occasionally result
in performance degradation, leading to inconsisten-
cies in outcomes. Furthermore, leveraging LLMs
for entity disambiguation introduces a significant
trade-off in inference time, which poses potential
scalability challenges for datasets containing mil-
lions of mentions. The approach is also highly
dependent on the candidate generation step; if the
correct Concept Unique Identifier (CUI) is absent
from the candidate set, there is no mechanism to re-
trieve it. Additionally, the use of proprietary LLMs
can be prohibitively expensive. Finally, LLMs re-
main susceptible to errors, a critical concern in

biomedical applications where precision is essen-
tial and any degree of randomness is unacceptable.
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A Appendix

The appendix is organized into three parts:

• The detailed method implementation is pre-
sented in Appendix A.1.

• Additional results on the evaluation are pre-
sented in Appendix A.2.

• Discussion on LLM for candidate generation
A.3

A.1 Detailed Experimental Setup

This section outlines the experimental setup.

A.1.1 Prompts
Figures 3 and 4 illustrate the prompts used for the
accuracy and recall tasks, respectively.

Elements enclosed in {italics} represent argu-
ments passed to the prompt, which are detailed
below:

- number_candidates: The number of candidates
provided to the model.

- mention: The specific mention that needs to be
correctly linked.

- context: The surrounding context in which the
mention appears.

- candidates: The relevant data for all candidates
provided to the model.

- example_answers: An example of valid an-
swers.

A.1.2 Context window size
A 64-word context window was used, evenly split
around each mention. This setup offered the best
balance between performance and runtime.

A.1.3 Impact of the number of candidates in
the prompt

We evaluated candidate set sizes ranging from 5 to
64 and found that using 10 to 20 candidates yielded
the best performance. A set of only 5 candidates
resulted in the exclusion of many correct options,
whereas increasing the number to 50 introduced
an excess of information, reducing precision as
the LLM struggled to focus on relevant details,
consistent with findings by (Liu et al., 2023).

Ultimately, the effectiveness of candidate selec-
tion depends on the ranking of correct entities. If a

substantial portion of correct Concept Unique Iden-
tifiers (CUIs) are positioned beyond the top 20, in-
creasing the number of candidates can enhance per-
formance. However, in most cases—particularly
for contextualized entity linking (EL) models—the
proportion of correct candidates ranked below the
top 20 is relatively low.

Figure 6 and 7 show the accuracy versus runtime
for varying numbers of candidates in the prompt
on GNormPlus and NLM-Gene dataset.

In the majority of configurations (dataset - CG
Model - LLM), using 10 and 20 candidates yields
the best performance.

A.1.4 Impact of the number of examples in
the prompt

We also experimented with different numbers of
examples in the prompt to evaluate their impact on
performance.

Figure 8 and 9 presents the accuracy versus run-
ning time for varying numbers of examples k in the
prompt on NCBI-Disease and GNormPlus dataset.

The optimal number of examples to include in
the prompt varies depending on the configuration
(dataset - CG Model - LLM). For instance, GNorm-
Plus performance consistently improved as k in-
creased, while NCBI-Disease performed best with
k=3.

A.1.5 Use of separate prompts for accuracy
and recall

The reported results in Table 2 and 3 for accu-
racy (recall@1) were all calculated independently,
meaning the LLM was asked to return only the
single most likely CUI for each query. Indeed,
we noticed that the score for accuracy was higher
when the LLM is tasked with retrieving a single
candidate compared to ranking several candidates.

A.2 Additional results

This section presents additional results, including
error analysis, data leakage risk assessment, a study
of prompting strategies, statistical significance test-
ing, and runtime evaluation.

A.2.1 Error Analysis
Table 4 presents the distribution of errors between
Candidate Generation (CG) and Named Entity Dis-
ambiguation (NED) for each model. CG failure is
defined as the absence of the correct CUI within
the top-k generated candidates (in this case, k = 20).
NED failure is defined as an instance where the
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Figure 3: Prompt for the accuracy task, outputting only the best candidate CUI.

Figure 4: Prompt for the recall task, outputting only the best candidates CUI.

NCBI-Disease GNormPlus NLM-Chem NLM-Gene MM-ST21PV
CG ED CG ED CG NED CG ED CG ED

SapBERT 0.307 0.693 0.167 0.833 0.451 0.549 0.186 0.814 0.508 0.492

ArboEL 0.695 0.305 0.823 0.177 0.654 0.345 0.503 0.497 0.598 0.402

Table 4: Failure stage of the entity linking models.

top-ranked candidate is incorrect, when the correct
CUI is indeed present in the list of plausible candi-
dates. SapBERT is clearly better at identifying the
correct alias than finding the correct candidate, as
evidenced by its lower CG error and higher NED
error. In this scenario, leveraging an LLM for the
disambiguation step can significantly enhance per-
formance, as demonstrated by the big improvement
in gene-centric datasets.

A performance plot in low-data slices (train-
ing overlap, long-tail entities, no alias match, few
aliases, zero-shot) before and after LLM disam-
biguation for NCBI-Disease, GNormPlus, NLM-
Chem and NLM-Gene is shown in Figure 10.

ArboEL is observed to be more sensitive to train-
ing overlap and long-tail entities compared to Sap-

BERT. ArboEL benefits greatly from prior expo-
sure to similar examples in the training set across
all datasets, while its performance deteriorates in
zero-shot settings where either mentions or enti-
ties have not been encountered before (e.g., NLM-
Chem, NCBI-Disease, NLM-Gene). When the
mention does not match any alias of the correct
CUI (no alias match), performance degradation is
observed only in NCBI-Disease and NLM-Chem.
Similarly, when the correct CUI has fewer than
five aliases (<5 aliases), the effect is primarily no-
ticeable in NCBI-Disease. Incorporating LLM-
based disambiguation appears to mitigate these
performance disparities across different data slices,
leading to a more uniform performance across all
datasets. This trend is consistent for both GPT-4o
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Figure 5: Prompt for the accuracy task, with reasoning.

Figure 6: Accuracy vs running time for varying number
of candidates in the prompt. Dataset : GNormPlus

and Qwen, indicating that LLM-based disambigua-
tion helps align slice-specific performance with the
overall model performance.

A.2.2 Risk of data leakage

To provide more relevant context during inference,
we selected the top-k most similar examples based
on document-level similarity. While this approach
improves contextual alignment, it also introduces
the risk of data leakage (cases where the prompt in-
cludes the test mention). Such leakage can simplify
the disambiguation task for the LLM.

To assess the extent and effect of this phe-
nomenon, we analyzed how often it occurred and
how it influenced model performance in Table 5.
Our findings confirms that LLM indeed performs
better when the prompt includes the test mention.
In gene-centric datasets, the performance gain is
more pronounced but these situations is very rare.
In contrast, for datasets like NCBI-Disease, where
such cases are more common, the performance

Figure 7: Accuracy vs running time for varying number
of candidates in the prompt. Dataset : NLM-Gene

difference is less significant.
We chose to retain these examples in the evalua-

tion because such scenarios can plausibly arise in
real-world applications.

A.2.3 Various prompts
The performance of three different prompts was
evaluated using Qwen2.5 7B as base model :

- 1) A prompt designed to generate only the final
candidate CUI without any explanation, enabling
faster inference. (Figure 3)

- 2) A step-by-step reasoning prompt that first pro-
vides detailed reasoning before generating the fi-
nal result, similar to chain-of-thought (Wei et al.,
2023). (Figure 5)

- 3) A variation of the first prompt that utilizes the
reasoning model DeepSeek-R1-Distill-Qwen-7B
(DeepSeek-AI et al., 2025).

The results are presented in Figure 11. Among
the evaluated prompting strategies, the simplest
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NCBI-Disease GNormPlus NLM-Chem NLM-Gene
✓ × ✓ × ✓ × ✓ ×

SapBERT + GPT-4o 0.842 0.767 0.862 0.742 0.880 0.853 0.582 0.492

SapBERT + Qwen2.5 0.838 0.773 0.661 0.360 0.871 0.836 0.363 0.245

Exact Test Mention present in few-shot 22.9% 77.1% 1.1% 98.9% 3.2% 96.8% 1.6% 98.4%

Table 5: Performance difference and frequency between cases with and without exact matches between prompt
examples and the test mention.

✓: The test mention is in the few-shot examples / × : The test mention is not in the few-shot examples

Figure 8: Accuracy vs Runtime for varying number of
examples in the prompt. Dataset : NCBI-Disease

Figure 9: Accuracy vs Runtime for varying number of
examples in the prompt. Dataset : GNormPlus

prompt—one that directly outputs the CUI with-
out additional details—demonstrated the best per-
formance across all datasets for this model. This
approach not only proved to be significantly faster
than the other two methods but also achieved
higher accuracy. We hypothesize that this superior-
ity stems from the nature of the task: the model can
directly extract and infer the correct CUI from the
given information without the need for multi-step
reasoning. By avoiding unnecessary intermediate
steps, it reduces the risk of error propagation and
minimizes computational overhead.

A.2.4 Statistical significance tests
In Table 6 , we used McNemar’s paired test to com-
pute the p-values for the differences in accuracy
between the base model and with LLMs across

all evaluated datasets. The p-values determine
whether the performance differences within each
LLM are statistically significant across different
datasets.

SapBERT combined with an LLM consistently
show extremely low p-values across all datasets,
indicating that the observed positive difference is
statistically significant for all LLMs when applied
on SapBERT.

These findings are consistent with the results
presented in Section 3.

SapBERT +
Llama3

SapBERT +
Mistral

SapBERT +
Qwen2.5

NCBI-Disease 9.14 · 10−4 4.51 · 10−3 5.38 · 10−6

GNormPlus 4.63 · 10−175 1.22 · 10−217 4.64 · 10−132

NLM-Chem 2.76 · 10−212 2.46 · 10−158 3.02 · 10−188

NLM-Gene 2.95 · 10−152 9.84 · 10−163 5.81 · 10−102

MM-ST21PV 0.0 8.30 · 10−288 0.0

Table 6: P-value of Accuracy for all evaluated datasets
and different LLMs using base model SapBERT.

A.2.5 Runtime
Figure 12 show the running time of various
LLMs across different datasets, using SapBERT-
generated candidates for Accuracy task.

Mistral, as the largest model, has the highest
computational demand and requires the longest
runtime. Running it on the MM-ST21PV dataset
(31,827 evaluated mentions) took nearly a full day,
underscoring the significant time requirements of
this approach. As the dataset size increases, this
can become prohibitively long, making this ap-
proach challenging for larger-scale applications.

However, this remains faster than ArboEL,
which required 20 days to train on MM-ST21PV.

All experiments were run on a single Nvidia A40
GPU using vllm framework (Kwon et al., 2023).

A.3 LLM for candidate generation
Current LLMs face several limitations for direct
candidate generation abilities. First, they lack ex-
plicit access to ontology databases, often leading

311



Figure 10: Performance across different data slices: training overlap, long-tail entities, no alias matches, few
aliases, and zero-shot cases—both before and after LLM disambiguation.

Figure 11: Accuracy vs. Runtime. Comparison of three
prompting strategies across four datasets

to hallucinations when generating candidates. Sec-
ond, ontologies such as UMLS for MM-ST21PV
contain over two million concepts, making it infea-
sible to include all candidates in the prompt due
to context window constraints and computational
overhead. These challenges make LLMs currently
unreliable for direct large-scale candidate genera-
tion. Training models specifically for this task such
as BioBART (Yuan et al., 2022a) or BioGenEL
(Yuan et al., 2022b) could address the issue, but

Figure 12: Runtime vs Number of Mentions for
Accuracy task across Different LLMs. Base model =

SapBERT

this lies beyond the scope of our work.
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