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Abstract

Efficient preference optimization algorithms
such as Direct Preference Optimization (DPO)
have become a popular approach in aligning
large language models (LLMs) with human
preferences. These algorithms implicitly treat
the LLM as a reward model, and focus on train-
ing it to correct misranked preference pairs.
However, recent work (Chen et al., 2024) empir-
ically finds that DPO training rarely improves
these misranked preference pairs, despite its
gradient emphasizing on these cases. We intro-
duce FocalPO, a DPO variant that instead down-
weighs misranked preference pairs and priori-
tizes enhancing the model’s understanding of
pairs that it can already rank correctly. Inspired
by Focal Loss used in vision tasks, FocalPO
achieves this by adding a modulating factor to
dynamically scale DPO loss. Our experiment
demonstrates that FocalPO surpasses DPO and
its variants on popular benchmarks like Alpaca
Eval 2.0 and Arena-Hard using Mistral-Base-
7B and Llama-3-Instruct-8B, with the intro-
duced hyperparameter fixed. Additionally, we
empirically reveals how FocalPO affects train-
ing on correct and incorrect sample groups, fur-
ther underscoring its effectiveness 1.

1 Introduction

Reinforcement learning from human feedback
(RLHF) played a crucial role in aligning large
language models (LLMs) with human prefer-
ences (Christiano et al., 2017; Ouyang et al., 2022;
Stiennon et al., 2020). However, conducting RLHF
with Proximal Policy Optimization (PPO, Schul-
man et al. 2017) is computationally expensive.
Therefore, recent works have studied more efficient
approaches, such as Direct Preference Optimiza-
tion (DPO, Rafailov et al. 2023) and its variants
(Amini et al., 2024; Meng et al., 2024; Ethayarajh
et al., 2024; Zhou et al., 2024), which implicitly

1Code available at: https://github.com/
TongLiu-github/focalpo

Figure 1: Comparing the effectiveness of up-weighing
incorrect preference pairs against up-weighing correct
preference pairs with FocalPO during training. We find
that performance further improves by prioritizing learn-
ing from pairs that can already be ranked correctly.

treat the language model itself as a reward model
and directly optimizes it using preference datasets.

Despite its popularity, recent work (Chen et al.,
2024) shows that DPO often fails to correct in-
correct preference rankings made by the implicit
reward model prior to training, despite its gradient
emphasizing these cases. While one recent com-
petitive DPO variant SimPO (Meng et al., 2024)
introduces a fixed margin term in the preference
optimization loss, we find it inherently reduces the
disproportionately high weights assigned to learn-
ing incorrect response pairs. ODPO (Amini et al.,
2024) further incorporates additional labeled re-
ward values and employs an instance-dependent
margin term. However, while these approaches
implicitly re-weigh instances through the use of
margin terms, they lack explicit and dynamic mech-
anisms for such re-weighing.

To this end, we propose FocalPO, a loss func-
tion that dynamically and explicitly reduces DPO’s
emphasis on learning response pairs that the model
struggles to rank while prioritizing preference pairs
with accurate implicit reward estimates. Inspired
by Focal Loss (Lin et al., 2020) in vision tasks, we
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achieve this by adding a modulating factor of pγ

to dynamically scale the DPO loss, − log p. Here,
p represents the probability that the preferred re-
sponse over the dispreferred one. Intuitively, such
a factor automatically up-weighs the contribution
of correctly ranked samples during training, with
the scaling factor decays to zero as preference prob-
ability increases. Gradient analysis shows that Fo-
calPO equivalently assigns higher weights to pairs
whose implicit reward estimate order is accurate
and lower weights to incorrect pairs. This encour-
ages models to learn from preference pairs with cor-
rect reward estimates while avoiding excessive in-
fluence from challenging ones. Experiments show
that FocalPO significantly outperforms the original
DPO. Additionally, we provide case study show-
ing how FocalPO affects training on correct and
incorrect sample groups, further underscoring its
effectiveness.

Our contributions are summarized as follows: (1)
We introduce FocalPO, a novel loss function based
on DPO and Focal Loss, which emphasizes learn-
ing preference pairs with accurate implicit reward
estimates. (2) We show that FocalPO surpasses
DPO as well as many DPO variants on popular chat
benchmarks like Alpaca-Eval 2.0 and Arena-Hard,
using both Mistral-Base-7B and Llama-3-Instruct-
8B models. (3) We empirically demonstrate the
impact of prioritizing learning correctly vs. incor-
rect ranked preference pairs.

2 Background

Given an instruction-tuned language model πθ,
Direct Preference Optimization (DPO, Rafailov
et al. (2023)) further optimizes it as an implicit
reward model using a preference dataset. Let D =

{(x(i), y(i)w , y
(i)
l )}Ni denote a preference dataset

where x(i) ∈ X is a prompt and (y
(i)
w , y

(i)
l ) is a

pair of answers, with the preference of y(i)w ≻ y
(i)
l

expressed by human or AI annotators. Under the
assumption of Bradley-Terry model (Bradley and
Terry, 1952), the human preference distribution p∗

can be approximated as:

p∗(y(i)w ≻ y
(i)
l | x(i)) = σ(r∗(x(i), y(i)w )− r∗(x(i), y(i)l )),

(1)
where σ and r∗(x, y) are the sigmoid function
and the latent reward model used to generate the
ground-truth preference, respectively. To model
this human preference, DPO uses a reparametriza-
tion trick to express it in terms of the optimal policy

π∗: r∗(x, y) = β log π∗(y|x)
πref (y|x) + β logZ(x), where

Z(x) is the partition function only based on x. Ap-
plying the above equations, the maximum likeli-
hood estimation objective of DPO is:

LDPO (πθ;πref) = −E(x,yw,yl)∼D [log p (yw ≻ yl | x)]

= −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

−β log
πθ (yl | x)
πref (yl | x)

)]
,

(2)
which emphasizes on learning responses pairs that
the model struggle to rank (i.e., wrong reward esti-
mates). However, recent work such as Chen et al.
(2024) shows that DPO cannot learn to correct
these response pairs, and a few other competitive
variants such as SimPO (Meng et al., 2024) and
ODPO (Amini et al., 2024) implicitly introduce a
margin term that reduces such emphasis.

3 FocalPO: Focal loss inspired Preference
Optimization

3.1 FocalPO loss
We propose FocalPO loss, which directly scales
DPO’s loss to reduce emphasis on learning re-
sponse pairs the model struggles to rank and fo-
cuses on preference pairs with accurate implicit re-
ward estimates. Inspired by Focal Loss (Lin et al.,
2020) in vision tasks (i.e., adding a modulating fac-
tor (1− p)γ to the cross entropy loss), we replace
the original cross-entropy loss in Eq. 2 with:

LFocalPO (πθ;πref) = −E(x,yw,yl)∼D[(
1− p (yw ≻ yl | x)

)−γ · log p (yw ≻ yl | x)
] (3)

≈ −E(x,yw,yl)∼D [p (yw ≻ yl | x)γ log p (yw ≻ yl | x)]
+ constant,

(4)
where γ ≥ 0 is a tunable focusing hyperparam-
eter. Here we take negative index −γ to replace
the original positive term γ in Focal Loss, in order
to focus on the easier or correctly ranked prefer-
ence pairs. To simplify the optimization process,
we further approximate (1− p)−γ log p 2 with the
term pγ log p. Unless otherwise specified, we use
Eq. 4 as FocalPO for the rest of the paper. Fig-
ure 2 illustrates the focal loss with modulating
factors (1 − p)γ and pγ . Converse to (1 − p)γ ,

2In experiments, we also observe that training with the
power of −γ often causes the gradient to become NaN. We
reuse the symbol γ for notational simplicity, although the
exponent arises from an approximation.
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Figure 2: We scale DPO loss using Focal Loss. Unlike
the original Focal Loss (left), we add a scaling factor of
pγ (right) to the dynamically adjust the cross entropy
loss. This modification enables a sample-wise adjust-
ment of weights, reducing the influence of high weights
when the implicit reward model order is incorrect.

a higher γ in pγ leads to a less emphasis placed
on hard negative samples. When the implicit re-
ward model "correctly classifies" a preference pair
(i.e., p(yw ≻ yl|x) is large), the modulating factor
approaches 1, leaving the loss almost unchanged.
Conversely, as p(yw ≻ yl|x) → 0, the modulating
factor approaches 0, effectively down-weighing the
preference pair in the DPO loss.

3.2 Gradient analysis
To better understand the impact of modulating fac-
tor on the DPO loss, we perform a gradient analysis.
The gradient of DPO with respect to θ is:

∇θLDPO = −βE(x,yw,yl)∼D

[
σ
(
r̂θ(yl)− r̂θ(yw)

)

· ∇θ
log π(yw|x)
log π(yl|x)

]
,

(5)

where r̂θ(y) = β log πθ(y|x)
πref (y|x) is the reward implic-

itly defined by the language model πθ and reference
model πref . The term σ(r̂θ(yl)− r̂θ(yw)) assigns
higher weights when reward estimate is wrong.

In comparison, the gradient of FocalPO 3 is:

∇θLFocalPO = −βE(x,yw,yl)∼D [[σ(r̂θ(yl)− r̂θ(yw))

· σγ(r̂θ(yw)− r̂θ(yl)) + log σ(r̂θ(yw)− r̂θ(yl))

·γσγ(r̂θ(yw)− r̂θ(yl)) · σ(r̂θ(yl)− r̂θ(yw))]

·∇θ
log π(yw|x)
log π(yl|x)

]
.

(6)
We illustrate the influence of each term in Fig. 3.
The blue curve represents the gradient term from
DPO, while the red and green curves correspond
to the additional gradient terms introduced by our

3Refer to Appendix B for detailed derivation and Ap-
pendix A for an interpretation of FocalPO.

Figure 3: Gradients of DPO and FocalPO. We used
γ = 0.05 for pγ in FocalPO in this example.

modulating factor. Compared to DPO, the new gra-
dient terms from FocalPO assign lower weights
to incorrect preference pairs. When combined, as
shown in the black curve in Fig. 3, FocalPO forms
a bell-shaped curve, assigning the highest weights
to preference pairs with reward margins close to
zero while assigning lower weights for both cor-
rectly classified pairs and significantly incorrect
pairs. FocalPO thus aims to mitigate the impact of
preference pairs where reward estimates strongly
disagree with the preference labels, and shifting
focus toward learning preference pairs the model
already ranks correctly.

4 Experimental setup

Model and training datasets We perform pref-
erence optimization on two representative mod-
els, Mistral-Base SFT (7B) 4 and instruction-tuned
Llama-3 (8B) 5. We perform perference learning
on the UltraFeedback dataset (Cui et al., 2023) 6

for Mistral-Base, and on the Llama3-ultrafeedback-
armorm dataset 7 for Llama-3-Instruct. The former
dataset is sampled from multiple LLMs and judged
by GPT-4, and the later contains preference pairs
generated by Llama-3-Instruct and judged by Ar-
moRM (Wang et al., 2024).

Hyperparameters For Mistral-Base (7B),
we adopt the official hyperparameters from
Zephyr (Tunstall et al., 2023) and use β = 0.01,
epoch=1, batch size as 128 and learning rate as
5e-7. For instruction-tuned Llama-3 (8B), we

4https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

6https://huggingface.co/datasets/trl-lib/
ultrafeedback_binarized

7https://huggingface.co/datasets/
princeton-nlp/llama3-ultrafeedback-armorm
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Llama-3-Instruct (8B) Mistral-Base (7B)
Models Alpaca Eval 2.0 Arena-Hard Alpaca Eval 2.0 Arena-Hard

WR LCWR WR WR LCWR WR
ORPO 33.8 38.1 26.0 12.6 14.7 6.2
KTO 31.8 33.1 11.7 12.3 14.9 8.8
DPO 47.5 48.2 33.1 18.6 20.6 16.4
SimPO 47.5 53.7 33.8 21.4 17.0 13.3
FocalPO 49.8 54.7 34.6 20.4 23.9 17.1

Table 1: Alpaca Eval 2.0 and Arena-Hard results of DPO, its variants and FocalPO for preference optimazation of
Mistral-Base (7B) and Llama-3-Instruct (8B).

follow the setting of SimPO (Meng et al., 2024).
We use a batch size of 128, epoch=1, and for
each algorithm, we report the best performance
after a grid searching learning rates in [3e-7, 5e-7,
6e-7, 1e-6]. We also fix the hyperparameter of
γ in FocalPO as 0.05 for both models to prevent
possible overfitting of hyperparameters.

Baselines We compare FocalPO against DPO,
as well as other popular DPO variants including
KTO (Ethayarajh et al., 2024), ORPO (Hong et al.,
2024), and SimPO (Meng et al., 2024).

Evaluation To compare the effectiveness of pref-
erence learning, we use Alpaca Eval 2.0 (Li et al.,
2023; Dubois et al., 2024) and Arena-Hard (Li
et al., 2024). Alpaca Eval 2.0 includes 805 repre-
sentative instructions drawn from multiple datasets
and compares model’s responses with reference
responses generated by gpt-4-turbo. We use
default gpt-4-turbo as the judge model. We
present metrics of the win rate (WR) and the
length-controlled win rate (LCWR). Arena-Hard
contains 500 well-defined challenging prompts and
compares model’s responses with reference re-
sponses generated by gpt-4-0314. We use default
gpt-4-1106-preview as the judge model. We
present the metric of WR. Both benchmarks are
evaluated under the standard setting.

5 Results
Effectiveness of FocalPO Table 1 demonstrates
that FocalPO surpasses DPO and its variants on Al-
paca Eval 2.0 and Arena-Hard. Notably, FocalPO
improves upon SimPO, a highly performant align-
ment algorithm, without removing the reference
model or additionally adding a sequence length con-
trol factor. On Arena-Hard, FocalPO also shows
competitive performance compared to other vari-
ants, achieving a the best score with Llama-3-
Instruct and Mistral-Base-7B. We also present a

Figure 4: Gradients of DPO and FocalPO with a focus
on different sample groups where the reward estimate is
correct (pγ , γ = 0.05) or incorrect ((1− p)γ , γ = 1).

qualitative analysis comparing outcomes between
DPO and FocalPO, detailed in Appendix F. Be-
sides, the analysis of downstream task evaluation
is provided in Appendix D.

Focus learning correct/incorrect samples Fo-
calPO down-weighs incorrectly ranked instances
that the model struggles to learn, and placing
greater emphasis on correct ones compared to DPO.
To examine the impact of this choice, we empiri-
cally compare two FocalPO settings against DPO:
emphasize learning incorrect samples using γ = 1
in the factor (1− p)γ ; and emphasize learning cor-
rect samples using γ = 0.05 in pγ . Corresponding
gradient curves are illustrated in Fig. 4. For a fair
comparison, DPO is evaluated using its official hy-
perparameter setting while the learning rate is kept
consistent across models focusing on incorrect and
correct samples. We present the results in Fig. 1.
We find that focusing on incorrect samples yields
inferior performance compared to DPO, while fo-
cusing on correct samples outperforms DPO. This
result underscores the effectiveness our method,
which prioritizes on learning preference pairs with
accurate (i.e., correct) implicit reward estimates.
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6 Conclusion

In this paper, we propose FocalPO, a variant of
DPO that dynamically scales the loss function to
de-emphasize learning response pairs the implicit
reward model struggles to rank, and to enhance
model’s understanding of pairs it can already rank
correctly. With the introduced hyperparameter
fixed, we evaluate FocalPO on the most widely
used chat benchmarks (Alpaca Eval 2.0 and Arena-
Hard) using two models (Llama-3 and Mistral) and
show that FocalPO-trained models achieve the best
performance in nearly all cases.

Limitations

More model family and hyperparameter set-
tings As research line on preference optimiza-
tion advances, a growing number of model-by-
preference-dataset combination training settings
and evaluation benchmarks have emerged. We did
not conduct experiments on all of these settings.
Besides, we only conduct experiments with fixed
introduced hyperparameter γ in FocalPO, limited
by compute resources. We believe a thorough hy-
perparameter search could further improve the re-
sult.

Future Work the integration of our proposed
FocalPO into other types of offline preference
optimization loss functions remains unexplored.
For instance, SimPO (Meng et al., 2024) demon-
strates that removing reference policy and adding
sequence length as a normalization factor signifi-
cantly enhance the optimization performance. Our
experimental results show that FocalPO outper-
forms SimPO even without these adjustments, leav-
ing space for the investigation of the potential ben-
efits of combining FocalPO with these factors.

Ethics statement

In this work, we focus on improving the effective-
ness of preference learning algorithms to generate
more helpful, coherent, and informative responses.
Our experiments were based on publicly available
models and alignment datasets. Despite our ef-
forts to carefully choose our training data/model
backbone, some malicious or harmful content may
persist, leading to non-ideal model responses. To
address this, we recognize the need to incorpo-
rate additional safety-focused datasets and commit
to conducting more comprehensive evaluations on
safety, harmfulness, and bias to improve the robust-

ness and ethical alignment of future models. We
do not condone the usage of our methods/models
for any unlawful or morally unjust purposes.
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A Relation between FocalPO, DPO and entropy regularization

Lemma 1. (Diminished entropy regularization in FocalPO) With γ ∈ [0, 1], FocalPO loss is bounded by a
γ-weighted combination of the entropy of preference probability H[p(yw ≻ yl | x)] and DPO loss LDPO:

LFocalPO ≤ γH[p(yw ≻ yl | x)] + (1− γ)LDPO (7)

Proof. Let p(yw ≻ yl|x) denote the optimized preference probability and q(yw ≻ yl|x) denote the
target preference probability, which is not necessarily a Delta distribution, the FocalPO loss is defined as
LFocalPO = −E(x,yw,yl)∼D [p (yw ≻ yl | x)γ q(yw ≻ yl|x) log p (yw ≻ yl | x)], where γ, p, q ∈ [0, 1].

Since f(x) = xγ is concave for x ∈ [0, 1], we have:

f(x) ≤ f(1) + f
′
(1)(x− 1) = γx+ (1− γ). (8)

Substituting this into LFocalPO, we obtain:

LFocalPO ≤− E(x,yw,yl)∼D [[γp (yw ≻ yl | x) + (1− γ)]q(yw ≻ yl|x) log p (yw ≻ yl | x)] (13a)

=− γE(x,yw,yl)∼D[p (yw ≻ yl | x) q(yw ≻ yl|x) log p (yw ≻ yl | x)]
− (1− γ)E(x,yw,yl)∼D[q(yw ≻ yl|x) log p (yw ≻ yl | x)]

(13b)

≤− γ max
(x,yw,yl)∼D

q(yw ≻ yl|x)E(x,yw,yl)∼D[p (yw ≻ yl | x) log p (yw ≻ yl | x)]

+ (1− γ)LDPO

(13c)

≤γH[p(yw ≻ yl | x)] + (1− γ)LDPO, (13d)

where for the step from Eq. (13b) to Eq. (13c) we use Hölder’s inequality and note:

−E(x,yw,yl)∼D[p (yw ≻ yl | x) q(yw ≻ yl|x) log p (yw ≻ yl | x)]
=
∣∣E(x,yw,yl)∼D[p (yw ≻ yl | x) q(yw ≻ yl|x) log p (yw ≻ yl | x)]

∣∣ .
(10)

This completes the proof.
Lemma 1 shows that the FocalPO loss is bounded by a linear combination of the preference probability

entropy H[p(yw ≻ yl | x)] and DPO loss LDPO. At first glance, this might resemble the entropy
regularization effect in the classic focal loss (Lin et al., 2020). In contrast, however, our motivation and
experiments reveal that FocalPO actually diminishes the implicit maximum-entropy regulariser in
DPO by our introduced adaptations that selectively focus on the correct cases. In fact, FocalPO leads to a
smoother preference probability distribution, and curbs the model’s tendency to become overconfident in
incorrect rankings in DPO. That said, by slightly increasing entropy, it preserves a level of uncertainty to
handle data outside the preference optimization training distribution effectively.

B Derivation of FocalPO gradient

∇θLFocalPO = E(x,yw,yl)∼D[∇θp
γ(yw ≻ yl|x) · logp (yw ≻ yl | x) + pγ(yw ≻ yl|x)

· ∇θ log p (yw ≻ yl | x)]
(11)

Given that:
∇θp(yw ≻ yl|x) = ∇θσ(r̂θ(yw)− r̂θ(yl))

=β∇θσ(log
πθ(yw|x)
πref (yw|x)

− log
πθ(yl|x)
πref (yl|x)

)

=β∇θ
log πθ(yw|x)
log πθ(yl|x)

· σ(r̂θ(yw)− r̂θ(yl)) · σ(r̂θ(yl)− r̂θ(yw)),

(12)

where r̂θ(y) = β log πθ(y|x)
πref (y|x) , and

∇θ log σ(y) = σ(−y)∇θy, (13)
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Eq. 11 becomes:

∇θLFocalPO = E(x,yw,yl)∼D[γp
γ−1(yw ≻ yl|x) log p (yw ≻ yl | x) · ∇θp(yw ≻ yl|x)

+ pγ(yw ≻ yl|x)σ(r̂θ(yl)− r̂θ(yw)) · ∇θ(r̂θ(yl)− r̂θ(yw))]

= E(x,yw,yl)∼D[γp
γ−1(yw ≻ yl|x) log p (yw ≻ yl | x) · β∇θ

log πθ(yw|x)
log πθ(yl|x)

· σ(r̂θ(yw)− r̂θ(yl)) · σ(r̂θ(yl)− r̂θ(yw))

+ pγ(yw ≻ yl|x)σ(r̂θ(yl)− r̂θ(yw)) · β∇θ
log πθ(yw|x)
log πθ(yl|x)

= −βE(x,yw,yl)∼D [[σ(r̂θ(yl)− r̂θ(yw)) · σγ(r̂θ(yw)− r̂θ(yl)) + log σ(r̂θ(yw)− r̂θ(yl))

·γσγ(r̂θ(yw)− r̂θ(yl)) · σ(r̂θ(yl)− r̂θ(yw))] ·∇θ
log π(yw|x)
log π(yl|x)

]
.

(14)

C Training details

We perform preference optimization on two representative models, Mistral-Base (7B) 8 and instruction-
tuned Llama-3 (8B) 9. For Mistral-Base (7B), we follow the official hyperparameters of zephyr for
the implmentation of DPO and FocalPO: β = 0.01, epoch as 1, batch size as 128 and learning rate
as 5e-7. We perform the preference optimization on UltraFeedback dataset (Cui et al., 2023) 10. For
instruction-tuned Llama-3 (8B), we follow the setting by SimPO. We perform the preference optimization
on llama3-ultrafeedback-armorm dataset 11 using ArmoRM (Wang et al., 2024) as the reward model. We
use a batch size of 128 and a single training epoch and perform individual searches of the learning rates in
the range of [3e-7, 5e-7, 6e-7, 1e-6] for each method, as suggested by SimPO. We fix the hyperparameter
of γ in FocalPO to 0.05 for both models to prevent possible overfitting of hyperparameters. Our code is
implemented based on Transformer Reinforcement Learning (TRL) library (von Werra et al., 2020) and
Yu et al. (2024). The learning rate ang gamma that we adopt for training FocalPO in this paper is (5e-7,
0.05) and (6e-7, 0.05) for Mistral-Base and Llama-3-Instruct models, respectively.

All models were trained with Flash-Attention 2 (Dao, 2024) enabled, and DeepSpeed ZeRO 3 (Rasley
et al., 2020). We used 8 NVIDIA A100/40 GPUs for all model training. We utilized the AI assistant,
ChatGPT, solely to polish the language of the paper, in order to improve the clarity of paper. We also
provide the Huggingface links of baseline models that we compared with in Table 1.

Mistral-Base models: ORPO 12, KTO 13, and SimPO 14.
Llama-3-Instruct models: ORPO 15, KTO 16, and SimPO 17.

D Downstream task evaluation

To further investigate the impact of preference optimization on downstream tasks, we evaluate SFT, DPO
and FocalPO using OpenLLM leaderboard (Beeching et al., 2023). Specifically, we assess model perfor-
mance on tasks including HellaSwag (Zellers et al., 2019), ARC (Clark et al., 2018), TruthfulQA (Lin et al.,
2022), WinoGrande (Sakaguchi et al., 2021), and GSM8K (Cobbe et al., 2021) and MMLU (Hendrycks
et al., 2021). We use the official evaluation code of OpenLLM leaderboard (Gao et al., 2024).

Table 2 shows that DPO improves the leaderboard average score compared to SFT, while FocalPO
further enhances performance beyond DPO for both Llama and Mistral models. Notably, FocalPO on

8https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

10https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized
11https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm
12https://huggingface.co/kaist-ai/mistral-orpo-beta
13https://huggingface.co/ContextualAI/zephyr_sft_kto
14https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO
15https://huggingface.co/princeton-nlp/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2
16https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO-v0.2
17https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-SimPO-v0.2
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Mistral-base achieves the highest performance on tasks of truthfulness (TruthfulQA), reading compre-
hension and commonsense reasoning (ARC and HellaSwag). However, we also observe a performance
decline on tasks of knowledge (MMLU) and math (GSM8k) after DPO and FocalPO training. This trend
aligns with prior preference optimization works (e.g., Meng et al. (2024); Zhou et al. (2024)), which
report similar trade-offs. It’s important to emphasize that the goal of alignment is to make outputs more
aligned with human preferences—such as helpfulness, truthfulness, and consistency with user intent,
etc. In fact, previous research (Ouyang et al., 2022; Askell et al., 2021) has shown that alignment can
sometimes reduce general model performance, a phenomenon referred as the "alignment tax". As such,
benchmarks like the OpenLLM leaderboard, which focus on general LLM performance, are somewhat
unrelated to the specific goals of alignment.

HellaSwag ARC TruthfulQA WinoGrande GSM8k MMLU Average
Llama-3-Instruct (8B)

SFT 58.7 58.3 51.7 75.9 75.7 65.7 68.3
ORPO 58.8 60.2 57.6 76.7 75.3 65.6 69.8
KTO 59.3 60.5 55.6 75.0 77.5 66.0 69.6
DPO 59.1 61.3 56.3 74.7 75.4 66.1 69.6
SimPO 57.6 64.2 63.9 74.5 70.7 65.3 70.1
FocalPO 58.7 63.0 59.7 74.7 72.6 66.1 69.9

Mistral-base (7B)
SFT 62.1 54.9 43.0 77.9 38.8 59.7 59.9
ORPO 63.8 56.5 47.9 79.3 43.1 61.5 62.9
KTO 64.3 59.2 52.5 79.5 46.6 59.4 64.0
DPO 64.4 58.3 53.1 76.7 31.8 57.4 60.9
SimPO 64.1 59.8 50.8 76.9 31.5 58.4 60.6
FocalPO 66.7 61.4 55.0 78.6 33.0 59.6 62.7

Table 2: Downstream task evaluation results on OpenLLM leaderboard for SFT, DPO and FocalPO for Mistral-Base
(7B) and Llama-3-Instruct (8B).

E Related works

Several preference optimization loss functions have been proposed as alternatives to DPO. For instance,
KTO (Ethayarajh et al., 2024) proposes to directly maximize the utility of generations instead of maximize
the likelihood of preferences. ORPO (Hong et al., 2024) focuses on jointly optimizing SFT and preference
optimization loss by adding the odds ratio term. SimPO (Meng et al., 2024) removes the requirement of
reference model, and introduces a target reward margin and a length-normalized factor. ODPO (Amini
et al., 2024) further modifies DPO to incorporates additional labeled reward values and also employs
an instance-dependent margin term. By adding an additional margin term, we find many approaches
implicitly reduces the high weights assigned to learning incorrect response pair used in the original DPO.
In this work, we propose FocalPO inspired by Focal Loss from vision tasks, to explicitly reduces emphasis
on learning response pairs that the model struggles to rank while prioritizing preference pairs with accurate
implicit reward estimates.

F Qualitative analysis

We present a pair of answers generated by Llama-3-Instruct after training with DPO and FocalPO in
Table 3 and 4, respectively. Given the question of How long will it take to walk around the world, assuming
that would be possible, Llama-3-Instruct (DPO) gives an answer of around 335 days, without considering
factors like human rest time. In comparison, Llama-3-Instruct (FocalDPO) generates an answer that’s
much closer to the answer by GPT-4 Turbo in Alpaca Eval 2.0, 1,169 days, and exactly aligned with the
answer by O1, 1,002 days.
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Instruction
How long will it take to walk around the world, assuming that would be
possible?

Llama-3-Instruct
(DPO)

What an exciting question! Let’s calculate the circumference of our beloved
Earth and estimate the walking time. Here’s the breakdown:

Earth’s Circumference:
The Earth’s equatorial circumference is approximately 40,075 kilometers
(24,901 miles. Since we’ll assume a continuous, unobstructed path, we’ll use
this value.

Walking Speed:
A moderate, comfortable walking pace is about 5 kilometers per hour (3.1
miles per hour). Let’s use this speed for our calculation.

Calculations:

1. Convert circumference from kilometers to hours: 40,075 km ÷ 5 km/h =
8,015 hours
2. Convert hours to days: 8,015 hours ≈ 334.8 days (or approximately 11
months)
3. Convert days to years: 0.92 years (assuming a non-stop, 365-day year)

So, if you could walk around the world without stopping, it would take
approximately 0.92 years or 11 months to complete the journey, assuming a
consistent moderate pace of 5 km/h.

Keep in mind that this calculation ignores factors like:

* Rest breaks, meals, and sleep
* Terrain difficulties, like mountains, rivers, and urban areas
* Weather conditions, like extreme temperatures, storms, or darkness
* Border crossings, permits, and logistical challenges

While walking around the world might not be feasible in reality, this
calculation provides a fascinating estimate of the incredible distance involved.
Happy walking (in your imagination)!

Table 3: An Alpaca Eval 2.0 generation from the Llama-3-Instruct model after training with DPO.
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Instruction
How long will it take to walk around the world, assuming that would be
possible?

Llama-3-Instruct
(FocalPO)

What a fascinating question! Let’s break it down to estimate the time it’d
take to walk around the world. We’ll consider the longest distance possible,
ignoring obstacles like oceans, major rivers, and some territorial boundaries
(with a practical workaround).

The approximate distance:
The Earth’s circumference at the equator is approximately 40,075
kilometers (24,901 miles).

Assumptions:

1. Walking speed: A moderate, consistent pace of 5 kilometers per hour (3.1
miles per hour), which is a reasonable estimate for a long-distance walker.
2. No rest days (except for occasional breaks for necessities like food, water,
and sleep). We’ll assume walking continuously, 8 hours a day.
3. No altitude adjustments (ignoring high-altitude trekking challenges).

Calculations:

1. Daily walking distance: 5 km/h × 8 hours = 40 kilometers (24.9 miles) per
day
2. Total days required: 40,075 km (circumference) ÷ 40 km/day = 1,001.88
days or approximately 2.74 years

So, assuming a non-stop, moderate-paced walk around the world, it would take
approximately 2 years and 9 months to complete the journey. Keep in mind
that this is a theoretical estimate, neglecting factors like:

* Border crossings and route adjustments
* Terrain difficulties (mountains, deserts, urban areas)
* Health considerations (injuries, fatigue, climate extremes)
* Logistical challenges (food, accommodation, permits)

While it’s not feasible to walk around the world without significant planning
and preparation, this calculation gives you an idea of the incredible duration
involved. Happy walking (in theory)!

Table 4: An Alpaca Eval 2.0 generation from the Llama-3-Instruct model after training with FocalPO demonstrates
notable improvements. Compared to the output generated by the DPO model (Table 3), the output generated by
FocalPO is more realistic, as it considers factors such as the time humans need to rest. This answer is much closer to
the answer by GPT-4 Turbo in Alpaca Eval 2.0, 1,169 days, and exactly aligned with the answer by O1, 1,002 days.
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