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Abstract

As Large Language Models (LLMs) are in-
creasingly used in high-stakes domains, accu-
rately assessing their confidence is crucial. Hu-
mans typically express confidence through epis-
temic markers (e.g., “fairly confident”) instead
of numerical values. However, it remains un-
clear whether LLMs reliably use these markers
to reflect their intrinsic confidence due to the
difficulty of quantifying uncertainty associated
with various markers. To address this gap, we
first define marker confidence as the observed
accuracy when a model employs an epistemic
marker. We evaluate its stability across mul-
tiple question-answering datasets in both in-
distribution and out-of-distribution settings for
open-source and proprietary LLMs. Our re-
sults show that while markers generalize well
within the same distribution, their confidence
is inconsistent in out-of-distribution scenarios.
These findings raise significant concerns about
the reliability of epistemic markers for confi-
dence estimation, underscoring the need for
improved alignment between marker based con-
fidence and actual model uncertainty. Our
code is available at https://github.com/HKUST-
KnowComp/MarCon.

1 Introduction

LLMs have grown increasingly powerful, yet their
application in mission-critical tasks is still hindered
by reliability issues (Zhang et al., 2024; Maynez
et al., 2020). Therefore, accurately measuring out-
put confidence is crucial for their reliable deploy-
ment (Li et al., 2024a; Pedapati et al., 2024; Beigi
et al., 2024). Traditionally, black-box confidence
estimation in LLMs primarily relies on direct nu-
merical outputs (e.g., “30% confidence”) or re-
sponse consistency (Xiong et al., 2024; Chen and
Mueller, 2024; Li et al., 2024b), while white-box
methods mainly utilize logits, internal states as
information source (Geng et al., 2024). However,
natural language is the primary interface for human-
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Fairly Certain

Undoubtedly

Does Siri know geometry?

No, I am .fairly certain

Groundtruth: No

fairly certain

Groundtruth: Yes

Can a banana get a virus?

Yes, I am .fairly certain

Groundtruth: No

fairly certain

Groundtruth: Yes N=20

N=11

Marker Confidence = 20 / 31 ≈ 64.52%

# Occurrence: 31 # True: 20 # False: 11

Figure 1: An example of our framework calculating
the marker confidence of “fairly certain” for GPT-4o
on StrategyQA. We calculate the confidence for all the
markers across seven models and seven datasets.

LLM interaction. Instead of relying solely on ab-
stract numerical measures, humans often use epis-
temic markers, such as “I am not sure” or “it is un-
likely that,” to convey uncertainty (Wallsten, 1986;
Erev and Cohen, 1990; Juanchich et al., 2017; Ka-
davath et al., 2022). This similar recognition of un-
certainty markers is essential for effective commu-
nication (Willems et al., 2019; Belém et al., 2024),
which potentially makes it valuable for LLMs to
adopt a similar practice (Yona et al., 2024).

However, it remains unexplored whether LLMs
are capable of incorporating these epistemic mark-
ers in their responses to express their intrinsic con-
fidence stably and consistently. Previous works
have primarily concentrated on the misalignment
between human and LLM recognition of epistemic
markers (Zhou et al., 2024; Tang et al., 2024;
Belém et al., 2024), concluding that models always
fail to accurately convey confidence in words (Yona
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et al., 2024). In fact, human interpretations of mark-
ers are not completely identical (Pennekamp et al.,
2024), so even if these markers may not align well
with human reasoning, they can still be useful if
the model maintains a consistent internal mapping
between markers and their actual accuracy. Thus,
previous studies questioning the reliability of mark-
ers may be insufficient, as they have not examined
whether LLMs can consistently apply their own
confidence framework.

To address this gap, we investigate whether epis-
temic markers produced by LLMs reliably reflect
their confidence in question-answering tasks. By
defining marker confidence as the accuracy of re-
sponses when a model uses a specific marker to
convey confidence, we calculate the marker con-
fidence with various models and datasets. Addi-
tionally, we propose seven evaluation metrics to
systematically assess the stability of these mark-
ers in both in-distribution and out-of-distribution
contexts. Our findings show that while markers
perform well within similar distributions, their sta-
bility declines in out-of-distribution contexts. Addi-
tionally, we compare a range of widely used models
and conclude that the more powerful ones demon-
strate a better understanding of epistemic markers.

2 Related Work

Our work primarily intersects with confidence esti-
mation in LLMs and studies about epistemic mark-
ers. Please find related works in Appendix A.

3 Study Design

3.1 Formalization
Confidence of Epistemic Markers. Let W denote
an epistemic marker, D = {Q1, Q2, . . . , Qn} a
labeled dataset, and M a model. We define the con-
fidence associated with each epistemic marker as
Conf(W,D,M), computed as the accuracy of the
answers that explicitly include marker W when the
model provides responses. It is important to note
that our definition of marker confidence deviates
from the conventional interpretation of verbal con-
fidence, which pertains to the semantic uncertainty
associated with epistemic markers. To compute the
marker confidence for a specific epistemic marker
Wi, we use model Mk to generate answers for all
questions in the training set of dataset Dj and then
extract the subset QWi ⊆ Dj consisting of ques-
tions whose generated answers contain Wi. The
marker confidence is defined as:

Conf(Wi, Dj ,Mk) =
1

|QWi |
∑

q∈QWi

I
(
Mk(q)

)
,

where QWi is the set of questions whose generated
answers contain the epistemic marker Wi and I(·)
is the indicator function, which is 1 if the answer
generated by Mk for question q is correct, and 0
otherwise. An example is provided in Figure 1.

3.2 Methods

We calculate Conf (Wi, Dj ,Mk) for all combina-
tions of generated markers, datasets and mod-
els (Wi, Dj ,Mk) in Appendix B.1 to provide an
all-rounded insight into the marker distributions.
Specifically, we propose seven metrics to system-
atically evaluate the stability and consistency of
LLM generated epistemic markers:
(1) I-AvgECE In-domain Average ECE reflects
how well the marker confidence of the model aligns
with its actual accuracy in a consistent setting
within the same distribution.
(2) C-AvgECE Cross-domain Average ECE as-
sesses the calibration error of the marker confi-
dence and the actual accuracy, further reflecting
the robustness of the model’s marker confidence in
out-of-domain scenarios.
(3) NumECE Numerical ECE measures the overall
calibration of the model’s numerical confidence
outputs across all datasets. All ECE-related metrics
are desired with a lower value, indicating better
calibration performance on the target dataset.
(4) MAC Marker Accuracy Correlation reflects
the correlation between marker confidence and the
model accuracy on different datasets. The metric
is calculated based on Pearson coefficient, so 0 in
this value represents no linear correlation and 1
indicates direct propotional relationship between
the marker confidence and model’s accuracy.
(5) MRC Marker Ranking Correlation measures
the model’s ability to maintain a consistent marker
confidence ranking across different datasets. The
metric is calculated based on Spearman coefficient
(de Winter et al., 2016), so 0 in this value repre-
sents no correlation and 1 indicates totally identical
between markers’ confidence rankings.
(6) I-AvgCV In-domain Average CV captures
the dispersion of the model-generated confidence
scores within each dataset. A relatively higher I-
AvgCV value indicates a more decentralized distri-
bution of markers within the dataset, demonstrating
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Model Marker Confidence Rank Density

I-AvgECE ↓ C-AvgECE ↓ NumECE ↓ C-AvgCV ↓ MAC MRC ↑ I-AvgCV

Llama-3.1-8B-Instruct 10.09 15.95 22.70 20.80 60.91 11.37 20.48
Qwen2.5-7B-Instruct 7.85 23.60 21.84 31.29 68.06 11.85 22.39
Qwen2.5-14B-Instruct 7.66 20.38 17.98 26.44 73.95 34.60 23.83
Qwen2.5-32B-Instruct 4.78 10.40 8.86 19.24 78.20 36.97 16.26
Mistral-7B-Instruct-v0.3 10.58 24.81 24.46 28.52 84.57 10.54 21.01
GPT-4o 8.55 11.84 7.56 15.72 76.44 27.54 14.30
GPT-4o-mini 7.65 17.15 12.79 21.98 87.68 16.48 20.61

Average 8.17 17.73 16.60 23.43 75.69 21.34 19.84

Table 1: Model performance across seven metrics. For each metric, the data for the best performing model is bolded.
For analytical experiments about markers, we only consider those appear no less than 10 times to eliminate the
effect of randomness (see Section 4 for details). All values listed in the table are expressed as percentage (%).

a stronger ability to distinguish between different
markers.
(7) C-AvgCV Cross-domain Average CV measures
the consistency of the model’s marker-based confi-
dence across different datasets. A higher C-AvgCV
value indicates a greater dispersion of marker con-
fidence across various datasets, suggesting the
model’s instability regarding marker confidence.

More details about the design and implementa-
tion of the metrics can be found in Appendix B.4.1.

4 Experiments and Analysis

Models and Datasets. We experiment with two
mainstream open-source and five proprietary LLMs
over seven datasets from various domains. More
introduction can be found in Appendix B.1.

Baseline. Inspired by previous comparison about
using numerical values and uncertainty expression
in words to express confidence level (Jaffe-Katz
et al., 1989; Knapp et al., 2016), we apply the
method of directly prompting the model to express
a numerical confidence as baseline for comparison.
The prompt designed to elicit epistemic markers
and numerical confidence is in Appendix B.1. Our
main experiment results are in Table 1.

Marker Filtering Strategies We conduct all
marker analysis experiments (namely C-AvgCV,
MAC, MRC, and I-AvgCV) by filtering markers
that occur fewer than 10 times in the training set
in Table 1. The filtering threshold is eventually a
tradeoff between the completeness and reliability of
the data. On one hand, if the filtering threshold (10
in the main table) is too small, the confidence inter-
val of the results would be large. On the other hand,
we cannot include diverse markers for the metrics
and get limited insights. The confidence intervals
and more details are reported in Appendix B.4.2.

4.1 Main Observations

While the in-distribution marker confidence is
relatively stable, it lacks robustness across dif-
ferent datasets. This conclusion is supported by
the observation that I-AvgECE values consistently
remain lower than NumECE and C-AvgECE val-
ues are notably higher than NumECE for 6 out of
7 models, indicating that models exhibit shortcom-
ings in generalizing marker confidence to different
distributions and datasets.

More direct evidence to support the conclusion
may be inferred from the C-AvgCV of the models.
The average C-AvgCV of 0.2343 highlights that
marker confidence is highly sensitive to distribution
shifts, aligning with the observed high value in C-
AvgECE. Notably, we observed that stronger mod-
els (e.g., GPT-4o, Qwen2.5-32B-Instruct) might
exhibit smaller C-AvgCV values.

We further examine the relationship between
marker confidence and model accuracy across dif-
ferent datasets using MAC. For 5 out of 7 of the
models, the MAC value is over 0.7, which indi-
cates that marker confidence are positively related
to the model’s accuracy in a strict manner. This
also suggests that marker confidence is fragile un-
der distribution shifts, highlighting models’ lack of
robust understanding of epistemic markers.

Models fail to maintain a consistent ordering
of epistemic markers across different domains.
The overall low values of MRC suggest that mod-
els do not preserve a consistent ranking of markers
when applied to datasets with different distribu-
tions. We notice that larger models appear to have
a better grasp at maintaining a stable ordering of
markers. However, both the maximum and average
MRC indicates low consistency performance, sug-
gesting a lack of robust understanding of marker
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Figure 2: Model’s marker confidence varies greatly across different datasets. We plot the heatmap of the marker
confidence of GPT-4o and Qwen2.5-32B-Instruct across different datasets, illustrating that even the best models
exhibit substantially different confidence levels in various contexts. The markers in the graph are randomly selected
from the shared markers of all datasets.
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Figure 3: The rankings of the model’s marker confidence fluctuates significantly across different datasets.
We plot the scatter diagram for the marker confidence rankings of the best performing models, but still discovered
that the rankings are extremely unstable. The markers in the graph are randomly selected from the shared markers
across all datasets.

relative confidence.

The values of the marker confidence are highly
concentrated. Since models are expected to ex-
press a wide range of confidence including extreme
values which is necessary in mission-critical senar-
ios (Alam et al., 2017; Bhise et al., 2018), We
expect the models to clearly differentiate the epis-
temic markers by obtaining a relatively uniform
distribution and containing markers with a confi-
dence near 0% or 100%. However, we found the I-
AvgCV values typically range from approximately
0.14 and 0.24, demonstrating a concentrated distri-
bution with minor difference. Additionally, only
4 out of 49 settings (dataset, model pair) include
markers with confidence under 10% when only
those occur no less than 10 times are counted, indi-
cating significant failure in expressing uncertainty.

4.2 Correlation between Performance and
Marker Consistency

In Section 4.1, we notice that the statistics in Ta-
ble 1 suggest that larger models demonstrate a

better understanding of epistemic markers, as evi-
denced by lower C-AvgCV values and higher MRC
values. In this section, we quantitatively evaluate
the relationship between a model’s accuracy and
its corresponding C-AvgCV and MRC values to
gain a deeper insight into the relationship of model
ability and mastery of epistemic markers.

Specifically, for a given model Mk, we use its av-
erage accuracy across all datasets as a comprehen-
sive measure of its performance. We then compute
the Pearson Correlation Coefficient between each
model’s overall accuracy and both its C-AvgCV
and MRC. The results show a correlation coeffi-
cient of −0.88 between model accuracy and C-
AvgCV, and a correlation coefficient of 0.75 be-
tween model accuracy and MRC. These findings in-
dicate a strong negative relationship between model
accuracy and C-AvgCV and a strong positive rela-
tionship between model accuracy and MRC. This
suggests that more powerful models exhibit greater
stability in marker confidence across datasets, as
well as a more consistent ordering of markers.
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Model C-AvgCV ↓ MAC MRC ↑ I-AvgCV

Threshold 50 100 50 100 50 100 50 100

Llama-3.1-8B-Instruct 25.50 23.39 77.54 65.98 -8.57 -10.32 11.44 8.59
Qwen2.5-7B-Instruct 30.12 29.30 77.96 69.03 6.01 2.25 18.38 15.41
Qwen2.5-14B-Instruct 26.49 27.66 92.03 94.25 36.56 36.11 20.59 21.13
Qwen2.5-32B-Instruct 20.03 21.27 87.25 86.85 34.91 23.95 13.51 12.18
Mistral-7B-Instruct-v0.3 26.70 26.34 94.80 84.71 30.68 30.60 12.81 9.67
GPT-4o 15.86 16.92 89.91 90.68 37.38 39.40 7.52 7.29
GPT-4o-mini 22.15 22.41 86.82 87.45 24.16 24.36 11.98 11.39

Average 23.84 23.90 86.62 82.71 23.02 20.91 13.75 12.24

Table 2: This table presents the results (in %) of the marker analysis experiments, organized by different filtering
thresholds. We observed that the conclusion obtained from Table 1 still holds when the threshold increases.

4.3 Conclusion Robustness under Different
Filtering Thresholds

Our primary conclusions regarding marker consis-
tency and model understanding of epistemic mark-
ers remain robust across various filtering thresholds.
As detailed in Table 2, even when increasing the
filtering threshold to 50 or 100 occurrences, the ob-
served trends persist: 1) The C-AvgCV and MRC
values consistently remain low, while the I-AvgCV
values remain high. This pattern continues to sug-
gest that models struggl to maintain consistent con-
fidence across different datasets and to differentiate
effectively between markers. 2) The MAC values
consistently remain high. This reinforces the strong
positive relationship between model performance
and its marker usage ability. Moreover, the ob-
served shortcomings extend even to frequently
occurring markers (with over 100 instances), in-
dicating a severe challenge in the model’s ability to
reliably utilize epistemic expressions. This perva-
sive issue further substantiates our claims regarding
the difficulties in ensuring reliable marker usage.

4.4 Discussions

This section aims to explain the observed differ-
ential in the consistent deployment of epistemic
markers within in-domain versus out-of-domain
contexts. Furthermore, we aim to investigate the
distributional characteristics that potentially modu-
late the confidence associated with these markers.

Within similar distributions, models tend to
maintain a stable “preference” for employing these
markers to express uncertainty. For instance, in
in-domain scenarios, responses on the test set lever-
age a consistent pattern of epistemic marker “pref-
erence” due to the similarity of the distribution.
However, this consistency breaks down when the
data distribution shifts. As the distribution changes,
the model’s preference usage for epistemic mark-

ers also changes, hindering the transfer of marker-
based confidence to test sets from different datasets.

To further investigate this phenomenon, we con-
ducted an in-depth analysis by calculating the av-
erage ECE values for each dataset to quantify the
generalizability of the marker consistency from
the training set to the test set. This involved av-
eraging the ECE values across seven models in
the in-domain scenario. Our analysis revealed
that datasets with greater component diversity
generally exhibit a higher ECE. This suggests
that more complex or multi-sourced distributions
make it challenging to transfer marker confidence
from the training to the test set, as exemplified
by datasets like MMLU and StrategyQA, which
are not domain-specific. This observation further
supports our claim that models perform well in in-
domain scenarios primarily due to the consistency
of the underlying data distribution. The details
about the experiments are reported in Appendix C.

5 Conclusion

Our study evaluates whether LLMs can reliably
express confidence using epistemic markers. We
define marker confidence as the observed accuracy
of responses containing specific markers, conduct
extensive experiments and evaluate the results with
several metrics. The results show that the marker
confidence shifts significantly under distribution
changes, following the trend of model accuracy,
which highlights poor stability. Additionally, mod-
els struggle to effectively differentiate between
markers and maintain consistent marker rankings
across datasets. These findings suggest that the
LLM generated markers to express their confidence
is unreliable and requires improved alignment be-
tween verbal confidence and actual performance.
Our work contributes to more consistent confidence
estimation frameworks, ultimately facilitating reli-
able and trustworthy LLM responses.

210



Limitation

Human language is remarkable for its complex-
ity, variability, and rich connotations, particularly
when expressing uncertainty. Within a complete
linguistic system, factors like sentence structure
can significantly influence confidence, which is
often difficult to quantify with epistemic markers
alone. Moreover, in the context of long-form com-
munication, it is clear that confidence cannot be
simply measured by the confidence values of epis-
temic markers. To facilitate simplicity in evalua-
tion and to focus on the study of epistemic markers,
we adopt a relatively idealized approach: using
epistemic markers generated by LLMs in closed-
source QA tasks to represent the confidence of the
responses while keeping them relatively brief. Ad-
ditionally, epistemic markers may carry different
meanings across cultures and languages. However,
we only consider epistemic markers in English.

Despite our idealized conditions and using state-
of-the-art models, LLMs still fail to consistently
align epistemic markers with their true confidence
levels, revealing that the issue lies not only with
our approach but also with the models themselves.
While they perform well in question-answering
tasks, they do not truly understand epistemic mark-
ers (Zhou et al., 2023), struggle to express consis-
tent confidence in these markers, and have difficulty
aligning their confidence expressions with human
expectations (Belém et al., 2024). This points to
a deeper challenge in model behavior, suggesting
that future research should focus on addressing
fundamental gaps in model linguistic alignment.
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Appendices

A Related Work

Confidence Estimation in LLMs. Confidence
estimation in LLMs refers to the process of as-
sessing a model’s confidence in its output. Previ-
ous research on this topic can be categorized into
white-box and black-box methods, distinguished
by whether they utilize the model’s internal infor-
mation. White-box methods leverage the internal
states of LLMs, with key approaches including
information-based methods that analyze these in-
ner states (Vashurin et al., 2024; Geng et al., 2024;
Burns et al., 2023), such as perplexity (Fomicheva
et al., 2020; Zong et al., 2024), the negative log
probability of generated tokens (Duan et al., 2024),
and others. In the field of black-box methods, Lin
et al. (2022) first introduces the concept verbal con-
fidence that prompts LLM to output its confidence
directly. Most subsequent methods are based on
either directly prompting the model to generate an
output or consistency sampling (Lin et al., 2024;
Xiong et al., 2024; Chen and Mueller, 2024; Liu
et al., 2024). However, previous methods primarily
focus on processing numerical values to estimate
the LLM’s confidence, leading to a research gap
in exploring LLM confidence expression through
linguistic patterns, especially epistemic markers.

Studies on Epistemic Markers. Epistemic mark-
ers are essential for expressing confidence in con-
versation, playing a key role in human-LLM inter-
actions (Hu et al., 2023). Recent studies have exam-
ined the reliability of LLMs in mastering epistemic
markers, primarily investigating their interpretation
of various uncertainty expressions. For instance,
Tang et al. (2024) and Belém et al. (2024) use
sentence templates with uncertainty expressions
to prompt the model to assess overall confidence,
though this approach is limited by the fixed na-
ture of the templates, restricting generalizability.
Zhou et al. (2023) and Zhou et al. (2024) argue
that LLMs often mimic marker distributions from
training data rather than truly understanding them,
with the latter highlighting a tendency for over-
confidence. Lee et al. (2024) also examine epis-
temic markers but focus on robustness and biases
in model interpretations. While these studies inves-
tigate LLM generation of epistemic markers, our
work aligns most closely with Yona et al. (2024),
which directly challenges the ability of LLMs to ac-
curately convey confidence using epistemic mark-
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ers. However, they employ LLM-as-a-judge and
few-shot prompting to assess the numerical confi-
dence of uncertainty expressions, introducing po-
tential bias (Chen et al., 2024; Ye et al., 2024; Ma
et al., 2023). Additionally, they use human judges
to assess the quality of LLM judges, which essen-
tially aligns the model’s interpretation of markers
with human understanding. This approach is simi-
lar to other works in the field, which also focus on
aligning human and LLM recognition of epistemic
markers. However, as long as LLMs maintain a
consistent framework for incorporating epistemic
markers to express confidence, we can learn from
its intrinsic mapping of marker usage and align it
with human expectations through external means.

B Technical Details

B.1 Experiment Setup

Models We incorporate a range of commonly
used LLMs of different scales, including Llama-
3.1-8B-Instruct (Touvron et al., 2023), Qwen2.5-
7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-32B-
Instruct (Yang et al., 2024), Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), GPT-4o (OpenAI, 2024b),
GPT-4o-mini (OpenAI, 2024a). For all models, we
use a temperature of 0.5 to balance between logical
consistency and creativity. All the open-source
models are run on 4 NVIDIA A6000 (40G) GPUs
with BF16.

We observed that instruction-tuned models ex-
hibit greater variation and demonstrate better lin-
guistic diversity when using epistemic markers. Al-
though we also tested some base models, we found
that for the same dataset, they emitted significantly
fewer markers compared to the instruction-tuned
models (See Figure 4) . As a result, we chose to
focus our experiments on instruction-tuned models
instead.

Datasets We benchmark the LLMs’ responses
with confidence expression using epistemic mark-
ers using the following seven datasets requiring
knowledge in different domains: 1) Factual and
commonsense knowledge: BoolQ (Clark et al.,
2019), StrategyQA (Geva et al., 2021), CSQA
(Talmor et al., 2019). 2) Mathematical reasoning:
GSM8K (Cobbe et al., 2021). 3) Medical reason-
ing: MedMCQA (Pal et al., 2022). 4) Law reason-
ing: CaseHOLD (Zheng et al., 2021). 5) Mixed
factual datasets: MMLU (Hendrycks et al., 2021).
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Figure 4: The number of epistemic markers that six
different models generated in BoolQ and CSQA dataset.
The results indicate that the instruct-tuned models ex-
hibit much better linguistic diversity than base models
in expressing confidence, which is desired by our exper-
iment.

Prompts The prompts used in our experiments
are shown in Table 4. We performed five permuta-
tions on the prompt with Qwen2.5-7B-Instruct and
Mistral-7B-Instruct-v0.3 on BoolQ, StrategyQA,
CSQA, MedMCQA and found that both accuracy
and C-AvgCV, MAC, MRC and I-AvgCV values
varied only slightly. Consequently, we randomly
selected one version and conducted all subsequent
experiments using it.

B.2 Model Sources

This section clarifies the sources of the models
used in our study. For methods involving LLMs,
we utilize their instruction fine-tuned versions (see
Appendix B.1 for more details) accessed via the
Hugging Face Hub (Wolf et al., 2020). Specifically,
for Llama-3.1-8B-Instruct, we employ the version
meta-llama/Llama-3.1-8B-Instruct. The models re-
lated to Qwen include Qwen/Qwen2.5-7B-Instruct,
Qwen/Qwen2.5-14B-Instruct, and Qwen/Qwen2.5-
32B-Instruct. For Mistral-7B-Instruct-v0.3, we use
mistralai/Mistral-7B-Instruct-v0.3.
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B.3 Detailed Implementation

Data Preprocessing We applied data preprocess-
ing methods to the datasets. For GSM8K, we trans-
formed it into a binary-question dataset for con-
venience. Specifically, for half of the questions
Qi with even index in GSM8K, we first extracted
the correct answer Ai, then used a question tem-
plate to create a binary question by incorporating
(Qi, Ai) and setting the correct binary answer to
“yes.” For the remaining half of the questions Qj ,
we randomly selected an answer Aj different from
the correct answer, and used the same question tem-
plate to create a binary question by incorporating
(Qj , Aj) and setting the correct binary answer to
“no.” The question template and two examples are
given in Table 5. For the training set of the MMLU,
due to its massive size, we randomly sampled a
subset of 20000 QA-pairs for the MMLU training
set. For MedMCQA dataset, for the convenience of
evaluation, we pick the subset of the answer with
only one correct answer. We then randomly sample
9686 QA-pairs for the MedMCQA training set and
2422 for its test set. For BoolQ, we did not expose
the model to the “passage” part and treated it as a
closed-book question-answering dataset in our ex-
periment. Since CaseHOLD isn’t explicit split into
training set and test set, we divide the former 80%
as training set and the rest as test set. A detailed
statistics for our dataset usage is on Table 3.

Dataset Train Size Test Size

BoolQ 9427 3270
StrategyQA 2061 229
GSM8K 7473 1319
MMLU 20000 14041
CSQA 9741 1221
MedMCQA 9686 2422
CaseHOLD 8396 2099

Table 3: A detailed statistcs of our dataset usage.

Epistemic Marker Extraction For each model,
we extract the epistemic marker from each response
by few-shot prompting (Brown et al., 2020) the
same model to recognize the epistemic markers
emitted by itself. We manually examined a sub-
set of each dataset and find out most of them are
able to recognize the epistemic markers. For the
unrecognized ones or the one that didn’t match the
desired format, we uniformly use GPT-4o-mini to

extract its epistemic markers. According to Zhou
et al. (2024), models are relunctant to express confi-
dence in words, so we also provided responses that
did not include any epistemic markers as few-shot
samples, and those with no markers are grouped
together as a special epistemic marker.

B.4 Evaluation Metrics

This section introduces the evaluation metrics in
detail and explain our experiment settings.

B.4.1 Detailed Implementation and Formulas
Our evaluation metrics are categorized into three
kinds: ECE-based (Xiong et al., 2024), CV-based
(Jalilibal et al., 2021) and Spearman/Pearson coef-
ficient based (Su and Li, 2021; Xiong et al., 2004),
aiming to reflect the calibration error, the degree of
dispersion and correlation respectively.

NumECE, I-AvgECE, and C-AvgECE To eval-
uate the calibration of model-generated confidence,
we introduce three metrics: NumECE, I-AvgECE,
and C-AvgECE. Since the latter two are based on
generalization of marker confidence, these metrics
assess the model’s stability on marker confidence,
considering both within-domain (I-AvgECE) and
cross-domain (C-AvgECE) scenarios and compar-
ing with number-based methods.

NumECE measures the overall calibration of the
model’s outputted numerical confidence. For each
dataset Dj , we compute the expected calibration
error (ECE-num) based on the model’s numerical
confidence on the test set. The final NumECE is the
average of these ECE values across all datasets, pro-
viding a comprehensive evaluation of the model’s
confidence calibration.

I-AvgECE focuses on the model’s performance
within the same domain, where the training and
test datasets are identical. For each dataset Dp,
we calculate the marker-based expected calibration
error (ECE-mar) by using the marker’s confidence
Conf(Wi, Dp,Mk) obtained from the training set
of Dp on the test set of it when the model also emits
Wi as confidence expression. The final I-AvgECE
is obtained by averaging these values across all
datasets as well.

C-AvgECE evaluates the model’s ability to
generalize its marker confidence across dif-
ferent datasets. For each pair of distinct
datasets (Dp, Dq), where Dp ̸= Dq, we calcu-
late the marker-based expected calibration error
ECE-mar(Dp, Dq,Mk). This is done by using the
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Binary Question Multiple Choice Question

Eliciting epistemic
markers

User: The following is a binary
question. When responding, answer
with a binary answer from [choices]
and incorporate only one epistemic
marker to reflect your confidence
level. You must include your binary
answer at the beginning of your re-
sponse then respond with the epis-
temic markers in a concise and brief
manner.
The question is: [Question]
And your answer is:

User: The following is a multiple
choice question. When responding,
answer with a letter from [choices]
and incorporate only one epistemic
marker to reflect your confidence
level. You must include your choice
of letter at the beginning of your re-
sponse then respond with the epis-
temic markers in a concise and brief
manner.
The question is: [Question]
The options are: [Options]
And your answer is:

Eliciting numerical
values

User: The following is a binary ques-
tion. When responding, answer with
a binary answer from [choices] and
incorporate a number between 0 and
100 to reflect your confidence level.
You must include your binary an-
swer at the beginning of your re-
sponse then respond with the confi-
dence score in a concise and brief
manner.
The question is: [Question]
And your answer is:

User: The following is a multiple
choice question. When responding,
answer with a letter from [choices]
and incorporate a number between
0 and 100 to reflect your confidence
level. You must include your choice
of letter at the beginning of your re-
sponse then respond with the confi-
dence score in a concise and brief
manner.
The question is: [Question]
The options are: [Options]
And your answer is:

Table 4: Our prompt to elicit epistemic markers and numerical confidence values. The text inside the square brackets
is filled with actual content in the dataset. Specifically, choices are capital letters that represent the options (e.g., “A,
B, C, D” or “A, B, C, D, E”) for multiple choice questions and “yes or no” for binary questions.

model’s confidence Conf(Wi, Dp,Mk) on the train-
ing dataset Dp to estimate the model’s marker con-
fidence on the test set of Dq, thereby measuring the
model’s ability to transfer its marker confidence to
a new dataset. The final C-AvgECE is computed
by averaging the ECE-mar values across all dataset
pairs, providing insight into the model’s robustness
in handling cross-distribution variations. The math-
ematical formulas of three ECE-based metrics is
given by:

NumECE =
1

|D|
∑

Dj∈D

ECE-num(Dj ,Mk),

I-AvgECE =
1

|D|
∑

Dp∈D

ECE-mar(Dp, Dp,Mk),

C-AvgECE =

∑
Dp,Dq∈D
Dp ̸=Dq

ECE-mar(Dp, Dq,Mk)

|D| ∗ (|D| − 1)

where |D| is the total number of datasets
(D1, D2, . . . , Dn). Note that for all ECE values,
we use a ECE bin number of N, where N is the
number of confidence predictions.

I-AvgCV and C-AvgCV To quantify the concen-
tration and variation of marker confidence, we pro-
pose I-AvgCV and C-AvgCV. These metrics assess
how dispersed and consistent marker confidence
is within individual datasets and across datasets,
respectively.

I-AvgCV measures the concentration of marker
confidence within a single dataset. For each
dataset Dj , we calculate the coefficient of varia-
tion (CV) of the confidence of different markers
Conf(Wi, Dj ,Mk). The final I-AvgCV is the av-
erage CV value across all datasets, providing an
overall measure of confidence concentration.

It is important to note that while we expect the
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Question Template
For the question [original question], is the answer [original answer] its correct answer?
Sample 1
Qi: Each bird eats 12 beetles per day, each snake eats 3 birds per day, and each jaguar eats 5 snakes
per day. If there are 6 jaguars in a forest, how many beetles are eaten each day?

Ai: 1080 (The correct answer is 1080)

Integrated binary question: For the question ‘Each bird eats 12 beetles per day, each snake eats 3 birds
per day, and each jaguar eats 5 snakes per day. If there are 6 jaguars in a forest, how many beetles are
eaten each day?”, is the answer 1080 its correct answer?

Binary answer: Yes.
Sample 2
Qj : James writes a 3 - page letter to 2 different friends twice a week. How many pages does he write a
year?

Aj : 223 (Randomly generated answer, the correct answer is 624)

Integrated binary question: For the question ‘James writes a 3 - page letter to 2 different friends twice
a week. How many pages does he write a year?”, is the answer 223 its correct answer?

Binary answer: No.

Table 5: Data pre-processing method used in GSM8K. The text inside the square brackets is replaced by actual
content in the dataset. Sample 1 keeps the original correct answer and incorporate it into the binary answer while
setting the binary answer to “Yes.” Sample 2 randomly generates a wrong answer and set the binary answer to “No.”

distribution of marker confidence to be more dis-
persed, we are not claiming that greater dispersion
is inherently better. Our desired result for models
is to cover a relatively wide range of confidence
values across all markers, while also clearly differ-
entiating between different markers. This would
facilitate more effective confidence expression in a
variety of scenarios. However, as shown in Table 1,
the average I-AvgCV value marker is lower than
0.2, which indicates that the marker confidence is
highly concentrated, leading us to conclude that
the model fails to clearly differentiate between the
markers.

C-AvgCV evaluates the consistency of marker
confidence across datasets. For each shared marker
(markers that appear in each dataset) Wi, we com-
pute the CV of the marker confidence across differ-
ent datasets and then average these values over all
shared markers. The final C-AvgCV quantifies the
consistency of model-generated confidence across
multiple datasets.

The mathematical formulations for I-AvgCV
and C-AvgCV are given by:

CV (Dj ,Mk) =
σ(Dj ,Mk)

µ(Dj ,Mk)
,

I-AvgCV(Mk) =
1

|D|

|D|∑

j=1

CV (Dj ,Mk),

CV (Wi,Mk) =
σ(Wi,Mk)

µ(Wi,Mk)
,

C-AvgCV(Mk) =
1

|W |

|W |∑

i=1

CV (Wi,Mk)

where |W | is the number of shared markers across
every datasets for model Mk, σ(Dj ,Mk) is the
standard deviation of the confidence scores for all
markers in dataset Dj for model Mk, µ(Dj ,Mk)
is the mean of the confidence scores for all mark-
ers in dataset Dj for model Mk, σ(Wi,Mk) is
the standard deviation of the confidence scores for
the marker Wi across different datasets for model
Mk and µ(Wi,Mk) is the mean of the confidence
scores for the marker Wi across different datasets
for model Mk.
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MRC To assess the alignment of marker rankings
across datasets, we introduce a metric based on
the Spearman rank correlation coefficient: Marker
Rank Correlation (MRC). This metric capture the
degree of consistency in marker confidence rank-
ings across datasets.

Specifically, For each pair of datasets (Dp, Dq),
we compute the Spearman rank correlation coef-
ficient between the confidence rankings of shared
markers. The final MRC for the model is the aver-
age correlation across all dataset pairs. The mathe-
matical formulations for MRC are given by:

MRC =
1

|P |
∑

(Dp,Dq)∈P
Dp ̸=Dq

ρ(Dp, Dq)

where W1, . . . ,Wi are all the epistemic markers
that shared by Dp and Dq, S(X,Y ) denotes the
Spearman rank correlation coefficient between the
rankings of X and Y and Conf(Wi, Dj ,Mk) rep-
resents the confidence of marker Wi for model Mk

on dataset Dj .
MAC To analyze whether the confidence of

markers and the accuracy of the model are posi-
tively correlated, we propose the Marker Accuracy
Correlation (MAC) based on the Pearson correla-
tion coefficient.

Specifically, for a given model Mk, we con-
sider the confidence of a specific shared marker Wi,
which is present across all datasets associated with
Mk. We then compute the Pearson correlation coef-
ficient between the set of marker confidences across
these datasets and the model’s overall accuracies on
the same datasets. Finally, we compute the average
of the correlation coefficients ρ(Wi,Mk) across all
shared markers Wi to obtain the overall correlation
coefficient for the model, denoted as MAC(Mk).
It’s mathematical formula is given by:

MAC(Mk) =
1

|W |
∑

Wi∈W

ρ(Wi,Mk),

where W is the set of all shared markers Wi, |W |
is the number of all shared markers and ρ(Wi,Mk)
is the Pearson correlation coefficient between the
confidence of marker Wi and the model’s accuracy
on all the datasets.

These metrics provide a quantitative assess-
ment of the consistency and concentration of
model-generated confidence values across different
datasets.

Threshold Confidence Interval
10 ∼23%
50 ∼10%
200 ∼5%

Table 6: The exact confidence interval of different filter-
ing thresholds.

B.4.2 Details on Marker Filtering Strategies
The filtering is necessary because our method of
quantifying marker confidence is based on accu-
racy, which is affected by the confidence interval. If
the sample size for a particular marker is too small,
its corresponding confidence values can be heavily
influenced by random variations. For instance, if
the marker “unsure” appears only once in the train-
ing set and the response happens to be correct, the
marker confidence for “unsure” would be 100%,
which may not accurately reflect the model’s true
intent. Previous works also show that confidence
expression could be more reflective for humans
when the it is determined in a crowd-source man-
ner (Pennekamp et al., 2024), which supports our
setting.

Furthermore, we have enough shared markers
(more than ten for each model) after implementing
the filtering, which ensures the reliability of our
experiment.

On the other hand, all epistemic markers ob-
tained from the training set are used for the exper-
iment related to ECE values. Since the estimated
confidence for each question in the test set is de-
rived from the marker confidence in the training
set, it is essential to ensure that the vast majority
of markers in the test set can be mapped to corre-
sponding markers in the training set. This approach
is reasonable since the low frequency of marker oc-
currences results in minimal impact on the overall
calibration performance, which ensures both com-
pleteness and reliability.

C Distribution Analysis

Our investigation primarily focused on the influ-
ence of distribution diversity and difficulty on
the generalizability of marker confidence. We mea-
sured this generalizability by calculating the Av-
erage ECE value across various models for each
specific dataset.

Table 7 illustrates that multi-domain datasets,
specifically StrategyQA (14.42%) and MMLU
(15.97%), exhibit significantly higher Average ECE
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values compared to single-domain datasets such
as GSM8K (Math, 6.68%), MedMCQA (Medical,
6.25%), and CaseHOLD (Law, 9.53%). This find-
ing leads to the conclusion that a more diverse data
distribution impedes the transfer of models’ marker
confidence preferences from the training to the test
set (Wang et al., 2023b,a, 2024a,b, 2025; Wang and
Song, 2024).

Dataset Domain Average ECE
StrategyQA Multi-domain 14.42
MMLU Multi-domain 15.97
GSM8K Math 6.68
MedMCQA Medical 6.25
CaseHOLD Law 9.53

Table 7: The Average ECE values across different mod-
els for certain dataset. We found that multi-domain
datasets exhibit higher average ECE values than single-
domain ones.

Additionally, we observed that a substantial dif-
ficulty gap between the training and test sets of
the marker confidence also compromises its trans-
ferability. As shown in Table 8, we utilized a
challenging math dataset, MATH-500, and a sim-
pler math dataset, GSM8K, to compute the MRC
value, representing the relevance of marker rank-
ings across these two datasets. For both Qwen2.5-
7B-Instruct (0.38) and Mistral-7B-Instruct-v0.3
(0.26), the models demonstrated low relevance in
marker rankings obtained from datasets with differ-
ing difficulties. This indicates that the difficulty of
the data distribution can significantly affect the
generalizability of marker confidence preferences.

Model MRC
Qwen2.5-7B-Instruct 0.38
Mistral-7B-Instruct-v0.3 0.26

Table 8: The MRC value for two models across MATH-
500 and GSM8K. The results shows that marker rank-
ings obtained from the two datasets are relevant to little
extent.
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