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Abstract

Modeling relationships between concepts and
entities is essential for many applications.
While Large Language Models (LLMs) cap-
ture relational and commonsense knowledge
effectively, they are computationally expen-
sive and often underperform in tasks requir-
ing efficient relational encoding, such as re-
lation induction, extraction, and information
retrieval. Despite advancements in learning re-
lational embeddings, existing methods often
fail to capture nuanced representations and the
rich semantics needed for high-quality embed-
dings. In this work, we propose different re-
lational encoders designed to capture diverse
relational aspects and semantic properties of
entity pairs. Although several datasets exist for
training such encoders, they often rely on struc-
tured knowledge bases or predefined schemas,
which primarily encode simple and static re-
lations. To overcome this limitation, we also
introduce a novel dataset generation method
leveraging LLMs to create a diverse spectrum
of relationships. Our experiments demonstrate
the effectiveness of our proposed encoders and
the benefits of our generated dataset.

1 Introduction

Understanding semantic relationships between en-
tities is fundamental to advanced natural lan-
guage understanding and reasoning. For example,
analogy-making requires precise comprehension of
the relations between entities (Gentner and Mark-
man, 1997; Turney, 2012; Kumar and Schockaert,
2023; Srikumar and Roth, 2013). The presence
of distractors that share only surface-level simi-
larities with a query relation A : A′ has been
shown to cause performance drops in automatic
systems attempting to identify analogous relation-
ships B : B′ (Bitton et al., 2023).

Modeling relational knowledge is essential for
tasks such as relation induction (Bouraoui et al.,
2018; Sun et al., 2022a), relation extraction (Zhong

and Chen, 2021; Zhou and Chen, 2022), and ques-
tion answering (Yasunaga et al., 2021; Sun et al.,
2022c; Jiang et al., 2022). Knowledge Graphs
(KGs), which represent relations as triplets (h, r, t)
between a head entity h and a tail entity t, of-
fer a structured means of encoding relational in-
formation. Likewise, Large Language Models
(LLMs) have shown strong capabilities in capturing
commonsense and relational knowledge (Bouraoui
et al., 2020). However, both KGs and LLMs
face limitations. KGs are constrained by prede-
fined schemas, which restrict the expressiveness
and granularity of relations they can represent (Ya-
sunaga et al., 2021; Sun et al., 2022c; Jiang et al.,
2022; Wang et al., 2018). On the other hand, while
LLMs are powerful, their high computational cost
makes them impractical for large-scale applications
involving extensive corpora such as news or scien-
tific texts. In contrast, smaller language models
such as BERT offer a more scalable and efficient al-
ternative for relation extraction (Ushio et al., 2023).
In this context, relational embeddings provide a
compact and cost-effective means of encoding en-
tity relationships without requiring explicit rela-
tion labels or rigid schemas. These embeddings
leverage the internal knowledge of LMs to capture
relational semantics between head and tail enti-
ties (Baldini Soares et al., 2019; Hao et al., 2023;
Cohen et al., 2023). Recent approaches that employ
relational embeddings have achieved strong perfor-
mance, particularly in relation extraction (Zhong
and Chen, 2021; Hao et al., 2023; Cohen et al.,
2023; Jiang et al., 2022). Nevertheless, designing
efficient and semantically rich relation embeddings
remains an open challenge (Ushio et al., 2023).

Although current strategies have shown encour-
aging outcomes, they may still be less than ideal.
First, most relational encoding models, to the best
of our knowledge, are fine-tuned on triplets pre-
dominantly extracted from KGs. They inherit struc-
tural limitations inherent to KG schema. Specif-
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ically, KGs typically encode simple relations, as
complex relationships are conventionally decom-
posed into sequences of simpler ones. For instance,
the relationship between "Paris" and "France" in
KGs might only encode simple attributes like "cap-
ital of," omitting richer semantic contexts such as
"tourist hub" or "cultural center." The reliance on a
predefined and closed set of relations constrains the
variety and expressiveness of relational contexts,
reducing their ability to generalize beyond the train-
ing schema. Second, current models often fail to
capture the full diversity of semantic properties and
the complexity of inter-entity relationships. Their
limited capacity for representing nuanced and mul-
tifaceted relations hinders performance in tasks that
require fine-grained relational reasoning (Kumar
and Schockaert, 2023).

To address these concerns, we first introduce a
new dataset of over 80, 000 triplets that leverages
LLMs to capture a wide spectrum of relational
knowledge. Our dataset generation process is flex-
ible and can be extended to incorporate new cate-
gories of relations, ensuring adaptability to diverse
tasks. When used to train relation encoders, this
dataset consistently improves performance across
existing models. In addition to the dataset, we pro-
pose three contrastive relational encoders designed
to capture diverse aspects of relational semantics.
Each encoder is fine-tuned using carefully crafted
prompts, either to model relational semantics di-
rectly or to independently encode the head and
tail entities before combining them into a compact
relationship representation. To evaluate the effec-
tiveness of these models, we focus on analogy ques-
tions and lexical relation classification tasks. The
results show that our proposed relational encoders
outperform state-of-the-art models in capturing and
representing relational semantics.

2 Related Work

Learning Relational Encoders Since their intro-
duction, pre-trained language models (LMs) have
been extensively studied to evaluate their capac-
ity for capturing commonsense knowledge (Forbes
et al., 2019; Zhou et al., 2020; Roberts et al., 2020)
and their potential for modeling relational knowl-
edge (Petroni et al., 2019; Bouraoui et al., 2020;
Sun et al., 2022b). To model relational knowl-
edge, (Petroni et al., 2019) proposed a BERT-based
model that utilizes manually defined prompt sen-
tences, where the tail entity of the relation to pre-

dict is masked. Predictions for the masked token
are used for link prediction, completing knowl-
edge graph triples. Similarly, (Bosselut et al.,
2019) introduced a fine-tuned GPT-based model
for commonsense knowledge graph completion
tasks, such as ConceptNet (Speer et al., 2017) and
ATOMIC (Sap et al., 2019). Several studies have
since moved beyond hand-crafted templates, ex-
ploring automated methods for template genera-
tion. For instance, (Bouraoui et al., 2020) mined
text corpora to identify effective templates for spe-
cific relations, using these templates with a BERT
encoder to evaluate whether a word pair, instanti-
ated within the template, forms a natural sentence.
Other works, such as (Jiang et al., 2020; Haviv
et al., 2021), developed paraphrasing-based strate-
gies to enhance lexical diversity in templates. Au-
toPrompt (Shin et al., 2020; Liu et al., 2019) intro-
duced a gradient-based search strategy to identify
trigger tokens for creating prompts automatically.
Additionally, (Jiang et al., 2020) combined mining-
based, paraphrasing-based, and ensemble methods
to generate diverse discrete textual prompts for re-
lational prediction.

Despite recent progress, both manually crafted
and discrete textual prompts have notable limita-
tions. Hand-written prompts often fail to fully lever-
age the capabilities of LMs in encoding factual and
relational knowledge. Approaches such as Rel-
BERT (Ushio et al., 2023) aim to address this by
encoding word pairs into relational embeddings us-
ing predefined or automatically generated prompts
(e.g., “Paris is the [MASK] of France”) and fine-
tuning LMs on datasets like SemEval 2012 Task
2. RelBERT employs loss functions such as triplet
loss to optimize relational similarity and constructs
relation embeddings by averaging contextualized
LM outputs. However, this method may miss im-
portant semantic nuances of the relation between
entities, due to inherent biases in the prompts and
the limited richness of the training datasets.

Relational Reasoning with LLMs. LLMs face
challenges in relational reasoning and information
extraction, particularly due to difficulties in do-
main adaptation, implicit relation identification,
and the need for specification-heavy instructions.
Fine-tuning has proven essential to mitigate these
limitations. Peng et al. (2023) highlighted that
LLMs often struggle with tasks requiring detailed
guidelines. Although LLMs are adept at captur-
ing commonsense knowledge, this strength does
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not always extend to tasks such as relation extrac-
tion, induction, or analogy reasoning, especially in
domain-specific or highly constrained contexts. To
address such issues, Engelbach et al. (2023) tack-
led hallucinations in extraction tasks using fine-
tuned question-answering models, while Shi and
Luo (2024) proposed methods to enhance logical
consistency and precision. Despite their broad
knowledge, LLMs still fall short in delivering high-
quality relational embeddings, which remain crit-
ical for robust performance in these tasks (Bitton
et al., 2023). Nonetheless, LLMs offer a valu-
able tool for generating diverse relational triplets
that can compensate for the limitations of static,
schema-bound datasets. By employing carefully
designed prompts, we ensure our dataset encom-
passes a broad spectrum of relational types, re-
sulting in a rich and nuanced resource for training
relational encoders.

3 Deriving Relational Knowledge

Several datasets exist for training relational en-
coders, and we will revisit them in detail in Section
3.1. However, these datasets often have notable
limitations, as they are predominantly derived from
structured knowledge bases or predefined schemas
that focus on encoding simple and static relation-
ships. Consequently, they struggle to capture the
complexity and richness of semantic relationships,
particularly those grounded in real-world contexts
or commonsense reasoning. To address these short-
comings, we propose a new approach in Section 3.2
that leverages the capabilities of LLMs to capture
diverse commonsense knowledge.

3.1 Existing Datasets

Four primary sources are commonly used for train-
ing relational encoders, as outlined below. These
datasets were meticulously curated in the work of
(Ushio et al., 2023) and combined to train the Rel-
BERT model1.

RelSim This dataset is derived from SemEval
2012 Task 2 and includes crowdsourced anno-
tations on 79 fine-grained semantic relations or-
ganized into 10 major categories: Class Inclu-
sion, Part-Whole, Similar, Contrast, Attribute, Non-
Attribute, Case Relation, Cause-Purpose, Space-
Time, and Representation.

1All datasets are available at https://huggingface.co/
datasets/relbert/

ConceptNet This dataset originates from a fil-
tered version of ConceptNet (Li et al., 2016) where
certain triples with low confidence scores are ex-
cluded during the filtering process to ensure quality.

NELL-One NELL-One (Xiong et al., 2018) is
a curated knowledge graph tailored for "one-shot"
relational learning and is a cleaned version of the
original NELL dataset (Mitchell et al., 2018).

T-REX Constructed from Wikipedia and Wiki-
data, T-REX (Elsahar et al., 2018), the dataset is
reduced to 839 distinct relations, creating a more
focused resource for relational learning.

In the following, we will refer to these datasets
as Relational Knowledge Bases (RelKB)

3.2 LLM Generated Data

We leverage LLMs as a source of common-
sense knowledge to create a semantically diverse
dataset for training relational encoders. Using
Llama-3.1-8B-Instruct2, we generate triplets
(head, relation, tail) that capture a wide range of
semantic relationships, including causality, spatial
relations. This allows to enrich and complement
the existing datasets reported above, offering more
varied examples of relations.

Relation categories and prompts To generate
more detailed and accurate triplets, some of the
RelSim relations were first refined or split into cor-
responding subcategories. For instance, we distin-
guished Spatial and Temporal relations from the
original Space-Time category in RelSim. Similarly,
Hypernym relations were complemented by Hy-
ponymy to account for the LLMs sensitivity to
the directionality of relations in prompts. More-
over, Meronymy and Synonymy relations were ex-
panded into Member-Collection and Similarity, re-
spectively, using more descriptive prompts that
avoid reliance on the terms “meronym” and “syn-
onym.” This adjustment aims to capture a broader
range of related concepts, including triplets that
do not strictly align with traditional definitions of
Meronymy and Synonymy. Additionally, the En-
tailment relation was introduced to reflect a more
logic-driven notion compared to Causal relations,
enabling the generation of distinct triplets. We also
added Commonsense, Functional, Collocation, and
Troponymy (manner of an action) relations, which
were not included in the original RelSim dataset.

2https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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Finally, we excluded Non-Attribute relations, as
these describe the absence of attributes and may
not be well-suited for an open-world setting rely-
ing on the commonsense knowledge encoded in the
LLM. As illustration, we use such prompt for lever-
aging commonsense relation: “I am interested in
knowing knowledge triplets that describe common-
sense relation. For example : * glass, falls, breaks,
* day, follows, night, * fish, live in, water, * wheel,
part of, car, * knife, used for, cutting. Generate a
bullet list of 100 different examples.” For other rela-
tion types, we use the same template, replacing the
examples and “commonsense relation” by exam-
ples and a description fitting the kind of considered
relation. The set of the relations we consider and
corresponding few-shot examples for the prompts
of the LLM generated data are provided Tab. 6 in
the Appendix.

As shown in the example above, we used five
carefully selected examples to guide the LLM’s
generation process. This assumes that a small set
of highly informative examples can significantly
improve the diversity and accuracy of generated
triplets. To further enhance diversity and avoid lin-
ear relational patterns common in sequence-based
generative tasks, we formatted the output as a bul-
let list. This structure encouraged the LLM to treat
each triplet as an independent instance, rather than
as sequentially related to others. The small-scale
generation strategy proved effective in maintain-
ing the quality of the relational data. By limiting
the number of triplets generated per prompt, we
minimized the risk of reducing semantic precision.

SemRelLM Dataset. To construct our Sem-
RelLM dataset, we iteratively queried the language
model until we obtained at least 5,000 valid triplets
for each targeted relation type. Statistics for the
generated triplets across relation categories are pro-
vided in Tab. 1. We retained only successfully
parsed triplets, without applying additional filter-
ing. A qualitative analysis of the resulting data is
presented in App. A.

4 Contrastive Relation Encoders

In this section, we describe our relational en-
coder models. We assume that we are given a set
of triples {(h1, r1, t1), ..., (hn, rn, tn)} as training
data where h =i and ti are respectively head and
tail entities and ri the relation. The model needs
to learn a relation embedding of each relation be-
tween a given pair (h, t) of head and tail entities.

Unique Unique Unique Unique
Relation triplet triplet relation relation
category tokens lemmas tokens lemmas

Antonymy 5003 4861 44 44
Attribute 5015 4885 5 4
Commonsense 5019 3902 1303 527
Functional 5026 4604 732 661
Collocation 5029 4779 1 1
Troponymy 5014 4883 2 2

Causal 5017 4358 486 317
Entailment 5006 4178 1 1

Spatial 5000 4892 108 106
Temporal 5003 4762 155 133

Hypernymy 5019 4971 218 205
Hyponymy 5001 4935 114 98

Meronymy 5015 4347 17 5
Member-
collection

5019 4986 12 10

Synonymy 5014 4961 626 620
Similarity 5039 4852 1 1

All 80239 74576 3021 1811

Table 1: Number of unique triplets and relations in the
LLM generated data. Tokens correspond to the output
of the LLM, while lemmas are obtained using SpaCy to
lemmatize and remove stop words. Relation categories
that form complementary pairs are grouped together.

In the following, we propose three encoders aiming
to capture rich semantics of relations, illustrated in
App. Fig. 4.

4.1 UniPrompt Encoder
Contrastive learning has proven effective in learn-
ing meaningful concept embeddings (Li et al.,
2023; Kteich et al., 2024). We adapt this idea to re-
lational vectors, aiming to bring vectors that encode
similar relationships between head and tail entities
closer together, while pushing apart vectors that
represent different types of relations. We propose
UniPRE, a contrastive learning method for rela-
tion encoder that fine-tune LM attention weights to
obtain better separation between relation. We use
the InfoNCE objective function (Sohn, 2016) with
cosine similarity, defined as follows:

−
∑

r

∑

a,a+∈Posr

log

exp

(
cos(f(a),f(a+))

τ

)

∑
a−∈Negr

exp
(
cos(f(a),f(a−))

τ

)

(1)
where f(·) is the relation encoder, such that f(a)
is the embedding of relation a, Posr is the set of
positive head-tail pairs {(h1, t1), . . . } associated
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with relation r, meaning that a = (ha, ta) and
a+ = (ha+ , ta+) share the relation r. Negr is the
set of negative head-tail pairs for relation r, mean-
ing there is no valid triplet where the head and tail
are related by r. τ is a temperature parameter that
controls the sharpness of the similarity distribution.

A common approach for training the encoder
f(·) is to use the prompt “The relationship between
[HEAD] and [TAIL] is [MASK],” where the em-
bedding of the [MASK] token serves as the relation
representation. As shown in Tab. 10, the choice of
prompt has a significant impact on relational encod-
ing performance across multiple analogy datasets.
These prompts are crafted to capture different as-
pects of relational meaning between [HEAD] and
[TAIL] pairs, varying in specificity and contextual
framing. Among them, the prompt “One prop-
erty of [HEAD] is to be the [MASK] of [TAIL]”
yielded the highest average performance. This sug-
gests that embedding relational properties within a
structured and interpretable context enhances the
model’s ability to capture diverse characteristics of
a relation.

However, the performance of a UniPRE is highly
domain-dependent. For instance, prompts opti-
mized for part-whole relations perform well on
tasks involving compositional relationships but fail
to generalize to other types of relations, such as
temporal relations. This limitation arises because
each prompt inherently biases the encoder toward a
specific relational meaning, leaving other relational
dimensions underrepresented or poorly encoded.

4.2 MultiPrompts Encoder

Another strategy we follow is to integrate multiple
LM encoders, each using a distinct prompt tailored
to capture specific relational domains, such as tem-
poral relations. By aggregating embeddings from
these diverse prompts, the MultiPRE model gen-
erates richer and more balanced relational repre-
sentations, overcoming the domain-specific biases
of UniPRE approaches. Let fi denote the i-th LM
encoder with its own prompt, and (h, t) represent
a head-tail pair. To aggregate embeddings, we ap-
ply a learnable weighting mechanism, scaling each
embedding by a weight wi. The final embedding,
is obtained by concatenating the weighted embed-
dings, followed by normalization:

embedding(h, t) =

Concat (w1f1(h, t), . . . , wN fN (h, t)) (2)

where N is the number of LM encoders. We ap-
ply L2 normalization on embedding(h, t). We
use the same loss Eq. (1) where f is replaced by
the final embedding from this model. The prompt
combinations used are presented as prompt 5 and 6
in App. Tab. 10. This approach allows to capture a
rich, multi-dimensional representation of relation-
ships by leveraging the diverse relational perspec-
tives offered by multiple encoders. By combining
these embeddings through learnable weights, the
model dynamically optimizes its understanding of
semantic relationships.

4.3 Semantic Properties Encoder

While the multi-prompt encoder effectively cap-
tures diverse relational aspects, it primarily focuses
on the relationship itself, abstracting away the in-
trinsic properties of the entities. For instance, it
performs well on pairs like "coffee" and "black,"
where the relation emerges from their combina-
tion. However, in cases like "fast" and "food,"
understanding the relationship requires modeling
the semantic attributes of each entity. We propose
the Semantic Properties Encoder (SemPRE), a bi-
encoder architecture with separate LM encoders for
the HEAD and TAIL entities. Using prompts such
as “[HEAD] means [MASK].” and “[TAIL] means
[MASK].” as suggested in (Kteich et al., 2024), it
extracts rich semantic embeddings that capture the
core meanings of each entity. These embeddings
are then combined using the Hadamard product:

embedding(h, t) = fHEAD(h)⊙ fTAIL(t)

The model is also trained using an InfoNCE loss.

5 Experiments and Results

We evaluate our relation encoders through intrin-
sic tasks, including analogy questions (Sec. 5.2)
and lexical relation classification (Sec. 5.3), to as-
sess their ability to capture relational semantics
and generalize to unseen relations. The experi-
ments compare our models with SOTA baselines
and analyze scalability across different BERT fam-
ily models (e.g., BERT, RoBERTa, DeBERTa). Ad-
ditionally, we also conduct experiments with LLMs,
such as LLama3.3-70B, to compare performance
with our encoders3. The performance of LLMs are
discussed in App. C.

3Our datasets and implementation are available at https:
//github.com/essebbaninaim/encoder-acl,and hyperpa-
rameters are detailed in App. D.2
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Model U2 U4 BATS Google SCAN NELL T-REX CN Average

RelBERT-large 67.0 63.0 80.0 95.0 27.0 65.0 63.0 47.0 63.37

RelKB(RelBERT finetuning data)
UniPRE-large 61.84 60.65 79.66 92.8 19.74 77.17 68.85 47.9 63.58
MultiPRE-large 61.84 67.36 82.32 93.6 20.3 76.33 70.49 53.52 65.72
SemPRE-large 31.58 32.64 49.58 53.6 11.51 74.67 56.28 26.85 42.09

SemRelLM(LLM-generated data)
UniPRE-large 73.68 75.0 79.1 92.0 20.36 56.17 69.95 37.92 63.02
MultiPRE-large 70.61 74.31 80.77 92.2 23.21 62.67 64.48 37.16 63.18
SemPRE-large 37.72 40.51 49.58 54.8 15.53 54.0 16.39 23.32 36.48

RelKB+SemRelLM
UniPRE-large 72.81 74.54 82.66 93.6 20.3 73.83 71.04 40.69 66.18
MultiPRE-large 71.05 73.15 83.77 94.6 25.56 69.83 65.57 39.51 65.38
SemPRE-large 38.6 40.05 57.53 62.2 16.96 69.83 38.25 24.83 43.53

Fixed best results not being the ones in bold for some cases

Table 2: Accuracy (in %) on analogy questions. RelBERT results are from (Ushio et al., 2023).

5.1 Experimental Setup
Training data and details We utilized three
datasets: (i) RelKB used for training Rel-
BERT (Ushio et al., 2021) (ii) our newly gen-
erated dataset SemRelLM, and (iii) a combined
dataset RelKB+SemRelLM. We fine-tuned three
LMs encoder variants –BERT (Devlin et al., 2019),
RoBERTa (Wolf et al., 2020), and DeBERTa (He
et al., 2021)– in both small and large versions to
evaluate the robustness of our encoders across ar-
chitectures and sizes. In our main experiments, we
report results using DeBERTa as it produces better
results. Detailed comparisons across all models and
configurations are provided in App. D.4 Tabs. 12
to 23 and App. D.5 Tabs. 25 to 36. We study in
Sec. 5.4 the impact of the finetuning dataset.

Baseline models As a baseline, we use the Rel-
BERT models from (Ushio et al., 2023). In par-
ticular, we consider two variants of the model,
RelBERT-base and RelBERT-large, respectively
with RoBERTa-base and RoBERTa-large (Wolf
et al., 2020) as they present the best configurations.

While not entirely comparable as they do not
provide relational embeddings, we also provide
the performance of the latest (at the time of writ-
ing) publicly available LLMs, namely GPT-4o and
Llama-3.3-70B-Instruct4. For GPT-4o, we con-
sider only 100 samples for each subset of the bench-
marks, due to cost limitations. As such, GPT-4o

4The prompts utilized are detailed in App. B Figs. 2 and 3.

results should be interpreted with caution.

5.2 Analogy Questions
The first downstream task we consider is analogy
questions dataset5. The task involves predicting
which pair of entities, among a set of candidates,
has the most similar relationship to a given query
pair, framed as a multiple-choice problem. For in-
stance, for the query pair strong:stronger, the can-
didate pairs are fortunate:fortunately, tight:young,
tall:taller, newer:larger. In this example, the ex-
pected answer is tall:taller. In this setting, we
encode both the query pair and the candidate pairs
using our relational encoders. The candidate pair
with the highest cosine similarity to the query pair
is selected as the correct answer. This approach is
unsupervised, relying solely on the quality of the
relation embeddings.

Tab. 2 reports the results on analogy questions
for large encoders (results for base encoders are
in Tab. 11) for eight datasets (U2, U4, BATS,
Google, SCAN, NELL, T-REX and ConceptNet),
with accuracy summarized using an average score.
RelBERT-large demonstrates strong performance
across datasets, achieving an average accuracy of
63.37%, with particularly high scores on Google
and NELL.

The proposed relational encoders UniPRE, Mul-
tiPRE, and SemPRE show varied performance de-

5all the datasets are available at: https://huggingface.
co/datasets/relbert/analogy_questions
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Model BLESS CogALexV EVALution K&H+N ROOT09 Average

RelBERT-large 81.25 72.14 53.45 88.59 75.67 74.22

RelKB (RelBERT finetuning data)
UniPRE-large 88.14 78.86 67.24 93.48 83.67 82.28
MultiPRE-large 90.54 86.82 64.94 94.37 83 83.93
SemPRE-large 80.93 69.4 41.38 92.74 69.67 70.82

SemRelLM(LLM-generated data)
UniPRE-large 88.46 78.86 64.94 93.41 89.33 83
MultiPRE-large 92.63 85.07 67.24 94.37 89.67 85.8
SemPRE-large 79.33 69.9 47.13 93.11 78.0 73.49

RelKB+SemRelLM
UniPRE-large 88.94 82.09 63.79 93.26 89.0 83.42
MultiPRE-large 91.67 90.8 67.82 94.74 91.0 87.21
SemPRE-large 80.13 72.14 46.55 93.26 74.0 73.22

Table 3: Micro F1-score (in %) on lexical relation classification. RelBERT results are from (Ushio et al., 2023)

pending on the training data used. When trained on
RelKB data, MultiPRE-large achieves the highest
average accuracy (65.72%), excelling on datasets
such as U4 and ConceptNet. UniPRE-large per-
forms competitively with an average score of
63.58%, particularly strong in NELL and T-REX.
However, SemPRE-large lags behind, with an aver-
age accuracy of 42.09%, due to its focus on entity-
level semantic properties rather than relational nu-
ances. Training on SemRelLM data yields simi-
lar trends, with UniPRE-large and MultiPRE-large
achieving comparable results (63.02% and 63.18%,
respectively), while SemPRE-large underperforms
again (36.48%). When combining RelKB and Sem-
RelLM data, UniPRE-large achieves the highest av-
erage score (66.18%), with notable improvements
in T-REX and NELL, while MultiPRE-large per-
forms slightly lower overall (65.38%).

These results demonstrate the effectiveness of
the proposed models, particularly MultiPRE-large
and UniPRE-large, in capturing diverse relational
semantics. MultiPRE-large leverages multiple re-
lational prompts effectively, while UniPRE-large
performs exceptionally well when trained on com-
bined datasets. SemPRE-large, designed to model
entity-specific properties, struggles in comparison,
highlighting its limitations for analogy questions
tasks.

Overall, our model outperforms RelBERT-large,
particularly excelling on challenging datasets like
T-REX and NELL. For Google, we achieve near
SOTA performance (ours: 94.6%; RelBERT: 95%),

and on SCAN, the difference is less than 2%.
SCAN is somewhat unique, as it focuses solely
on two relation types: science and metaphor. The
advantage of RelBERT on these datasets can likely
be attributed to its better alignment with simpler
relational structures.

5.3 Lexical Relation Classification
A second task we consider to evaluate our approach
is the lexical relation classification task6. In this
task, the goal is to classify word pairs into prede-
fined relation categories. We trained a multi-layer
perceptron (MLP) with one hidden layer of size
150 and a learning rate of 0.0001. The input to the
MLP is the relation embedding of the word pair,
while the relational encoder remains frozen during
training to evaluate its performance independently.
We also evaluate the performance of LLMs in both
0-shot and 5-shot settings. For an example of the
prompt used, refer to App. Fig. 2.

Tab. 3 reports the results for large models (re-
sults for base model are in Tab. 24) in terme of
F1-scores across five datasets (BLESS, CogALexV,
EVALution, K&H+N, and ROOT09). RelBERT-
large achieves an average score of 74.22%, per-
forming well on datasets like BLESS and K&H+N
but underperforming on EVALution highlighting
its limitations in handling complex relational se-
mantics.

The proposed encoders demonstrate significant
6The dataset is available at: https://huggingface.co/

datasets/relbert/lexical_relation_classification
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improvements, particularly MultiPRE-large, which
achieves the highest scores across all training se-
tups. When trained on RelKB data, MultiPRE-
large achieves an average score of 83.93%, ex-
celling in datasets such as CogALexV and K&H+N.
UniPRE-large also performs well with an aver-
age of 82.28%, while SemPRE-large lags behind
at 70.82%, struggling particularly with datasets
like EVALution. Training on SemRelLM data fur-
ther improves performance, with MultiPRE-large
achieving an average score of 85.8% and notable
gains on ROOT09 and BLESS. Combining RelKB
and SemRelLM data yields the best results, with
MultiPRE-large achieving a top average score of
87.21%, outperforming UniPRE-large (83.42%)
and SemPRE-large (73.22%). MultiPRE-large ex-
cels across all datasets, particularly CogALexV,
EVALution, and ROOT09, demonstrating its abil-
ity to leverage diverse relational prompts and high-
quality training data.

Overall, MultiPRE-large consistently outper-
forms other models, achieving state-of-the-art re-
sults, particularly when trained on the combined
RelKB and SemRelLM data. This highlights the ef-
fectiveness of leveraging diverse relational prompts
and high-quality datasets for robust relational en-
coding.

5.4 Main Factors of Model Performance

Training datasets Considering the average per-
formance for UniPRE and MultiPRE, fine-tuning
with the SemRelLM dataset outperforms RelKB
for lexical relation classification, particularly for
complex tasks like ROOT09 and BLESS which
require nuanced relational reasoning not fully cap-
tured by RelKB. For analogy questions, the per-
formance of the two datasets is comparable. For
both tasks, the best results are achieved by com-
bining SemRelLM and RelKB, highlighting their
complementary nature, as SemRelLM enriches re-
lational diversity. Its larger size allows it to cover a
broader spectrum, supporting better generalization.
Additionally, SemRelLM addresses commonsense
relations not fully represented in RelKB, which
makes it an effective complement. This combina-
tion leads to significant performance improvements,
up to +3% on analogy tasks and +4% on lexical
relation classification.

Pre-trained model checkpoint Overall, for
UniPRE and MultiPRE, fine-tuning DeBERTa
outperforms RoBERTa and BERT for both base

and large variants. However, for the SemPRE,
BERT performs best, followed by DeBERTa and
RoBERTa, likely due to BERT’s Wikipedia-based
training, which better captures entity-dependent
relational information. Detailed performance com-
parisons are provided in App. Tabs. 18 to 23 and 31
to 36 for UniPRE and MultiPRE, and Tabs. 12 to 17
and 25 to 30 for SemPRE.

LLM models As mentioned in Sec. 5.1, we per-
formed experiments with LLaMA and GPT-4o rep-
ported in reported in App. Tabs. 8 and 9 and App. C
for analogy questions and lexical relation classifi-
cation respectively. The experimental settings for
these LLMs are not aligned with those of our mod-
els or the RelBERT baseline, making the results
incomparable, and the results for GPT-4o should
be taken with caution, as its evaluation was limited
to only 100 examples due to cost constraints.

Overall, LLMs outperform our models on sim-
pler analogy tasks (see App. Tab. 8) involving
well-known relations like “capital of” or straight-
forward word pairs such as “simple” and “difficult.”
However, their performance declines in more chal-
lenging settings like the NELL and CN datasets due
to the “lost in the middle” phenomenon. In contrast,
our models remain robust and consistent, benefiting
from compact and focused relational embeddings.
In lexical relation classification, LLMs demonstrate
strong performance (see App. Tab. 9), highlighting
their capacity to understand relational semantics.
However, our encoders outperform them, likely due
to the additional training of an MLP on top of the
embeddings, which fine-tunes the models for task-
specific nuances that LLMs may miss in zero-shot
or few-shot settings.

6 Conclusion

This paper presents a novel approach to semantic
relation encoding, leveraging diverse prompts and
embedding fusion to enhance relational represen-
tations. Explicit, contextually rich prompts proved
crucial for capturing nuanced relationships, while
challenges such as factual accuracy and asymmetric
relations highlight areas for improvement. Future
work will explore automated prompt generation to
refine relational encoding further. Moreover, LLMs
do not naively produce embeddings, which are es-
sential for applications like retrieval, classification,
clustering, and other operations that require robust,
semantically meaningful vector representations.
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Limitations

Our analysis in this paper focused exclusively on
the English language and the fully supervised set-
ting for relational encoders. While we conducted
experiments with LLMs, tasks such as analogy
questions and lexical classification were limited
to open-source LLMs due to the cost of using pro-
prietary models like GPT-4o. For GPT-4o, we per-
formed a limited experiment with only 100 samples
to evaluate its capabilities. Our work also raises the
question of whether dedicated relation embeddings
are still necessary in the era of LLMs. Relation em-
beddings, however, offer distinct advantages, such
as being more effective for modeling relational sim-
ilarity and providing efficient, task-specific repre-
sentations that LLMs may not inherently optimize
for.
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A Analysis of the quality of LLM
generated data

A.1 Qualitative analysis

General observations A qualitative analysis of
the triplets generated using the propmts and exam-
ples in Appendix Tabs. 6 and 7 reveals that triplets
that do not follow the expected (head, relation, tail)
structure are present. Examples of such triplets
include (fast, rapid, fleet) for Synonymy, as it is a
sequence of 3 entities with no relation, and (shuffle,
slide, is a way to) for Troponymy, as the relation and
the tail have been swapped. Other triplets that do
not follow the expected structure of a triplet have
been discarded in the LLM output parsing step.
Finally, we identified the presence of triplets gen-
erated with inconsistent separation between head,
relation, and tail (e.g.: Hyponymy triplet (ferrari
is a brand of, high, performance car) instead of
(ferrari, is a brand of, high performance car)).

Aside from incorrect triplets, the LLM generates
triplets that are meaningful and varied in terms of
the entities involved and the relations used. As
can be seen in Tab. 1, after lemmatizing using
SpaCy7 and excluding stop words, the relation and
triplet count does not drop by a significant amount.
This is an illustration of the rich lexicon of rela-
tions generated for most relations categories, with
90% of Commensense relations used in at most
6 triplets. For Attribute, Collection, Entailment,
Meronymy, Member-collection, Similarity, and Tro-
ponymy, where the number of used relation lemmas
is small compared to the other relation categories,
the LLM adheres closely to the relations provided
in the few-shot examples.

Complementary relation categories introduced
Compared to (Ushio et al., 2023) we consider 4
new categories of relations and separate 5 of the
original categories into pairs of complementary
categories. These new categories enable a wider
variety of relation to be generated and account for
the dependency of the LLM to prompt formulation
and the few-shot examples chosen.

Temporal and Spatial relations contain both gen-
eral temporal (e.g.: gives way to, before, after, etc.)
and spatial (e.g.: in, on, beside, above, etc.) rela-
tions, and relations that are not exclusively tempo-
ral or spatial but contain a spatio-temporal aspect
(e.g.: (plant, grows, flower), (earth, orbits, sun)).

7https://spacy.io/api/lemmatizer, using the
en_core_web_sm model

some of the relations can be seen as factual (e.g.:
(earth, orbits, sun)) while other express likely re-
lations (e.g.: (cat, in, basket)). The latter is par-
ticularly interesting as such triplets are not usually
found in KGs, and correspond to commonsense
knowledge extracted from the LLM used. Simi-
larly, triplet using the Causal prompt cover explicit
causal relations (e.g.: leads to, regulates, prevents,
etc.) and relations with a causal aspect (e.g.: de-
stroys, that means to cause the destruction), as well
as strict (e.g.: destroys, produce, etc.) or non-strict
(e.g.: support, promotes, etc.) causes. While not
expected when designing the prompt, the prompt
for Functional relations also resulted in relations
with a causal aspect (e.g.: regulates, pollinates, fil-
ters, etc.) that correspond to a global and high-level
view of what the function of an entity can be.

Some of the added categories provide more spe-
cific or higher quality triplets. For instance, the
prompt for Entailment expands the natural causes
described in Causal relations with logical (e.g.: (to
be married, entails, having a wedding)) and com-
monsense (e.g.: (to sleep, entails, to be tired)) en-
tailment, including definitions (e.g.: (to be helpful,
entails, assist others)) that can be seen as bidirec-
tional entailment. The prompt for Synonymy re-
sults in about 2 out of 5 triplets being incorrectly
formed sequences of 3 entities without relations
that are lists of synonyms (ex: (fast, rapid, fleet)
or (cold, icy, glacial)). Comparatively, the more
explicit and factual description used for Similarity
results in no such triplets. Finally, while Meronymy
triplets relate components and what they are a part
of (e.g.: (petal, is a part of, flower)), roughly half
of Member-collection relations specify the generic
term use to designate a member (head) of a larger
set (tail), which is a literal interpretation of the
description in the prompt.

A.2 Quantitative analysis setup
To evaluate the extent of the above-mentioned phe-
nomena, we performed a human evaluation by sub-
mitting a sample of the generated triplets to an
evaluator among the authors. Inspired by (Jiang
et al., 2024), we adapted their evaluation metrics
into 8 multiple-choice questions to fit human evalu-
ation and the range of relations generated. For each
item, only one answer is possible. The exact de-
scription of the items and the possible answers, as
well as the examples given in the instructions, are
listed hereafter. For each triplet, all the information
used during generation is provided to the evaluator
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as in example Fig. 1.

Grammaticality: Is the triplet (h, r, t) well
formed (use the examples as a reference)? If NO is
selected, all other values are ignored, as the triplet
is not valid.

• YES: Triplet is of the form (h, r, t) with r a
relation from h to t, the latter two being of a
similar nature.

• NO: In "(fast, rapid, fleet)", "rapid" is not a
relation so the triplet is agrammatical. "(honda
cr, v, is a model)" is incorrectly separated into
head, relation, and tail.

Topical Similarity: Does the relation fit the defi-
nition of the category used in the prompt? If NO is
selected, "Uniqueness / diversity (relation)" is not
accounted for.

• YES: For instance, relations "leads to, regu-
lates, prevents" are exact match for the defini-
tion of causality.

• MARGINALLY: If we consider a relaxed in-
terpretation of the definition, then yes. For in-
stance relations "destroys" is a marginal match
for causality, as it causes destruction.

• NO: For instance, "(honesty, is, essential for
trust)" is not a valid triplet for causality, as
"is" is not a causal relation.

Uniqueness / diversity (relation): Is the set of
triplets different from the provided examples?

• REFORMULATION: Reuses a relation of
an example relation (to a reformulation). For
instance, "causes" is redundant with "is a
cause of".

• SYNONYM: Relation with close meaning to
an example relation, but a different root. For
instance, "causes" is close to "influences".

• RELATED: Relation without close meaning
to an example triplet. For instance, "causes"
is related to "destroys".

Fatualness: Is the generated triplet true, or at
least usually true?

• ALWAYS TRUE: There are no exception,
for instance "(cat, is a, mammal)" USUALLY
TRUE or COMMON-SENSE: There are some
exceptions, but it can be commonly accepted,
for instance "(cat, sleeps in, basket)".

• RARELY TRUE or SUBJECTIVE: There
are some instances where it is true, but usually
it is not, for instance "(pig, eats, duck foie
gras)".

• FALSE or HALLUCINATION: Never true,
for instance "(cat, is a, fish)", or nonsensical,
for instance "(cat, sleeps in, dog)".

Granularity: Does the triplet express a broad
relation or a very specific relation that belongs to
the relation category?

• FINE-GRAINED: Can be relaxed into
triplets that would better fit the relation cate-
gory, for instance for causality "(speeding, is
the main cause of, road traffic injuries)" could
be relaxed into "(speeding, causes, road traffic
injuries)" and still be adequate.

• MEDIUM-GRAINED: Can not be split into
triplets that would better fit the relation cate-
gory, for instance for causality "(storm, causes,
floods)".

• COARSE-GRAINED: The triplet expresses
a broad relation, that could be refined into one
or multiple triplets that better fit the relation
category, for instance for causality "(storm, in-
fluences, crops)" could be refined into "(storm,
destroys, crops)".

Originality: Is the generated triplet informative
and non-trivial?

• TRIVIAL: Triplets that contain no common-
sense knowledge, for instance "(cat, eats, cat
food)" where de facto "cat food" is food for
"cats", or "(good day, opposite of, bad day)"
that opposes good with bad with no necessary
knowledge on "day".

• INFORMATIVE: Triplets that contain
common-sense knowledge, for instance "(to
be employed, entails, to have a salary)".

• ORIGINAL or INVOLVED: Triplets that
contain specialist or involved knowledge, for
instance "(blue light, more energetic than, red
light)" or "(to be employed, entails, to pay
taxes)".

Uniqueness / diversity (head): Is the set of
triplets different enough from the provided exam-
ples?
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• REFORMULATION: Reuses the head or tail
of an example triplet (to a reformulation). For
instance, "storm" is redundant with "stormy
weather".

• SYNONYM: Has a close meaning to an ex-
ample head or tail, but a different root. For
instance, "storm" is synonymous to "tempest".

• RELATED: Is in the lexical field of an ex-
ample head or tail. For instance, "storm" is
related to "flood".

• UNRELATED: Is not in the lexical field of
an example head or tail. For instance, "storm"
is unrelated to "cat".

Uniqueness / diversity (tail): Is the set of triplets
different enough from the provided examples?

• REFORMULATION: Reuses the head or tail
of an example triplet (to a reformulation). For
instance, "storm" is redundant with "stormy
weather".

• SYNONYM: Has a close meaning to an ex-
ample head or tail, but a different root. For
instance, "storm" is synonymous to "tempest".

• RELATED: Is in the lexical field of an ex-
ample head or tail. For instance, "storm" is
related to "flood".

• UNRELATED: Is not in the lexical field of
an example head or tail. For instance, "storm"
is unrelated to "cat".

A.3 Quantitative analysis results
Two of the authors and a non-expert graduate stu-
dent were recruited for the evaluation.

In a first pilot evaluation, performed by one of
the authors, the first item (Grammaticality) was
evaluated on 20 randomly selected triplets of each
category, and the other items were evaluated on the
first 10 selected triplets. In total, 320 triplets were
evaluated for Grammaticality only and 160 triplet
were evaluated for all items. The results of the pilot
study are presented in Tab. 5.

In the second wave of evaluation, evaluators
were presented with 10 randomly selected triplets
of each category, the first 5 being shared across all
annotators for inter annotator agreement measure.
In total for all 3 annotators including the pilot study,
80 items were shared and 80 were specific to each

Triplet: ('to buy a computer', 'entails',
'using software')

Head: to buy a computer
Relation: entails
Tail: using software
Category: entailment
Description: entailment triplets that describe

logical relationships where one
concept or action logically infers
another

Examples: to sleep, entails, to be tired
to eat, entails, to be hungry
to rain, entails, to carry an

umbrella
to study, entails, to learn
to drive, entails, having a license

Figure 1: Context provided for a triplet (’to buy a com-
puter’, ’entails’, ’using software’) generated for the cat-
egory Entailment.

annotator. The results are summarized in Tab. 4.
Cohen’s κ score of inter annotator agreement is as
follows for each item:

• Grammaticality: 0.86

• Topical Similarity: 0.41

• Fatualness: 0.39

• Granularity: 0.26

• Originality: 0.16

• Uniqueness / diversity (relation): 0.29

• Uniqueness / diversity (head): 0.30

• Uniqueness / diversity (tail): 0.34

Reliability and overall quality of the triplets
Of the 320 triplets considered in the pilot study,
11 were agrammatical (1 from Common-sense and
the other 10 from Synonymy), meaning they do
not follow the expected HEAD, RELATION, TAIL
structure. Over the 160 triplets analyzed in details,
6 were agrammatical, so the questionnaire items
excluding Grammaticality were studied over 154
triplets. Out of those 154 triplets, 5 were hallucina-
tions as can be seen in the Fatualness item, which
means they do not describe true information. In
the full scale study, similar proportions were ob-
served, with less than 4% of agrammatical triplets
or hallucinations.
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Proportion of item (in %)
Item Choice

Grammaticality YES 96.74
NO 3.26

Topical Similarity YES 92.73
MARGINALLY 4.49
NO 2.78

Fatualness ALWAYS TRUE 54.70
USUALLY T. or C.-S. 32.05
RARELY T. or SUBJ. 9.40
FALSE or HALLU. 3.85

Granularity FINE-GRAINED 4.49
MEDIUM-GRAINED 94.87
COARSE-GRAINED 0.64

Originality ORIGINAL or INV. 12.69
INFORMATIVE 78.56
TRIVIAL 8.75

Uniqueness / diversity
(relation)

RELATED 16.08
SYNONYM 34.36
REFORMULATION 49.56

Uniqueness / diversity
(head)

UNRELATED 82.69
RELATED 8.55
SYNONYM 3.63
REFORMULATION 5.13

Uniqueness / diversity
(tail)

UNRELATED 83.54
RELATED 12.18
SYNONYM 2.14
REFORMULATION 2.14

Uniqueness / diversity
(highest relatedness
between head and tail
per triplet)

UNRELATED 79.28
RELATED 10.04
SYNONYM 4.27
REFORMULATION 6.41

Uniqueness / diversity
(lowest relatedness
between head and tail
per triplet)

UNRELATED 86.97
RELATED 10.68
SYNONYM 1.50
REFORMULATION 0.85

Table 4: Detailed result for each relation category, cu-
mulated over all answers of the 3 annotators. The top
items correspond to items in the questionnaire while
the bottom ones are computed from the answers to
“Uniqueness / diversity (head)” and “Uniqueness / diver-
sity (tail)”. "USUALLY T. or C.-S." stands for "USU-
ALLY TRUE or COMMON SENSE"; "RARELY T. or
SUBJ." stands for "RARELY T. or SUBJ."; "FALSE or
HALLU." stands for "FALSE or HALLU."; "ORIGI-
NAL or INV." stands for "ORIGINAL or INV.".

If we consider the added value of the generated
triplet measured with the Originality item, we can
observe only 8.75% of trivial items such as (big op-
portunity, opposite of, small opportunity) or (dell
inspiron, is a model of, dell). Interestingly, close to
12.7% of triplets can be considered as displaying
non-trivial knowledge, such as (strut support, is a
component of, aircraft), (to have a dream, entails,
setting goals) or (finger print, similar to, signature).
Most of these involved triplets belong to the Func-
tional category, such as (historian, preserves, tradi-
tions), or the Attribute and Meronymy categories.

Quality of the relation In the pilot study, only
2 triplets had relations that did not match the re-
lation category they were generated for (Topical
Similarity: NO). Additionally, as can be seen in the
Granularity item, 3 Causal triplets were overly pre-
cise (FINE-GRAINED), and only 2 triplets were
not precise enough (COARSE-GRAINED). Over-
all, the vast majority of the generated relation were
suitable in granularity and meaning for the category
they belong to.

The originality of the generated triplets in terms
of the relation can be observed with the Uniqueness
/ diversity (relation) item. Some relation categories
where a variety of relations were used in the ex-
amples (such as Functional, Common-Sense, and
Causal), display a variety of relations in the gener-
ated triplets, while for categories with a narrow set
of valid formulations (like Entailment, Attribute,
Collocation, etc.) the generate triplets closely
match the provided examples.

Originality of the head and tail While the Orig-
inality item reveals how trivial or involved the
knowledge expressed by a triplet is, it is not suffi-
cient to confirm that the generated triplets are not
just repetitions of the elements in the provided ex-
amples. To address this, the Uniqueness / diversity
(head) and Uniqueness / diversity (tail) items al-
low us to consider the originality of the HEAD
and TAIL of each triplet. Over all HEADs and
TAILs, we observe above 80% of terms that are
completely unrelated to the provided examples for
the category, with less than 10% of REFORMU-
LATIONs and SYNONYMs to terms present in the
examples. This indicates that while the majority
of triplets contain original elements, a significant
amount of HEADs and TAILS are still close to the
provided examples. On the plus side, when we
consider both the HEAD and TAIL of the triplet,
only 2.35% of triplets have both HEAD and TAIL
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as a SYNONYM or REFORMULATION (lowest
relatedness, last group of rows of Tab. 4). Compar-
atively, 89.32% of triplets have both HEAD and
TAIL at most in the same lexical field of the ones
of the examples (highest relatedness, before-last
group of rows of Tab. 4).

Overall, despite the lack of instruction like "do
not reuse terms that appear in the examples for the
HEAD or TAIL", the LLM tends to generate di-
verse HEADs and TAILs compared to the provided
examples.

B LLMs Prompts

You are tasked with identifying the
most analogous pair of words based on
the given example.
The example pair is: lie and
prevaricate.

From the following list, choose the
most fitting pair:

1. betray and trust
2. philander and donate
3. waver and falter
4. deride and praise
5. corroborate and doubt

Only provide the number of the correct
answer.

Figure 2: Example of the prompt used for GPT-4o and
Llama-3.3-70B-Instruct in 0-shot mode for the anal-
ogy question task.

You are tasked with identifying the
most fitting relationship of the given
example.
The example pair is: turtle and live.

From the following list, choose the
most fitting relationship:

1. hyper
2. coord
3. mero
4. random
5. attri
6. event

Only provide the number of the correct
answer.

Figure 3: Example of the prompt used for GPT-4o and
Llama-3.3-70B-Instruct in 0-shot mode for the lexi-
cal relation classification task.

C LLMs performance

The performance of GPT-4o in both 0-shot and
5-shot settings is reported in Appendix Tab. 8 for
analogy question and Appendix Tab. 9 for lexical
relation classification. Note that the evaluation
is limited to the first 100 items, which should be
considered when interpreting the results.

For analogy questions, Llama3.3 and GPT-4o
in 0-shot and 5-shot settings show strong perfor-
mance in specific datasets like BATS and Google
but has inconsistent results overall with average
scores of 56.49% (0-shot) and 59.59% (5-shot) for
Llama3.3. This contrasts with our proposed mod-
els and RelBERT, with for instance RelBERT-large
demonstrating strong performance across datasets,
achieving an average accuracy of 63.37%, with
particularly high scores on Google and NELL.

Llama3.3 performs poorly in the 0-shot setting
for lexical relation classification, with an average
score of 43.0%, and struggles on datasets like
K&H+N (13%) and CogALexV. In the 5-shot set-
ting, its performance improves significantly, achiev-
ing an average of 70.4% and performing well on
ROOT09 and CogALexV. However, it still falls
short of task-specific models like MultiPRE-large,
underscoring the advantages of specialized rela-
tional encoders. While Llama3.3 shows promise in
few-shot, it remains less effective than relational
encoders, further emphasizing the importance of
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Grammaticality YES 20 20 20 20 20 20 20 19 20 20 10 20 20 20 20 20 309
NO 0 0 0 0 0 0 0 1 0 0 10 0 0 0 0 0 11

Topical Similarity YES 10 10 10 9 9 10 8 8 9 10 4 10 10 10 10 10 147
MARGINALLY 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 5
NO 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 2

Fatualness ALWAYS TRUE 3 7 5 10 2 9 5 3 3 6 4 8 10 9 0 2 86
USUALLY T. or C.-S. 7 0 2 0 7 1 3 4 7 3 1 2 0 0 3 8 48
RARELY T. or SUBJ. 0 1 3 0 1 0 1 2 0 1 0 0 0 0 6 0 15
FALSE or HALLU. 0 2 0 0 0 0 1 0 0 0 0 0 0 1 1 0 5

Granularity FINE-GRAINED 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
MEDIUM-GRAINED 10 9 10 10 9 10 10 9 10 10 5 10 10 10 10 7 149
COARSE-GRAINED 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2

Originality ORIGINAL or INV. 5 1 5 0 8 4 1 2 2 3 0 1 1 0 2 4 39
INFORMATIVE 5 9 5 9 2 5 9 7 8 7 5 8 9 8 8 6 110
TRIVIAL 0 0 0 1 0 1 0 0 0 0 0 1 0 2 0 0 5

Uniqueness / diversity
(relation)

RELATED 0 1 0 0 10 0 1 8 0 0 0 0 0 0 1 3 24
SYNONYM 0 2 0 4 0 0 2 0 0 0 0 0 0 0 1 3 12
REFORMULATION 10 7 10 5 0 10 6 1 10 10 5 10 10 10 8 4 116

Uniqueness / diversity
(head)

UNRELATED 8 9 10 5 7 7 5 8 6 5 2 8 8 10 4 7 109
RELATED 1 0 0 5 1 3 3 0 3 4 2 0 2 0 2 1 27
SYNONYM 1 0 0 0 0 0 1 0 0 1 1 2 0 0 0 1 7
REFORMULATION 0 1 0 0 2 0 1 1 1 0 0 0 0 0 4 1 11

Uniqueness / diversity
(tail)

UNRELATED 9 9 9 5 9 6 7 8 5 6 3 8 8 10 4 6 112
RELATED 0 1 1 5 1 3 2 1 4 3 1 1 2 0 5 3 33
SYNONYM 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 5
REFORMULATION 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 4

Uniqueness / diversity
(head + tail)

UNRELATED 17 18 19 10 16 13 12 16 11 11 5 16 16 20 8 13 221
RELATED 1 1 1 10 2 6 5 1 7 7 3 1 4 0 7 4 60
SYNONYM 1 0 0 0 0 0 2 0 1 2 2 2 0 0 0 2 12
REFORMULATION 1 1 0 0 2 1 1 1 1 0 0 1 0 0 5 1 15

Uniqueness / diversity
(highest relatedness
between head and tail
per triplet)

UNRELATED 8 9 9 5 7 6 5 8 5 5 2 8 8 10 3 5 103
RELATED 1 0 1 5 1 3 3 0 4 3 2 0 2 0 3 2 30
SYNONYM 0 0 0 0 0 0 1 0 0 2 1 1 0 0 0 2 7
REFORMULATION 1 1 0 0 2 1 1 1 1 0 0 1 0 0 4 1 14

Uniqueness / diversity
(lowest relatedness
between head and tail
per triplet)

UNRELATED 9 9 10 5 9 7 7 8 6 6 3 8 8 10 5 8 118
RELATED 0 1 0 5 1 3 2 1 3 4 1 1 2 0 4 2 30
SYNONYM 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 5
REFORMULATION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Table 5: Detailed result of the pilot study, for each relation category. The top items correspond to items in
the questionnaire while the bottom ones are computed from the answers to “Uniqueness / diversity (head)” and
“Uniqueness / diversity (tail)”. "USUALLY T. or C.-S." stands for "USUALLY TRUE or COMMON SENSE";
"RARELY T. or SUBJ." stands for "RARELY TRUE or SUBJECTIVE"; "FALSE or HALLU." stands for "FALSE
or HALLUCINATION"; "ORIGINAL or INV." stands for "ORIGINAL or INVOLVED".
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Corresponding
Relation RelSim relation Description

Commonsense – knowing knowledge triplets that describe commonsense rela-
tion

Functional – functional triplets that describe the function or role of an object
or entity

Collocation – collocation triplets that describe words that frequently occur
together

Troponymy – troponymy triplets that describe specific ways in which an
action is performed

Antonymy Antonym antonymy triplets that describe opposite concepts or entities
Attribute Attribute attribute triplets that describe inherent properties or qualities

of objects or entities

Causal Cause-Purpose causal triplets that describe cause and effect relationships
Entailment Cause-Purpose entailment triplets that describe logical relationships where

one concept or action logically infers another

Spatial Space-Time spatial triplets that describe spatial relationship between ob-
jects or entities

Temporal Space-Time temporal triplets that describe the temporal relationship be-
tween events or states

Hyponymy Hypernym hyponymy triplets that describe the relationship where one
term is a subtype or a specific instance of another

Hypernymy Hypernym hypernymy triplets that describe the relationship where one
term encompasses a broader category to which the other be-
longs

Meronymy Meronym meronymy triplets that describe part-whole relationships
Member-collection Meronym member-collection triplets that describe the relationship be-

tween an individual item and the group to which it belongs

Synonymy Synonym synonymy triplets that describe similar or identical concepts
Similarity Synonym similarity triplets that describe the likeness or analogies be-

tween different concepts or entities

Table 6: Relations considered and corresponding description for the prompts of the LLM generated data.
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Relation Few-shot examples

Commonsense (pen, writes with, ink), (chair, sits on, person), (fire, burns, wood),
(house, lives in, family), (pencil, used for, drawing)

Functional (engine, powers, machine), (nurse, cares, sick person),
(beekeeper, monitors, honey production), (ocean, regulates, climate),
(carpenter, builds, house), (researcher, discovers, new knowledge)

Collocation (fire, and, flames), (wind, and, breeze), (coffee, and, cream), (tea, and, leaves),
(sand, and, beach), (mountain, and, peak)

Troponymy (hurry, is a way to, move), (gallop, is a way to, run), (trudge, is a way to, walk),
(amble, is a way to, walk), (skip, is a way to, walk), (dash, is a way to, run)

Antonymy (joy, opposite of, sorrow), (empty, opposite of, full), (silence, opposite of, noise),
(morning, opposite of, night), (old, opposite of, young),
(pure, opposite of, impure)

Attribute (snow, has, whiteness), (silk, has, softness), (copper, has, conductivity),
(butter, has, richness), (charcoal, has, carbon content), (perfume, has, fragrance)

Causal (rain, brings, flowers), (learning, improves, memory), (eating, provides, energy),
(sleep, helps, concentration), (reading, expands, vocabulary),
(meditation, reduces, stress)

Entailment (to read a book, entails, having eyes), (to write, entails, having a pen),
(to bake a cake, entails, having flour), (to plant a garden, entails, having soil),
(to learn a language, entails, studying vocabulary),
(to be married, entails, having a wedding)

Spatial (chair, beside, sofa), (kite, in, sky), (dog, on, beach), (phone, in, pocket),
(book, on, desk), (man, on, bike)

Temporal (childhood, before, adolescence), (learning, before, graduation),
(voting, before, election), (winter, before, spring), (childhood, before, adulthood),
(learning, before, promotion)

Hyponymy (ferrari, is a brand of, car), (pineapple, is a type of, fruit),
(guitar, is a type of, instrument), (laptop, is a type of, computer),
(dolphin, is a type of, mammal), (trumpet, is a type of, instrument)

Hypernymy (sport, categorizes, basketball), (animal, encompasses, cat),
(music, includes, jazz), (food, categorizes, pizza), (building, covers, house),
(poem, encompasses, sonnet)

Meronymy (gear, is a component of, machine), (atom, is a component of, molecule),
(fin, is a part of, fish), (bolt, is a component of, lock), (thread, is a part of, fabric),
(blade, is a part of, windmill)

Member-collection (bee, member of, swarm), (fish, part of, school), (tree, part of, forest),
(book, part of, library), (student, member of, class)

Synonymy (expensive, similar to, costly), (beautiful, similar to, lovely),
(angry, similar to, irate), (busy, similar to, hectic), (soft, similar to, gentle),
(sharp, similar to, pointed)

Similarity (wings, similar to, arms of a butterfly), (bee, similar to, worker in a factory),
(pen, similar to, brush), (voice, similar to, song),
(wheels, similar to, pedals of a bicycle), (clouds, similar to, cotton balls)

Table 7: Relations considered and corresponding few-shot examples for the prompts of the LLM generated data.
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hurry

Relation Embedding for (hurry, move)

move

BERT f

relationshipThe [HEAD]between and [TAIL] is [MASK]

[MASK] 
embedding

UniPRE

hurry

Relation Embedding for (hurry, move)

move

BERT f1:
One property of [HEAD] is to be the [MASK] of [TAIL].

[MASK] 
embedding

MultiPRE

BERT f3:
In terms of science, [HEAD] is the [MASK] of [TAIL].

BERT f2:
Usually, we are [TAIL] [MASK] [HEAD].

[MASK] 
embedding

[MASK] 
embedding

[HEAD] [TAIL]

hurry move

BERT fHEAD:
[HEAD] means [MASK].

SemPRE

BERT fTAIL:
[TAIL] means [MASK].

[MASK] 
embedding

[MASK] 
embedding

[HEAD] [TAIL]

.

Relation Embedding for (hurry, move)

[HEAD] [TAIL]

Figure 4: Example of the proposed models for the triplet
(hurry, is a way to, move) from the Troponymy category.
UniPRE uses prompt1 and MultiPRE uses prompt5
from Tab. 10.

task-specific training for lexical relation classifica-
tion.

D Details for our models

D.1 Structure

In Fig. 4 we illustrate the workings of the three
models proposed in Sec. 4.

⊕
corresponds to con-

catenation, and
⊙

corresponds to the Hadamar
product.

D.2 Training hyperparameters

The training process for all encoders uses early
stopping with a patience of 30, a batch size of 256,
a learning rate of 1 × 10−5, and a temperature
parameter set to 0.03. These hyperparameters are
chosen to ensure stability and convergence across
diverse model variants and tasks.

D.3 Prompts
Tab. 10 show all different prompts used. Prompts 1
to 4 are designed for the Uni-Aspect Relation En-
coder (UniPRE), while Prompts 5 and 6 are tailored
for the Multi-Aspects Encoder (MultiPRE).

D.4 Analogy
Refer to Tab. 11 for a comparison between our
DeBERTa-based encoder and RelBERT on the anal-
ogy question task.

D.4.1 Semantic Properties Encoder
Tabs. 12 to 17 detail the performance of the Sem-
PRE model on Analogy Questions for DeBERTa,
RoBERTa, and BERT base and large checkpoints,
for each combination of fine-tuning datasets.

D.4.2 Single and Multi Aspect LM
Tabs. 18 to 23 detail the performance of the
UniPRE and MultiPRE on Analogy Questions for
DeBERTa, RoBERTa, and BERT base and large
checkpoints, for each combination of fine-tuning
datasets.

D.5 Lexical relation classification
Refer to Tab. 24 for a comparison between our
DeBERTa-based encoder and RelBERT on the lex-
ical relation classification task.

D.5.1 Semantic Properties Encoder
Tabs. 25 to 30 detail the performance of SemPRE
on Lexical Relation Classification for DeBERTa,
RoBERTa, and BERT base and large checkpoints,
for each combination of fine-tuning datasets.

D.5.2 Single and Multi Aspect LM
Tabs. 31 to 36 detail the performance of UniPRE
and MultiPRE on Lexical Relation Classification
for DeBERTa, RoBERTa, and BERT base and large
checkpoints, for each combination of fine-tuning
datasets.
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Model U2 U4 BATS Google SCAN NELL T-REX CN Average

GPT-4o 0-shot 84 81 99 100 25 48 79 13 66.13
GPT-4o 5-shot 87 86 100 99 32 89 79 26 74.75

Llama3.3 0-shot 76 68 95 97 22 38 45 29 58.75
Llama3.3 5-shot 81 69 97 98 36 55 54 25 64.38

Table 8: Accuracy (in %) on analogy questions, was test on the 100 first items per datasets.

Model BLESS CogALexV EVALution K&H+N ROOT09 Average

GPT-4o 0-shot 57 75 61 56 83 66.4
GPT-4o 5-shot 79 91 70 84 85 81.8

Llama3.3 0-shot 43 52 58 13 44 42.0
Llama3.3 5-shot 69 73 64 71 75 70.4

Table 9: Micro F1-score (in %) on lexical relation classification, was test on the 100 first items per datasets.

Name Model Template

prompt1 UniPRE The relationship between [HEAD] and [TAIL] is <mask>.

prompt2 UniPRE The word that best describes the relationship between [HEAD] and [TAIL] is <mask>.

prompt3 UniPRE People often use the word <mask> to describe the relationship between [HEAD] and [TAIL].

prompt4 UniPRE One property of [HEAD] is to be the <mask> of [TAIL].

prompt5 MultiPRE - One property of [HEAD] is to be the <mask> of [TAIL].
- Usually, we are [TAIL] <mask> [HEAD].

prompt6 MultiPRE - One property of [HEAD] is to be the <mask> of [TAIL].
- Usually, we are [TAIL] <mask> [HEAD].
- In terms of science, [HEAD] is the <mask> of [TAIL].

Table 10: Link between prompt name and prompt template

Model U2 U4 BATS Google SCAN NELL T-REX CN Average

RelBERT-base 59.65 57.41 70.32 89.20 25.93 62.0 66.67 39.77 58.86

RelKB
UniPRE-base 42.11 49.31 69.93 88.8 19.31 76.5 59.02 41.19 55.77
MultiPRE-base 53.51 56.48 72.21 92.4 19.43 78.83 62.84 35.07 58.85
SemPRE-base 34.65 32.64 45.53 47.4 10.4 71.5 32.24 20.47 36.85

SemRelLM
UniPRE-base 63.16 67.59 72.15 89.0 20.61 59.67 63.93 34.06 58.77
MultiPRE-base 68.42 69.91 77.6 94.4 23.08 66.83 66.67 35.32 62.78
SemPRE-base 34.21 40.05 50.64 53.8 15.28 55.83 26.78 20.55 37.14

RelKB+SemRelLM
UniPRE-base 63.6 67.13 75.32 91.2 21.23 74.17 64.48 35.32 61.56
MultiPRE-base 67.98 71.06 78.04 93.6 24.75 72.33 68.85 37.25 64.23
SemPRE-base 34.65 39.58 50.47 63.8 15.53 76.5 37.16 23.32 42.63

Table 11: Accuracy (in %) on analogy questions. For our models, we use DeBERTa. RelBERT models are
reproduced following (Ushio et al., 2023).
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U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
34.65 39.58 50.47 63.8 15.53 76.5 37.16 23.32 42.63

RelKB
34.65 32.64 45.53 47.4 10.4 71.5 32.24 20.47 36.85

SemRelLM
34.21 40.05 50.64 53.8 15.28 55.83 26.78 20.55 37.14

Table 12: SemPRE performance on analogy with deberta-base.

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
28.95 31.48 25.74 32.8 5.94 26.50 14.75 7.63 21.72

RelKB
26.75 31.71 34.07 37.4 8.23 39.67 26.23 11.74 26.97

SemRelLM
28.95 30.56 26.18 28.8 6.19 24.00 12.57 8.47 20.71

Table 13: SemPRE performance on analogy with roberta-large.

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
38.60 40.05 57.53 62.2 16.96 69.83 38.25 24.83 43.53

RelKB
31.58 32.64 49.58 53.6 11.51 74.67 56.28 26.85 42.09

SemRelLM
37.72 40.51 49.58 54.8 15.53 54.00 16.39 23.32 36.48

Table 14: SemPRE performance on analogy with deberta-large.

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
24.12 29.63 33.24 45.0 7.49 45.83 18.03 12.5 26.98

RelKB
30.7 28.94 26.29 37.8 4.02 59.0 26.78 8.39 27.74

SemRelLM
6.32 28.01 27.52 31.8 6.75 23.83 6.01 9.06 19.91

Table 15: SemPRE performance on analogy with roberta-base

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
39.47 45.6 48.25 51.4 26.73 65.33 49.73 21.56 43.51

RelKB
36.84 36.11 52.75 54.6 19.43 69.83 61.75 25.08 44.55

SemRelLM
40.79 45.83 43.41 41.8 25.06 51.83 31.15 19.04 37.36

Table 16: SemPRE performance on analogy with bert-base
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U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
37.28 45.14 52.03 57.8 28.03 66.33 60.66 23.07 46.29

RelKB
34.21 33.56 49.36 45.2 21.97 71.0 61.75 22.15 42.4

SemRelLM
41.67 47.92 48.75 54.4 27.6 57.0 47.54 22.82 43.46

Table 17: SemPRE performance on analogy with bert-large

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 60.96 59.72 69.65 88.6 17.88 53.33 44.26 24.16 52.32
prompt2 63.16 62.27 71.76 90.0 19.55 52.5 50.27 21.73 53.91
prompt3 63.16 62.27 71.93 89.0 20.42 49.67 47.54 25.0 53.62
prompt4 63.6 67.13 75.32 91.2 21.23 74.17 64.48 35.32 61.56
prompt5 69.74 71.06 77.49 91.2 22.28 72.17 64.48 35.32 62.97
prompt6 67.98 71.06 78.04 93.6 24.75 72.33 68.85 37.25 64.23

RelKB
prompt1 47.81 46.53 61.87 83.8 13.68 67.33 45.36 20.72 48.39
prompt2 53.51 52.08 69.98 89.8 14.67 67.5 50.82 17.95 52.04
prompt3 42.54 49.07 68.32 80.2 16.21 70.0 62.84 32.21 52.67
prompt4 42.11 49.31 69.93 88.8 19.31 76.5 59.02 41.19 55.77
prompt5 44.74 53.24 73.54 90.8 18.32 76.33 60.11 38.51 56.95
prompt6 53.51 56.48 72.21 92.4 19.43 78.83 62.84 35.07 58.85

SemRelLM
prompt1 61.4 61.34 70.71 88.4 17.64 46.17 37.7 23.66 50.88
prompt2 62.72 63.89 69.09 87.4 17.33 47.17 40.44 26.01 51.76
prompt3 61.84 63.43 67.59 85.6 17.39 46.67 40.44 21.81 50.6
prompt4 63.16 67.59 72.15 89.0 20.61 59.67 63.93 34.06 58.77
prompt5 65.35 64.58 70.54 88.2 20.61 62.0 56.83 32.89 57.62
prompt6 68.42 69.91 77.6 94.4 23.08 66.83 66.67 35.32 62.78

Table 18: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with deberta-base
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U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 57.89 65.05 65.76 78.4 19.37 71.5 70.49 32.47 57.62
prompt2 59.21 62.73 67.59 82.0 21.66 73.0 72.68 31.12 58.75
prompt3 59.21 63.66 70.87 86.0 22.52 73.5 65.03 32.05 59.1
prompt4 63.6 67.13 70.48 84.6 26.98 80.0 76.5 42.45 63.97
prompt5 64.04 65.51 66.93 81.4 24.57 78.83 67.76 42.11 61.39
prompt6 63.6 68.29 70.65 84.2 28.03 77.67 73.77 39.01 63.15

RelKB
prompt1 45.61 52.31 70.26 84.2 21.04 74.0 71.04 42.53 57.62
prompt2 45.61 54.4 75.6 87.6 21.04 74.67 74.86 53.78 60.95
prompt3 48.25 52.55 67.87 83.4 21.41 73.5 63.93 33.47 55.55
prompt4 54.39 55.09 78.93 92.0 23.95 77.5 71.58 54.03 63.43
prompt5 50.44 55.56 76.99 90.4 22.83 75.33 68.85 54.45 61.86
prompt6 47.81 53.94 79.6 93.0 27.66 78.33 69.95 48.74 62.38

SemRelLM
prompt1 60.09 63.43 61.37 79.0 20.67 63.5 71.58 31.29 56.37
prompt2 63.16 64.12 60.92 82.2 19.74 56.67 66.67 25.42 54.86
prompt3 59.21 62.5 62.09 80.0 18.19 53.67 65.57 27.43 53.58
prompt4 61.84 65.51 64.81 82.6 22.77 70.0 71.04 34.98 59.19
prompt5 66.67 68.75 62.03 80.6 22.65 66.0 74.32 37.42 59.8
prompt6 64.04 68.75 68.93 83.8 26.92 70.0 73.77 36.33 61.57

Table 19: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with roberta-large

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 70.18 73.15 78.32 88.4 21.41 66.83 67.21 32.72 62.28
prompt2 66.67 68.52 82.49 93.2 20.48 62.33 58.47 29.78 60.24
prompt3 64.04 69.91 79.99 90.8 21.41 64.5 63.39 36.66 61.34
prompt4 72.81 74.54 82.66 93.6 20.3 73.83 71.04 40.69 66.18
prompt5 72.37 73.15 82.27 94.8 21.47 68.17 67.76 38.42 64.8
prompt6 71.05 73.15 83.77 94.6 25.56 69.83 65.57 39.51 65.38

RelKB
prompt1 55.26 59.26 80.21 90.2 18.07 69.67 70.49 43.54 60.84
prompt2 60.09 61.11 80.82 94.2 18.19 74.5 69.4 38.76 62.13
prompt3 56.58 59.26 78.77 91.2 18.25 73.5 65.57 41.02 60.52
prompt4 61.84 60.65 79.66 92.8 19.74 77.17 68.85 47.9 63.58
prompt5 60.53 65.05 79.1 91.8 18.63 75.83 68.85 54.7 64.31
prompt6 61.84 67.36 82.32 93.6 20.3 76.33 70.49 53.52 65.72

SemRelLM
prompt1 67.98 69.68 76.6 92.0 19.55 46.17 56.83 29.53 57.29
prompt2 71.49 72.22 80.1 93.4 21.29 56.17 52.46 30.54 59.71
prompt3 67.98 71.76 76.43 90.0 18.44 53.33 53.01 30.62 57.7
prompt4 73.68 75.0 79.1 92.0 20.36 56.17 69.95 37.92 63.02
prompt5 71.93 70.6 78.93 92.8 21.35 62.5 66.67 38.34 62.89
prompt6 70.61 74.31 80.77 92.2 23.21 62.67 64.48 37.16 63.18

Table 20: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with deberta-large
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U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 59.65 62.27 63.15 82.8 24.94 74.83 65.57 33.98 58.4
prompt2 58.33 61.57 63.59 85.4 25.43 73.83 59.56 34.14 57.73
prompt3 55.7 60.65 67.09 86.0 24.81 72.17 59.56 31.96 57.24
prompt4 55.7 59.72 64.81 86.0 28.03 77.33 67.76 36.91 59.53
prompt5 59.65 63.89 71.98 92.8 30.69 79.67 66.12 37.67 62.81
prompt6 60.53 62.96 73.43 93.8 32.12 77.67 65.57 39.09 63.15

RelKB
prompt1 45.18 46.3 70.59 86.0 20.73 74.83 70.49 47.23 57.67
prompt2 45.61 49.77 70.48 86.2 22.71 74.67 62.3 41.11 56.61
prompt3 39.04 46.3 68.2 84.0 21.6 74.17 60.11 39.09 54.06
prompt4 49.12 49.77 70.43 88.8 21.84 77.0 69.95 48.32 59.4
prompt5 47.37 54.4 72.04 88.0 26.42 76.17 66.67 38.84 58.74
prompt6 48.68 53.47 75.21 94.2 24.44 77.17 71.04 49.75 61.75

SemRelLM
prompt1 59.65 62.04 59.92 82.2 23.82 67.83 64.48 32.05 56.5
prompt2 53.51 59.26 64.54 85.2 25.0 55.83 57.92 26.01 53.41
prompt3 53.95 56.94 62.92 85.2 24.32 59.83 64.48 29.78 54.68
prompt4 57.89 62.73 63.42 85.6 26.05 72.33 72.68 35.15 59.48
prompt5 59.65 64.35 68.59 91.0 29.46 76.83 66.12 36.83 61.6
prompt6 59.21 62.27 66.81 87.4 28.28 71.83 66.12 37.08 59.88

Table 21: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with roberta-base

U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 43.42 53.94 63.2 75.4 26.55 67.33 63.93 28.44 52.78
prompt2 44.74 49.31 58.92 72.6 27.48 62.67 61.2 23.66 50.07
prompt3 47.37 50.23 61.37 74.0 25.37 65.33 57.92 25.42 50.88
prompt4 50.0 53.94 70.09 81.8 28.4 73.67 72.68 34.4 58.12
prompt5 47.81 57.87 74.21 88.4 30.2 74.0 63.39 33.47 58.67
prompt6 45.61 48.15 74.1 87.2 32.36 72.67 68.31 30.45 57.36

RelKB
prompt1 39.91 39.81 60.87 67.6 17.95 68.83 59.56 20.97 46.94
prompt2 37.28 39.58 62.76 64.6 20.85 69.67 68.31 22.73 48.22
prompt3 39.04 39.12 62.76 71.8 18.19 72.0 64.48 26.59 49.25
prompt4 42.54 42.13 73.6 85.8 23.45 74.33 74.32 40.52 57.09
prompt5 44.3 42.59 74.82 87.0 26.49 75.67 67.76 35.23 56.73
prompt6 45.61 44.68 73.87 88.0 28.34 75.83 72.68 34.56 57.95

SemRelLM
prompt1 46.05 53.24 59.37 69.0 24.75 63.67 56.83 25.5 49.8
prompt2 42.98 49.07 54.25 63.2 27.6 57.33 50.82 19.8 45.63
prompt3 42.54 50.23 50.69 58.6 23.27 45.0 44.81 15.27 41.3
prompt4 47.81 53.7 66.43 79.2 28.84 65.17 66.12 33.39 55.08
prompt5 49.12 57.64 71.76 81.8 29.7 65.83 63.93 33.31 56.64
prompt6 47.81 56.71 73.1 87.4 32.12 66.83 64.48 31.8 57.53

Table 22: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with bert-base
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U2 U4 BATS GOOGLE SCAN NELL T-REX CN Average

RelKB+SemRelLM
prompt1 46.93 51.62 62.59 75.8 21.84 63.67 52.46 20.39 49.41
prompt2 54.82 56.94 68.43 82.0 27.29 65.5 71.58 30.29 57.11
prompt3 55.7 59.95 69.48 81.2 27.66 69.0 71.58 30.7 58.16
prompt4 52.19 58.8 72.15 87.0 31.56 72.17 73.77 35.4 60.38
prompt5 57.46 60.42 75.82 91.4 31.68 73.17 65.03 35.49 61.31
prompt6 59.65 62.5 75.43 90.8 29.76 73.83 68.85 35.74 62.07

RelKB
prompt1 42.11 45.14 67.76 77.6 21.97 70.17 70.49 38.51 54.22
prompt2 38.16 46.06 67.93 81.2 22.22 69.17 74.86 38.93 54.82
prompt3 43.42 47.22 64.59 78.4 22.34 69.0 72.13 30.37 53.43
prompt4 42.98 47.22 73.99 88.6 26.24 75.33 73.22 41.95 58.69
prompt5 45.61 51.39 78.04 88.4 26.73 75.83 72.13 48.07 60.78
prompt6 43.86 45.37 72.98 86.6 24.63 75.5 72.68 39.6 57.65

SemRelLM
prompt1 55.7 60.42 61.7 74.2 21.66 64.67 61.75 27.18 53.41
prompt2 56.14 59.26 66.43 79.2 27.35 64.67 55.74 30.29 54.89
prompt3 47.81 55.79 64.2 76.4 26.79 59.67 56.28 28.1 51.88
prompt4 53.95 61.11 71.76 87.4 30.57 69.17 77.6 36.16 60.97
prompt5 59.21 63.66 73.15 89.2 30.45 65.5 69.95 33.98 60.64
prompt6 58.33 61.11 74.71 90.4 31.81 65.67 69.4 36.74 61.02

Table 23: Accuracy (in %) for Uni-Aspect (prompts 1 to 4) and Multi-Aspect (prompts 5 and 6) Encoders on
Analogy Tasks with bert-large

Model BLESS CogALexV EVALution K&H+N ROOT09 Average

RelBERT-base 76.92 71.64 48.85 85.78 78.33 72.30

RelKB
UniPRE-base 86.54 73.38 55.75 91.04 84.33 78.21
MultiPRE-base 88.46 83.58 64.37 93.11 88.33 83.57
SemPRE-base 77.08 66.17 48.28 91.48 70.67 70.74

SemRelLM
UniPRE-base 84.29 78.36 60.92 91.11 88.33 80.6
MultiPRE-base 89.26 82.84 66.67 92.81 90.33 84.38
SemPRE-base 74.84 67.66 44.25 91.78 70.33 69.77

RelKB+SemRelLM
UniPRE-base 84.62 77.61 63.22 91.04 88.33 80.96
MultiPRE-base 89.1 83.58 66.67 93.56 90.33 84.65
SemPRE-base 75.64 67.66 43.68 91.93 74.67 70.72

Table 24: Micro F1-score (in %) on lexical relation classification. For our models, we use DeBERTa and train with
RelBERT dataset.

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
75.64 67.66 43.68 91.93 74.67 70.72

RelKB
77.08 66.17 48.28 91.48 70.67 70.74

SemRelLM
74.84 67.66 44.25 91.78 70.33 69.77

Table 25: Semantic Properties performance on lexical relation classification with deberta-base

20284



BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
71.15 74.38 43.68 87.78 67.67 68.93

RelKB
77.4 73.88 44.83 88.52 72.0 71.33

SemRelLM
71.31 74.13 45.4 87.33 69.0 69.43

Table 26: Semantic Properties performance on lexical relation classification with roberta-large

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
80.13 72.14 46.55 93.26 74.0 73.22

RelKB
80.93 69.4 41.38 92.74 69.67 70.82

SemRelLM
79.33 69.9 47.13 93.11 78.0 73.49

Table 27: Semantic Properties performance on lexical relation classification with deberta-large

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
68.75 73.13 44.25 82.0 65.0 66.63

RelKB
58.65 72.14 33.91 81.41 57.33 60.69

SemRelLM
63.46 72.14 39.66 83.78 63.33 64.47

Table 28: Semantic Properties performance on lexical relation classification with roberta-base

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
82.37 74.88 48.28 90.3 76.33 74.43

RelKB
80.29 73.63 53.45 90.52 75.33 74.64

SemRelLM
79.65 76.87 50.57 90.81 74.0 74.38

Table 29: Semantic Properties performance on lexical relation classification with bert-base

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
83.33 75.37 58.05 92.44 77.0 77.24

RelKB
82.37 72.64 48.28 93.48 76.33 74.62

SemRelLM
83.81 73.88 52.3 92.52 79.0 76.3

Table 30: Semantic Properties performance on lexical relation classification with bert-large
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BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 84.29 78.61 58.62 90.74 89.33 80.32
prompt2 83.33 78.11 55.75 90.96 88.0 79.23
prompt3 84.29 76.62 54.6 91.56 87.67 78.95
prompt4 84.62 77.61 63.22 91.04 88.33 80.96
prompt5 87.82 81.84 66.09 92.96 88.67 83.48
prompt6 89.1 83.58 66.67 93.56 90.33 84.65

RelKB
prompt1 82.53 72.89 50.57 90.96 86.33 76.66
prompt2 86.06 73.13 52.87 88.81 87.33 77.64
prompt3 85.9 72.89 52.3 90.0 83.33 76.88
prompt4 86.54 73.38 55.75 91.04 84.33 78.21
prompt5 87.82 77.61 64.37 92.0 86.0 81.56
prompt6 88.46 83.58 64.37 93.11 88.33 83.57

SemRelLM
prompt1 82.05 77.61 54.6 91.04 89.33 78.93
prompt2 82.21 78.61 57.47 90.81 90.0 79.82
prompt3 81.57 76.62 54.02 90.96 88.0 78.23
prompt4 84.29 78.36 60.92 91.11 88.33 80.6
prompt5 89.42 78.86 68.39 93.11 88.33 83.62
prompt6 89.26 82.84 66.67 92.81 90.33 84.38

Table 31: MultiPRE performance on lexical relation classification with deberta-base

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 85.9 76.37 63.22 91.26 85.67 80.48
prompt2 86.7 76.87 64.94 91.85 87.33 81.54
prompt3 88.3 75.12 62.07 91.93 87.67 81.02
prompt4 87.98 77.11 64.37 91.7 88.33 81.9
prompt5 85.74 75.87 64.94 92.22 83.67 80.49
prompt6 88.46 79.35 68.39 93.63 89.33 83.83

RelKB
prompt1 80.93 72.89 56.32 89.85 84.67 76.93
prompt2 83.33 73.13 54.6 89.7 84.33 77.02
prompt3 84.78 72.89 50.57 89.04 83.0 76.06
prompt4 85.26 76.12 63.22 89.41 83.67 79.54
prompt5 86.22 75.37 65.52 91.04 85.0 80.63
prompt6 88.14 79.1 63.22 92.67 86.67 81.96

SemRelLM
prompt1 84.13 76.87 62.64 91.33 84.0 79.79
prompt2 82.69 76.62 59.2 90.15 81.67 78.07
prompt3 82.53 76.37 60.92 90.44 83.0 78.65
prompt4 84.94 75.87 59.2 91.33 83.67 79.0
prompt5 84.62 75.37 64.37 90.59 83.67 79.72
prompt6 87.34 79.35 64.37 92.74 84.67 81.69

Table 32: MultiPRE performance on lexical relation classification with roberta-large
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BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 89.58 79.85 68.97 93.78 87.67 83.97
prompt2 91.35 80.85 70.69 93.85 90.33 85.41
prompt3 88.62 80.85 66.67 93.78 90.0 83.98
prompt4 88.94 82.09 63.79 93.26 89.0 83.42
prompt5 91.67 86.32 67.24 93.56 87.33 85.22
prompt6 91.67 90.8 67.82 94.74 91.0 87.21

RelKB
prompt1 90.54 75.87 63.79 93.26 86.33 81.96
prompt2 91.35 75.37 58.05 93.26 89.33 81.47
prompt3 90.38 76.12 64.94 93.48 88.0 82.58
prompt4 88.14 78.86 67.24 93.48 83.67 82.28
prompt5 89.42 82.09 65.52 93.85 86.33 83.44
prompt6 90.54 86.82 64.94 94.37 83.0 83.93

SemRelLM
prompt1 88.94 80.35 63.22 93.7 89.67 83.18
prompt2 89.26 81.09 63.79 93.7 91.67 83.9
prompt3 88.3 80.6 65.52 92.81 90.33 83.51
prompt4 88.46 78.86 64.94 93.41 89.33 83.0
prompt5 91.51 83.33 66.09 94.52 87.33 84.56
prompt6 92.63 85.07 67.24 94.37 89.67 85.8

Table 33: MultiPRE performance on lexical relation classification with deberta-large

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 85.42 77.11 62.07 90.15 83.33 79.62
prompt2 86.06 77.11 59.2 89.11 85.67 79.43
prompt3 85.42 78.86 61.49 89.78 86.33 80.38
prompt4 84.29 77.61 61.49 89.85 82.0 79.05
prompt5 86.86 80.6 64.37 90.74 87.0 81.91
prompt6 88.14 82.34 61.49 92.07 84.0 81.61

RelKB
prompt1 81.73 74.38 58.05 86.96 81.67 76.56
prompt2 83.81 74.13 56.9 88.07 84.33 77.45
prompt3 82.85 72.89 54.6 87.63 83.67 76.33
prompt4 82.85 74.88 54.6 87.26 81.0 76.12
prompt5 86.06 77.11 61.49 89.93 84.67 79.85
prompt6 87.66 81.84 62.64 91.11 86.0 81.85

SemRelLM
prompt1 85.58 76.37 62.64 89.41 82.67 79.33
prompt2 85.1 79.1 56.9 89.85 83.0 78.79
prompt3 85.42 79.6 58.62 89.85 84.0 79.5
prompt4 85.1 77.11 62.64 88.96 85.33 79.83
prompt5 88.14 80.35 60.92 90.67 85.0 81.02
prompt6 87.18 80.35 63.22 90.81 86.0 81.51

Table 34: MultiPRE performance on lexical relation classification with roberta-base
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BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 85.58 75.37 58.05 89.85 82.0 78.17
prompt2 83.81 75.12 51.72 90.59 82.33 76.71
prompt3 84.13 75.87 56.32 90.67 81.67 77.73
prompt4 83.65 75.37 56.32 90.67 82.67 77.74
prompt5 86.7 78.36 58.05 90.59 85.67 79.87
prompt6 87.66 78.11 59.77 91.85 82.67 80.01

RelKB
prompt1 81.73 72.89 43.1 87.04 78.67 72.69
prompt2 83.17 72.89 47.13 89.48 83.33 75.2
prompt3 83.33 72.89 48.28 88.0 81.67 74.83
prompt4 82.21 73.38 52.3 88.37 79.0 75.05
prompt5 83.81 76.87 57.47 90.37 82.67 78.24
prompt6 85.9 77.61 59.77 91.41 83.33 79.6

SemRelLM
prompt1 84.46 74.38 54.6 89.26 80.67 76.67
prompt2 83.17 75.37 51.15 90.59 80.0 76.06
prompt3 78.53 73.38 51.15 89.11 79.0 74.23
prompt4 85.1 75.37 58.62 90.3 81.67 78.21
prompt5 85.58 76.87 58.62 90.81 85.33 79.44
prompt6 87.66 79.35 60.92 91.48 83.33 80.55

Table 35: MultiPRE performance on lexical relation classification with bert-base

BLESS CogALexV EVALution K&H+N ROOT09 Average

RelKB+SemRelLM
prompt1 82.85 76.37 54.02 91.48 83.67 77.68
prompt2 85.26 76.62 54.6 91.85 84.0 78.47
prompt3 87.18 76.12 56.9 90.89 84.33 79.08
prompt4 86.86 77.36 63.79 92.67 82.33 80.6
prompt5 87.5 79.6 62.64 92.52 84.67 81.39
prompt6 87.66 78.36 66.09 92.59 83.67 81.67

RelKB
prompt1 83.81 73.63 55.17 89.93 81.67 76.84
prompt2 84.62 73.13 53.45 90.0 82.0 76.64
prompt3 84.29 72.89 55.75 88.81 81.67 76.68
prompt4 83.97 73.88 58.05 90.89 80.33 77.42
prompt5 86.54 77.11 62.64 91.11 83.67 80.21
prompt6 85.9 77.36 59.77 92.59 81.67 79.46

SemRelLM
prompt1 84.13 76.37 56.9 90.59 82.0 78.0
prompt2 83.33 77.36 54.02 91.7 84.0 78.08
prompt3 85.58 76.12 56.32 91.93 82.67 78.52
prompt4 85.58 76.37 58.05 92.74 81.33 78.81
prompt5 87.18 78.11 60.34 92.89 86.0 80.9
prompt6 88.62 79.35 60.92 92.67 84.0 81.11

Table 36: MultiPRE performance on lexical relation classification with bert-large
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