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Abstract

Music performances, characterized by dense
and continuous audio as well as seamless audio-
visual integration, present unique challenges
for multimodal scene understanding and reason-
ing. Recent Music Performance Audio-Visual
Question Answering (Music AVQA) datasets
have been proposed to reflect these challenges,
highlighting the continued need for more ef-
fective integration of audio-visual representa-
tions in complex question answering. However,
existing Music AVQA methods often rely on
dense and unoptimized representations, leading
to inefficiencies in the isolation of key informa-
tion, the reduction of redundancy, and the pri-
oritization of critical samples. To address these
challenges, we introduce Sparsify, a sparse
learning framework specifically designed for
Music AVQA. It integrates three sparsifica-
tion strategies into an end-to-end pipeline and
achieves state-of-the-art performance on the
Music AVQA datasets. In addition, it reduces
training time by 28.32% compared to its fully
trained dense counterpart while maintaining
accuracy, demonstrating clear efficiency gains.
To further improve data efficiency, we propose
a key-subset selection algorithm that selects
and uses approximately 25% of MUSIC-AVQA
v2.0 training data and retains 70–80% of full-
data performance across models.

1 Introduction

Music performances, with their dense, continu-
ous audio and seamless audio-visual integration,
present both challenges and opportunities for mul-
timodal scene understanding and reasoning (You
et al., 2025; Diao et al., 2024). To address the com-
plexities of audio-visual reasoning in music scenar-
ios, the task of Music Performance Audio-Visual
Question Answering (Music AVQA) has been pro-
posed, and the corresponding datasets, MUSIC-
AVQA (Li et al., 2022) and its extended version
MUSIC-AVQA v2.0 (Liu et al., 2024), with an ex-

How many instruments are sounding in the video?

(a) Two (b) Three (c) Four

(a) QA with Dense Audio from MUSIC-AVQA v2.0 (b) QA with Sparse Audio from VGG-Sound

(a) Bird (b) Dog (c) Cat

What is the animal running away after whistle?

Figure 1: Dense Audio QA (Liu et al., 2024) vs. Sparse
Audio QA (Chen et al., 2020). Music performances con-
tain dense and continuous audio signals with substantial
inherent redundancy, much of which is irrelevant to the
question being asked. Sparse learning has the poten-
tial to effectively filter out such redundancies, enabling
more efficient and accurate reasoning.

ample shown in Figure 1(a), have been introduced
to facilitate research in this emerging area.

Existing AVQA methods for music perfor-
mances have evolved from early cross-modality
learning approaches developed for speech recogni-
tion (Ngiam et al., 2011; Srivastava and Salakhut-
dinov, 2012) to more recent advancements in mul-
timodal fusion (Yun et al., 2021; Yang et al., 2022),
positive-negative pair construction (Li et al., 2022),
and state-of-the-art models such as LAVisH (Lin
et al., 2023), which adapts pretrained ViTs for
cross-modal learning, and DG-SCT (Duan et al.,
2023), which employs audio-visual prompts within
frozen encoders to enhance reasoning. However,
current Music AVQA methods face significant lim-
itations in effectively modeling sparse representa-
tions, which are crucial for addressing the unique
challenges posed by Music AVQA tasks. These lim-
itations include: 1 an overreliance on dense, unop-
timized representations that struggle to isolate key
information from dense audio-visual signals (Ye
et al., 2024; Diao et al., 2024); 2 a lack of effec-
tive redundancy reduction mechanisms, resulting in
inefficiencies during feature extraction and model
inference (Shang et al., 2024); 3 the absence of
prioritization strategies to identify task-critical sam-
ples, which limits scalability and prolongs training
times (Qin et al., 2024; Li et al., 2023a).
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Figure 2: Overview of the Sparsify framework. Sparsify integrates a (a) Universal Encoder and three sparsifi-
cation components: (b) Sparse Masking to reduce redundancy by masking audio and visual tokens; (c) Adaptive
Sparse Merging to select and merge key multimodal tokens based on similarity; and (d) Sparse Subset Selection to
prioritize impactful samples and reweight gradients with InfoBatch (Qin et al., 2024).

To address these limitations, we propose
Sparsify, a sparse learning framework designed
for Music AVQA tasks. Our contributions are:

• We present an end-to-end pipeline for Music
AVQA that integrates three sparsification strate-
gies and demonstrate its effectiveness with state-
of-the-art results on the MUSIC-AVQA datasets.

• Sparsify reduces training time by 28.32% while
maintaining the accuracy of question answering
compared to fully trained dense models, demon-
strating notable efficiency improvements.

• We introduce a key-subset selection algorithm
that reduces the training dataset size by approx-
imately 75%, while retaining about 70-80% of
the original performance across AVQA models.

2 Sparsify Framework

2.1 Learning Multimodal Representations

Sparsify adapts the Amuse framework (Diao
et al., 2024) as its Universal Encoder, which in-
cludes a General Video Encoder built on Swin-V2
(Liu et al., 2022), a General Audio Encoder lever-
aging the HTS-Audio Transformer (Chen et al.,
2022a), and a Question Encoder based on a stan-
dard language transformer (Vaswani et al., 2017),
as shown in Figure 2(a). Cross-modal attention

is applied to align features across modalities, fol-
lowed by activation and linear transformation lay-
ers, resulting in unified and informative multimodal
representations tailored to Music AVQA tasks.

2.2 Sparse Masking for Redundancy
Reduction

Music performance data inherently contain sub-
stantial redundancies, which pose significant chal-
lenges to efficient multimodal learning. Sparse
Masking addresses this issue by enforcing struc-
tured sparsity to reduce redundancy and enhance
computational efficiency. As illustrated in Fig-
ure 2(b), the method draws inspiration from recent
advances in random masking for multimodal mod-
els (Li et al., 2023a). This approach aligns with the
objectives of sparse learning, aiming to improve
efficiency while preserving model performance.

In the visual modality, Sparse Masking is ap-
plied to randomly mask 50% of the image patches,
reducing input redundancy and introducing struc-
tured sparsity to encourage more efficient visual
encoding. For the audio modality, we first convert
raw waveforms into mel-spectrograms and apply
the same masking ratio to ensure comparable spar-
sity levels. This unified masking design supports
coherent sparsity across modalities through consis-
tent information reduction, contributing to more
effective multimodal representation learning.
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2.3 Sparse Merging for Token Consolidation

In music performance AVQA tasks, dense mul-
timodal inputs often include redundant tokens
that unnecessarily increase computational overhead
while diluting critical task-relevant information.
To tackle this challenge, we adapt the PruMerge
method proposed by Shang et al. (2024), apply-
ing it to the audio-visual setting as illustrated in
Figure 2(c). This strategy dynamically prioritizes
and consolidates tokens based on their significance,
aligning with the objectives of sparse learning to
enhance efficiency and preserve meaningful rep-
resentations. Following Shang et al. (2024), our
approach evaluates token importance using cross-
modal attention scores a = softmax

(
Q·KT
√
d

)
V,

where query (Q), key (K), and value (V) interac-
tions highlight the relevance of each token. We
then apply the Interquartile Range (IQR) method to
these scores, dynamically identifying tokens within
the top quartile of importance. IQR is particularly
effective for filtering noise and ensuring robust-
ness in token prioritization by focusing on outliers
that represent highly salient features. Once the
key tokens are identified, remaining tokens are
clustered and adaptively merged with the closest
key tokens according to their similarity, calculated
as Similarity(toki, tokj) = ki · kT

j . This merg-
ing process retains critical tokens while integrat-
ing complementary features, preserving representa-
tional integrity. Sparse Merging ensures efficient
multimodal integration with aligned sparsity across
audio and visual modalities.

2.4 Sparse Subset Selection for Efficient
Training

Training on dense audio-visual datasets is compu-
tationally expensive due to excessive redundancy.
Sparse Subset Selection, illustrated in Figure 2 (d),
addresses this by identifying and focusing on a
key subset of samples that contribute the most to
learning, significantly reducing training costs while
preserving performance.

Following Qin et al. (2024), our method divides
samples into "hard-to-learn" (D1) and "easy-to-
learn" (D2) categories based on their loss values rel-
ative to the mean. Hard samples (D1) are recorded
and aggregated by epoch, with their importance
weighted by a decay ratio r over k-epoch intervals.
This ensures that difficult samples are prioritized
early in training, while less critical samples are de-
prioritized over time. The top num samples with

the highest aggregated scores are selected to form
the final Key-subset (D3). InfoBatch (Qin et al.,
2024) is used to rescale gradients, pruning redun-
dant "easy-to-learn" samples (D2) and ensuring
that the reduced dataset retains the statistical prop-
erties of the original. This combination minimizes
redundancy, accelerates convergence, and main-
tains task performance. The detailed Key-subset
Selection Algorithm is presented as Algorithm 1.

Algorithm 1: Key-subset Selection Algorithm

Input: Model M , Dataset D = {(xi, yi)}Ni=1 with N
samples, Loss function L, Number of epochs
E, Merge group size k, Decrement ratio r,
Number of key samples n

Output: Key-subset indices K
# Initialization
Initialize scores vector s← 1 ∈ RN

Initialize epochs list EpochsList← [ ]
# Compute original losses
for i← 1 to N do

Compute loss li ← L(M(xi), yi)
Update score si ← li

# InfoBatch
for epoch e← 1 to E do

Initialize temporary count vector t← 0 ∈ RN

Compute mean loss µ← 1
N

∑N
i=1 si

for i← 1 to N do
Compute loss li ← L(M(xi), yi)
Update score si ← li
if si > µ then

Increment count ti ← ti + 1

Append t to EpochsList
# Merge
Initialize merged scores m← 0 ∈ RN

Compute number of groups G← ⌈E
k
⌉

for group g ← 1 to G do
Compute group weight wg ← rg−1

for epoch e← (g − 1) · k + 1 to min(g · k,E)
do

Update merged scores
m←m+ wg · EpochsList[e]

# Select the top n indices as the Key-subset
K ← argsort(−m)[: n]
return Key-subset indices K

3 Experiments

3.1 Setup

Music AVQA Datasets (i) MUSIC-AVQA (Li
et al., 2022): Contains 9,288 videos (150 hours)
spanning 22 instruments, with 45,867 QA pairs
derived from 33 templates across four categories:
String, Wind, Percussion, and Keyboard. Each
video includes approximately five QA pairs on aver-
age. (ii) MUSIC-AVQA v2.0 (Liu et al., 2024): An
extension addressing data bias, introducing 1,230
additional videos and 8,100 new QA pairs.
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Method
Audio-related QA Visual-related QA Audio&Visual-related QA

Avg
Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg

MUSIC-AVQA

AVST (Li et al., 2022) 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
LAVisH (Lin et al., 2023) 75.59 84.13 76.86 77.45 72.91 76.29 71.91 77.52 75.81 76.75 77.62 76.31 76.10
DG-SCT (Duan et al., 2023) 83.27 64.56 76.34 81.57 82.57 82.08 81.61 72.84 65.91 64.22 67.48 70.56 74.62
Sparsify (Ours) 83.12 77.64 80.38 83.12 85.74 84.43 80.98 82.70 85.09 77.12 79.89 81.80 81.75

MUSIC-AVQA v2.0

AVST (Li et al., 2022) 81.38 61.82 75.20 78.72 77.29 78.05 71.63 68.62 64.39 64.03 60.29 65.83 70.83
LAVisH (Lin et al., 2023) 83.82 58.19 75.72 82.81 81.73 82.30 73.26 73.45 65.64 64.26 60.82 67.75 73.28
DG-SCT (Duan et al., 2023) 83.13 62.54 76.62 81.61 82.76 82.19 83.43 72.70 64.65 64.78 67.34 70.38 74.53
Sparsify (Ours) 82.16 76.44 79.30 82.54 85.15 83.84 80.68 82.80 84.89 76.92 80.09 81.08 81.30

Table 1: Comparison with state-of-the-art methods on the MUSIC-AVQA and MUSIC-AVQA v2.0 test set. Accuracy
is reported for Audio (Counting, Comparative), Visual (Counting, Location), and Audio-Visual (Existential,
Counting, Location, Comparative, Temporal) question types. Average accuracies for Audio, Visual, Audio-Visual,
and Overall are also included. Bold marks the best results, and underlined marks the second-best.

Full Dataset Training Configuration For the
experiments described in Section 3.2, Sparse Mask-
ing is applied during the first three epochs and is
disabled thereafter. Adaptive Sparse Merging and
InfoBatch are used throughout the training. We
set the masking rate to 50% for Sparse Masking.
For InfoBatch, the ratio is set to 0.5 and the delta
to 0.875, following the setup in (Qin et al., 2024).

Key-subset Selection Configuration In the key-
subset selection, we apply a one-epoch warm-up
phase followed by 15 epochs of training. The hy-
perparameters are set as follows: N = 15, k = 3,
r = 0.618, and Num = 10,819 (i.e., the number
of QA pairs). During this stage, only InfoBatch
(Qin et al., 2024) is employed, while Sparse Mask-
ing and Adaptive Sparse Merging are disabled.

(a) Results on MUSIC-AVQA (b) Results on MUSIC-AVQA v2.0

Figure 3: Radar charts comparing Sparsify with state-
of-the-art methods on MUSIC-AVQA and MUSIC-
AVQA v2.0, across various question types.

3.2 Comparison with State-of-the-Art

Table 1 presents a detailed comparison between
Sparsify and three strong baselines—AVST (Li
et al., 2022), LAVisH (Lin et al., 2023), and DG-
SCT (Duan et al., 2023)—on both the MUSIC-
AVQA and MUSIC-AVQA v2.0 benchmarks.
Sparsify achieves the highest overall average
accuracy on both datasets, with consistent gains

across audio, visual, and audio-visual question
types. These improvements highlight the poten-
tial of sparse learning in handling the dense and
continuous nature of music performance videos.
Sparse learning benefits visual question answer-
ing by promoting compact visual representa-
tions. On visual-related QA, Sparsify achieves
accuracy scores of 84.43% and 83.84% on MUSIC-
AVQA and MUSIC-AVQA v2.0, respectively, out-
performing DG-SCT by +2.35% and +1.65%, and
surpassing LAVisH by +8.14% and +1.54%. These
improvements reflect the advantage of sparse in-
puts in retaining essential spatial and structural cues
while reducing visual redundancy. In music per-
formance QA, such representations better support
reasoning over complex scenes involving performer
locations, interactions, and visual composition. By
limiting the influence of background clutter and
redundant details, sparse visual representation en-
ables the model to perform more robustly across
diverse and fine-grained visual reasoning types.
Sparse learning supports audio question answer-
ing by reducing spectral redundancy and en-
abling efficient acoustic encoding. On audio-
related QA, Sparsify achieves gains of +3.52%
and +3.58% over LAVisH on MUSIC-AVQA and
MUSIC-AVQA v2.0, respectively, and outperforms
DG-SCT by +4.04% and +2.68%. These improve-
ments suggest that sparse input representations help
suppress redundant frequency patterns while retain-
ing sufficient acoustic detail for question-relevant
reasoning. By pruning less informative segments
in the spectrogram, Sparsify yields more com-
pact yet informative representations, supporting
improved performance on audio-based queries in-
volving complex musical content.
Sparse learning improves audio-visual ques-
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Figure 4: Accuracy comparison of DG-SCT and Sparsify trained on the full dataset and the key-subset (∼25% of
data) (Liu et al., 2024). Training on the key-subset maintains strong performance despite substantial data reduction.

tion answering by jointly reducing modality-
specific redundancies. On audio-visual QA,
Sparsify outperforms DG-SCT by +11.24% and
+10.70%, and LAVisH by +5.49% and +13.33% on
MUSIC-AVQA and MUSIC-AVQA v2.0, respec-
tively. These consistent gains suggest that spar-
sification across both audio and visual modalities
helps eliminate less informative content and pro-
duce more streamlined multimodal representations
with reduced noise. This joint reduction in redun-
dancy allows the model to more effectively capture
relevant cross-modal associations in complex per-
formance scenarios.

3.3 Key-subset Selection and Performance
Retention

We evaluate the effectiveness of our Key-subset
selection algorithm on the MUSIC-AVQA v2.0
dataset (Liu et al., 2024), as illustrated in Figure 4.
The selected subset comprises only ∼25% of the
original training set (10,819 samples), yet enables
models to retain a substantial portion of their full-
data performance. When trained exclusively on
this subset, Sparsify achieves 60.17% accuracy
and DG-SCT (Duan et al., 2023) achieves 55.21%,
corresponding to 74.01% and 74.08% of their re-
spective accuracies when trained on the full dataset.
These results demonstrate that our Key-subset Se-
lection reduces training data usage while retaining
much of the models’ original performance, offering
a data-efficient solution for Music AVQA.

3.4 Training Efficiency Gains from Sparse
Learning

Figure 5 illustrates the training efficiency gains
of Sparsify, which reduces total training time
from 173 hours to 124 hours—a 28.32% improve-
ment over its dense variant. These gains reflect
the combined effect of three sparsification strate-

Figure 5: Comparison of the training time of Sparsify
with a dense variant that disables all three sparsification
strategies. Results are reported on the MUSIC-AVQA
v2.0 dataset (Liu et al., 2024).

gies integrated into the training pipeline. Sparse
Masking reduces early-stage computational load by
masking 50% of audio and visual tokens. Sparse
Merging compresses intermediate representations
by consolidating similar tokens, reducing token-
level complexity. In parallel, using InfoBatch en-
hances efficiency by emphasizing harder-to-learn
samples, which accelerates convergence and re-
duces the number of required optimization steps.

4 Conclusion

We present Sparsify, a sparse learning frame-
work for Music AVQA that addresses the ineffi-
ciencies inherent in dense audio-visual represen-
tations. Sparsify achieves this by (i) integrating
three sparsification strategies into an end-to-end
pipeline and achieving state-of-the-art performance
on Music AVQA datasets; (ii) reducing training
time by 28.32% while maintaining comparable ac-
curacy to its dense counterpart. In addition, we
propose a key-subset selection algorithm that se-
lects and uses approximately 25% of the MUSIC-
AVQA v2.0 training data, while retaining 70–80%
of full-data performance across models. We hope
our work offers insights into efficient multimodal
understanding in dense audio-visual settings.
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Limitations

The effectiveness of Sparsify has been demon-
strated on large-scale Music AVQA benchmarks,
as it is specifically designed to address the ineffi-
ciencies of dense audio-visual representations in
this domain. While it may hold promise for broader
multimodal tasks, its behavior in such settings re-
mains to be explored. Extending Sparsify to more
diverse or unconstrained applications represents a
valuable direction for future work.

Ethical Considerations

We examined the study describing the publicly
available datasets used in this research and identi-
fied no ethical issues regarding the datasets.
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A Baselines

• AVST (Li et al., 2022): Integrates audio, visual,
and question modalities for spatio-temporal rea-
soning in audio-visual question answering. It
aligns modalities through spatial and temporal
grounding, fuses features into a joint represen-
tation, and optimizes both grounding and QA
objectives.

• LAVisH (Lin et al., 2023): Adapts frozen Vi-
sion Transformers for audio-visual tasks using
lightweight adapters and latent tokens to com-
press and fuse audio-visual information. Cross-
modal attention and adapter modules enable bidi-
rectional interaction between modalities.

• DG-SCT (Duan et al., 2023): Enhances audio-
visual tasks through a Dual-Guided Spatial-
Channel-Temporal attention mechanism, dynam-
ically adjusting feature extraction and facili-
tating bidirectional audio-visual guidance with
lightweight interaction layers.

B Related Work

Audio-Visual Video Understanding Audio and
visual modalities offer complementary cues that,
when jointly modeled, support a more comprehen-
sive understanding of the scene (Wei et al., 2022;
Diao et al., 2023; Shu et al., 2023; Diao et al., 2025).
Early work focused on joint representations for
tasks like audio-visual speech recognition (Ngiam
et al., 2011) and multimodal deep learning (Srivas-
tava and Salakhutdinov, 2012). Recent methods
enhance fusion techniques for sound source local-
ization (Zhao et al., 2018) and audio-driven visual
analysis (Zhao et al., 2019). Frameworks such as
LAVisH (Lin et al., 2023), which proposed a latent
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audio-visual hybrid adapter that adapts pretrained
ViTs to audio-visual tasks by injecting a small num-
ber of trainable parameters into every layer of a
frozen ViT, and DG-SCT (Duan et al., 2023) which
incorporates trainable cross-modal interaction lay-
ers into pre-trained audio-visual encoders, allowing
adaptive extraction of crucial information from the
current modality across spatial, channel, and tempo-
ral dimensions, while preserving the frozen parame-
ters of large-scale pre-trained models. As for bench-
marks, there are MUSIC-AVQA (Li et al., 2022),
AVQA (Yang et al., 2022), MUSIC-AVQA v2.0
(Liu et al., 2024) and AV-Odyssey Bench (Gong
et al., 2024), which focus on whether model can
truly understand audio-visual information. How-
ever, existing approaches overlook the unique chal-
lenges of music performance datasets, where dense
and continuous audio-visual signals lead to sig-
nificant redundancy. These dense representations
hinder efficient processing and dilute task-relevant
features, necessitating sparsification strategies to
enable efficient reasoning in this domain.

Multimodal Question Answering Multimodal
question answering spans Visual QA (VQA) (An-
tol et al., 2015; Lei et al., 2018; Li et al., 2024b),
Audio QA (AQA) (Fayek and Johnson, 2020), and
Audio-Visual QA (AVQA) (Li et al., 2022), requir-
ing the integration of modality-specific signals for
complex reasoning tasks. For VQA, datasets such
as MMMU (Yue et al., 2024) and MMBench (Liu
et al., 2025) provide carefully curated benchmarks
that evaluate vision-language models across di-
verse domains. For AQA, notable datasets include
Clotho-AQA (Lipping et al., 2022) and AIR-Bench
(Yang et al., 2024), which consist of question-
answering tasks derived from environmental and
event-based audio scenes. AVQA benchmarks
such as MUSIC-AVQA (Li et al., 2022), AVQA
(Yang et al., 2022), Pano-AVQA (Yun et al., 2021),
FunQA (Xie et al., 2024), and MUSIC-AVQA v2.0
(Liu et al., 2024) emphasize spatio-temporal rea-
soning and multimodal fusion in complex video
contexts. Among these, Music AVQA presents
distinctive challenges due to its continuous and
densely structured audio signals, making it valu-
able for multimodal reasoning (You et al., 2025).

Sparse Learning in Audio-Visual Signals Spar-
sity has become increasingly crucial in audio-visual
signal processing due to the inherent complexity
and redundancy of cross-modal data. Early ap-
proaches employ shift-invariant kernels (Monaci

et al., 2008) to capture essential patterns while re-
ducing computational overhead. This foundation
leads to more sophisticated methods using group
sparsity and joint dictionaries (Shen et al., 2013),
which are particularly effective in handling noisy
and variable signals. Current research focuses on
temporal dynamics in audio-visual learning, where
audio-visual relationships are often intermittent
but contextually meaningful (Iashin et al., 2022).
Modern transformer-based architectures with spe-
cialized selection mechanisms (Iashin et al., 2024)
have shown promise in processing extended se-
quences efficiently. However, sparsity-based ap-
proaches remain underexplored in the context of
music performance question answering, where
challenges such as overlapping instruments and
complex audio-visual interactions demand more
efficient representations. Our work aims to bridge
this gap with sparsification strategies.

C Positioning Music AVQA Among
Multimodal Tasks

To contextualize Music AVQA, it is useful to dis-
tinguish it from broader multimodal tasks that also
integrate information across modalities. This sec-
tion contrasts Music AVQA with vision-language
modeling, audio-language modeling, and other rep-
resentative domain-specific question answering to
highlight its unique challenges and requirements.

C.1 Vision-Language Modeling

Vision-language modeling aims to enable multi-
modal systems to interpret visual content—such
as images and videos—in conjunction with tex-
tual descriptions (Jian et al., 2023; Bordes et al.,
2024; Jian et al., 2024; Zhang et al., 2024). It
has supported a wide range of applications, includ-
ing text-to-image generation (Li et al., 2019; Gao
et al., 2024; He et al., 2025b), video editing (Hu
et al., 2023; He et al., 2025a), video captioning and
grounding (Pan et al., 2022; Li et al., 2024b; Zhang
et al., 2025), and proxy learning (Qian et al., 2023;
Yao et al., 2024a,b). In contrast, Music AVQA re-
quires integrated reasoning over continuous audio-
visual streams, where visual understanding must
be synchronized with rhythm, motion, and acous-
tic cues. This setting introduces challenges such
as temporal alignment and redundancy reduction,
which are not typically emphasized in standard
vision-language tasks.
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C.2 Audio-Language Modeling

Audio-language modeling (Borsos et al., 2023;
Deshmukh et al., 2023; Wu et al., 2024; Su et al.,
2025) builds systems that fuse audio features with
text for various downstream tasks such as audio
question answering (Fayek and Johnson, 2020; Lip-
ping et al., 2022), text-to-speech generation (Min
et al., 2021; Le et al., 2023), and audio editing
(Wang et al., 2023; Liang et al., 2024). These tasks
primarily focus on modeling relationships between
acoustic signals and language, often in domains
such as speech, environmental sounds, or sound
events. Unlike conventional audio-language tasks
that focus on modeling acoustic-linguistic associa-
tions, Music AVQA incorporates a visual modality
that is intricately entangled with the audio stream
in music performance contexts. This setting neces-
sitates fine-grained multimodal reasoning, where
models must jointly interpret auditory patterns, vi-
sual dynamics, and their temporal interplay to an-
swer performance-specific questions.

C.3 Domain-Specific Question Answering

Domain-specific question answering systems are
designed to operate within specialized fields by
leveraging structured knowledge and domain-
specific data. Examples such as educational, finan-
cial, and medical QA, as discussed below, entail
distinct input modalities, reasoning demands, and
representational challenges.

Educational QA Educational Question Answer-
ing (Educational QA) systems (Soares et al., 2021;
Steuer et al., 2022; Wu et al., 2023) are designed
to support learning processes by responding to stu-
dent queries based on educational materials such
as textbooks, lecture notes, and academic articles.
The primary goal is to clarify concepts, explain
solutions, or guide students through subject matter.
In contrast, Music AVQA involves perceptual rea-
soning over evolving audio-visual input. Instead
of extracting explicit concepts from structured cur-
ricula, models must interpret expressive cues such
as gestural nuance, visual-musical alignment, and
acoustic articulation in continuous video streams.
This shift demands interpreting perceptual and tem-
poral patterns, which are not typically required in
conventional educational QA. The emphasis on
fluid multimodal integration further distinguishes
Music AVQA as a challenging reasoning setting.

Financial QA Financial Question Answering (Fi-
nancial QA) (Li et al., 2023b; Huang et al., 2023;
Saini and Singh, 2023) focuses on extracting in-
sights and answering questions from a wide range
of financial data (Chen et al., 2022b), such as com-
pany reports, market data, economic indicators,
and financial news. These systems assist analysts,
investors, and businesses in making informed deci-
sions by providing quick access to relevant finan-
cial information and analysis. While Financial QA
can involve data from multiple views (e.g., text, ta-
bles, charts) (Zhu et al., 2021), it typically does not
involve the continuous, dense audio-visual streams
found in music performances. The core task in
Financial QA is to identify factual information, un-
derstand financial terminology, perform numerical
reasoning, and interpret trends from often struc-
tured or semi-structured textual and numerical data
(Wang et al., 2022). In contrast, Music AVQA cen-
ters on the temporal and semantic understanding
of performance events, requiring models to inter-
pret how visual gestures correspond to musical out-
comes, such as identifying sounding instruments,
tracking temporal changes, and linking expressive
motion to acoustic effects, rather than extracting or
reasoning over structured financial data.

Medical QA AI models are increasingly utilized
across medical field, tackling a wide array of ap-
plications such as diagnostic assistance through
analysis of medical images (e.g., X-rays, MRIs)
(Wei et al., 2023; Wang et al., 2024; Wei et al.,
2025) and dialogues (Varshney et al., 2023; Li et al.,
2024a), drug discovery (Dara et al., 2022; Blanco-
Gonzalez et al., 2023), digital biomarkers (Arya
et al., 2023; Zhou et al., 2024), and personalized
patient care (Kasula, 2023; Li and Deng, 2023).
Among these, Medical Question Answering (Medi-
cal QA) (Abacha and Zweigenbaum, 2015; Good-
win and Harabagiu, 2016) is a specialized field
focused on developing systems that understand and
respond to health-related queries. These systems
often process information from diverse sources to
provide accurate medical information or support
clinical decision-making. In contrast, Music AVQA
centers on interpreting music-related videos, requir-
ing models to reason over dense, continuous audio
and tightly synchronized visual streams. While
both involve multimodal and complex reasoning,
Music AVQA uniquely demands fine-grained align-
ment of perceptual cues in expressive performance
contexts, such as gesture, rhythm, and phrasing.
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