
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 20330–20354
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Interactive and Expressive Code-Augmented Planning with Large
Language Models

Anthony Z. Liu1 2, Xinhe Wang2, Jacob Sansom2, Yao Fu2,
Jongwook Choi2, Sungryull Sohn3, Jaekyeom Kim3, and Honglak Lee2 3

1Correspondence anthliu@umich.edu
2University of Michigan

3LG AI Research

Abstract

Large Language Models (LLMs) demonstrate
strong abilities in common-sense reasoning and
interactive decision-making, but often struggle
with complex, long-horizon planning tasks. Re-
cent techniques have sought to structure LLM
outputs using control flow and code to improve
planning performance. However, code-based
approaches can be error-prone and insufficient
for handling ambiguous or unstructured data.
To address these challenges, we propose REPL-
Plan, an LLM planning approach that is fully
code-expressive (it can utilize all the benefits
of code) while also being dynamic (it can flex-
ibly adapt from errors and use the LLM for
soft reasoning). In REPL-Plan, an LLM tack-
les tasks by interacting with a Read-Eval-Print
Loop (REPL) that iteratively executes and eval-
uates code—similar to language shells or inter-
active notebooks—enabling the model to flexi-
bly correct errors and adapt dynamically to task
requirements. We demonstrate that REPL-Plan
achieves strong results across various planning
domains compared to previous methods.

1 Introduction

Large Language Models (LLMs) have shown
strong capabilities in planning and decision making
tasks (Wang et al., 2023b; Xi et al., 2023). LLMs
have strong domain-knowledge and common-sense
priors (Kojima et al., 2023; Brown et al., 2020),
which are required in many of these planning tasks.
For instance, answering “What steps should I take
to prepare dinner?” requires knowledge about
food preparation and kitchen environments. How-
ever, LLMs are imperfect and can struggle to make
accurate decisions for complex and long-horizon
tasks — often making “hallucinations” and in-
correct short-term decisions (Kambhampati et al.,
2024; Valmeekam et al., 2023; Liu et al., 2023).

Prior work has improved planning performance
by guiding an LLM by enforcing levels of struc-
ture to the LLM’s outputs and decisions, guid-

ing LLM-planning to output sequences or trees of
thoughts and subtasks (Yao et al., 2022b; Kojima
et al., 2022; Yao et al., 2023; Schroeder et al., 2024).
Prior work has also structured LLM decisions by
using code, which we call here code-augmented
LLM-planning. As recent LLMs have been trained
on large code bases (Chen et al., 2021; Yang et al.,
2024), LLMs have the ability to utilize the control
flow structures of code to plan accurately. Some
works prompt an LLM to write code or pseudocode
solely to help the LLM self-structure its decisions,
without explictly executing code (Chae et al., 2024).
Other works prompt an LLM to write code that is
directly executed to solve the given task (Gao et al.,
2023; Wang et al., 2023a).

However, using LLM-written code also intro-
duces the inherent limitations of code to planning.
In this work, we address the following limitations:
(1) Soft reasoning sub-problems: many tasks re-
quire a planner to answer or solve some “soft rea-
soning” task that is not easily solved using code. A
planner may need to interpret unstructured observa-
tion data, or make decisions on possibly subjective
choices (e.g. “purchase the item that best matches
the user’s request”). (2) Bottom-up nature of writ-
ing code: solving tasks with code requires a planner
to often solve tasks from a bottom-up manner. This
includes writing functions for sub-processes before
writing code to solve the main tasks and writing
case statements that must consider every possible
output of a function or result of a sub-task. Gener-
ating accurate code in this manner requires precise
and accurate forethought. (3) Coding bugs: writ-
ing accurate code in one pass is difficult, even for
skilled human coders.

In this work, we aim to address these challenges
by developing a top-down framework for code-
augmented LLM planning that is both dynamic
and expressive. Inspired by the way human devel-
opers prototype and debug code, we leverage in-
teractive environments such as REPLs (Read-Eval-

20330

mailto:anthliu@umich.edu

Interact with a python REPL to solve the
following task.
You are in the middle of a room. Looking quickly
around you, you see a ...
Your task is to: find two apples and put them
in/on the sidetable.
> # I should find each apple one by one by
searching each available location
> target_obj = 'apple'
> locations = [...]
> find_and_take_obj(target_obj, locations)
...
You pick up the apple 3 from the garbagecan 1.
done.
> act(‘go to sidetable 1’)
On sidetable 1, you see nothing.
> act(‘put apple 3 in/on sidetable 1’)
You put apple 2 in/on sidetable 1.
> find_and_take_obj(target_obj, locations)
...
You take apple 1 from trash 1.
done.
> ...

main REPL

LLM call

Interact with a python REPL to solve the following
task.
You are in the middle of a room. Looking quickly
around you, you see a ...
Your task is to: find `target_obj` from the list
`locations`
> target_obj, locations = get_args()
> # ...
> for current_loc in locations:
... act(f'go to {current_loc}')
... if location_closed():# returns True/False if
location is closed. e.g. 'The cabinet 2 is closed.'
... act(f'open {current_loc}')
... if see_object(target_obj):
... break
...
...
On the garbagecan 1, you see a apple 3, and a egg 3.
> # Now I found a apple. Next, I need to take it.
> act('take apple 3 from garbagecan 1')
You pick up the apple 3 from the garbagecan 1.
> answer(‘done.’)
...

find_and_take_obj REPL

location_closed
REPL

see_object
REPL

...

...

1

2

3
4

5 7 8, 15

10, 17

11

1418
2122

24

Figure 1: REPL-Plan is an approach for using code to augment LLM-planning where an LLM interacts with
an LLM-REPL, iteratively writing code and interacting with the environment by calling the act function. The
interactive nature allows the LLM to adapt to changes in the environment and errors in the code. An LLM-REPL also
allows the LLM to recursively spawn other LLM-REPL by calling undefined functions (e.g. find_and_take_obj).
This allows the LLM to recursively solve subtasks in a top-down divide-and-conquer manner, and to separate
subtasks that may be ill-suited for code, such as soft-reasoning tasks (e.g. location_closed and see_object). An
LLM can combine these tools (child LLM-REPLs, iterative coding) to express complex workflows that can solve
tasks in a compact way.

Print Loops, commonly referred to as language
shells) and other computing paradigms (Steele and
Gabriel, 1996). Many researchers are already famil-
iar with tools like iPython and Jupyter Notebook—
practical examples of REPLs—where code is ex-
ecuted one line at a time, providing immediate
feedback that supports incremental development
and on-the-fly error correction. This interactive,
step-by-step process is central to our approach, en-
abling the LLM to iteratively refine its plans and
responses.

We introduce REPL-Plan: an approach for solv-
ing complex planning problems (shown in Figure 1)
by using LLMs to interact with LLM-REPLs,
where the LLM writes code line-by-line, writing
and calling functions to interact with the plan-
ning environment. Specifically, LLM-REPLs are
an extension of REPLs — in addition to REPL
functionality, code in LLM-REPLs can recursively

“spawn” child LLM-REPLs. This recursive spawn-
ing enables the LLM to abstract and solve sub-
tasks in a top-down divide-and-conquer manner,
isolating those tasks that require heuristic reason-
ing or involve uncertainty due to incomplete or
noisy information—challenges that are not readily
addressed by conventional, rigid rule-based coding
approaches.

Our work makes the following contributions:

• REPL-Plan: a novel approach for planning
using LLM-REPLs, which are an extension
of REPLs (e.g. language shells, code note-

books). LLM-REPLs enable a LLM to make
decisions in a top-down way that is both dy-
namic and expressive.

• We show that REPL-Plan achieves strong
performance in challenging text-based se-
quential decision making environments ALF-
World (Shridhar et al., 2021) and Web-
Shop (Yao et al., 2022a). We also show REPL-
Plan achieves strong performance on a novel
real-world web navigation task that requires
handling complex web observations.

• We test the robustness of REPL-Plan by con-
ducting ablations — testing the code correc-
tion/prediction ability by giving the LLM
faulty demonstrations.

2 Approach

2.1 Problem Statement

In a typical interactive planning task, a large lan-
guage model agent (LLM-agent) is given a task de-
scription t and must interact with an environment
for a number of timesteps to accomplish the task t.
At each timestep i, the agent is given a language ob-
servation oi of the current state of the environment
and can predict a language action ai which can af-
fect the environment (for the agent to accomplish
t). To help the LLM-agent, it is given k-trajectories
(or demonstrations) {τ1, . . . , τk} of solving some
prior tasks that are created by an expert. The LLM-
agent must follow the demonstrations to solve the

20331

current task t.
A simple way to apply the LLM is to simply

model the next action using the language-modeling
probabilities of the LLM. However, many real-
world tasks are complex — they may require solv-
ing multiple smaller sub-tasks, and long-horizon —
they require many action predictions to solve the
task. Enforcing structure, such as writing code, to
the LLM-agent’s decisions, can be used to address
these issues.

In this work, we propose a novel method for
using code to augment LLM-agents, which ad-
dresses the limitations of using code with planning,
described in Section 1: (1) “Soft reasoning” sub-
problems, (2) planning bottom-up, and finally (3)
coding errors.

2.2 LLM-REPLs

We base our approach on the concept of a REPL
(Read-Eval-Print-Loop), also known as a language
shell or code notebook, is a programming environ-
ment that tracks program state (global/local vari-
ables) at each timestep where (1) a user inputs a
statement of code (variable assignment, loop, func-
tion definition), (2) this line of code is evaluated,
to obtain the next program state, (3) the output of
the previous line of code is shown to the user, and
finally (4) repeat step (1).

A REPL is useful for task solving in a dynamic
manner — results (and possible errors) are imme-
diately reflected in the output of the program state.
Then, a user (or LLM), can simply write another
statement of code that can correct their previous
mistake, without re-writing the entire program.

We extend the idea of using a REPL recursively
— where any REPL can spawn another REPL in a
top-down manner, in order to solve any sub-task
— a “subtask” REPL. We call this idea an LLM-
REPL. In Section 3.3, we show experimentally
adding recursive spawning is crucial for solving
tasks.

To create a LLM-REPL, we simply add pre-
defined functions, or primitives, to the program
state. The LLM can call these primitives to choose
to recursively spawn child LLM-REPLs, and man-
age context-passing between parent-child LLM-
REPLs.

• [subtask](args): spawns an LLM-REPL
with the name [subtask]. The LLM is then
queried using the [subtask] REPL until con-
text is passed back to this REPL or another

child REPL is spawned. If the [subtask]
LLM-REPL has previously been spawned,
then execution history will continue from pre-
vious. Otherwise, a task description for the
LLM-REPL will be queried, and a new LLM-
REPL will be created. Note the new child
LLM-REPL does not share any variable state
with the parent, so the following primitives
can be used to pass context.

• get_args(): returns the arguments passed
from the parent of the current LLM-REPL.

• answer(a): passes and returns the value a
back to the parent LLM-REPL. Execution is
passed back to the parent.

Pseudo-code for how a practical implementation of
LLM-REPLs is given in Appendix A.2.

2.3 REPL-Plan

REPL-Plan is simply planning and decision-
making through collection of LLM-REPLs. As
all the planning and actions can be done in a LLM-
REPL, REPL-Plan is code-expressive.

To execute REPL-Plan, we can adapt an LLM-
REPL by adding more primitive functions for inter-
acting with the environment.

• act(a): passes and executes the action a in
the environment.

• get_obs(): passes the recent observation as
a string. This may be used by an planner to
execute some string processing code when
an observation is too large (e.g. a whole web
page).

For each timestep i, we run the LLM-REPL un-
til the act(a) function is called, then pass in any
observations as needed to the in-code-environment-
outputs of the LLM-REPLs. We demonstrate how
LLM calls, code, and actions from act are exe-
cuted across different parent-child LLM-REPLs in
Figure 2.

Few-shot Setting. We use a few-shot setting
where all agents (REPL-Plan and baselines) are
given k expert demonstrations — including envi-
ronment observations and code outputs (Yao et al.,
2022b; Schroeder et al., 2024; Sun et al., 2023).
For a fair comparison, demonstrations for all ap-
proaches are derived from the same training en-
vironment trajectories. Specifically, REPL-Plan
uses these demonstrations to keep a global REPL
pool, a set of spawned REPLs from previous task
executions and demonstrations. In this way, an

20332

filter_search() REPL filter_page() REPL
1 Task: Find any matching items in the

search results.
2 >>> description = get_args ()
3 >>> matching = []
4 >>> for i in range (5):
5 ... matching.extend(filter_page(

description))
6 ... act('click [Next >]')
7 ...
8 >>> answer(matching)

1 Task: Find any matching items on the current
page

2 >>> description = get_args ()
3 >>> item_links = parse_items ()
4 >>> matching = []
5 >>> for item in range(item_links):
6 ... act(f'click [{item}]')
7 ... if item_matches(item , description):
8 ... matching.append(item)
9 ... act(f'click [< Back]')

10 ...
11 >>> answer(matching)

filter_search() Trace filter_page() Trace
ℓ2 ← LLMQuery()
description = get_args()
ℓ3 ← LLMQuery()
matching = []
ℓ7, . . . , ℓ7 ← LLMQuery()
for i in range(5):
NameError(filter_page)
create REPL: subtask← LLMQuery()
matching.extend(

filter_page(description))
ℓ2 ← LLMQuery()
description = get_args()
ℓ3 ← LLMQuery()
NameError(parse_items)
create REPL: subtask← LLMQuery()
item_links = parse_items()
ℓ4 ← LLMQuery()
matching = []
ℓ5, . . . , ℓ9 ← LLMQuery()
for item in range(item_links):

act(f’click [{item}]’)
NameError(item_matches)
. . .
act(f’click [< Back]’)
. . .

answer(matching)
act(’click [Next >])’

.
answer(matching)

Figure 2: A toy example of context passing that is possible in REPL-Plan. In the toy example, the task is parse all
items on a search page that match a given description. We show a sample generated code in the two code snippets
above, where the agent splits the task into 3 different sub-tasks: (1) filter_page, parsing any matching items on
the current page, (2) parse_items, parse any item links on the current page, and (3) item_matches, determine if
the current item page matches the description.

LLM can perform in-context-learning from previ-
ous tasks and demonstrations to output correct and
consistent code.

3 Experiments

We evaluated REPL-Plan against baselines on var-
ious language-based environments. Each of these
environments is challenging — to be successful,
an agent must be able to understand and predict
long-horizon complex action sequences, and have
enough language-understanding to interpret the lan-
guage observations and actions. We show that
REPL-Plan is an effective balance in using code
for planning — using code to structure complex,

repeating, and language-understanding sub-tasks.

3.1 Environments

We tested on the following environments:

ALFWorld. ALFWorld (Shridhar et al., 2021) is
a text-based simulated-household embodied agent
environment, where an agent must accomplish 6
different types of tasks related to navigating and
interacting with a household, e.g. searching the
kitchen for an apple, heating it, then placing it on a
table.

WebShop. WebShop (Yao et al., 2022a) is an
interactable e-commerce environment, where an

20333

agent is given a target product description—in
which a human annotator described a category, key
attributes, and price limit—and the agent must nav-
igate the e-commerce site by searching for and
buying a product that matches the target descrip-
tion. An agent’s success is measured based on how
many of the purchased item’s attributes match with
the ground truth attributes.

In WebShop, the search page is configured to
return the top k results from the search query. Prior
approaches have set k = 3, and tested strategies
where the best item is selected only from the first
page (Top-3). We additionally test a setting where
k = 10. In this setting, we tested the strongest base-
line, THREAD (Schroeder et al., 2024) —an LLM
approach that uses a text-based divide-and-conquer
strategy— by (1) using the same Top-3 strategy,
and (2) using a Top-20 strategy — searching twice
and selecting the best among 20. Details included
in Appendices A.4 and A.5.

Real-World Web Tasks. To test the scalability
of REPL-Plan, we wanted to test on real-world web
navigation tasks on (1) live real websites and (2)
very long-horizon tasks (≥ 30 visited pages). We
were not aware of existing benchmarks that fit these
requirements (Zhou et al., 2023; Deng et al., 2024),
so designed a novel set of web tasks. These tasks
are difficult as actual websites can be extremely
large (4k-20k tokens, compared to ≤ 500 tokens
per web-page in WebShop). We tested the agents
on distributions of tasks where the goal is to navi-
gate an E-commerce website and add item(s) that
match a given description to the cart. We divided
the tasks into a “simple” category, where the agent
only needs to add an item of any description (e.g.
add any laptop to the cart from bestbuy.com) and
a “complex” category, where the agent must add
as many items as it can find that match a specific
description (e.g. loop through each search result
and add every printer that is capable of printing
at least 12 pages per minute to the cart). The full
task descriptions and examples of observations and
actions can be found in Appendix A.7.

3.2 Results

We find that elements of top-down recursive, dy-
namic, and code-expressivity are important for ap-
proaches to score a high success rate on all environ-
ments (top-down recursive and dynamic for ALF-
World, dynamic and code-expressivity for Web-
Shop and Real-World Web). For example, the

External
Memory

ALFWorld
SR (%)Method

Yes

Reflexion1 76.1
AdaPlanner2 82.8
RAP3 85.8
AutoGuide4 79.1

No

ReAct5 53.7
ADaPT6 82.1
THREAD7 95.5
REPL-Plan 97.0

Table 1: The average success rate (SR (%)) of running
each method on ALFWorld with GPT-3.5-instruct (Ope-
nAI, 2023a). We note that methods 1-4 use external
memory — they save information from previous test
tasks to new test tasks. 1 (Shinn et al., 2023) 2 (Sun
et al., 2023) 3 (Kagaya et al., 2024) 4 (Fu et al., 2024)
5 (Yao et al., 2022b) 6 (Prasad et al., 2024) 7 (Schroeder
et al., 2024)

Real-World Web
(% of Expert Score)

Method Simple Complex

ReACT 86.7 17.6
THREAD 13.3 0.0
REPL-Plan 86.7 39.6

Table 2: We tested the baselines ReACT and THREAD
against REPL-Plan in the Real-World Web Tasks with
GPT4o-mini. For each method, we present the percent-
age of the expert score reached.

baseline THREAD (Schroeder et al., 2024) has
top-down recursive and dynamic elements, but not
code-expressivity, has high success rate on ALF-
World and k = 3 WebShop, but fails to scale in
k = 10 WebShop and Real-World Web.

ALFWorld. We show the results of testing ap-
proaches on ALFWorld in Table 1. Our ap-
proach, REPL-Plan, achieves the highest success
rate (SR) of 97.0% compared to the best baseline,
THREAD (Schroeder et al., 2024), with 95.5% SR.

We find that top-down recursive and dynamic
approaches are crucial to solving this task, which
ours and THREAD both have. Both REPL-Plan
and THREAD effectively divide-and-conquer var-
ious sub-tasks of ALFWorld (e.g. dividing a task
into (1) finding an apple, (2) heating it, then (3)
placing it on the table), and are able to effectively
change plans if there are environment issues (e.g.
object is misplaced or mis-referenced).

20334

WebShop

Model Setting Strategy External mem. Method SR(%) Score(%)

GPT-3.5-instruct Page k = 3 Top-3

Yes

Reflexion 38 64.4
LATS1 40 76.0
RAP 48 76.1
AutoGuide 46 73.4

No

ReAct 37 59.5
ADaPT 44 60.0
TDAG2 45 64.5
THREAD 49 76.3
REPL-Plan 47 74.2

GPT4o-mini Page k = 10
Top-3

No
THREAD∗ 21 42.1

Top-3 REPL-Plan 37 69.9
Top-20 REPL-Plan 52 77.1

Table 3: The success rate (SR) and average score of each model-method-setting on Webshop. For the k = 3 setting,
models were run using GPT-3.5-instruct and with a top-3 strategy (examine only the top-3 items). For the k = 10
setting, we ran THREAD and REPL-Plan using GPT4o-mini (OpenAI, 2023b), and showed the performance of
each the viable strategy. ∗ note that we made modifications to run THREAD as intended, described in Appendix A.4.
1(Zhou et al., 2024) 2(Wang et al., 2024b)

WebShop. We show the results of various ap-
proaches on different LLMs, settings, and strate-
gies on WebShop in Table 3.

For simple strategies such as Top-3, i.e. sim-
ply searching and then comparing the Top-3 items,
many baselines score a high (≥ 46%) success rate:
RAP, AutoGuide, THREAD, and REPL-Plan, with
THREAD reaching the the highest SR of 49%.
However, this strategy is simplistic and limited
— trajectories can be completed within 10 actions,
and success primarily relies on the LLM’s ability
to understand web-page observations.

By testing on the Page k = 10 setting with
GPT4o-mini on REPL-Plan and the strongest base-
line THREAD, we find that a combination of top-
down recursive and code-expressive approaches
are valuable in attaining a high SR in this setting
and being able to successfully execute a Top-20
strategy.

REPL-Plan, using loops and variables (that can
be passed across LLM-REPLs), is able to reach a
52% SR with GPT4o-mini.

Real-World Web Environment. We show the
results of running ReACT, THREAD, and REPL-
Plan in the Real-World Web Environment in Ta-
ble 2. We find that each agent is able to solve tasks
from the Simple distribution (tasks outlined in Ap-
pendix A.7). These tasks are short horizon and
can be completed in 5 actions. However, they still

require the agent to be able to manage and inter-
pret the long web page observations, which can be
4k-20k tokens long. Despite multiple attempts to
improve THREAD described in Appendix A.4, we
found THREAD could not effectively plan when
there are long observation contexts. REPL-Plan
is able to more effectively break down the obser-
vations using full code expressitivity — scoring
39.6% of the expert score on the complex tasks,
where the baselines ReACT and THREAD score
17.6% and 0.0% respectively. We also give a qual-
itative analysis of this result in Figure 3. In this
analysis, we show why REPL-Plan is able to (1) ef-
fectively manage large observations through code
and LLM-REPL spawning, and (2) mitigate the
effects of LLMs hallucinating using code.

3.3 Ablations

We tested REPL-Plan’s ability to run under im-
perfect conditions in the page k = 3 WebShop
environment, using the Top-3 strategy.

Buggy Demonstrations. In order to test the error-
correcting abilities of REPL-Plan, we injected mi-
nor coding mistakes into the demonstrations and
tested the performance.

Specifically, we injected two errors: (1) we saved
variable descriptions using quotes: description
= "...". This would cause errors when there are
quotes in the desired description contained quotes:

20335

ReACT Trajectory

main LLM-REPL

search_on_website LLM-REPLREPL-Plan Trajectory

On dell.com, search for keyboards. Loop through each search result
and add any keyboards with cherry switches to the cart.

> # To begin, I should call a sub-routine that will allow me to
search for cell phones on bestbuy.com
> search_on_website('keyboard', 'dell.com')
success.

...

> # For each item, I should click on the item's page, check if it
matches the description, then add it to the cart if it does.
> for i, item in enumerate(search_results):
... act(f'goto [{search_results_url}]')
... element_id = find_element_id(f'[link] [{item}]')
... if element_id is None: continue # if the item could not be
found, skip this step
... act(f'click [{element_id}]') # click on the item to
navigate to it
... result = matches_description('The keyboard has cherry
switches.') # if we need to check other properties before adding
to the cart, call the matches_description sub-routine
... if not result: continue # only add it to the cart if it
meets the description
... element_id = find_element_id('[button] [Add to Cart]')
... if element_id is None: continue
... act('f'click [{element_id}]')
...

On dell.com, search for keyboards. Loop through
each search result and add any keyboards with
cherry switches to the cart.
> think [I should now navigate to the website's
homepage so that I can begin my search]
OK.
> goto [dell.com]

[~4k token webpage]
> think [Now that I have navigated to the
website, I should find the ID of the search bar
element and type my query into it.]
OK.
> type [1415] [keyboard]

[~10k token webpage]

...

> think [I should click on the next product,
Alienware Mechanical Backlit Gaming Keyboard]
OK.
> click [14915]

[~13k token webpage]

...

> think [I should click on the next product,
Alienware Mechanical Backlit Gaming Keyboard]
OK.
> click [14915]

[~13k token webpage]

main LLM-REPL ...
> # I should now navigate to the website's
homepage so that I can begin my search
> act('goto [dell.com]')

[~4k token webpage]
> # Now that I have navigated to the website, I
should find the ID of the search bar element and
type my query into it.
> act('type [1415] [keyboard]')

[~10k token webpage]
> answer('success.')

find_element_id LLM-REPL

...
[~10k token webpage]

> get_args()
[link] [Alienware Mechanical Backlit Gaming
Keyboard & Wired Gaming Mouse - AW510K &
AW610M]
> # The line [14915] [link] [Alienware
Mechanical Backlit Gaming Keyboard & Wired
Gaming Mouse - AW510K & AW610M] is a good
candidate as it is a link.
> answer(14915)

...
[~13k token webpage]

> get_args()
[button] [Add to Cart]
> # The line [12325] [button] [Add to Cart] is
a good candidate
> answer(12325)

Figure 3: For a qualitative analysis, we include truncated versions of trajectories from REPL-Plan and the baseline
ReACT on a real-world web loop-like task. In this task (Appendix A.7), the agent is shown long web pages (4k-15k
tokens long), and must interact with the page using element IDs (labeled with integer IDs). In the trajectories, (1)
REPL-Plan is able manage large observations and long prompt contexts by sub-dividing the tasks into different
LLM-REPLs. And (2), we find that in both trajectories, ReACT and REPL-Plan both run into hallucination errors
from GPT4o-mini (highlighted in red). On the left, in ReACT, the LLM gets “lost”, and re-checks a product
it already checked before. This causes the ReACT agent to loop infinitely. On the right, in REPL-Plan, agent
hallucinates a link element ID. However, due to code in the main loop REPL-Plan mitigates the effect of the
hallucination — the agent clicks the wrong element ID, but still continues to search for candidate products.

e.g. " 12" ...", and (2) we removed key variable
definitions that are used later in the demonstration.
We found that the LLM is relatively robust to these
errors, only failing one more task on GPT-4o-mini
than without any errors. We show a small sample
of these corrections in Appendix A.10.

No-Subtask-REPLs. Next, we tested how the
top-down decomposition of tasks affects the perfor-
mance of LLM-REPL. We created a “No-Subtask-
REPL” ablation where the agent aims to solve the
task without spawning any child LLM-REPLs.

We find this strategy is conceptually similar to a
code-augmented version of prior approaches, such
as ReACT (Yao et al., 2022b). However, given that
this approach cannot de-compose tasks, the REPL
code/observation history becomes large and unten-
able for the agent to solve WebShop tasks. The per-
formance decreases by around half: 52%→ 24%
and 44% → 20% respectively for GPT-3.5-instr.
and GPT-4o-mini.

Zero-shot Subtask-REPL. As k-shot demon-
strations are given as a pool of LLM-REPLs which
are used in REPL-Plan, we tested the performance
under the condition that one of those LLM-REPLs
was removed from this pool, and the LLM must
zero-shot infer both the task description and code

writing for this LLM-REPL.
To do this, we removed the get_requirements

LLM-REPL, which is designed to examine the item
on the current page, and return an integer count of
the number of matching attributes. This is a crucial
function that is necessary for completing the task
and called multiple times.

We found that in half of the trials the LLM is able
to correctly zero-shot infer a subtask description
and code for the LLM-REPL, with a final perfor-
mance of 28% (from 52%) and 16% (from 44%)
respectively for GPT-3.5-instr. and GPT-4o-mini.
When the LLM incorrectly infers this subtask, it
often causes the agent to enter an error loop, caus-
ing the agent to fail the overall task. We analyze
success and failure cases more closely and give
qualitative analysis in Appendix A.11. Although
zero-shot task/code inference is not the focus of
this work, this indicates an extension work to un-
derstand REPLs and LLM-REPLs in these settings.

4 Related Work

LLM-Agents. With the increasing capabilities
of LLMs, several works have proposed robust
agents that interact with text-based environments
(LLM-agents). These works show promising re-
sults in challenging benchmarks such as embodied

20336

WebShop sample SR (%, n = 25)

Method Ablation GPT-3.5-instr. GPT-4o-mini

REPL-Plan

Full Model 52 44
(1) Buggy Demo. 52 40
(2) No-Subtask-REPLs 24 20
(3) Zero-shot Subtask-REPL 28 16

Table 4: We tested REPL-Plan on the WebShop Page k = 3 setting with various corruptions to the demonstrations.
(1) Buggy Demo.: We added minor bugs (non-escaped strings, missing variables) to the demonstration. (2) No-
Subtask-REPLs: We tested a version of REPL-Plan (and demonstrations) without recursive spawning. (3) Zero-shot
Subtask-REPL: We removed one of the Subtask-REPLs from the demonstration, such that the agent needed to
zero-shot infer code.

agent tasks (Shridhar et al., 2021) and web navi-
gation (Yao et al., 2022a; Zhou et al., 2023). A
number of these LLM-agents, based on works by
Yao et al. (2022b) and Shinn et al. (2023), take in
a sequence of text observations-action pairs as his-
tory and generate single actions at each time-step.
However, as the LLMs tend to hallucinate incorrect
actions, and incorrectly plan ahead, several works,
including REPL-Plan, have been proposed that in-
corporate code-augmentation to LLM-agents, and
recursively dividing tasks for an LLM-agent.

Code-Augmented LLMs. Current LLMs (with-
out guidance) suffer from long context understand-
ing (Li et al., 2024) and logical and arithmetic mis-
takes (Wei et al., 2023). To alleviate these prob-
lems, recent works have used external tooling such
as code. For example, Program-Aided Language
Models (PAL) (Gao et al., 2023) generate programs
and run a Python interpreter to get solutions for
mathematical, symbolic, and algorithmic reasoning
problems. LLMs and code have also been used in
robotics to generate robust policies (Liang et al.,
2023). Compared to these works, our work REPL-
Plan focuses on the interactive decision-making set-
ting, and focuses on how we can fix the problems
of running code in these settings by creating an ap-
proach that is fully interactive (the LLM interacts
with a LLM-REPL to code) and top-down recur-
sive (with spawning child LLM-REPLs). CodeAct
and Mint (Wang et al., 2024a, 2023c) are works
that proposes an interactive LLM-code generating
paradigm where the agent interacts with a human
user to solve a task using code. However, compared
to REPL-Plan, these works are not designed for the
LLM-agent space, and also do not split interactive
code in a recursive manner. AdaPlanner (Sun et al.,
2023) also focuses on the planning setting by writ-
ing and refining code, but is not interactive, as a

code plan must be written entirely in one pass.

Decomposing Tasks. In the few-shot in-context
learning setting, LLMs can struggle with increased
task complexity. To deal with this, Khot et al.
(2023) have proposed to decompose challenging
tasks to simpler sub-tasks and solve these indi-
vidually. ADaPT (Prasad et al., 2024) recur-
sively decomposes complex sub-tasks as-needed
to adapt to LLMs’ capability and task complex-
ity. Prior works (Wang et al., 2023a; Liu et al.,
2024) have decomposed tasks into re-usable code
blocks, or prompts, which can be re-used in new
tasks. THREAD (Schroeder et al., 2024) is a work
that recursively divides LLM context into thread,
which each individually solve some sub-task of the
whole. Thread also contains partial Python code
executability, by saving variables and computing
one-line Python statements. REPL-Plan is differ-
ent from THREAD: (1) REPL-Plan is fully code-
expressive, any variables can be passed to other RE-
PLs, loops can be run, etc. (2) REPL-Plan handles
recursive sub-task spawning in a code-expressive
way (using functions). In THREAD, these sub-
tasks are spawned “anonymously”, and cannot be
re-used. These two differences allow REPL-Plan to
efficiently handle program contexts in many plan-
ning situations.

5 Conclusion

In this work, we proposed REPL-Plan, a code-
augmented planning approach for Large Language
Models (LLMs) that is both dynamic and code-
expressive, enabling effective top-down planning.
By extending the Read-Eval-Print Loop (REPL)
paradigm, we create LLM-REPLs, which allow
LLMs to interactively generate code, recursively
spawn child LLM-REPLs, and dynamically adapt
to complex tasks. Through evaluations on diverse

20337

planning benchmarks, REPL-Plan demonstrates
superior performance compared to baseline meth-
ods, showcasing its ability to handle complex, long-
horizon tasks with flexibility and robustness.

6 Limitations

One limitation of this work is the abilities of Large
Language Models (LLMs) to generalize beyond
k-shot settings — particulary when using REPL-
Plan. As we showed in the ablation experiments
in Table 4, LLMs have some capabilities of gener-
alizing beyond the k-demonstrations (when the k-
demonstrations contain partially buggy code, zero-
shot subtask-REPL inference). However, beyond
this, such as writing zero-shot code for new LLM-
REPL-code for more significant subtasks, and gen-
eralizing from improperly structured code (No-
Subtask-REPLs), it can be difficult for the LLMs to
successfully use REPL-Plan. Future work could ad-
dress this by examining how to demonstrate REPL-
Plan under out of distribution settings, and also
examining how to adapt LLMs for REPL-coding
in a more manner beyond in-context learning (e.g.
fine tuning LLMs to write code for REPLs).

In addition, using code generation for LLM-
planning, including REPL-Plan, introduces the pos-
sibility of catastrophic code failures, such as infi-
nite loops. While this is a limitation in all code-
augmented LLM-planning approaches, REPL-Plan
gives LLMs a chance to recover from these failures,
e.g. by showing the LLM error traces of memory
overflow errors.

Another limitation is the efficiency of some use-
cases of REPL-Plan. In many scenarios, a sub-
task can be solved using a pure code approach —
an LLM writes code for an LLM-REPL that can
solve the subtask without intervention. Future work
could address this by having a mechanism for deter-
mining when code written by the LLM is indepen-
dent of LLM decisions, and “automate” subtasks if
possible.

Acknowledgments

This work was supported in part by funding from
LG AI Research and NSF Graduate Research Fel-
lowship.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim,
Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon
Kim, Seonghwan Kim, Taeyoon Kwon, Jiwan Chung,
Youngjae Yu, et al. 2024. Language models as com-
pilers: Simulating pseudocode execution improves
algorithmic reasoning in language models. arXiv
preprint arXiv:2404.02575.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. 2024. Autoguide: Automated genera-
tion and selection of state-aware guidelines for large
language model agents. Preprint, arXiv:2403.08978.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. Preprint, arXiv:2211.10435.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou,
Jayashree Karlekar, Sugiri Pranata, Akira Kinose,
Koki Oguri, Felix Wick, and Yang You. 2024.
Rap: Retrieval-augmented planning with contex-
tual memory for multimodal llm agents. Preprint,
arXiv:2402.03610.

20338

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2403.08978
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2402.03610
https://arxiv.org/abs/2402.03610

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Kaya Stechly, Mudit Verma, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t
plan, but can help planning in llm-modulo frame-
works. arXiv preprint arXiv:2402.01817.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modu-
lar approach for solving complex tasks. Preprint,
arXiv:2210.02406.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large
language models are zero-shot reasoners. Preprint,
arXiv:2205.11916.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms
struggle with long in-context learning. Preprint,
arXiv:2404.02060.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu,
Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. 2023. Code as policies: Language
model programs for embodied control. Preprint,
arXiv:2209.07753.

Anthony Zhe Liu, Jongwook Choi, Sungryull Sohn,
Yao Fu, Jaekyeom Kim, Dong-Ki Kim, Xinhe Wang,
Jaewon Yoo, and Honglak Lee. 2024. Skillact: Using
skill abstractions improves llm agents. In ICML 2024
Workshop on LLMs and Cognition.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+p: Empowering large language mod-
els with optimal planning proficiency. Preprint,
arXiv:2304.11477.

OpenAI. 2023a. Gpt-3.5. https://platform.openai.
com/docs/models/gpt-3-5. Accessed via OpenAI
API.

OpenAI. 2023b. Gpt-4. https://openai.com/
research/gpt-4. Accessed via OpenAI API.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. Adapt: As-needed decomposi-
tion and planning with language models. Preprint,
arXiv:2311.05772.

Philip Schroeder, Nathaniel Morgan, Hongyin Luo, and
James Glass. 2024. Thread: Thinking deeper with
recursive spawning. Preprint, arXiv:2405.17402.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement

learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning. In
ICLR.

Michael Sipser. 1996. Introduction to the theory of
computation. ACM Sigact News, 27(1):27–29.

Guy L Steele and Richard P Gabriel. 1996. The evolu-
tion of lisp. In History of programming languages—
II, pages 233–330.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. Adaplanner: Adaptive plan-
ning from feedback with language models. Preprint,
arXiv:2305.16653.

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-
quez, Alberto Olmo, and Subbarao Kambhampati.
2023. On the planning abilities of large language
models (a critical investigation with a proposed
benchmark). Preprint, arXiv:2302.06706.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An open-
ended embodied agent with large language models.
Preprint, arXiv:2305.16291.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023b. A survey on large
language model based autonomous agents. arXiv
preprint arXiv:2308.11432.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better llm agents. Preprint,
arXiv:2402.01030.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023c.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Yaoxiang Wang, Zhiyong Wu, Junfeng Yao, and Jinsong
Su. 2024b. Tdag: A multi-agent framework based
on dynamic task decomposition and agent generation.
Preprint, arXiv:2402.10178.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

20339

https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2304.11477
https://arxiv.org/abs/2304.11477
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://arxiv.org/abs/2311.05772
https://arxiv.org/abs/2311.05772
https://arxiv.org/abs/2405.17402
https://arxiv.org/abs/2405.17402
https://arxiv.org/abs/2305.16653
https://arxiv.org/abs/2305.16653
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.10178
https://arxiv.org/abs/2402.10178
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R.
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai.
2024. If llm is the wizard, then code is the wand:
A survey on how code empowers large language
models to serve as intelligent agents. Preprint,
arXiv:2401.00812.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744–20757.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models, 2023.
URL https://arxiv. org/pdf/2305.10601. pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning act-
ing and planning in language models. Preprint,
arXiv:2310.04406.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

20340

https://arxiv.org/abs/2401.00812
https://arxiv.org/abs/2401.00812
https://arxiv.org/abs/2401.00812
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406

A Appendix

A.1 Interactive Coding and REPLs

In this section, we provide a brief introduction to the history of interactive coding and REPLs. The REPL
(Read-Eval-Print-Loop) paradigm originates with Lisp in the 1960s (Steele and Gabriel, 1996) and is the
core of interactive coding. In interactive coding, a user iteratively interacts with a coding environment in a
REPL loop: A user inputs a code expression which is “Read” into the code interpreter, “Evaluated” by the
interpreter, the code output is “Printed” to the user, and the process “Loops” and the user inputs another
expression of code.

Compared to traditional programming, where a user writes a program, compiles, then runs and debugs,
interactive coding with REPLs allows a user to write code iteratively during runtime which facilitates
exploratory programming and debugging.

The REPL paradigm is now used ubiquitously in command-line shells and scripting languages such
as Python and Javascript. The REPL paradigm has further expanded into popular interactive coding
applications and concepts, such as computing notebooks, such as Jupyter Python notebooks and Colab
which use a browser-based REPL.

A.2 LLM-REPL Implementation

Algorithm 1: LLM-REPL Pseudocode

1 class LLMREPLFunction
2 def __init__(task_description)
3 task← task_description
4 history← [] // REPL code/output history
5 locals← {get_args, answer, act, get_obs} // Insert REPL primitives to

local state
6 pool← /* global REPL pool */

7 def __call__(*args)
8 while True do
9 if /* need new REPL block */ then

10 code← QueryLLM(task, history)

11 try
12 exec(code, locals) // Return if answer is called
13 history.append(/* format code, stdout, stderr */) // only reached

if code finishes without interrupt

14 except NameError
// When LLM calls an unseen function

15 fname← /* get undefined variable name */
16 /* If REPL not in global REPL pool */
17 subtask← QueryLLM(fname, history)
18 locals[fname]← LLMREPLFunction(subtask)

19 /* Return to code state after last interrupt */

Implementing an LLM-REPL, as described in Algorithm 1, can be accomplished in various approaches.
The primary implementation challenge is how to handle child LLM-REPL spawning — whenever there is
an undefined function call, an LLM-REPL should be created and run for that undefined function. Given
the undecidable nature of determining whether a function or variable is undefined (Sipser, 1996), the
most flexible approach is to handle any undefined variable/function errors, NameErrors in Python, during
runtime.

20341

One approach is to modify a code interpreter (e.g. the Python interpreter) to automatically intercept
these errors and continue execution. Continuing execution between parent and child LLM-REPLs can be
synced by running different threads or co-routines with various concurrency synchronization primitives.

We implemented LLM-REPL without modifying the interpreter or running any concurrency routines by
saving execution state for each REPL loop iteration and re-running code when LLM-REPLs are spawned.
When a NameError is encountered, we create an LLM-REPL and add it as a variable to the last saved
execution state. Finally, we re-run the code from this last execution state. However, an issue with this
approach is multiple context sensitive functions (other LLM-REPLs, act) can be called again after an
interrupt. For example, consider the execution trace from Figure 2. After the NameError(count_even),
act(i*2+1) will be called again after re-running the code. Avoiding incorrect and duplicate computation
can avoided by keeping a function call counter for each LLM-REPL, then when a context-sensitive
function called more than once, the return value is returned using a cache. These call counters must be
updated and synced between parent-child LLM-REPLs after each context-passing function.

Another implementation detail is how to differentiate between a code statement that intends to spawn a
new child LLM-REPL, and a code statement that makes a mistake by forgetting to define a variable. For
example, consider the following lines of code:

1. [id for id, price in id_to_price.items() for price < max_price]

2. [id for id, price in id_to_price.items() for price < get_max_price()]

In the case that max_price and get_max_price are undefined, both lines would raise a NameError. In
both cases, in our framework, an LLM-REPL will be created and named max_price and get_max_price
respectively. However, in the implementation of an LLM-REPL, we override any non-function method
(such as comparators and string representations) to raise a custom error: REPLNameError. Because of this,
the first line of code 1. will result in a REPLNameError raised where the LLM will be given feedback that
it forgot to define the max_price variable. The second line of code 2. will jump to the get_max_price()
LLM-REPL execution.

We have attached our implementation for LLM-REPLs with example test cases in the supplementary
material.
main() REPL count_even() REPL

1 Task: Count to 4.
2 >>> for i in range (2):
3 ... act(i*2+1)
4 ... count_even ()
5 ...

1 Task: Count only evens to 4.
2 >>> for i in range (2):
3 ... act((i+1)*2)
4 ... answer(f'Counted {i*2}.')
5 ...

Actions main() Trace count_even() Trace
ℓ2, . . . , ℓ5 ← LLMQuery()
for i in range(2):

act(1) act(i*2+1)
NameError(count_even)
create REPL: subtask← LLMQuery()
add count_even REPL to variables
“rewind” state back to ℓ4
count_even()

ℓ2, . . . , ℓ5 ← LLMQuery()
for i in range(2):

act(2) act((i+1)*2)
answer(’...’)

act(3) act(i*2+1)
count_even()

act(4) act((i+1)*2)

Figure 4: Another toy example of context passing that is possible in REPL-Plan, where context is “interleaved”
between LLM-REPLs. In the toy example, the task is to count to 4. We show the generated code in the two code
snippets above. In the code, main REPL could spawn another REPL to help it count only the even numbers. By
passing context back and forth, we show how the final actions count to 4 in the REPL’s execution trace in the bottom
table.

20342

A.3 GPT API Parameters

For GPT-3.5-turbo-instruct and GPT-4o-mini, we used the same sampling parameters across REPL-Plan
and baselines. We used a temperature of 0.8, and defaults for other sampling parameters (no frequency
penalty, logit bias, presence penalty, or top p).

A.4 Modifications to THREAD for GPT4o-mini

We found that running THREAD (Schroeder et al., 2024) on the author’s codebase with newer OpenAI
models such as GPT4o and GPT4o-mini tended to always cause infinite loops — after seeing an observa-
tion, the LLMs would always generate #START# tokens, which indicate the start of a prompt, causing
the model to re-generate the actions and text before seeing the observation, and repeat this #START#
generation. Under normal generation, the LLM should never generate these tokens.

We believe that the GPT4o series may not listen to literal commands to follow demonstrations exactly
when viewing web demonstrations, compared to GPT3.5-instruct, which was used in the original paper
for web evironments such as WebShop.

To correct this, we modified the algorithm THREAD as follows: for each LLM generation, G(c+ Y),
if #START# is a substring, we prompt the LLM to re-generate the text. If this happens, still, we then
prompt using the following “don’t loop” prompt L = ’Do NOT output #START#. Look at the
examples for what to do next. If your sub-task is finished or failed, report the
status of your task with:
print("<status here>")
#END#
Continue output:’

We re-query the LLM with G(c+ Y + L), then proceed using THREAD.
We find this change is able to improve THREAD from always looping on WebShop with GPT4o-mini,

to a 21% success rate.

A.5 WebShop GPT4o-mini experiment details

For the WebShop with GPT4o-mini setting, we tested THREAD and REPL-Plan with both Top-3 and
Top-20 strategies. For the Top-3, we used the same prompts as used for Top-3 with GPT-3.5 for both
THREAD and REPL-Plan. We implemented a version of the Top-20 strategy for THREAD, however the
method would enter a fail state by looping forever.

A.6 Comparison of Code-augmented LLM Planning Approaches

REPL-Plan THREAD1 AdaPlanner2

Code for Planning ✓ ✓ ✓

Interactive Coding ✓ ✓ ✗

Top-down Divide-and-conquer ✓ ✓ ✗

Code-error recovery ✓ ✗ ✗

Loops ✓ ✗ ✓

Subtask Function Re-usage ✓ ✗ ✗

Table 5: A detailed comparison of code-augmented LLM planning approaches. 1Schroeder et al. (2024). 2Sun et al.
(2023).

A.7 Real-World Web Task Details

Environment. We constructed the Real-World Web Task environment by interacting with live websites
on the browser. Observations are taken from the accessibility tree of the website. Each website HTML
markup is represented in a browser as a tree of elements (e.g. links, images, buttons, etc.) called a DOM
tree. The DOM tree is then converted to an accessibility tree by the browser, by adding text information

20343

to DOM nodes that may be useful for users of assistive technologies, such as screen readers. This also
makes the accessibility tree readable for text-only observations given to LLMs.

Our environment specifically takes the accessibility tree from the browser, then strips unnecessary
nodes from the tree, and adds unique element IDs to each interactive element. For example, the website
google.com gives the following observation:

1 [6] [RootWebArea] [Google]
2 [11] [link] [About]
3 [12] [link] [Store]
4 [20] [link] [Gmail]
5 [22] [link] [Search for Images]
6 Images
7 [27] [button] [Google apps] [expanded: False]
8

9 [31] [link] [Sign in]
10 [323] [IframePresentational] []
11 [281] [image] [Google]
12 [46] [search] []
13 [35] [combobox] [Search] [focused: True , autocomplete: both ,

hasPopup: listbox , required: False , expanded: False]
14 [81] [button] [Search by voice]
15 [87] [button] [Search by image]
16 [212] [button] [Google Search]
17 [213] [button] [I'm Feeling Lucky]
18 [225] [contentinfo] []
19 [228] [link] [Advertising]
20 [229] [link] [Business]
21 [230] [link] [How Search works]
22 [232] [link] [Our third decade of climate action: join us]
23 [235] [link] [Privacy]
24 [236] [link] [Terms]
25 [240] [button] [Settings] [hasPopup: menu , expanded: False]
26 [241] [generic] [] [hasPopup: menu]

A link in the above web page can be clicked with the following action: click [11] (to click on the
[About] page).

The search bar can be used with: type [46] [What is a REPL?].
These observations can be very long and difficult to parse. Note that most web pages are 10-20 times

more tokens than the google.com webpage shown above.

Task Distribution. We tested the agents on distributions of tasks where the goal is to navigate one of 5
different E-commerce websites, and add item(s) that match a given description to the cart. We divided the
tasks into a “simple” category, where the agent only needs to add an item of any description (e.g. add any
laptop to the cart from bestbuy.com) and a “complex” category, where the agent must find as many items
as it can that match a specific description (e.g. loop through each product page and add each printer to the
cart that prints at least 12 pages per minute).

In each of these tasks, we tested each approach on each task for 3 trials, and averaged the score. An
expert score was obtained by having one of the authors use a web browser to complete the task.

Simple tasks:

1. On bestbuy.com, search for laptops. Add any laptop to the cart.

2. On dell.com, search for desktop computers. Add any desktop computer to the cart.

3. On staples.com, search for monitors. Add any monitor to the cart.

4. On zappos.com, search for backpacks. Add any backpack to the cart.

5. On nordstrom.com, search for bath towels. Add any bath towel to the cart.

Complex tasks:

1. On bestbuy.com, search for printers. Loop through each search result and add every printer that is
capable of printing at least 12 pages per minute to the cart.

20344

2. On dell.com, search for keyboards. Loop through each search result and add every keyboard with
cherry key switches to the cart.

3. On staples.com, search for shredders. Loop through each search result and add every shredder with
at least 6 gallons of capacity to the cart.

4. On zappos.com, search for sunglasses. Loop through each search result and add every pair of
sunglasses that is polarized to the cart.

5. On nordstrom.com, search for watches. Loop through each search result and add every watch that is
swiss made to the cart.

Approaches. We tested REPL-Plan and the baselines ReACT and THREAD on the Real-World Web
environment. For each approach, to help the LLM deal with long pages, we truncate un-necessary web
page observations before querying the LLM. In each approach, we constructed a demonstration from one
training task: On bestbuy.com, search for cell phones. Add cell phones with a rating of at least 4.5/5 to
cart. The same search strategy and task decomposition was used for THREAD and REPL-Plan. However,
as described in Appendix A.4, we modified THREAD to run with GPT4o-mini and our web environment.

A.8 WebShop Example Top-3 Trajectory
For brevity, we include a short Top-3 strategy WebShop trajectory/log file of running REPL-Plan. In the
following, ##### ENTER REPL ###### and ##### EXIT REPL ###### indicate when context is switched
to and from which REPL.

1 WebShop
2 Instruction:
3 i want a noise cancelling cosycost usb microphone , and price lower than 70.00

dollars
4 [Search]
5 ##### ENTER REPL `_main ` #####
6 >>> description = """ noise cancelling cosycost usb microphone , and price lower than

70.00 dollars """
7 >>> attributes = [""" noise cancelling """, """ cosycost """, """ usb microphone """] #

save the list of desired attributes besides price , escape any quotes
8 >>> search_query = generate_query(description) # get a search statement to find the

item
9 Name error: generate_query. injecting with cached LLM func.

10 ##### ENTER REPL `generate_query ` #####
11 >>> description = get_args () # call this once to get the description of the target

product so that you can generate search queries accordingly
12 >>> print(description) # print out the description so that you know what it is
13 noise cancelling cosycost usb microphone , and price lower than 70.00 dollars
14

15 >>> query = """ noise cancelling cosycost usb microphone """
16 >>> answer(query) # answer the query to return it.
17 ##### EXITING REPL `generate_query `#####
18 >>> act(f'search [{ search_query }]')
19 ##### EXITING REPL `_main `#####
20 > search[noise cancelling cosycost usb microphone]
21

22 [Back to Search]
23 Page 1 (Total results: 3)
24 [Next >]
25 [B0972Q1T8T]
26 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop

Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

27 $32 .99
28 [B072L2D6LY]
29 Andrea Communications NC -255VM USB On-Ear Stereo USB Computer Headset with Noise -

Canceling Microphone , in-Line Volume/Mute Controls , and Plug
30 $34 .59
31 [B071H84LTJ]
32 Andrea Communications NC -455VM USB Over -Ear Circumaural Stereo USB Computer Headset

with Noise -Canceling Microphone , in -Line Volume/Mute Controls , and Plug

20345

33 $49 .24
34 ##### ENTER REPL `_main ` #####
35 >>> valid_ids = filter_ids_by_price(description)
36 Name error: filter_ids_by_price. injecting with cached LLM func.
37 ##### ENTER REPL `filter_ids_by_price ` #####
38 >>> description = get_args () # call this once to get the description of the target

product so that you can generate search queries accordingly
39 >>> print(description) # print out the target description so that you know what it

is
40 noise cancelling cosycost usb microphone , and price lower than 70.00 dollars
41

42 >>> max_price = 70.00 # store the max price from the description
43 >>> print_page () # call this function to print out the list of products
44 >>> id_to_price = {} # record an id to price dictionary
45 >>> id_to_price['B0972Q1T8T '] = 32.99 # item B0972Q1T8T has a price of $32.99
46 >>> id_to_price['B072L2D6LY '] = 34.59 # item B072L2D6LY has a price of $34.59
47 >>> id_to_price['B071H84LTJ '] = 49.24 # item B071H84LTJ has a price of $49.24
48 >>> results = [id for id, price in id_to_price.items() if price < max_price]
49 >>> answer(results) # answer with the result of the ids that are below max_price
50 ##### EXITING REPL `filter_ids_by_price `#####
51 >>> best_id = select_best_product(description , attributes , valid_ids)
52 Name error: select_best_product. injecting with cached LLM func.
53 ##### ENTER REPL `select_best_product ` #####
54 >>> description , attributes , candidates = get_args () # get the target description

and product candidates
55 >>> scores = {}
56 >>> for product_id in candidates:
57 ... act(f'click[{ product_id }]') # go to the product 's page details
58 ... scores[product_id] = check_requirements(description , attributes)
59 ... act(f'click[< Prev]') # always perform this step to get back to the list of

results
60 ...
61 ##### EXITING REPL `select_best_product `#####
62 ##### EXITING REPL `_main `#####
63 > click[B0972Q1T8T]
64

65 [Back to Search]
66 [< Prev]
67 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop

Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

68 Price: $32.99
69 Rating: N.A.
70 [Description]
71 [Features]
72 [Reviews]
73 [Attributes]
74 [Buy Now]
75 ##### ENTER REPL `_main ` #####
76 ##### ENTER REPL `select_best_product ` #####
77 Name error: check_requirements. injecting with cached LLM func.
78 ##### ENTER REPL `check_requirements ` #####
79 >>> target_description , requirements = get_args () # get the requirements and

product_info
80 >>> print(target_description) # print the target_description so that have a better

understanding about the requirements
81 noise cancelling cosycost usb microphone , and price lower than 70.00 dollars
82

83 >>> print(requirements) # print out the requirements
84 ['noise cancelling ', 'cosycost ', 'usb microphone ']
85

86 >>> print_page () # print the product page so we can check the requirements
87 >>> # I'll check each requirement one by one.
88 >>> # 1. the product has 'noise cancelling '? Yes , it is explicitly mentioned in the

product description as 'Noise Cancelling '.
89 >>> # 2. the product has 'cosycost '? Yes , it is explicitly mentioned in the product

name as 'Cosycost USB Microphone '.
90 >>> # 3. the product is a 'usb microphone '? Yes , it is explicitly mentioned in the

product description as 'USB Microphone '.
91 >>> answer (3) # the number of yes to the questions above

20346

92 ##### EXITING REPL `check_requirements `#####
93 ##### EXITING REPL `select_best_product `#####
94 ##### EXITING REPL `_main `#####
95 > click[< Prev]
96

97 [Back to Search]
98 Page 1 (Total results: 3)
99 [Next >]

100 [B0972Q1T8T]
101 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop

Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

102 $32 .99
103 [B072L2D6LY]
104 Andrea Communications NC -255VM USB On-Ear Stereo USB Computer Headset with Noise -

Canceling Microphone , in-Line Volume/Mute Controls , and Plug
105 $34 .59
106 [B071H84LTJ]
107 Andrea Communications NC -455VM USB Over -Ear Circumaural Stereo USB Computer Headset

with Noise -Canceling Microphone , in -Line Volume/Mute Controls , and Plug
108 $49 .24
109 ##### ENTER REPL `_main ` #####
110 ##### ENTER REPL `select_best_product ` #####
111 ##### EXITING REPL `select_best_product `#####
112 ##### EXITING REPL `_main `#####
113 > click[B072L2D6LY]
114

115 [Back to Search]
116 [< Prev]
117 Andrea Communications NC -255VM USB On-Ear Stereo USB Computer Headset with Noise -

Canceling Microphone , in-Line Volume/Mute Controls , and Plug
118 Price: $34.59
119 Rating: N.A.
120 [Description]
121 [Features]
122 [Reviews]
123 [Attributes]
124 [Buy Now]
125 ##### ENTER REPL `_main ` #####
126 ##### ENTER REPL `select_best_product ` #####
127 ##### ENTER REPL `check_requirements ` #####
128 >>> target_description , requirements = get_args () # get the requirements and

product_info
129 >>> print(target_description) # print the target_description so that have a better

understanding about the requirements
130 noise cancelling cosycost usb microphone , and price lower than 70.00 dollars
131

132 >>> print(requirements) # print out the requirements
133 ['noise cancelling ', 'cosycost ', 'usb microphone ']
134

135 >>> print_page () # print the product page so we can check the requirements
136 >>> # I'll check each requirement one by one.
137 >>> # 1. the product has 'noise cancelling ' feature? Yes , it mentions 'Noise -

Canceling Microphone ' which qualifies as meeting the requirement.
138 >>> # 2. the product has 'cosycost ' brand? No, it does not mention 'cosycost '

anywhere in the product info.
139 >>> # 3. the product is a 'usb microphone '? No, it is described as a 'USB On-Ear

Stereo USB Computer Headset ' which does not specifically mention 'usb
microphone '.

140 >>> answer (1) # Only one requirement is met based on the checks above.
141 ##### EXITING REPL `check_requirements `#####
142 ##### EXITING REPL `select_best_product `#####
143 ##### EXITING REPL `_main `#####
144 > click[< Prev]
145

146 [Back to Search]
147 Page 1 (Total results: 3)
148 [Next >]
149 [B0972Q1T8T]

20347

150 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop
Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

151 $32 .99
152 [B072L2D6LY]
153 Andrea Communications NC -255VM USB On-Ear Stereo USB Computer Headset with Noise -

Canceling Microphone , in-Line Volume/Mute Controls , and Plug
154 $34 .59
155 [B071H84LTJ]
156 Andrea Communications NC -455VM USB Over -Ear Circumaural Stereo USB Computer Headset

with Noise -Canceling Microphone , in -Line Volume/Mute Controls , and Plug
157 $49 .24
158 ##### ENTER REPL `_main ` #####
159 ##### ENTER REPL `select_best_product ` #####
160 ##### EXITING REPL `select_best_product `#####
161 ##### EXITING REPL `_main `#####
162 > click[B071H84LTJ]
163

164 [Back to Search]
165 [< Prev]
166 Andrea Communications NC -455VM USB Over -Ear Circumaural Stereo USB Computer Headset

with Noise -Canceling Microphone , in -Line Volume/Mute Controls , and Plug
167 Price: $49.24
168 Rating: N.A.
169 [Description]
170 [Features]
171 [Reviews]
172 [Attributes]
173 [Buy Now]
174 ##### ENTER REPL `_main ` #####
175 ##### ENTER REPL `select_best_product ` #####
176 ##### ENTER REPL `check_requirements ` #####
177 >>> target_description , requirements = get_args () # get the requirements and

product_info
178 >>> print(target_description) # print the target_description so that have a better

understanding about the requirements
179 noise cancelling cosycost usb microphone , and price lower than 70.00 dollars
180

181 >>> print(requirements) # print out the requirements
182 ['noise cancelling ', 'cosycost ', 'usb microphone ']
183

184 >>> print_page () # print the product page so we can check the requirements
185 >>> # I'll check each requirement one by one.
186 >>> # 1. the product has 'noise cancelling ' feature? Yes , it mentions 'Noise -

Canceling Microphone ' which qualifies as meeting the requirement.
187 >>> # 2. the product has 'cosycost ' brand? No, it does not mention 'cosycost '

anywhere in the product info.
188 >>> # 3. the product is a 'usb microphone '? No, it describes a 'USB Over -Ear

Circumaural Stereo USB Computer Headset ' which does not qualify as a standalone
'usb microphone '.

189 >>> answer (1) # Only one requirement is met , which is 'noise cancelling '.
190 ##### EXITING REPL `check_requirements `#####
191 ##### EXITING REPL `select_best_product `#####
192 ##### EXITING REPL `_main `#####
193 > click[< Prev]
194

195 [Back to Search]
196 Page 1 (Total results: 3)
197 [Next >]
198 [B0972Q1T8T]
199 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop

Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

200 $32 .99
201 [B072L2D6LY]
202 Andrea Communications NC -255VM USB On-Ear Stereo USB Computer Headset with Noise -

Canceling Microphone , in-Line Volume/Mute Controls , and Plug
203 $34 .59
204 [B071H84LTJ]

20348

205 Andrea Communications NC -455VM USB Over -Ear Circumaural Stereo USB Computer Headset
with Noise -Canceling Microphone , in -Line Volume/Mute Controls , and Plug

206 $49 .24
207 ##### ENTER REPL `_main ` #####
208 ##### ENTER REPL `select_best_product ` #####
209 >>> products_with_max_score = [product_id for product_id , estimated_score in scores

.items() if estimated_score == max(scores.values ())]
210 >>> answer(products_with_max_score [0]) # return the id of the first best candidate
211 ##### EXITING REPL `select_best_product `#####
212 >>> buy_best_product(best_id , attributes)
213 Name error: buy_best_product. injecting with cached LLM func.
214 ##### ENTER REPL `buy_best_product ` #####
215 >>> product_asin , attributes = get_args ()
216 >>> act(f'click[{ product_asin }]')
217 ##### EXITING REPL `buy_best_product `#####
218 ##### EXITING REPL `_main `#####
219 > click[B0972Q1T8T]
220

221 [Back to Search]
222 [< Prev]
223 Cosycost USB Microphone ,Condenser Computer PC Gaming Microphone for PS4/5 Laptop

Windows Mac OS Android Phone ,Noise Cancelling Instant Mute ,Studio Mic for Voice
,Music Recording ,Podcasting ,Streaming

224 Price: $32.99
225 Rating: N.A.
226 [Description]
227 [Features]
228 [Reviews]
229 [Attributes]
230 [Buy Now]
231 ##### ENTER REPL `_main ` #####
232 ##### ENTER REPL `buy_best_product ` #####
233 >>> select_options(attributes) # select the item options based on the attributes

before buying
234 Name error: select_options. injecting with cached LLM func.
235 ##### ENTER REPL `select_options ` #####
236 >>> attributes = get_args ()
237 >>> get_page_options () # return the list of page options (if any)
238 Name error: get_page_options. injecting with cached LLM func.
239 ##### ENTER REPL `get_page_options ` #####
240 >>> print_page () # print out the current observation to see if there are any buying

variations to select before buying.
241 >>> variations = [] # save variations (if any) in a list
242 >>> answer("no options found.")
243 ##### EXITING REPL `get_page_options `#####
244 'no options found.'
245 >>> print(attributes) # print out the target attributes to confirm there are no

buying variations to select.
246 ['noise cancelling ', 'cosycost ', 'usb microphone ']
247

248 >>> answer('success.')
249 ##### EXITING REPL `select_options `#####
250 'success.'
251 >>> act('click[Buy Now]') # Buy the item to complete the task.
252 ##### EXITING REPL `buy_best_product `#####
253 ##### EXITING REPL `_main `#####
254 > click[Buy Now]

A.9 WebShop REPL-Plan Prompt Samples

1 # Top 3 strategy
2

3 Your task is to: Navigate a shopping website to purchase an item matching the
following request: i would like a 3 ounce bottle of bright citrus deodorant for
sensitive skin , and price lower than 50.00 dollars

4 >>> description = """3 ounce bottle of bright citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars """

5 >>> attributes = ["""3 ounce bottle """, """ bright citrus """, """ sensitive skin """]
save the list of desired attributes besides price , escape any quotes

20349

6 >>> search_query = generate_query(description) # get a search statement to find the
item

7 >>> act(f'search [{ search_query }]')
8 >>> valid_ids = filter_ids_by_price(description)
9 >>> best_id = select_best_product(description , attributes , valid_ids)

10 >>> buy_best_product(best_id , attributes)
11 'success.'
12 >>> answer('done.')
13

14

15

16 # generate_query
17 Your task is to: Generate a good search query for the given arg `description `.

Answer the result with `answer(query)`. Make sure any quotes in the search
string are escaped.

18 >>> description = get_args () # call this once to get the description of the target
product so that you can generate search queries accordingly

19 >>> print(description) #print out the description so that you know what it is
20 3 ounce bottle of bright citrus deodorant for sensitive skin , and price lower than

50.00 dollars
21 >>> query = """3 ounce bright citrus deodorant sensitive skin """
22 >>> answer(query) # answer the query to return it.
23

24

25 # select_best_product
26 Your task is to: Given the description , attributes , and a few product candidates ,

determine which of them fits the description the best (meets the most
requirements). answer best product 's id with `answer('ID')`.

27 >>> description , attributes , candidates = get_args () # get the target_description
anget_product_idsd candidates

28 >>> scores = {}
29 >>> for product_id in candidates:
30 ... act(f'click[{ product_id }]') # go to the product 's page details
31 ... scores[product_id] = check_requirements(description , attributes)
32 ... act(f'click[< Prev]') # always perform this step to get back to the list of

results
33 ...
34 >>> products_with_max_score = [product_id for product_id , estimated_score in scores

.items() if estimated_score == max(scores.values ())]
35 >>> answer(products_with_max_score [0]) # return the id of the first best candidates
36

37 # check_requirements
38 Your task is to: Given a list of requirements , and a task description , for each

requirement , check if the product meets the requirement or not , then answer how
many requirements it meets.

39 >>> target_description , requirements = get_args () # get the requirements and
product_info

40 >>> print(target_description) # print the target_description so that have a better
understanding about the requirements

41 3 ounce bottle of bright citrus deodorant for sensitive skin , and price lower than
50.00 dollars

42 >>> print(requirements) # print out the requirements
43 ['deodorant ', '3 ounce bottle ', 'bright citrus ', 'sensitive skin', ' <50.00 dollars '

]
44 >>> print_page () # print the product page so we can check the requirements
45 [Back to Search]
46 [< Prev]
47 scent [assorted scents][bright citrus][citrus][calming lavender][ginger fresh][

simply non -scents]
48 size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
49 Bright Citrus Deodorant by Earth Mama , Natural and Safe for Sensitive Skin ,

Pregnancy and Breastfeeding , Contains Organic Calendula 3-Ounce
50 Price: $10.99
51 Rating: N.A.
52 [Description]
53 [Features]
54 [Reviews]
55 [Attributes]
56 [Buy Now] (You must select buying variation for scent , color before buying this

product)

20350

57 Selected Buying Variation Options: scent: None , size: None
58 >>> # I'll check each requirement one by one.
59 >>> # 2. the product has '3 ounce bottle ' size? Yes , it meets the requirement

because it has [3 ounce] size option.
60 >>> # 3. the product has 'bright citrus ' scent? Yes , it has the exact option [

bright citrus] listed.
61 >>> # 4. the product is good for 'sensitive skin '?, Yes , it is described as 'Gentle

on Sensitive Skin '.
62 >>> answer (3) #the number of yes to the questions above
63

64

65 # buy_best_product
66 Your task is to: Given a product_asin , click on the product asin , select the

required buying variations that the attributes requires , and buy it.
67 >>> product_asin , attributes = get_args ()
68 >>> act(f'click[{ product_asin }]')
69 >>> select_options(attributes) # select the item options based on the

target_description before buying
70 'success.'
71 >>> act('click[Buy Now]') # Buy the item to complete the task.
72 >>> answer('success.')

A.10 WebShop Ablation Bug correction Samples
We show a few hand-picked instances where an LLM is able recover from bug(s) in the demonstration.

1 >>> description = "gingko light and 20"x20" pillow cover that is hand painted , and
price lower than 50.00 dollars" # there is a syntax error in the description ,
the quotes around "20" x20"" need to be escaped

2 SyntaxError('invalid syntax ', ('<unknown >', 1, 36, 'description = "gingko light and
20" x20" pillow cover that is hand painted , and price lower than 50.00 dollars"
there is a syntax error in the description , the quotes around "20" x20"" need
to be escaped\n', 1, 39))

3 >>> description = 'gingko light and 20"x20" pillow cover that is hand painted , and
price lower than 50.00 dollars ' # corrected syntax error

4 >>> attributes = ["gingko light", "20\" x20\"", "hand painted"] # escaped quotes in
attributes list

5 >>> search_query = generate_query(description) # get a search statement to find the
item

6

7

8 >>> all_requirements = ["car subwoofer", "high speed", "dual style", "12" power
amplifier", " <200.00 dollars"] # you must put the item category in the first
place , each term should be as short/broken down as possible

9 SyntaxError('unterminated string literal (detected at line 1)', ('<unknown >', 1,
105, 'all_requirements = ["car subwoofer", "high speed", "dual style", "12"
power amplifier", " <200.00 dollars"] # you must put the item c

10 ategory in the first place , each term should be as short/broken down as possible ,
1, 105))

11 >>> all_requirements = ["car subwoofer", "high speed", "dual style", "12\" power
amplifier", " <200.00 dollars"] # corrected the syntax error by escaping the
double quotes

12

13

14 >>> results = [id for id, price in id_to_price.items() if price < max_price]
15 REPLNameError("name 'max_price ' not defined.")
16 >>> max_price = 30.00 # set the maximum price to $30.00
17 >>> results = [id for id, price in id_to_price.items() if price < max_price] #

create a list of ids that have a price lower than the maximum price
18 >>> answer(results) # answer with the result of the ids that are below max_price

A.11 WebShop Ablation Zero-shot Subtask-REPL Analysis
In this section, we provide details on the Zero-shot Subtask-REPL ablation experiment. Specifically,
in this experiment, we modify the expert demonstration for the WebShop environment by removing
the check_description LLM-REPL. In WebShop, REPL-Plan loops through each product page, and
calls check_description to obtain an integer score of the number of matching attributes of the product
from the given item description. To execute this LLM-REPL correctly, the agent must write code that

20351

succesfully (1) prints the target description and requirements from the get_args function, (2) prints the
current page (3) calls the answer function with a count of the number of matching attributes.

Note that to infer the subtask description and LLM-REPL code, the agent is given demonstrations of
out-of-task LLM-REPLs from the WebShop domain.

We include the code from the expert-demonstration as a reference for the intended behavior of the
LLM-REPL. The code is removed for this experiment and must be inferred.

1 # Expert written task description and code demonstration.
2 Your task is to: Given a list of requirements , and a task description , for each

requirement , check if the product meets the requirement or not , then answer how
many requirements it meets.

3 >>> target_description , requirements = get_args () # get the requirements and
product_info

4 >>> print(target_description) # print the target_description so that have a better
understanding about the requirements

5 3 ounce bottle of bright citrus deodorant for sensitive skin , and price lower than
50.00 dollars

6 >>> print(requirements) # print out the requirements
7 >>> print_page () # print the product page so we can check the requirements
8 >>> # I'll check each requirement one by one.
9 >>> # 2. the product has '3 ounce bottle ' size? Yes , it meets the requirement

because it has [3 ounce] size option.
10 >>> # 3. the product has 'bright citrus ' scent? Yes , it has the exact option [

bright citrus] listed.
11 >>> # 4. the product is good for 'sensitive skin '?, Yes , it is described as 'Gentle

on Sensitive Skin '.
12 >>> answer (3) #the number of yes to the questions above

Successful Code Samples We include the following code samples from the agent with GPT3.5-instruct
where it successfully inferred the correct code.

1 # Zero -shot Subtask -REPL SUCCESSES
2 # Example 1
3 Your task is to: (1) Print out the description and attributes with `get_args ()`.

(2) Go to the product page by clicking on the product. (3) Check the current
page for matching attributes. (4) Return the number of matching attributes with
`answer(INTEGER)`

4 >>> description = get_args () # call this once to get the description of the target
product so that you can generate search queries accordingly

5 >>> attributes = get_args () # call this once to get the attributes of the target
product so that you can check for matching attributes

6 >>> print(description) # print out the description so that you know what it is
7 ('long clip -in hair extension which is natural looking , and price lower than 40.00

dollars ', ['long', 'clip -in', 'natural looking '])
8 >>> print(attributes) # print out the attributes so that you know what they are
9 ('long clip -in hair extension which is natural looking , and price lower than 40.00

dollars ', ['long', 'clip -in', 'natural looking '])
10 >>> print_page () # print out the current observation
11 >>> # With the page printed , I should manually analyze the page to fulfill my goal
12 >>> # The only attribute that matches is "long"
13 >>> answer (1) # return the number of matching attributes , which is 1
14

15

16 # Example 2
17 Your task is to: (1) Print out the description and attributes with `get_args ()`.

(2) Go to the product page by clicking on the product. (3) Check how many
attributes match the description on the current page. (4) Return the number of
matching attributes with `answer(INTEGER)`

18 >>> description = get_args () # call this once to get the description of the target
product so that you can generate search queries accordingly

19 >>> print(description) #print out the description so that you know what it is
20 ('noise cancelling cosycost usb microphone , and price lower than 70.00 dollars ', ['

noise cancelling ', 'cosycost ', 'usb microphone '])
21 >>> attributes = get_args ()[1] # retrieve the attributes from the description
22 >>> print(attributes) # print out the attributes to see what they are
23 ['noise cancelling ', 'cosycost ', 'usb microphone ']
24 >>> print_page () # print out the current observation
25 >>> # Now I need to go to the product page by clicking on the product

20352

26 >>> # Once on the product page , I need to check how many attributes match the
description

27 >>> # In this case , all three attributes match: noise cancelling , cosycost , and usb
microphone

28 >>> matching_attributes = len(attributes) # use the len() function to get the
number of matching attributes

29 >>> answer(matching_attributes) # return the number of matching attributes
30

31

32

33 # Example 3: The agent mis -understands and tries to click on the product , but
recovers and completes the task

34 Your task is to: (1) Print out the description with `get_args ()`. (2) print out the
current web page with `print_page ()`. (3) Look at the webpage for the

attributes. (4) Answer with the number of attributes that match the description
with `answer(INTEGER)`

35 >>> description = get_args () # call this once to get the description of the target
product so that you can generate search queries accordingly

36 >>> attributes = get_args () # call this once to get the attributes of the target
product so that you can compare them with the description

37 >>> print(description) # print out the description so that you know what it is
38 ('high speed 3 foot red usb cable , and price lower than 40.00 dollars ', ['high

speed ', '3 foot', 'red'])
39

40 >>> print(attributes) # print out the attributes so that you know what they are
41 ('high speed 3 foot red usb cable , and price lower than 40.00 dollars ', ['high

speed ', '3 foot', 'red'])
42

43 >>> act(f'click[{ product_id }]') # go to the product page by clicking on the product
ID

44 REPLNameError("name 'product_id ' not defined.")
45 >>> # I cannot complete this task without knowing the product ID , so I will need to

ask for it or define it myself
46 >>> # Assuming the product ID is defined as "12345"
47 >>> print_page () # print out the current observation
48 >>> # With the page printed , I should manually analyze the page to fulfill my goal
49 >>> # There is one attribute that matches the description: "red"
50 >>> matching_attributes = 1
51 >>> answer(matching_attributes)

Failed Code Samples We include the following code samples from the agent with GPT3.5-instruct
where it incorrectly infers the subtask or the code. We generally find that the LLMs write code that
contains the “right intentions” for solving the task, but critically fail by containing bugs or crash the
system in some way.

1 # Zero -shot Subtask -REPL FAILS
2 # Example 1: this fails as it mis -understands how to parse and string match for

attributes.
3 Your task is to: (1) Print out the description and attributes with `get_args ()`.

(2) Go to the product page by clicking on the product. (3) Check the current
page for matching attributes. (4) Return the number of matching attributes with
`answer(INTEGER)`

4 >>> description = get_args () # call this once to get the description of the target
product so that you can generate search queries accordingly

5 >>> attributes = get_args () # call this once to get the attributes of the target
product so that you can check for matching attributes

6 >>> print(description) # print out the description so that you know what it is
7 ('long clip -in hair extension which is natural looking , and price lower than 40.00

dollars ', ['long', 'clip -in', 'natural looking '])
8

9 >>> print(attributes) # print out the attributes so that you know what they are
10 ('long clip -in hair extension which is natural looking , and price lower than 40.00

dollars ', ['long', 'clip -in', 'natural looking '])
11

12 >>> print_page () # print out the current observation
13 >>> # With the page printed , I should manually analyze the page to fulfill my goal
14 >>> # The attributes on the page are "long", "curly", "black", "golden", "straight

", "african", "hair", "ladies", "chemical fiber", "silk", "corn perm", "women"

20353

15 >>> # I will check for matching attributes by comparing them to the attributes
retrieved from get_args ()

16 >>> matching_attributes = 0
17 >>> for attribute in attributes [1]:
18 ... if attribute in ["long", "curly", "black", "golden", "straight", "african",

"hair", "ladies", "chemical fiber", "silk", "corn perm", "women"]:
19 ... matching_attributes += 1
20 ...
21 >>> answer(matching_attributes)
22

23

24 # Example 2: this fails as the task description is mistakenly inferred , then causes
the agent to enter a looping fail state

25 Your task is to: (1) Print out the description and attributes with `get_args ()`.
(2) Use the act function to click on each product and go to its page details.
(3) Use the check_current_page_requirements function to check how many
attributes match the description on the current page. (4) Use a list
comprehension to find the products with the maximum score and return a list of
those products with `answer(LIST)

26 >>> # I will now create a list of products with the maximum score by looping
through the scores dictionary with a list comprehension

27 >>> products = [product for product , score in scores.items() if score == max(scores
.values ())]

28 AttributeError("'LLMREPL ' object has no attribute 'items '")
29 >>> # I will then answer with the list of products with the maximum score
30 >>> answer(products)
31 REPLNameError("name 'products ' not defined.")
32 >>> # now its your turn
33 >>> # I will now create a list of products with the maximum score by looping

through the scores dictionary with a list comprehension
34 >>> products = [product for product , score in scores.items() if score == max(scores

.values ())]
35 AttributeError("'LLMREPL ' object has no attribute 'items '")
36 ...
37

38

39 # Example 3: this solution fails to match the attributes to the page and instead
counts with string matching the description

40 Your task is to: (1) Print out the description and attributes with `get_args ()`.
(2) Click on each product candidate to check its details. (3) Count how many
attributes match the description and attributes provided , and return that count
as an integer.

41 >>> description , attributes = get_args () # call this to get both description and
attributes for analysis

42 >>> print(description , attributes) # print out the description and attributes for
analysis

43 space -saving ottoman bench to match my blue living room , pick that one that's 100
x45x45cm , and price lower than 430.00 dollars ['space -saving ', 'blue living
room', '100 x45x45cm ']

44 >>> # Now that I have the description and attributes , I need to analyze the product
candidates by clicking on them and checking their details.

45 >>> print_page () # print out the current observation to analyze product candidates
46 >>> # I need to analyze the current page for matching attributes and description
47 >>> matching_count = 0 # Initialize a counter for matching attributes
48 >>> if "space -saving" in description and "blue living room" in description and "100

x45x45cm" in attributes: matching_count += 1
49 >>> if "space -saving" in attributes: matching_count += 1
50 >>> if "blue living room" in attributes: matching_count += 1
51 >>> if "100 x45x45cm" in attributes: matching_count += 1
52 >>> answer(matching_count)

20354

