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Abstract

Large Multimodal Models (LMMs) have
demonstrated impressive performance across
numerous academic benchmarks. However,
fine-tuning still remains essential to achieve
satisfactory performance on downstream tasks,
while the task-specific tuning samples are usu-
ally not readily available or expensive and
time-consuming to obtain. To address this,
we propose an error-driven data-efficient tun-
ing framework that aims to efficiently adapt
generic LMMs to newly emerging tasks with-
out requiring extensive task-specific training
samples. In our approach, a generic LMM, act-
ing as a student model, is first evaluated on a
small validation set of the target task, and then
a more powerful model, acting as a teacher
model, identifies the erroneous steps within the
student model’s reasoning steps and analyzes
its capability gaps from fully addressing the tar-
get task. Based on these gaps, targeted training
samples are further retrieved from existing task-
agnostic datasets to tune the student model and
tailor it to the target task. We perform extensive
experiments across three different training data
scales and seven tasks, demonstrating that our
training paradigm significantly and efficiently
improves LMM’s performance on downstream
tasks, achieving an average performance boost
of 7.01%1.

1 Introduction

Pretrained large multimodal models (LMMs), such
as GPT-4 (Achiam et al., 2023) and LLaVA (Liu
et al., 2024a), have demonstrated strong per-
formance across various academic benchmark
datasets (Xu et al., 2022; Reddy et al., 2022; Liu
et al., 2024c; Lu et al., 2022; Yue et al., 2024; Yu
et al., 2023). However, when leveraging LMMs for
real-world applications, despite direct task adapta-
tion with techniques such as prompting (Radford

1The programs are publicly available at https://github.
com/PLUM-Lab/DELAMO_LMM_Tuning.

et al., 2019; Wei et al., 2023; Qi et al., 2023; Yao
et al., 2024) or in-context learning (Brown, 2020;
Jiang et al., 2024; Zhao et al., 2024b; Doveh et al.,
2024), careful fine-tuning on a substantial amount
of task-specific training samples is still essential
in order to achieve satisfactory performance (Luo
et al., 2022; Gu et al., 2021; Liang et al., 2023; Yao
et al., 2023), while such task-specific training sam-
ples are usually not readily available or expensive
and time-consuming to achieve. Therefore, a criti-
cal question that we would like to answer is: How
can we effectively tune large multimodal models
for newly emerging problems without requiring a
large amount of task-specific training samples?

One potential solution is to apply data augmenta-
tion methods to automatically synthesize or enlarge
the training samples (Lee et al., 2024b; Dai et al.,
2023; Li et al., 2024b; Zhao et al., 2024a; Nayak
et al., 2024; Xu et al., 2023b). However, they usu-
ally lead to undesired effects, such as introducing
significant bias into the downstream tasks (Ange-
lakis and Rass, 2024; Lin et al., 2024; Muthukumar
et al., 2020; Hastie et al., 2022) or causing model
collapse (Shumailov et al., 2023; Feng et al., 2024),
where models tuned from synthesized training sam-
ples tend to forget the true underlying distribution
of human-generated datasets. Additionally, several
recent studies explored selecting relevant tasks or
data samples from external resources to fine-tune
the models for target tasks, where the selection is
based on the similarity between the evaluation in-
stances of the target task and training samples of
other tasks using either features such as n-grams
and task instructions (Lee et al., 2024a; Xie et al.,
2023; Gururangan et al., 2020) or gradients calcu-
lated from the model (Xia et al., 2024a; Han et al.,
2023). However, these approaches either necessi-
tate a high degree of alignment between the surface
forms of external datasets and the target task or rely
on backward passes that are computationally inten-
sive due to the large size of the external datasets.
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In this work, we propose a novel error-driven,
data-efficient tuning paradigm that enables the ef-
fective adaptation of generic, pre-trained large mul-
timodal models (LMMs) to diverse and emerg-
ing downstream tasks, while minimizing the need
for extensive task-specific training samples. This
paradigm is motivated by the gap detection and fill-
ing process in human learning (Bambrick-Santoyo,
2010), where learners identify knowledge gaps
and incrementally fill them through targeted ex-
ploration. Based on this motivation, we design
a teacher-student framework where a pre-trained
LMM, acting as the student model, is first applied
to a small set of validation samples specific to the
target task. The student model’s predictions are
then analyzed, and based on its errors, a teacher
model—typically another large multimodal model
(e.g., GPT-4o-mini)—is designed to identify the
erroneous steps within the student model’s reason-
ing processes, and further analyze and summarize
its missing skills, representing the capability gaps
preventing the student model from fully addressing
the target task. After identifying these gaps, a set
of tuning samples that are specifically related to
the missing skills is retrieved from existing task-
agnostic, large-scale supporting datasets, to fine-
tune the student model.

To evaluate the effectiveness of our framework,
we employ different student models, including
LLaVA-7B (Liu et al., 2024a) and Qwen2-VL-
7B (Wang et al., 2024), and teacher models, in-
cluding GPT-4o-mini (Achiam et al., 2023) and
LLaVA-OneVision-72B (Li et al., 2024a), and
conduct extensive experiments across seven tasks
and datasets, including MM-Bench (Liu et al.,
2024c), a comprehensive benchmark covering a
wide range of multimodal processing tasks, and
six downstream tasks including ScienceQA (Lu
et al., 2022), Appliance Classification (Lin et al.,
2014), Furniture Classification (Lin et al., 2014),
Living Thing Classification (Li et al., 2022),
Vision Question Answering (Zhu et al., 2016), and
Image Caption Match (Lin et al., 2014). We utilize
Vision-Flan (Xu et al., 2024) as the external sup-
porting dataset as it covers hundreds of existing
human-labeled tasks and datasets. Across differ-
ent numbers of tuning samples retrieved from the
supporting dataset, our approach significantly out-
performs other data selection baselines as well as
the LMM that is fine-tuned on the whole support-
ing dataset, highlighting the efficiency and effec-
tiveness of our error-driven, data-efficient tuning

framework in task adaptation.
Our contributions are summarized as follows:

• We propose a novel error-driven, data-efficient
tuning framework that identifies capability gaps
in LMMs and retrieves targeted tuning samples
from existing datasets to effectively adapt them
to new downstream tasks without requiring ex-
tensive task-specific training samples.

• We conduct comprehensive experiments, demon-
strating that our framework significantly sur-
passes all baseline methods in effectively adapt-
ing generic LMMs to specific downstream tasks
while incurring minimal training costs.

2 Related Work

Error-driven Learning Inspired by cognitive
science, error-driven learning (Carpenter and
Grossberg, 1987; Hoppe et al., 2022) enhances
model performance by updating parameters based
on error samples (Rumelhart et al., 1986) or explic-
itly analyzing and addressing errors. For instance,
Yang et al. (2023) and Wang and Li (2023) directly
prompt large language models (LLMs) to summa-
rize error-driven guidance and integrate it into sub-
sequent prompts. Akyürek et al. (2023) and Xu
et al. (2023a) introduce critique generators to refine
predictions during inference. Other studies (Lee
et al., 2024b; An et al., 2023; Li et al., 2023b;
Chen et al., 2023a; Wang and Huang, 2024) pro-
pose targeted data augmentation that automatically
generates synthetic data using error samples. Un-
like these methods, our approach fine-tunes LMMs
by retrieving training samples from large-scale,
domain-agnostic datasets, addressing missing skills
identified from error samples.

Data Selection Data selection is often framed
as a coreset selection problem (Phillips, 2016),
aiming to identify a subset of training examples
that achieves comparable performance to the full
dataset. This is typically done by assessing train-
ing data quality (Liu et al., 2024d; Chen et al.,
2023b; Zhou et al., 2024; Toneva et al., 2018; Sener
and Savarese, 2017; Killamsetty et al., 2021; Xia
et al., 2024b) or selecting high-uncertainty samples
(Kung et al., 2023; Liu et al., 2024b). Targeted
data selection refines this approach by choosing
fine-tuning data aligned with the target distribution,
using similarity measures based on surface fea-
tures (Lee et al., 2024a; Xie et al., 2023; Gururan-
gan et al., 2020) or LLM gradient vectors (Xia et al.,
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Student Model
w/ Rationale

Teacher Model
(e.g., LMMs)

Validation Set

Error Samples

Mistake Identification: The second
rationale step is incorrect. 

Skill Analysis: it assumes that the
north pole of one magnet is facing
the south pole of the other, while
the image actually shows the south
pole of the first magnet is facing the
south pole of the second magnet.
The required skill is "Identify the
poles of a magnet"

Skill-based Retrieval

Training Samples

Supporting Set

Step 1

Step 2

Step 3

Question: Will these magnets attract or repel each other?
Choices: ["attract","repel"],
Here is the rationale from student model. Could you
analyze which skill it lacks in answering the above
question?
Rationale: 
Identify the magnets: There are two magnets in the
image.
Determine their polarity:  we see two magnets placed
end to end, with one magnet's "S" end facing the other
magnet's "N" end.
Understand interaction between magnets: ...
Apply the knowledge to the question: Since the north
pole of one magnet is facing south pole of the other
magnet, they will attract each other.

Figure 1: Overview of the error-driven data-efficient tuning paradigm.

2024a; Han et al., 2023). Unlike these methods,
our approach directly identifies LMM weaknesses
from error samples, enabling more data-efficient
and computation-efficient sample selection.

Curriculum Learning Curriculum Learning
(CL) trains models in a structured order, progress-
ing from easy to hard samples. Early CL stud-
ies (Bengio et al., 2009; Spitkovsky et al., 2010) re-
lied on rule-based criteria (e.g., training on shorter
sequences first). Self-paced learning methods (Ku-
mar et al., 2010; Lee and Grauman, 2011; Ma
et al., 2017) dynamically select samples based on
model performance, training loss, or likelihood.
Recent teacher-student approaches (Matiisen et al.,
2017; Kim and Choi, 2018; Hacohen and Wein-
shall, 2019; Zhang et al., 2019) use reinforcement
learning to guide selection. Our method extends
this framework by introducing Mistake Identifica-
tion and Skill Analysis to efficiently detect and
address the student model’s weaknesses.

3 Approach

3.1 Overview

Given a new task with a test set Dtest and a valida-
tion set Dval, we aim to efficiently adapt a generic,
pre-trained large multimodal model (LMM) to it
without requiring extensive task-specific training
samples. To achieve this, we propose an error-
driven data-efficient tuning framework, as shown
in Figure 1, consisting of three iterative steps: Step
1 (Error Collection) identifies error samples by
evaluating the student model’s predictions and ra-
tionales on validation samples. Step 2 (Mistake
Identification and Skill Analysis) uses a teacher
model to pinpoint the key erroneous step and infer

the missing skill needed for improvement. Note
that while most downstream tasks require diverse
skills, a pre-trained LLM may have already ex-
celled in some, so we mainly focus on identifying
and enhancing the missing skills in the given LMM.
Step 3 (Targeted Tuning) further retrieves targeted
samples from existing datasets to fine-tune the stu-
dent model, refining its capabilities for the missing
skills. These three steps iterate until the maximum
number of iterations is reached. In the following,
we provide details for each component.

3.2 Error Collection from Student Model

Given a target task with a validation set Dval, we
leverage a generic and pre-trained LMM as the stu-
dent model MS , which is prompted to generate
a sequence of intermediate reasoning steps (Wei
et al., 2023) and a final answer for each valida-
tion sample. The intermediate reasoning steps are
viewed as a rationale for the predicted answer. The
LMM is prompted to specifically follow an answer
format such as “The final answer is option A”, and
we will directly parse the final answer from the
model’s response based on the answer format.2 An
example prompt for ScienceQA task is shown in
Figure 3 in Appendix B.1. We finally compare the
predicted answer with gold answer for each valida-
tion example and obtain a set of error samples and
their corresponding intermediate reasoning steps
as rationales.

3.3 Mistake Identification

Given an error sample containing a question q, a
wrong prediction y with a rationale r from the

2We also consider the variants of the answer format shown
in Table 10 in Appendix A.
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Reasoning Steps Answer Probabilities
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Option BOption A

There are two magnets in the image

Opposite poles attract each other,
 while like poles repel

Two magnets are aligned end to end,
with one's 'S' facing the other's 'N

Teacher Model 

Since north pole of one magnet
is facing south pole of the other

magnet, they will attract each other.

Question: Will these magnets attract or repel each other?
Choices: (A) attract (B) repel 
Prior: With 60% probability, Option B is correct

1
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4
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4

1

21 3

21 3
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Figure 2: Example for illustrating the process of mistake identification. At each iteration, we append one more
reasoning step into the prompt to ask the teacher model to answer the question and track the probability changes of
all the candidate option tokens.

student model, and a gold answer ỹ, we first
split the rationale r into a sequence of reasoning
steps r = [r1, r2, ...]. Here, we follow previous
study (Tyen et al., 2024) and treat each sentence
in the rationale as one reasoning step. The goal of
Mistake Identification is to apply a new large mul-
timodal model, e.g., GPT-4o-mini (Achiam et al.,
2023), as a teacher model MT to analyze the incor-
rect predictions from the student model, and locate
the Mistake Step rm, a.k.a., the most significant
erroneous reasoning step that leads to the final in-
correct answer, from the rationale. Motivated by
previous studies (Tyen et al., 2024), we define the
most significant erroneous reasoning step rm as the
first rationale step that leads to the prediction of the
wrong answer y. For example, for the error sample
shown in Figure 1, the second step “one magnet’s
south end facing the other magnet’s north end” is
identified as the mistake step as it contributes most
to the final wrong prediction of the student model.

We propose an answer-switch based method to
identify the mistake step, as shown in Figure 2. The
core idea is to prompt the teacher model to respond
to the same question using the rationales provided
by the student model. We then analyze the changes
in the probabilities of the candidate answers as each
individual rationale step is incrementally appended.
To encourage the teacher model to favor the correct
answer at the beginning, we modify the prompt
to include prior knowledge that indicates a higher
probability for the correct answer, e.g., “There is
a probability of 60% that option B (repel) is cor-
rect”, and instruct the teacher model to rely on this
prior knowledge if it lacks sufficient information to
determine the answer. We then gradually append
each reasoning step into the prompt of the teacher
model MT and monitor the changes in the model
prediction, with the expectation that the probability
of wrong answer y will gradually become higher
after we append the erroneous reasoning steps.

Our preliminary experiments on ScienceQA with
100 error samples have shown that when the teacher
model is provided with the correct answer as prior
knowledge, it initially could assign a higher prob-
ability to the correct answer in 89% of cases. As
the student model’s incorrect reasoning steps are
added, the teacher model shifts to the wrong an-
swer in 70% of cases. Without prior knowledge,
the correct answer receives a higher initial proba-
bility in 60% of cases, with a shift to the wrong
answer in 43%. These results support the design of
our answer-switch based approach for mistake iden-
tification. In addition, we also restrict the teacher
model from accessing the image so that it’s forced
to choose the answer solely based on the reasoning
steps of the student model.

Figure 4 in Appendix B.2 shows the prompt
template for mistake identification. For each round
of inference, the input prompt to MT consists
of the question “Will these magnets attract or
repel each other?”, the prior knowledge about
the correct answer “There is a probability of
60% that option B is correct”, and a subset of
reasoning steps, while the output consists of a
template-based answer, e.g., “The answer is the
option A”.3 To determine the probability of each
candidate option, we first identify the position
of the option token (e.g., “A”) in the answer,
and obtain the probabilities of other candidate
option tokens such as “B”, “C”, and “D”, from
the teacher model. This process is repeated as
we sequentially append each reasoning step to
the prompt, enabling us to track the probabili-
ties of all answer options across iterations, e.g.,
{P (A|q, r1), P (A|q, r1, r2), ..., P (A|q, r1, ..., ri)},
{P (B|q, r1), P (B|q, r1, r2), ..., P (B|q, r1, ..., ri)},
respectively. Based on the change in probabilities
of the correct answer “B” and the wrong answer

3For non-multiple-choice tasks, we convert them by setting
the gold answer and the wrong prediction as two options.
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“A”, we identify the mistake step rm as the first
reasoning step that causes the probability of the
wrong answer to be higher than the probability of
the correct answer by a predefined margin δ and the
margin is maintained for the following λ iterations:

m := min {i | ∀j ∈ {0, . . . , λ− 1},
P (A | q, r1, . . . , ri+j)− δ ≥ P (B | q, r1, . . . , ri+j)}

where δ is the probability gap between the wrong
answer and the correct answer, and λ is the number
of steps where the probability gap persists.4

3.4 Skill Analysis

After identifying the erroneous reasoning step rm
from the rationale of each error sample, we further
perform Skill Analysis, where the teacher model
MT is prompted to summarize one missing skill
s,5 such as identifying the poles of a magnet in
Figure 1, which is required to correct the wrong
reasoning step rm. Note that, for each error sample,
we focus on one missing skill in one iteration and
leave other missing skills for the following itera-
tions. To achieve this goal, we design an in-context
learning (ICL) (Wei et al., 2022a,b) based approach
where the input of each in-context exemplar con-
sists of a question together with its correct answer,
complete rationale steps and a mistake step, and
the output is the missing skill which is required to
correct the mistake. The prompt template for Skill
Analysis is shown in Figure 5 in Appendix B.3.

3.5 Targeted Tuning

After analyzing the missing skills for all the er-
ror samples from the validation set Dval, we then
retrieve a set of relevant training samples from a
domain-agnostic large-scale supporting dataset 6

to construct a targeted tuning dataset Dtrain and
utilize Dtrain to fine-tune the student model to en-
hance its capability and address the identified skill
gaps for the target downstream task.

4We manually labeled the mistake step for 100 ScienceQA
validation error examples and tuned δ and λ on them (see
results and probability gap statistics in Appendix C and Sec-
tion 4.5).

5We follow (Chen et al., 2023c) and define a skill as a
unit of behavior with associated data X such that if the LMM
is trained on dataset D, where D ⊆ X , it has improved
performance on samples belonging to X\D. See Appendix D
for more details on skill definition.

6Our framework does not require the supporting dataset to
be semantically similar to the downstream tasks. Instead, it
capitalizes on underlying skills—such as counting and spatial
relation recognition—that are shared between target tasks and
existing task-agnostic instruction-tuning datasets.

Specifically, for each sample in the supporting
dataset, we pre-compute a set of required skills by
prompting the teacher model to follow in-context
exemplars and provide detailed analysis of the
skills that are required to achieve the correct an-
swer. The prompt template is shown in Figure 6
in Appendix B.4. Then, for each error sample in
Dval, we apply BM25 (Robertson et al., 2009) to
calculate similarity scores between its missing skill
s and the concatenation of all required skills of
each sample in the supporting dataset. The samples
in the supporting dataset are then ranked accord-
ing to the similarity scores, and the top-K samples
are selected as the training samples to improve the
missing skills of the student model.

4 Experiment

4.1 Experimental Setup

For evaluation, we experiment with two differ-
ent student models, including the instruction-
tuned LLaVA-v1.5-7B (Liu et al., 2024a)7

and Qwen2-VL-7B (Wang et al., 2024; Bai
et al., 2023)8, and two different teacher mod-
els, including GPT-4o-mini (Achiam et al.,
2023) (gpt-4o-mini-2024-07-18) and LLaVA-
OneVision-72B (Li et al., 2024a)9, and evaluate our
framework on seven downstream tasks and datasets:
MM-Bench, a generic benchmark dataset for evalu-
ating large multimodal models and covering diverse
categories of tasks such as Attribute Recognition,
Action Recognition, Object Localization, and so on.
MM-Bench is used to demonstrate the potential
of our error-driven efficient-tuning framework as
a post pre-training step to further improve the gen-
eral capabilities of large multimodal models; and
six downstream tasks, including ScienceQA (Lu
et al., 2022), Appliance Classification (Lin et al.,
2014), Furniture Classification (Lin et al., 2014),
Living Thing Classification (Li et al., 2022), Vi-
sion Question Answering (Zhu et al., 2016), and
Image Caption Match (Lin et al., 2014). For each
of the downstream tasks, we sample 1K data points
as the test set and 1K data points as the valida-
tion set. These tasks are employed to demonstrate
the efficiency of our framework in adapting the
generic pre-trained large multimodal model to spe-

7https://huggingface.co/liuhaotian/llava-v1.
5-7b

8https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

9https://huggingface.co/lmms-lab/
llava-onevision-qwen2-72b-ov-chat

20293

https://huggingface.co/liuhaotian/llava-v1.5-7b
https://huggingface.co/liuhaotian/llava-v1.5-7b
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat
https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat


Method # of Tuning Samples MM-Bench Appliance Cls Furniture Cls Living Thing Cls VQA Image-Cap Match ScienceQA

Pre-trained LMM 0 64.30 45.80 49.00 79.40 77.00 64.10 65.34

Random 10K 62.85 57.47 60.60 82.10 74.03 65.03 63.66
Superfiltering 10K 62.65 49.90 53.60 77.00 75.30 68.40 64.15
INSTA* 10K 63.25 60.00 64.10 89.20 72.20 74.70 62.52
Our Approach 10K 63.86 62.10 64.80 90.60 76.00 77.70 65.89

Random 30K 62.60 61.07 63.13 86.83 75.50 71.97 63.38
Superfiltering 30K 62.95 53.40 53.80 78.40 76.90 69.90 65.05
INSTA* 30K 63.25 61.90 66.10 92.90 72.10 76.90 65.39
Our Approach 30K 64.01 62.20 67.10 93.30 77.30 80.00 67.53

Random 100K 62.95 60.83 66.23 88.67 76.90 77.50 64.55
Superfiltering 100K 63.25 55.60 54.90 82.90 77.40 73.50 65.00
INSTA* 100K 62.05 62.90 66.80 92.80 74.00 77.60 65.25
Our Approach 100K 64.41 64.10 67.70 93.60 79.00 80.10 68.02

Full Data 1,552K 62.43 63.50 69.80 90.60 74.90 84.70 67.23

Validation Data 1K 63.86 59.90 57.80 89.00 77.40 67.80 65.39

Table 1: Evaluation results on seven downstream tasks with different numbers of tuning samples retrieved from
the supporting dataset (%). Full Data means that the whole supporting dataset is used to tune the LMM while
Validation Data stands for fine-tuning the pre-trained LMM on 1K validation samples of the target task.

cific downstream tasks. We use Vision-Flan-1-
million (Xu et al., 2024)10 as the supporting dataset
as it covers hundreds of existing tasks and datasets
created by humans.

We compare the student model tuned using our
error-driven data-efficient tuning framework with
four baselines: (1) Pre-trained LMM, which de-
notes the vanilla student model without any tuning;
(2) Random Sampling, where the training sam-
ples are randomly sampled from the supporting
set. This process was repeated three times, and
the average performance is reported in Table 1.
Detailed results for each run are reported in Ta-
ble 11 in Appendix E. (3) INSTA* (Lee et al.,
2024a), which ranks the training samples based
on their SBERT (Reimers and Gurevych, 2019)
similarity scores to the validation samples, and
select the same number of samples for targeted
tuning. and (4) Superfiltering (Li et al., 2024c),
which utilizes a small GPT-2 model (Radford et al.,
2019) to filter out the high-quality subset based
on instruction-following difficulty (IFD) score (Li
et al., 2023a). Additionally, to better demonstrate
the effectiveness and efficiency of our error-driven
model tuning framework, we also show the perfor-
mance of the student model that is fine-tuned on
the whole supporting dataset (Full Data) or the 1K
task-specific validation samples (Validation Data).

4.2 Main Results

Table 1 shows the performance of our framework
with LLaVA-v1.5-7B as the student model and
GPT-4o-mini as the teacher model, using differ-
ent numbers of tuning samples from the supporting
dataset. We compare our approach with several

10We removed all samples related to the seven evaluation
tasks in Vision-Flan-1-million to ensure no overlap.

baselines and can see that: (1) The pre-trained
LMM underperforms on some tasks such as Ap-
pliance Classification (45.80% accuracy) and Fur-
niture Classification (49.00% accuracy), highlight-
ing the need for further fine-tuning; (2) Our error-
driven tuning framework significantly improves
performance across different training scales, with a
notable 7.01% average boost across seven tasks at
the 100K tuning sample scale compared to the pre-
trained LMM; (3) By carefully analyzing the miss-
ing skills of the pre-trained LMM, our approach is
consistently more effective at adapting it to the
target task than other baselines across different
training scales; (4) Random Sampling shows com-
parable performance as other baselines, which is
consistent with previous studies (Xia et al., 2024b;
Chen et al., 2024) and might be attributed to the
positive effects of data diversity. However, it’s un-
stable and sometimes results in poorer performance,
e.g., 10K training scale for Image-caption Match;
(5) Superfiltering performs the worst among base-
lines, as GPT-2’s inability to process image input
limits its performance; (6) Remarkably, using just
6% of the full supporting dataset (100K samples),
our approach achieves at least 94.57% of the Full
Data performance across all benchmarks and even
outperforms the Full Data setting on five tasks, in-
dicating that training LMMs with large-scale task-
agnostic datasets may suffer from task interference
issue (Wang et al., 2023; Shen et al., 2024) and
hinder the development of task-specific capabil-
ities, highlighting the necessity of targeted data
selection for more efficient model adaptation; (7)
More complex tasks usually require more training
samples, e.g., Image-Caption-Match and Living
Thing Classification can be significantly improved
by our approach with 10K training samples while

20294



the VQA task requires 100K. (8) Based on the
main results presented in Table 1 and the supple-
mentary analysis in Table 12 (Appendix F), we ob-
serve that tasks involving fewer reasoning steps typ-
ically achieve greater performance improvements,
whereas tasks with longer reasoning chains exhibit
comparatively limited gains. We attribute this pat-
tern to two primary factors: (a) Error Localization
Complexity—the challenge of accurately identi-
fying the erroneous reasoning step intensifies as
reasoning chains grow longer; and (b) Inherent
Task Difficulty—tasks requiring longer reasoning
chains are inherently more complex, thus making
them more challenging targets for performance en-
hancement.

Method # of Validation # of Turning Furniture Image-Cap
Samples Samples CIs Match

Pre-trained - - 49.00 64.10

Our Approach 0.1K 10K 62.10 75.90
Our Approach 1K 10K 64.80 77.70

Our Approach 0.1K 100K 67.00 78.50
Our Approach 1K 100K 67.70 80.10

Table 2: Experiments with different sizes of validation
set, with LLaVA-7B as the student model and GPT-4o-
mini as the teacher model.

Requirement of a Small Validation Set While
our error-driven, data-efficient tuning framework
shows significant improvements on various down-
stream tasks, we acknowledge that the need for a
validation set for each target task could limit gener-
alizability. However, our approach only requires a
small validation set—around 1K samples—which
is more feasible than large, human-annotated, task-
specific training datasets. To reduce this cost, we
tested using a smaller validation set. As shown
in Table 2, even with just 100 validation samples,
our framework still enhances pre-trained LMMs,
achieving a good cost-performance balance. How-
ever, performance slightly decreases compared to
the 1K-sample setting, likely due to reduced diver-
sity and skill coverage. Future work could explore
using closed-source LMMs to generate pseudo-
answers for an unlabeled validation set, reducing
the need for manual labeling.

Results of Different Student and Teacher Mod-
els To demonstrate the generalizability of our
framework, we employ different LMMs as stu-
dent models or teacher models and show the per-
formance on seven downstream tasks. Specif-
ically, Table 3 shows the performance of our
framework when utilizing LLaVA-v1.5-7B as

the student model, and LLaVA-72B, LLaMA-
3.2-90B-Vision (Grattafiori et al., 2024)11, GPT-
4o-mini, or GPT-4o (Achiam et al., 2023)
(gpt-4o-2024-11-20)12 as the teacher model.
Despite the capability gap between these teacher
models on general multimodal tasks, their perfor-
mance is quite comparable when utilizing them
as the teacher model in our framework, demon-
strating the generalizability and robustness of our
framework.13 Additionally, Table 4 shows the per-
formance of our framework when using Qwen2-
VL-7B as the student model and GPT-4o-mini as
the teacher model. Note that Qwen2-VL-7B was
the state-of-the-art LMM under 10B parameters
at the time of submission. As we can see, though
the pre-trained Qwen2-VL-7B has already signif-
icantly outperformed LLaVA-v1.5-7B across all
downstream tasks, by employing our error-driven
data-efficient tuning framework, its performance
can be further improved by up to 4.30%, which fur-
ther underscores the potential of our framework for
effectively adapting state-of-the-art generic LLMs
to specific downstream tasks.

4.3 Ablation Study

As shown in Table 5, we conduct ablation studies
to demonstrate the effectiveness of each key com-
ponent in our framework, using LLaVA-v1.5-7B
as the student model, GPT-4o-mini as the teacher
model, and Furniture Classification and Image Cap-
tion Match as the downstream tasks. We can see
that: (1) Without the Mistake Identification mod-
ule, performance drops by up to 4.70%, highlight-
ing the challenge of directly analyzing missing
skills from lengthy rationales; (2) Extracting skills
from the entire validation dataset rather than er-
ror samples (i.e., w/o Error Collection), leads
to a 7.6% performance drop at the 10K training
scale, indicating inefficiency with limited training
resources; (3) Using mistake steps as queries for
targeted training samples retrieval (i.e., w/o Skill
Analysis) results in a 7.90% performance drop,
which is expected since the query used for data
retrieval (i.e., mistake step) is not precisely aligned
with the index of the supporting dataset (i.e., skills),
though there is a correlation between them; (4)

11https://huggingface.co/meta-llama/Llama-3.2-90B-
Vision-Instruct

12GPT-4o is approximately 16.7 times more expensive than
GPT-4o-mini, which is why we opted not to use it in our main
experiments.

13We further discuss the effectiveness of these teacher mod-
els in skill analysis in Appendix G.
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Method Teacher # of Tuning Samples MM-Bench Appliance Cls Furniture Cls Living Thing Cls VQA Image-Cap Match ScienceQA

Pre-trained LMM - 0 64.30 45.80 49.00 79.40 77.00 64.10 65.34

Our Approach LLaVA-72B 10K 63.55 62.00 64.40 89.00 75.50 75.00 64.90
Our Approach LLaMA-90B 10K 63.62 61.90 64.50 89.20 75.50 76.40 65.89
Our Approach GPT-4o-mini 10K 63.86 62.10 64.80 90.60 76.00 77.70 65.89
Our Approach GPT-4o 10K 63.95 62.50 65.10 91.60 76.30 77.90 65.94

Our Approach LLaVA-72B 100K 64.31 63.40 67.00 93.20 77.60 78.60 66.58
Our Approach LLaMA-90B 100K 64.39 64.00 67.50 93.30 77.80 78.70 66.63
Our Approach GPT-4o-mini 100K 64.41 64.10 67.70 93.60 79.00 80.10 68.02
Our Approach GPT-4o 100K 64.50 64.80 68.00 93.60 79.10 81.10 68.07

Table 3: Evaluation results when using LLaVA-v1.5-7B as the student model and LLaVA-OneVision-72B, LLaMA-
90B, GPT-4o-mini, and GPT-4o as different teacher models.

Method # of Tuning Samples MM-Bench Appliance Cls Furniture Cls Living Thing Cls VQA Image-Cap Match ScienceQA

Pre-trained LMM 0 82.80 63.70 67.60 93.60 87.90 84.30 85.50

Our Approach 10K 82.36 64.60 69.90 94.00 88.30 88.00 85.47
Our Approach 100K 82.83 66.20 71.40 95.80 88.50 88.60 87.34

Table 4: Evaluation results when using Qwen2-VL-7B as the student model and GPT-4o-mini as the teacher model.

Method # of Tuning Furniture Image-Cap
Samples CIs Match

Pre-trained LMM 0 49.00 64.10

Ours 10K 64.80 77.70
Ours w/o Mistake Identification 10K 63.90 73.00
Ours w/o Error Collection 10K 63.10 70.10
Ours w/o Skill Analysis 10K 62.30 69.80
Ours w/o Targeted Tuning 10K 60.60 65.03

Ours 30K 67.10 80.00
Ours w/o Mistake Identification 30K 65.90 78.30
Ours w/o Error Collection 30K 65.60 77.00
Ours w/o Skill Analysis 30K 64.70 74.30
Ours w/o Targeted Tuning 30K 63.13 71.97

Table 5: Ablation study with LLaVA-v1.5-7B as the
student model and GPT-4o-mini as teacher model. (%)

Randomly sampling from the supporting dataset
(w/o Targeted Tuning) also leads to consistent
performance drops, confirming the importance of
error-driven data selection for effective tuning.

4.4 Cost-Benefit Analysis

We perform a cost-benefit analysis using the Sci-
enceQA and Image-Caption Matching tasks. Ta-
ble 6 demonstrates that our framework incurs sig-
nificantly lower overhead compared to the Full
Data setting, leading to substantial reductions
in tuning costs. To further optimize the cost-
performance balance, the size of the validation
set can be reduced (e.g., to 0.1K samples), accel-
erating the tuning process. Additionally, adopt-
ing open-source LLMs instead of proprietary API-
based models can eliminate associated monetary
costs while still maintaining robust performance
gains over baseline methods.

4.5 Effectiveness of Mistake Identification

We further evaluate the effectiveness of our Mis-
take Identification method and compare it with
three baselines: (1) Random, where an intermedi-
ate step is randomly selected as the mistake step; (2)
Prompt Per Step (Tyen et al., 2024), where GPT-
4o-mini is prompted to verify the correctness of

each intermediate reasoning step, selecting the first
incorrect one as the mistake step; (3) Pseudo Ratio-
nale Match, where GPT-4o-mini is first prompted
to generate a sequence of pseudo reasoning steps
based on the question and gold answer and com-
pare them with the reasoning steps generated by
the student model to find the mistake step. Due
to the lack of gold labels for mistake steps in the
validation datasets, we sample 100 error samples
from the validation set of ScienceQA and manually
label the mistake step for each error sample. The
annotation process is detailed in Appendix C.1.

As shown in Table 7, the Random baseline
achieves only 7.0% accuracy, reflecting the dif-
ficulty of mistake identification given that there are
15.22 reasoning steps per sample on average in the
validation set. Prompt Per Step outperforms Ran-
dom, though it tends to incorrectly mark steps as
wrong when they cannot be directly inferred from
previous ones. For example, given the following
reasoning steps: “Magnet sizes affect the magni-
tude of the magnetic force. Imagine magnets that
are the same shape and material. The larger the
magnets, the greater the magnetic force.”, Prompt
Per Step identifies the second step as incorrect be-
cause “The context doesn’t indicate that they are
all identical in shape or size. So this rationale step
is incorrect.”. Instead, our mistake identification
method surpasses all baselines by effectively ana-
lyzing the dynamics of the probabilities for each
candidate answer from the teacher model, demon-
strating its robustness.

Error Propagation We conduct additional exper-
iments on ScienceQA to assess the impact of error
propagation from the Mistake Identification stage
on the model’s overall performance. For this, we
manually annotate mistake steps and missing skills
in 100 error samples. These annotated missing
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Method Teacher Task Dval Mistake+Skill (s) Data Retrieval (s) Fine-tuning (s) Dtrain Accuracy (%) Complexity API cost ($)

Pre-trained - ScienceQA 1K - - - - 65.34 - 0
Full Data - ScienceQA 1K - - 72,410 1,552K 67.23 O(|Dsupport|) 0
Ours LLaVA-72B ScienceQA 1K 224 50 4,353 100K 66.58 O(|Dtrain|+ |Derror| ∗ t) 0
Ours GPT-4o-mini ScienceQA 0.1K 29 7 4,647 100K 66.83 O(|Dtrain|+ |Derror| ∗ t) 0.1
Ours GPT-4o-mini ScienceQA 1K 219 54 4,041 100K 68.02 O(|Dtrain|+ |Derror| ∗ t) 1.1

Pre-trained - Image-Cap Match 1K - - - - 64.10 - 0
Full Data - Image-Cap Match 1K - - 72,410 1,552K 84.70 O(|Dsupport|) 0
Ours LLaVA-72B Image-Cap Match 1K 177 48 4,534 100K 78.60 O(|Dtrain|+ |Derror| ∗ t) 0
Ours GPT-4o-mini Image-Cap Match 0.1K 27 6 4,296 100K 78.50 O(|Dtrain|+ |Derror| ∗ t) 0.1
Ours GPT-4o-mini Image-Cap Match 1K 198 50 4,391 100K 80.10 O(|Dtrain|+ |Derror| ∗ t) 0.8

Table 6: Cost-benefit analysis on ScienceQA and Image-caption Matching tasks. ∥Dsupport∥, ∥Dtrain∥, ∥Dval∥,
∥Derror∥, and t represent the sample size of supporting dataset, training dataset, validation dataset, error set, and
average reasoning steps, respectively. Mistake+Skill, Data Retrieval, and Fine-tuning indicate the runtime (in
seconds) for Mistake Identification and Skill Analysis, Training Data Retrieval, and Fine-tuning stages, respectively,
measured on 8× 40GB A100 GPUs. API cost represents the cost (in USD) for closed-source LMM.

Method Accuracy (%) Recall@3

Random 7.0 16.0
Prompt Per Step (Tyen et al., 2024) 28.0 34.0
Pseudo Rationale Match 59.0 68.0
Our Method 65.0 77.0

Table 7: Evaluation of various mistake identification
methods on ScienceQA. Recall@3 quantifies the per-
centage of evaluation samples where the annotated gold
mistake step matches the predicted step or falls within
the three preceding steps.

skills are used to retrieve training samples for fine-
tuning the student LMM, establishing the Gold
Mistake Step setting. In the Predicted Mistake
Step setting, we leverage the predicted mistake
step from our method with about 65% accuracy
for mistake identification. As shown in Table 8,
our method can achieve comparable performance
with Gold Mistake Step setting, indicating limited
error propagation. This effectiveness is likely due
to the fact that in 77% of the samples, as shown in
Table 7, the annotated gold mistake step matches
the predicted step or falls within the three preced-
ing steps, allowing our approach to offer hints for
identifying the mistake context across all reasoning
steps even if the exact mistake step is not iden-
tified, thereby enhancing the skill analysis stage.
Based on predicted mistake step, we leverage our
skill analysis module to generate missing skills and
manually verify their effectiveness. We find that in
87% of the samples, the generated missing skills
match with the annotated gold missing skills, as
detailed in Appendix G.

Setting # of Tuning Samples ScienceQA

Gold Mistake Step 10K 65.74
Predicted Mistake Step 10K 65.54

Gold Mistake Step 30K 67.07
Predicted Mistake Step 30K 66.48

Table 8: Impact of error propagation from mistake iden-
tification on the model’s over performance.

δ lambda # Tuning MI Accuracy (%) ScienceQA Accuracy (%)

0.8 12 10K 60 64.80
0.2 0 10K 62 65.20
0 12 10K 63 65.64
0.2 12 10K 65 65.89

0.8 12 100K 60 66.53
0.2 0 100K 62 66.83
0 12 100K 63 67.18
0.2 12 100K 65 68.02

Table 9: Hyperparameter sensitivity analysis of the Mis-
take Identification (MI) method. MI Accuracy denotes
the accuracy of correctly identifying the erroneous step,
while ScienceQA Accuracy reflects the downstream
task performance after tuning with the selected samples.

Hyperparameter Sensitivity We evaluate the ro-
bustness of the Mistake Identification (MI) method
with respect to two key hyperparameters: the min-
imum probability gap threshold (δ) and the per-
sistence window (λ), introduced in Section 3.3.
The optimal values, δ = 0.2 and λ = 12, are
selected via a comprehensive grid search over
δ ∈ {0, 0.1, . . . , 0.9} and λ ∈ {0, 1, . . . , 19}, us-
ing accuracy on the annotated validation set (see
Appendix C.1) as the selection criterion. As shown
in Table 9, variations around the optimal values
lead to limited declines in both MI accuracy and
downstream ScienceQA performance, suggesting
that our method maintains practical robustness to
changes in hyperparameters.

5 Conclusion

We propose a novel error-driven, data-efficient
tuning paradigm to effectively adapt generic, pre-
trained large multimodal models (LMMs) to vari-
ous new and emerging downstream tasks without
requiring any task-specific training samples. Exten-
sive experiments show that our framework can sig-
nificantly improve pre-trained LMM’s performance
on seven downstream tasks by retrieving targeted
tuning samples from the supporting dataset. Future
work can explore loss-driven latent skills (Xu et al.,
2023c) to support more fine-grained skills.
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Limitations

Though the extensive experiments have demon-
strated the effectiveness of our error-driven data-
efficient tuning framework, it still has several limi-
tations: (1) Requirement of Validation Set. The
task-specific validation set is crucial in our frame-
work to measure the downstream task distribution
and LMM’s capability gaps. For certain tasks, even
creating and labeling 1,000 samples could be ex-
pensive and time-consuming. Further research is
necessary to remove the requirement of such task-
specific validation sets. (2) Mistake Identification
Needs Further Improvement. In this work, we
develop a straightforward yet effective method for
identifying mistakes within the rationales of LMMs.
However, there is still potential for further enhanc-
ing this component, which is crucial for precisely
analyzing the capability gaps of LMMs for target
downstream tasks.
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A Answer Format

Table 10 shows the answer formats that we use to
parse the answer.

B Prompt Template

B.1 Inference Prompt Template
Figure 3 shows the Inference Prompt Template.

B.2 Mistake Identification Prompt Template
Figure 4 shows Mistake Identification Prompt Tem-
plate

B.3 Skill Analysis Prompt Template
Figure 5 shows Skill Analysis Prompt Template

B.4 Skill Set Analysis Prompt Template
Figure 6 shows Skill Set Analysis Prompt Template.

C Mistake Identification

C.1 Human Annotation for Mistake
Identification

We first run the student model on the validation set
of ScienceQA dataset and obtain error samples as
we mentioned in Section 3.2. We then randomly
select 100 error samples for annotation. For each
error sample, we split the student model’s rationale
into a sequence of reasoning steps15. The annotator
will then annotate these error samples following
the following guidelines:

• Open one of your annotation web pages

• For each sample, check through the question, the
choices, the image, the correct answer, and the
wrong prediction.

• Then you will read rationale step one by one and
check whether the current rationale step contains
logical errors. If yes, you can record the corre-
sponding index (starting from 0).

• If you did not record any rationale step after
checking all of them, you can provide "-1" as
the label of mistake step for this sample.

C.2 Probability Gap Statistic
Figure 7 shows probability gap statistics in our an-
notated validation set, where Probability Gap =
p(student model’s wrong answer) - p(correct an-
swer).

15Following previous studies (Tyen et al., 2024), we treat
each sentence in the rationale as one reasoning step.

D Definition and Explanation of skills

In the education domain, skill is defined as an abil-
ity to carry out a task with pre-determined results,
often within a given amount of time, energy, or
both (Dyatlova et al., 2018). Some studies stress
out the expandability of skill: skill refers to any
ability acquired by training or practice, allowing
individuals to perform well in multifarious types
of tasks (Pérez-Paredes and Sánchez-Tornel, 2009;
Green, 2011). In this work, we follow (Chen et al.,
2023c) and define a skill s as a unit of behavior
with associated data X such that if the LMM is
trained on dataset D, where D ⊆ X , it has im-
proved performance on samples belonging to X\D.
This definition of a skill is flexible—it focuses on
the expandability of skill and means that given a
training dataset associated with the skill, a model
f has an improved performance when evaluated on
validation data associated with this skill. Under this
definition, a skill could be a fine-grained, instance-
specific ability like “Identify the poles of a magnet”,
instead of general skills like “color recognition”,
“shape recognition”, and “texture recognition”.

E Experiment Results for Random
Sampling

For the Random Sampling baseline, the random
sampling process was repeated three times and we
report detailed results for each run in Table 11.

F Analysis of Task-specific Performance
Variations

Table 12 reveals a strong negative correlation be-
tween the number of reasoning steps and the per-
formance gains from our framework. We observe
that tasks involving fewer reasoning steps typi-
cally achieve greater performance improvements,
whereas tasks with longer reasoning chains exhibit
comparatively limited gains. We attribute this pat-
tern to two primary factors: (a) Error Localization
Complexity—the challenge of accurately identi-
fying the erroneous reasoning step intensifies as
reasoning chains grow longer; and (b) Inherent
Task Difficulty—tasks requiring longer reasoning
chains are inherently more complex, thus making
them more challenging targets for performance en-
hancement.
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Answer Format Regular Expression Pattern

Answer is (A) (?i)answer is \(([A-Z])
Answer is (A (?i)answer is \(([A-Z])
Answer is A. (?i)answer is ([A-Z])\.
Answer: A (?i)answer:\s?([a-z])
A is the correct answer (?i)([A-Z]) is the correct
A (?<!\S)[a-zA-Z](?!\S)(?!.*[a-zA-Z])
answer is the option A (?<!\S)[a-zA-Z] (?!\S)(?!.*[a-zA-Z])
choose the answer, A (?i)choose the answer,\s?([a-z])

Table 10: Answer format table

Inference Prompt Template

Question:Will these magnets attract or repel each other?
Choices: (A) attract (B) repel 
Let us think step by step. Provide your Rationale and the final answer. The final answer should
be the option's letter from the given choices.

Question: Is a violin a good or a service?
Choices: (A) a good. (B) a service.
Rationale: To decide whether a violin is a good or a service, ask these questions: Is a violin something
you can touch? Yes. Is a violin a job you might pay someone else to do? No. So, a violin is a good. The
final answer is A.  

Figure 3: One example prompt for ScienceQA task to obtain the student model’s prediction.

Mistake Identification Prompt Template

{few-shot demonstrations}
Question:Will these magnets attract or repel each other?
Choices: (A) attract (B) repel 
Prior Knowledge: There is a probability of 60% that these magnets repel each other.
Rationale: 
Identify the magnets: There are two magnets in the image.
Determine their polarity:  we see two magnets placed end to end, with one magnet's "S" end facing
the other magnet's "N" end.
Answer with the option's letter from the given choices directly. Please provide the answer
without explanation. If you can not find the correct answer, then guess based on the Prior
Knowledge. Please provide the answer in the format of 'The answer is A/B/C/D/E'

Figure 4: One example prompt to obtain the teacher model’s prediction by following the student model’s rationale
steps. We then identify the mistake rationale step based on the evolution in probabilities of predicted options from
the teacher model.

Method # of Tuning Samples MM-Bench Appliance Cls Furniture Cls Living Thing Cls VQA Image-Cap Match ScienceQA

Random 1 10K 63.40 57.70 61.00 85.60 74.80 63.20 64.06
Random 2 10K 62.80 55.30 60.30 79.10 73.00 66.30 63.11
Random 3 10K 62.35 59.40 60.50 81.60 74.30 65.60 63.81

Random 1 30K 62.65 61.10 63.60 87.90 77.10 73.50 63.01
Random 2 30K 62.20 61.30 62.30 86.60 75.40 74.10 63.96
Random 3 30K 62.95 60.80 63.50 86.00 74.00 68.30 63.16

Random 1 100K 62.95 61.20 66.30 91.00 77.10 78.30 65.74
Random 2 100K 63.86 62.00 66.70 87.60 76.30 76.40 64.55
Random 3 100K 62.05 59.30 65.70 87.40 77.30 77.80 63.36

Table 11: Evaluation results on seven downstream tasks with different numbers of tuning samples retrieved from the
supporting dataset. (%).
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Skill Analysis Prompt Template

{few-shot demonstrations}
Question:Will these magnets attract or repel each other?
Choices: (A) attract (B) repel
Correct Answer: (B) repel
Rationale:
Identify the magnets: There are two magnets in the image.
Determine their polarity:  we see two magnets placed end to end, with one magnet's "S" end
facing the other magnet's "N" end.
Understand the interaction between magnets: Opposite poles attract each other, while like poles repel
Apply the knowledge to the question: Since the north pole of one magnet is facing the south pole of the
other magnet, they will attract each other.
Wrong Rationale Step: 
Determine their polarity:  we see two magnets placed end to end, with one magnet's "S" end
facing the other magnet's "N" end.

Please refer to Demonstration to find the Missing Skill. Each Question comes with its Options,
and Correct Answer. The Rationale Steps and the specific Wrong Rationale Step will be provided
to you. Please analyze the Missing Skill based on the Wrong Rationale Steps.

Figure 5: One example prompt to trigger the teacher model to analyze the missing skill based on the wrong rationale
step.

Skill Set Analysis Prompt Template

{few-shot demonstrations}
Question: Think about the magnetic force between the magnets in each pair. Which pair has the
stronger magnetic force?
Context: The images show two pairs of magnets. The magnets in different pairs do not affect each
other. All the magnets shown are made of the same material.
Answer: The magnetic force is stronger in Pair 1

Based on the question, answer, and the image, could you provide a detailed analysis of the
skills required to answer the questions? Provide some skills that are specific to the questions
instead of general skills like reasoning or observation skills.

Figure 6: One example prompt to trigger the teacher model to analyse a sequence of required skills for each sample
in the supporting dataset.

G Effectiveness of Different Teacher
Models

We further discuss whether the choice of the teacher
model affects the effectiveness of the skill analysis.
We first ask the annotator to write the gold missing
skills based on question, reasoning steps, and an-
swer for 100 error samples. We then leverage two
teacher models, GPT-4o-mini and LLaVA 72B, to
predict missing skills and ask the annotator to man-

ually compare these predicted missing skills with
gold missing skills. Our experiments indicate that
the missing skills generated by GPT-4o-mini align
with the annotated gold missing skills in 87% of the
samples, whereas those generated by LLaVA-72B
match the annotated gold missing skills in 79% of
the samples.
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Figure 7: Probability gap statistics in our annotated
validation set, where Probability Gap=p(student model’s
wrong answer)-p(correct answer).

Task # of Reasoning Step Performance Gain

Appliance CIs 7.64 18.30
MM-Bench 13.23 0.11
Furniture CIs 8.33 18.70
Living Thing CIs 6.27 14.20
VQA 12.74 2.00
Image-Cap Match 7.13 16.00
ScienceQA 15.00 2.68

Table 12: Task characteristics for all evaluation tasks.
# of Reasoning Steps indicates the average number of
reasoning steps, and Performance Gain refers to the
improvement compared with the pre-trained LLaVA-
v1.5-7B.

H Experiment Details

We conduct experiments on 8× 40GB A100 GPUs.
In the 100K training sample setting, one training
can run for 2 hours. We use learning rate as 2 ×
10−4 and batch size as 128.
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