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Abstract

Current translation systems, despite being
highly multilingual, cover only 5% of the
world’s languages. Expanding language cover-
age to the long-tail of low-resource languages
requires data-efficient methods that rely on
cross-lingual and cross-modal knowledge trans-
fer. To this end, we propose a character-based
approach to improve adaptability to new lan-
guages and modalities. Our method lever-
ages SONAR, a multilingual fixed-size embed-
ding space with different modules for encod-
ing and decoding. We use a teacher-student
approach with parallel translation data to ob-
tain a character-level encoder. Then, using
ASR data, we train a lightweight adapter to
connect a massively multilingual CTC ASR
model (MMS), to the character-level encoder,
potentially enabling speech translation from
1,000+ languages. Experimental results in
text translation for 75 languages on FLORES+
demonstrate that our character-based approach
can achieve better language transfer than tradi-
tional subword-based models, especially out-
performing them in low-resource settings, and
demonstrating better zero-shot generalizabil-
ity to unseen languages. Our speech adapta-
tion, maximizing knowledge transfer from the
text modality, achieves state-of-the-art results
in speech-to-text translation on the FLEURS
benchmark on 33 languages, surpassing pre-
vious supervised and cascade models, albeit
being a zero-shot model with minimal supervi-
sion from ASR data.

1 Introduction

Translation has experienced a large growth in
terms of language coverage in the last years,
with models supporting 200-400 languages in
text (NLLB, 2024; Kudugunta et al., 2023), and
100 in speech (SEAMLESS, 2025). Although im-
pressive in terms of population coverage (90%),
in terms of actual language coverage we stand

Figure 1: Approach for character-level and speech adap-
tation using the SONAR space.

at only 5%.1 Moving towards expanding to the
long-tail of low-resource languages in the world
posses some serious challenges due to the increas-
ingly scarce data sources. For text translation we
have to rely on a few thousand parallel sentences,
while chances are there are no parallel data for
speech translation (ST). To ease the issue of data
scarcity in low-resource settings, multilinguality
for text (Johnson et al., 2017; Chang et al., 2024)
and multimodality for speech (Tang et al., 2021a)
can usually be beneficial. But how can we increase
cross-lingual and cross-modal knowledge transfer
from high-resource languages and modalities? Re-
cent research suggests that character-level models
exhibit better cross-lingual transfer in text transla-
tion, especially in low-resource scenarios (Edman
et al., 2024). Furthermore, for speech translation,
methods usually take advantage of a text-based en-
coder for semantic modeling (Tang et al., 2021a;

1www.ethnologue.com
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Zhang et al., 2023), but the subword-based tok-
enization is incompatible in terms of length and
content with the acoustic representations, thus cre-
ating a modality gap that hinders knowledge trans-
fer. Previous research mitigates this by either us-
ing a phoneme-based text encoder (Tang et al.,
2021a; Le et al., 2023) or converting the acous-
tic representations to subword-like units (Tsiamas
et al., 2024). But a phonemized input degrades
performance due to ambiguity2 and furthermore
phonemizers for 1000+ languages might be infeasi-
ble (Zhao et al., 2024), while subword-based com-
pression requires a substantial amount of data. To
this end, we propose to shift towards character-
based encoders, that could support data-efficient
knowledge transfer both between languages and
between text and speech. Our method is based
on SONAR (Duquenne et al., 2023), which is an
encoder-decoder with a fixed-size semantic em-
bedding space that supports 200 languages, and
on MMS (Pratap et al., 2023), which is a CTC-
based ASR model that supports 1,000+ languages.
Using a teacher-student approach, we obtain a
character-based text encoder that embeds sentences
in the SONAR space. Then, we propose an adapter
that seamlessly connects the CTC output space
of MMS to the character-level input space of our
encoder, requiring minimal supervision from audio-
transcription pairs (Fig. 1). Our experimental re-
sults in 75 languages on FLORES+ (NLLB, 2024),
show that compared to traditional subword-based
models, our multilingual character-level SONAR
encoder exhibits better cross-lingual knowledge
sharing between known languages and superior
zero-shot generalizability to unseen languages. Fur-
thermore, our speech adaptation of the character-
based encoder, despite relying only on ASR data,
can maximize knowledge transfer from text, and
thus surpasses the previous best supervised sys-
tem (SEAMLESS, 2025) and strong cascades with
Whisper (Radford et al., 2022), achieving new state-
of-the-art in FLEURS (Conneau et al., 2022).

2 Relevant Research

2.1 Character-level MT
Early works in machine translation investigated
character-level approaches due their advantages
in understanding and generating rare and unseen
words, handling noise, having smaller vocabularies,
and being simpler due to the removal of subword to-

2Homophones, loss of orthographic information, etc.

kenization (Sennrich et al., 2016). Several methods
using attention-based sequence-to-sequence mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015)
showed that character-level MT can reach or sur-
pass subword-based approaches (Ling et al., 2015;
Costa-jussà and Fonollosa, 2016; Lee et al., 2017;
Cherry et al., 2018; Chung et al., 2016). Later, Xue
et al. (2022) showed that ByT5, encoder-decoder
multilingual language model operating on bytes, is
more robust to noise and performs better in spelling-
sensitive tasks, than its subword-based counterpart
mT5 (Xue et al., 2021). Edman et al. (2024) fine-
tuned the ByT5 and mT5 models for translation,
and found that character-level modeling is particu-
larity effective when parallel data are limited. Li-
bovický et al. (2022) sought to answer why fully
character-level MT has not been widely adopted,
which was attributed to lower efficiency, and an
inability to confirm previous findings that had been
suggesting better domain and morphological gen-
eralization. In this work, we propose an encoder-
only character-level approach (Cao, 2023) based on
SONAR (Duquenne et al., 2023), and study the ben-
efits of cross-lingual transfer in a large group of 75
languages, both in low-resource and in zero-shot
settings. Several works have proposed methods
that alleviate the additional computational costs
stemming from the longer sequences that character-
or byte-level models need to process (Clark et al.,
2022; Tay et al., 2022; Pagnoni et al., 2024). Since
our approach adopts character-level modeling only
on the encoder side, and due to the fixed-size em-
bedding bottleneck of SONAR, the computational
overhead is minimal, and thus we do not study any
architecture-based changes in this work.

2.2 Cross-modal Transfer in ST

Speech translation models have traditionally relied
on cross-modal knowledge transfer from the more
resourceful task of text translation to improve per-
formance. Several works achieved this by using a
multitasking framework of MT and ST, where they
share the text modules between the two tasks, and
the semantic text encoder accepts either acoustic
representations or text embeddings as inputs (Liu
et al., 2020; Ye et al., 2021; Tang et al., 2021b; Fang
et al., 2022). Another line of work aims at bridging
the modality gap by additionally minimizing the
distance between the speech-text representations
of the encoders (Tang et al., 2021a; Ye et al., 2022;
Ouyang et al., 2023). ZeroSwot (Tsiamas et al.,
2024) eliminated the dependency on parallel ST
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data, and relied only on minimizing the Wasser-
stein distance (Peyré and Cuturi, 2019) between
the speech-text of representations of the encoders
using ASR data. In our framework we also follow
the paradigm of ZeroSwot, but due to the fixed-size
encoder bottleneck of SONAR, our optimization is
simpler, and minimizes the MSE distance. Another
important consideration in maximizing knowledge
transfer from text is unifying the tokenization of
acoustic encoder’s output and text encoder’s input
space, which are usually phoneme/characters for
the the CTC (Graves et al., 2006) of the acoustic
encoder, and subwords for the embedding layer of
the text encoder. Previous works have either used
a phoneme-based input for the text encoder (Tang
et al., 2021a; Le et al., 2023), or a subword-based
output for the acoustic encoder’s CTC output (Liu
et al., 2020; Yang et al., 2023), or more recently a
character-to-subword compression adapter (Tsia-
mas et al., 2024). But phoneme-based text input
degrades performance due to ambiguity in mean-
ing. Then, for subword-based output in CTC, it
is questionable whether it can scale to massively
multilingual vocabularies of hundreds of thousand
of tokens (NLLB, 2024). Finally the subword com-
pression adapter requires a substantial amount of
ASR data to learn, which can be problematic for
the long tail of low-resource languages. Contrary,
our approach is based on first modifying the text en-
coder to work with character-level inputs without
degrading MT performance, and then learning a
data-efficient and lightweight adapter that connects
to it the character-based output space of a CTC
acoustic encoder.

3 Methodology

We utilize the multilingual fixed-size embedding
space of SONAR (Duquenne et al., 2023), in or-
der to add new languages and modalities (speech)
to it. We first obtain a character-level text en-
coder using a teacher-student approach with par-
allel translation data (§3.2), and then adapt it to
work with CTC acoustic representations as inputs
using a teacher-student approach with paired audio-
transcriptions (§3.3).

3.1 SONAR

The SONAR encoder is a Transformer (Vaswani
et al., 2017) with Nt layers of dimensionality dt,
and a subword-based vocabulary Vt. The final en-
coder representation is mean-pooled to obtain a

sentence embedding e∈Rdt . The SONAR decoder
which also has Nt layers of dimensionality dt, at-
tends with cross-attention to e, in order to predict
the target sequence.

3.2 Character-level Text Encoder

Our character-level encoder (charSONAR) is ini-
tialized from the SONAR encoder, and thus has
Nt layers of dimensionality dt. As part of the
character-based input vocabulary we only keep the
tokens of Vt that are composed of single characters,
thus having a vocabulary Vc ⊂ Vt.
Training Objectives. For training, we follow a
student-teacher approach with the SONAR encoder
as a teacher, where we minimize the MSE loss be-
tween the charSONAR embedding c and a SONAR
embedding e ∈ Rd, using monolingual or parallel
translation data. We consider three different MSE
objectives:

• Reconstruction, where we learn from non-
parallel data, and given a sentence x, we min-
imize Lrecon = MSE(cx, ex).

• Translation, where we learn from parallel data,
and given a sentence x with translation y, we
minimize Ltrans = MSE(cx, ey).

• Interpolation, where we also learn from paral-
lel data, and given a sentence x with transla-
tion y, we minimize the distance from the ‘av-
erage’ teacher embedding for that pair (Eq. 1).

Linterpol = MSE
(
cx,

ex + ey

2

)
(1)

Augmentations. We apply ASR-like augmenta-
tions to make the character-based encoder robust to
the normalized and error-prone output of CTC ASR
models and increase cross-modal transfer. Specifi-
cally with some probability pnorm, we normalize
the source text input of the char-based encoder, re-
moving casing and punctuation. Furthermore, with
some small probability pnoise, we inject different
noise perturbations to the text, such as character
addition, deletion and replacement.

3.3 Speech Encoder

Our speech encoder is composed of an acoustic
encoder, an adapter, and the charSONAR encoder.

3.3.1 Acoustic Encoder
The acoustic encoder consists of a series of strided
convolutional layers, followed by a Transformer
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encoder with Ns layers of dimensionality ds. It is
initialized from MMS (Pratap et al., 2023), which
was pretrained with the self-supervised objective
of wav2vec 2.0 (Baevski et al., 2020) and fine-
tuned with CTC (Graves et al., 2006) on 1,000+ lan-
guages. Each language i has its own CTC predic-
tion head W(i)∈Rds×|Bi|, where Bi is a language-
specific character-based vocabulary (including the
<blank> token), with B(i) ⊂ Vc.

The acoustic encoder is kept frozen during train-
ing, and with it we extract the final encoder repre-
sentation H ∈ Rm×ds . Next, we apply CTC-based
compression (Gaido et al., 2021) to remove redun-
dancy and obtain a representation that is similar in
length as the character-based tokenization of our
charSONAR encoder. We label each point j of
H with its CTC prediction πj=argmax(W(i)hj),
then average consecutive points corresponding to
the same prediction, and drop points corresponding
to <blank>. We thus obtain an acoustic representa-
tion A∈Rn×ds , where n < m.

3.3.2 Cross-modal Adapter
We use a cross-modal adapter to process the acous-
tic representation A into an embedding-like repre-
sentation E∈Rn×dt , that aims to match as close as
possible the character embedding expected at the
input of the charSONAR encoder.

To maximize pretrained knowledge and obtain
an adapter that could work out-of-the box in ex-
tremely low-resource settings, we propose a mini-
mal (pretrained) two-layer architecture that is fully
initialized from MMS and charSONAR. Specially,
we use the CTC classification layer W(i) of MMS
to project A to logits, and with a softmax we obtain
a probability distribution over the MMS vocabu-
lary B(i). Then, since B(i) ⊂ Vc, we can connect
the two spaces by doing a soft prediction over the
charSONAR vocabulary using its embedding layer.

Ept = softmax
(
AW(i)

)
Emb(i),

where Emb(i)∈R|B(i)|×dt is the embedding layer
of charSONAR, indexed by the entries of B(i).

Due to the nature of its initialization, the hidden
dimension of the pretrained cross-modal adapter
is fixed and bound to the size |B(i)| of the MMS
vocabulary, which is relatively small, usually hav-
ing 64 tokens. In order to be able to control, and
increase, the capacity of the adapter, we also pro-
pose a dual cross-modal adapter that combines the
pretrained one with another variable-sized adapter

that is randomly initialized (Fig. 2).

Ernd = ReLU
(
AUin)

)
Uout,

where Ernd is the output of the randomly-initialized
adapter, Uin ∈ Rds×dh and Uout ∈ Rdh×dt are
learnable parameters, and dh is a hyperparameter
that we can control. We concatenate the individual
outputs of the pretrained and randomly-initialized
adapters and pass them through an MLP :2dt→1,
followed by a sigmoid function to obtain a vector
of weights v ∈ (0, 1)n. The final representation
Edual∈Rn×dt is a weighted sum of Ept,Ernd.

v = σ
(
MLP

(
[Ept,Ernd]

))

Edual = vEpt + (1− v)Ernd

Figure 2: Cross-modal Adapters

To the output of the cross-modal adapter E we
prepend the corresponding language token em-
bedding, and append the embedding for end-of-
sentence from the charSONAR embedding table.
After adding positional encoding, E is passed
through the transformer layers of the (frozen) char-
SONAR encoder to obtain a speech embedding
cz ∈ Rdt . To train the adapter we use audio-
transcription pairs, and minimize the MSE loss
between cz and the SONAR embedding for the
transcription ex. For speech translation inference,
we use the SONAR decoder to generate the transla-
tion from the speech embedding cz .

4 Experimental Setup

4.1 Data
Text. We construct a diverse group of 63 languages
in terms of family and script, and with varying de-
grees of resourcefulness, that are already present
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in SONAR. We also add a group of 12 new lan-
guages, not present in SONAR, for which we have
evaluation data in FLORES+.3 For the 63 known
languages, to train charSONAR we used a com-
bination of human-labeled data and mined paral-
lel data (NLLB, 2024), which were filtered with
BLASER 2.0 (Dale and Costa-jussà, 2024), dis-
carding pairs with score lower than 4. For the
group of 12 new languages, we used various pub-
licly available sources of parallel data. For vali-
dation and testing we used the dev and devtest
splits of FLORES+.
Speech. For our experiments in speech we used
the 33 source languages. Our criteria for choos-
ing these languages where: (a) part of the text
training; (b) supported by MMS; (c) included in
the Common Voice (CV) (Ardila et al., 2020)
dataset (ASR training data); and (d) included in the
FLEURS (Conneau et al., 2022) dataset (ST evalu-
ation data). For training we used the train split of
the version 17.0 of CommonVoice,4 and in some ex-
periments the small train split of FLEURS which
contains 2K examples for each language. Evalua-
tion is done on the dev and test splits of FLEURS,
which contain approximately 400 and 900 exam-
ples each.
Details regarding the languages and the amount of
training data for both text and speech are available
in Table 10 in the Appendix.

4.2 Model Architecture
The SONAR encoder (Duquenne et al., 2023) has
Nt=24 layers, with dimensionality of dt=1024,
and an embedding table of size 256K (750M param-
eters in total). Our charSONAR encoder follows
the same architecture, apart from the character-
based embedding table with a size of 8K tokens
(500M parameters in total). MMS (Pratap et al.,
2023) has Ns = 48 layers with dimensionality
ds = 1280 (1B parameters).5 It uses language-
specific layers (Houlsby et al., 2019) and CTC
classification layers. The vocabulary is different
for each language, usually having around 64 to-
kens. Since the size of the vocabulary is also the
hidden dimension of our pretrained adapter, this
adapter has approximately 200K parameters. The
randomly-initialized adapter uses a hidden dimen-
sion of dh=1024 (2.2M parameters). For the dual
adapter we use an MLP with an inner dimension of

3huggingface.co/datasets/openlanguagedata/flores_plus
4datasets/mozilla-foundation/common_voice_17_0
5huggingface.co/facebook/mms-1b-all

64 (100K parameters) to predict the weight vector,
thus having a total of 2.5M parameters. To generate
translations, either from text or speech, we couple
the encoder with the SONAR decoder which has 24
layers. For X→Eng generation we use the normal
SONAR decoder,6 while for all other generation
tasks we use the finetuned decoder,7 which accord-
ing to Duquenne et al. (2023) and our observations
here, performs better.

4.3 Training Details

Text. We use AdamW (Loshchilov and Hutter,
2019) with a learning rate of 4e-4, inverse square
root scheduler with warmup, a batch size of 12K
examples, dropout of 0.1, and train for 128K steps.
We up-sample languages with a temperature of
0.5 (NLLB, 2024). We apply ASR-like text nor-
malization by un-casing and removing punctuation
to a source sentence with pnorm=0.25, and inject
character-based noise with pnoise=0.125. Specif-
ically, each character in the source sentence can
be deleted, replaced, or a new character is further
added, each with a probability of 0.0025. These val-
ues were tuned in a small validation set of CV to ap-
proximate the character-error-rate of MMS (Pratap
et al., 2023). For replacement and addition we sam-
ple a new character from the character distribution
of that language.
Speech. Both MMS and charSONAR remain
frozen during speech training, and only the adapter
is finetuned. We minimize the MSE distance with
the original SONAR as a teacher. The learning rate
is set to 2e-4, the batch size 500 examples, and
the adapter dropout to 0.1 (0.3 for the randomly-
initialized adapter).

4.4 Evaluation

We apply checkpoint averaging according to the
dev set performance, and generate with a beam
search of 5. We evaluate primary on two tasks:
translation and similarity search. Translation qual-
ity is measured with xCOMET-XL (Guerreiro et al.,
2024)8. When the target language is not supported,
we use case-sensitive detokenized BLEU (Post,
2018) and chrF++ (Popović, 2017). For similar-
ity search we measure xSIM++ (Chen et al., 2023)
error rates, by augmenting the English parts of
FLORES or FLEURS with 40K hard negatives.

6dl.fbaipublicfiles.com/SONAR/sonar_text_decoder.pt
7dl.fbaipublicfiles.com/SONAR/finetuned_decoder.pt
8huggingface.co/Unbabel/XCOMET-XL
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5 Text Results

Here we present our results in text translation and
similarity search with charSONAR, and investigate
its capacity for cross-lingual knowledge transfer.

5.1 Initial Exploration

Before the main experiments we conduct an explo-
ration regarding the training objectives and aug-
mentations. We used a small subgroup of 15 lan-
guages, with 3 languages from the Uralic fam-
ily, and 12 languages that use the Cyrillic script
(Table 10). In the upper part of Table 1 we
show that the proposed interpolated MSE objective
surpasses both the reconstruction and translation
MSE objectives, and additionally their combina-
tion. This shows that SONAR embeds sentences in
sub-optimal regions, while there are regions in be-
tween the languages that are better suited for both
translation and similarity search. Further motiva-
tion is provided by our results of Table 2, where
we show that for a pair of non-English languages
Lang1 and Lang2, decoding from their average
SONAR embedding EmbAVG=(Emb1+Emb2)/2
into English, is better than decoding from each in-
dividual embedding, with low-resource languages
benefiting the most.9 This finding indicates that
our charSONAR encoder can benefit from learning
to map sentences to the interpolated or ‘average’
space existing between languages.

In the lower part of Table 1, we find that pre-
training charSONAR with the reconstruction MSE
before the interpolated MSE is beneficial, since it
decouples learning character-level modeling and
optimizing the embedding space. Finally, we see
that the normalization and noise augmentation do
not have an impact in performance. This is ex-
pected due to the ground truth source text, but as we
show later in the initial exploration for the speech
experiments (§6.1), these augmentations are bene-
ficial, as the input to charSONAR is error-prone.

5.2 Scaling to 75 Languages

Next, we present our findings from scaling-up
the language coverage of charSONAR to 75 lan-
guages. We use the interpolated MSE objec-
tive, with reconstruction MSE pretraining and
ASR-like text augmentations. For new languages,
which are not supported by SONAR, we use the

9High-resource are negatively impacted when paired with
low-resource, but this reflects only a very small fraction of
their data.

Model COMET xSIM++

SONAR-200 0.925 8.5

charSONAR-Ural/Cyrl
Objective Pretrain Norm Noise

recon ✗ ✗ ✗ 0.929 7.4
trans ✗ ✗ ✗ 0.924 6.6

recon+trans ✗ ✗ ✗ 0.929 6.8
interpol ✗ ✗ ✗ 0.931 6.6
interpol ✓ ✗ ✗ 0.934 6.4
interpol ✓ ✓ ✗ 0.934 6.4
interpol ✓ ✓ ✓ 0.934 6.5

Table 1: Ablations on training objectives and augmenta-
tions for the Ural/Cyrl language group (15 langs). Text
translation COMET scores and cross-lingual xSIM++(↓)
error rates on FLORES dev (X→Eng).

Pairs COMET Advantage

Lang1 Lang2 Emb1 Emb2 EmbAVG Lang1 Lang2

Low Low 0.788 0.795 0.864 +0.076 +0.069
Low High 0.793 0.937 0.920 +0.137 -0.017
High High 0.939 0.937 0.944 +0.005 +0.007

Table 2: COMET scores of translating from average (in-
terpolated) embeddings, compared to translating from
individual embeddings, for different pairs based on re-
sourcefulness. Results in X→Eng FLORES dev aver-
aged over 50 randomly-sampled pairs in each row.

translation MSE objective. We compare against
SONAR-200 (Duquenne et al., 2023), and an
NLLB-200 (NLLB, 2024) topline, which is not
restricted by a bottleneck encoder representation.
We also train a comparable subword-based model
by further fine-tuning SONAR on the 75 languages
with the same setup as we did for charSONAR. We
report text translation and cross-lingual similarity
search (X→Eng) results, and group results by lan-
guage resourcefulness according to the amount of
our training data (Table 10). Our results of Table 3
show the clear advantage of our character-based en-
coder, where charSONAR-75 outperforms the com-
parable SONAR-75, and additionally the NLLB
topline in translation. The gains are more evident
in the group of 21 low-resource languages, where
cross-lingual transfer can be more impactful.

5.3 Zero-shot Generalization

In our next experiment, we only train on the 63
known languages, and evaluate zero-shot on the 12
new ones. SONAR and NLLB encoders require
a language tag to be prepended in the source se-
quence, which is problematic if we want to encode
a sentence from a language not seen during train-
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COMET (↑) xSIM++ (↓)

Model Low
(21)

Med
(21)

High
(21)

All
(63)

New
(12)

Low
(21)

Med
(21)

High
(21)

All
(63)

New
(12)

Previous Works (trained on 200, not including the 12 new)
NLLB-200 0.877 0.914 0.949 0.913 0.454† - - - - -
SONAR-200 0.851 0.894 0.944 0.897 0.450† 13.1 10.1 7.3 10.2 52.7†

This work (trained on 63 known + 12 new languages)
SONAR-75 0.882 0.909 0.948 0.913 0.859 9.0 7.7 5.8 7.5 12.6
charSONAR-75 0.889 0.914 0.949 0.917 0.863 8.4 7.2 5.5 7.0 12.3

∆ 0.007 0.005 0.001 0.004 0.004 0.6 0.5 0.3 0.5 0.3

This work (trained only on the 63 known languages)
SONAR-63 0.882 0.909 0.947 0.913 0.517† 8.8 7.7 5.8 7.5 42.9†

charSONAR-63 0.889 0.914 0.949 0.917 0.530† 8.3 7.2 5.5 7.0 42.2†

∆ 0.007 0.005 0.002 0.004 0.013 0.5 0.5 0.3 0.5 0.7

Table 3: Translation COMET scores and cross-lingual similarity search xSIM++ error rates on FLORES devtest
(X→Eng), grouped by All(Low/Med/High) and New languages. † indicates zero-shot evaluation. bold: best overall;
underlined: best zero-shot. All models have the same number of parameters (1.3B). ∆ refers to the difference
between charSONAR-N and SONAR-N models.

Model BLEU chrF++

NLLB-200 17.4 45.3

SONAR-200 15.6 44.0
SONAR-Eng 15.9 44.8
charSONAR-Eng 15.8 44.7

Table 4: Text translation (Eng→200) BLEU and chrF++
scores on FLORES devtest.

Model # Tokens Inference
Time (s)

SONAR 49 0.84
charSONAR 158 (×3.2) 0.94 (×1.1)

Table 5: Average number of tokens and average infer-
ence time in FLORES dev.

ing. To achieve better encoding for these unseen
languages, we propose the use of family tokens
according to the linguistic family subgroup of each
language. Specifically, during training we replace
the language token with the corresponding sub-
group token with a 20% probability. On inference,
we encode a new language, with the appropriate
subgroup token. The subgroup tokens are trainable
and are initialized from the average of the all the
language tokens of each family.10 In the last part
of Table 3 we observe that charSONAR-63 can
generalize better than a subword-based encoder to

10Information about the linguistic families are available at
Table 10 in the Appendix.

languages not seen during training, achieving an
improvement of 0.013 points in COMET and 0.7 in
xSIM++. We also notice a sharp increase for both
our encoders, compared to original SONAR-200,
showing the benefits of expanding language tokens
to subgroup tokens.11

5.4 Are the gains due to language transfer or
more compute?

An implicit side-effect of character-level modeling
is that sequences are on average 3× longer, which
means that the charSONAR encoder is using more
FLOPs than the SONAR encoder. To further inves-
tigate the source of the advantage shown in Table 3
we conduct an experiment where we train SONAR
and charSONAR on only one language, specifically
on English. The results of Table 4 show that in the
single-language setting, there is no advantage for
the character-based model, being slightly behind
the subword-based one. This finding indicates that
character-level modeling is beneficial due to better
cross-lingual knowledge transfer, rather than due
to increased compute.

5.5 Efficiency Analysis

To assess the degree of computational overhead due
to the longer sequences, we measure the average
inference time for the charSONAR and SONAR
models in FLORES dev using a batch size of 1.
The results of Table 5 show that although sequences

11For encoding a new language with SONAR-200 and
NLLB-200, we do not use a language tag.
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are 3.2× longer for charSONAR, the inference time
is only 1.1× longer. This is due to the encoder
bottleneck, which decouples the decoder from the
source sequence length. Results with batching are
available in Table 16 in the Appendix.

6 Speech Results

To investigate the cross-modal benefits of character-
level modeling, we present results in zero-shot
speech translation and speech-text similarity search
with our charSONAR-based speech encoder.

6.1 Initial Exploration
In Table 6 we present zero-shot ST X→Eng re-
sults in FLEURS dev for four languages of dif-
ferent families and of varying degree of resource-
fulness, ranging from 3K examples (Estonian) to
330K (Spanish). We observe that the pretrained
cross-modal adapter (PRETR), despite being signif-
icantly smaller, outperforms the large (dh=1024),
yet randomly initialized, adapter (RND). Although
for the high-resource Spanish, we notice that the
difference is rather small, which indicates that with
more data it can be beneficial to increase the ca-
pacity. Indeed, our proposed dual adapter (DUAL),
with large dimensionality in the random branch,
surpasses them both. Finally, we notice further
gains when we switch to a robust charSONAR ver-
sion that was trained with ASR-like Norm/Noise
augmentations (§3.2).

Adapter Encoder COMET

Type Dim Train Norm/Noise Est Rus Tur Spa Avg

PRETR ∼64 ✗ ✗ / ✗ 0.845 0.849 0.828 0.837 0.840
PRETR ∼64 ✓ ✗ / ✗ 0.901 0.910 0.877 0.890 0.894

RND 256 ✓ ✗ / ✗ 0.837 0.872 0.831 0.878 0.854
RND 1024 ✓ ✗ / ✗ 0.882 0.889 0.869 0.889 0.882

DUAL 256 ✓ ✗ / ✗ 0.914 0.912 0.889 0.888 0.901
DUAL 1024 ✓ ✗ / ✗ 0.911 0.909 0.894 0.905 0.905
DUAL 1024 ✓ ✓ / ✗ 0.914 0.910 0.891 0.897 0.903
DUAL 1024 ✓ ✓ / ✓ 0.915 0.923 0.906 0.905 0.912

Table 6: Ablations in speech adaptation. Speech Trans-
lation (X→Eng) results on FLEURS dev.

6.2 Zero-shot Speech Translation
Next, we train adapters for 33 languages using
the charSONAR-75 encoder, and compare against
strong supervised E2E models, Whisper (Rad-
ford et al., 2022) and SeamlessM4T (SEAM-
LESS, 2025), cascades with MMS/Whisper and
NLLB/SONAR, and our own cascades with
SONAR-75/charSONAR-75. We report results by

grouping languages according to number of exam-
ples in CommonVoice (CV) (Table 7). The first ver-
sion of our system (11) using the pretrained adapter,
can work out-of-the-box and without any train-
ing, even outperforming Whisper by a large mar-
gin, and particularly for low-resource languages.
This indicates that the input space of our character-
based encoder is fully compatible with the out-
put space of MMS given the initialization of our
adapter. Following, by training this adapter with
ASR data (12), we surpass the previous state-of-
the-art SeamlessM4T-Large-v2. The benefits of
cross-modal transfer from charSONAR are evident
for some extremely low-resource languages such
as Asturian, where with only 400 examples it sur-
passes SeamlessM4T by 0.1 COMET (Table 12 in
Appendix). Furthermore, we observe additional
gains when using the proposed dual adapter (13)
for medium/high-resource languages, where there
are enough data to learn the large, but randomly
initialized, branch. Finally, we show that by adding
only 2K additional examples from FLEURS train,
we can achieve further important gains across all
categories (14-15).

Apart from the strong cross-modal transfer show-
cased by our speech adaptation of charSONAR,
significant gains are also observed for the cascade
systems that employ it. Specifically a cascade of
MMS and charSONAR (9) outperforms all other
cascades (3-8) and is on par with SeamlessM4T-
Large-v2 in low/medium-resource settings.

6.3 Similarity Search
In Table 8 we present results on cross-lingual and
cross-modal similarity search on FLEURS test.
We compare our character-based speech encoder
against several cascades and the original SONAR
speech encoders (Duquenne et al., 2023) that are
based on w2v-BERT (Chung et al., 2021), and thus
do not transfer knowledge from an acoustic model
(MMS) nor the text modality (charSONAR). We
observe that our minimal adapters trained on CV
outperform the previous SONAR speech encoders
and all cascades apart from the charSONAR-based
one. Still, by using more data (FLEURS train)
and/or more parameters (dual adapter), the pro-
posed encoder surpasses the charSONAR cascades.

6.4 Adapters for Subword-based Encoders
To understand how essential is the character-based
encoder in our proposed speech adaptation, we ex-
periment with replacing it with a subword-based
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id Model
Text

Encoder
Tokenization

Total
Params

Adapter
Train

Params

Adapter
Train
Data

Low
(11)

Med
(11)

High
(11)

All
(33)

Supervised E2E ST (previous)
1 WHISPER-LARGE-v3 / 1.5B / / 0.598 0.754 0.790 0.714
2 SEAMLESSM4T-LARGE-v2 / 2.3B / / 0.829 0.889 0.901 0.873

Cascade ST (previous)
3 MMS + NLLB-200 subwords 2.3B / / 0.786 0.834 0.822 0.814
4 WHISPER + NLLB-200 subwords 2.8B / / 0.717 0.870 0.863 0.817
5 MMS + SONAR-200 subwords 2.3B / / 0.757 0.839 0.824 0.807
6 WHISPER + SONAR-200 subwords 2.8B / / 0.684 0.869 0.861 0.804

Cascade ST (ours)
7 MMS + SONAR-75 subwords 2.3B / / 0.811 0.870 0.854 0.845
8 WHISPER + SONAR-75 subwords 2.8B / / 0.721 0.871 0.865 0.819
9 MMS + charSONAR-75 chars 2.3B / / 0.833 0.889 0.875 0.866
10 WHISPER + charSONAR-75 chars 2.8B / / 0.755 0.893 0.882 0.843

Zero-shot E2E ST (ours)
11 Speech-charSONAR-75 - PRETR chars 2.3B 0 / 0.772 0.833 0.831 0.812
12 Speech-charSONAR-75 - PRETR chars 2.3B 0.2M CV 0.837 0.893 0.894 0.875
13 Speech-charSONAR-75 - DUAL chars 2.3B 2.5M CV 0.615 0.899 0.902 0.805
14 Speech-charSONAR-75 - PRETR chars 2.3B 0.2M CV+FLEURS 0.852 0.900 0.901 0.884
15 Speech-charSONAR-75 - DUAL chars 2.3B 2.5M CV+FLEURS 0.853 0.906 0.910 0.889

Table 7: Speech Translation (33 → Eng) COMET scores on FLEURS test. Low/Med/High each contain 11
languages, according to amount of Common Voice data. Underlined are the previous best scores. Highlighted are
our scores with char-based models that are at least on par with the previous best. In bold are best overall.

Model avg26 avg33

SONAR Speech (Duquenne et al., 2023) 14.3 /

MMS + SONAR-200 15.7 17.2
MMS + SONAR-75 12.7 13.8
MMS + charSONAR-75 10.7 11.5

Speech-charSONAR-75 - PRETR 11.6 12.9
↪→ w/ FLEURS train 10.0 10.7

↪→ w/ DUAL 9.4 10.2

Table 8: Cross-modal and cross-lingual retrieval.
xSIM++ error rates (↓) on FLEURS test (X→Eng).
avg26 is the languages supported by SONAR Speech
(Duquenne et al., 2023) and our models.

one. To achieve this we mean-pool the indices of
the compressed acoustic representation of MMS
that belong to the same subword, as predicted by
the CTC. The pretrained adapter version is not pos-
sible in this setting and thus we experiment only
with the randomly-initialized adapter. The results
of Table 9 indicate that we can learn an adapter
to connect MMS and (subword-based) SONAR,
although the quality is limited, and only works
in high resource settings (Turkish, Spanish), while
still being several points behind the character-based
model. This highlights both the data-efficiency and
cross-modal adaptability of our proposed method.

Model Oci
# 0.3k

Est
# 3k

Tur
# 30k

Spa
# 330k

Speech-SONAR-75 - RND 0.199 0.223 0.795 0.841
Speech-charSONAR-75 - RND 0.202 0.877 0.868 0.912

Speech-charSONAR-75 - PRETR 0.795 0.910 0.885 0.917
Speech-charSONAR-75 - DUAL 0.707 0.912 0.903 0.920

Table 9: Speech Translation COMET (X→Eng) on
FLEURS test for subword-based vs char-based en-
coders with adapters. Underlined: best among RND
adapters; bold: best overall; #: ASR examples.

7 Conclusions

We presented a methodology based on character-
level modeling that increases cross-lingual transfer
and cross-modal transfer in text and speech tasks.
For text, our character-based encoder surpasses
comparable subword-based encoders, especially
in low-resource settings, while exhibiting better
zero-shot generalization to unseen languages. For
speech, our proposed minimal adapter seamlessly
connects an ASR CTC encoder to our character-
based encoder, surpassing previous state-of-the-art
models. Furthermore it requires minimal supervi-
sion from ASR data, and can even work out-of-
the-box without any training, surpassing models
like Whisper. Future research will focus on target-
side cross-lingual and cross-modal transfer, and
expanding to more languages.
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Limitations

In this work we focused on source-side cross-
lingual and cross-modal transfer, leaving target-
side transfer for future research. We hypothesize
that character-level modeling can be beneficial for
target-side, although decoding on the character-
level can be problematic and relatively more ineffi-
cient than encoding on the character-level. We still
believe this is an interesting direction for future
work.

Furthermore, we decided to focus on adapting
a specific model, SONAR, to work with character-
level input. Although the encoder bottleneck re-
duces the computational overhead in generation,
and allowed us to simplify the teacher-student train-
ing by using an MSE objective, it also reduces
the capacity of the model. We hypothesize that
similar gains can be achieved by adapting a tradi-
tional encoder-decoder, like NLLB (NLLB, 2024),
to work with characters, either by back-propagating
the translation signal through the (frozen) decoder
or using similar objectives to ZeroSwot (Tsiamas
et al., 2024). Also, as discussed in our Relevant
Research (§2), we did not experiment with any spe-
cific architectural changes in the encoder that are
better suited for character-level modeling (Clark
et al., 2022; Tay et al., 2022; Pagnoni et al., 2024),
as we aimed to study character-based vs subword-
based modeling within the same architecture. We
believe that by using such techniques further gains
in performance and efficiency can be achieved.

Additionally, our proposed methodology for
speech adaptation is limited by the language-
specific CTC layers of MMS. This forced us
to train language-specific cross-modal adapters,
which does not allow the speech encoder to gen-
eralize to more languages, other than the ones for
which we have ASR data. To go around this issue,
we carried some experiments with the zero-shot
version of MMS (Zhao et al., 2024) that uses a uni-
fied model for all languages, but due to decreased
ASR quality compared to MMS-1B (Pratap et al.,
2023), translation quality was also lagging behind.
Still, in the future, and given a supervised MMS-
like acoustic model with a unified architecture, our
proposed cross-modal adapter could enable gener-
alized speech understand and translation with it.
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A Data

In Table 10 we provide details about the lan-
guages and the amounts of data used in our ex-
periments. The numbers for the MT data indicate
the amount after filtering with BLASER 2.0 (Dale
and Costa-jussà, 2024). The resourcefulness label
(low, medium, or high) of each language is sepa-
rate for each modality, and indicates in which of the
three percentile of the data distribution it belongs.

B Additional Results

In Table 11 we present the per-language text trans-
lation results for the models of Table 3.

In Table 12, we present the per-language speech
translation results for some of the models of Ta-
ble 7. We also add results from the SONAR Speech
Encoders (Duquenne et al., 2023), which were ex-
cluded from the main table since they do not sup-
port all the languages with which we experiment.
Furthermore, Table 12 includes more than 33 lan-
guages, since for ease of presentation, in the main
results we presented the ones that were both sup-
ported by Whisper and our models. We indicate
the languages not taken into account for the results
of Table 7.

In Tables 14 and 13, we present the per linguistic
subgroup and script results of our text encoders in
translation and cross-lingual similarity search. We
observe that for known languages, the charSONAR
encoder outperforms the subword-based encoder

Figure 3: COMET scores vs. BLASER 2.0 filtering
threshold for charSONAR and SONAR in FLORES
dev. Results with the Ural/Cyrl group of 15 languages.
COMET scores are average of X→Eng for all the 15
languages in the group.

in all categories, apart from the single group that
contains the Greek language, and only in cross-
lingual similarity search. For the new languages,
we notice that charSONAR performs better in all
categories for translation, but the subword-based
model is better for the Turkic and Uralic subgroup-
ing, and Cyrillic script in cross-lingual similarity
search.

In Table 15 we present the text translation results
for the three encoders that were used in the initial
exploration with the four languages for the speech
adaptation (Table 6). We used the Uralic/Cyrillic
encoder for Estonian and Russian, the Turkic for
Turkish, and the Romance for Spanish.

In Figure 3 we present our ablation for deciding
the BLASER 2.0 filtering threshold. To speed-
up experimentation and use less data, we filtered
with 4.5 for the initial exploration, but for the main
experiments we used a threshold of 4.

Finally, in Table 16 we provide an efficiency
analysis for SONAR and charSONAR models, sim-
ilar to the results of §5.5, but now with batching.
We use length-based bucketing and a batch size of
5K tokens, which results in 8 batches for SONAR
and 31 batches for charSONAR. The results here
confirm the findings of Table 5, showing that the
impact of the char-based tokenization is minimal
with respect to the additional computational over-
head.
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Language Code FLORES+ MMS Family Subgrouping Script MT ASR

# (M) / Resource # (K) / Resource

Aragonese arg_Latn ✓ ✗ Indo-European Italic Latin 0.1 new 0.0 -
Asturian ast_Latn ✗ ✓ Indo-European Italic Latin 0.2 low 0.4 -
Awadhi awa_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 0.4 low 0.0 -

South Azerbaijani azb_Arab ✗ ✓ Turkic Common Turkic Arabic 0.3 low 0.0 -
North Azerbaijani azj_Latn ✗ ✓ Turkic Common Turkic Latin 9.4 med 0.1 low

Bashkir bak_Cyrl ✗ ✓ Turkic Common Turkic Cyrillic 1.7 med 119.2 -
Belarusian bel_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 11.5 med 347.6 high
Bhojpuri bho_Deva ✗ ✗ Indo-European Indo-Aryan Devanagari 0.6 low 0.0 -
Bosnian bos_Latn ✗ ✓ Indo-European Balto-Slavic Latin 21.8 high 0.0 -

Boro brx_Deva ✓ ✗ Sino-Tibetan Tibeto-Burman Devanagari 0.1 new 0.0 -
Bulgarian bul_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 39.3 high 4.8 med
Catalan cat_Latn ✗ ✓ Indo-European Italic Latin 10.1 med 1146.2 high

Valencian cat_Latn_vale1252 ✓ ✗ Indo-European Italic Latin 0.0 new 0.0 -
Czech ces_Latn ✗ ✓ Indo-European Balto-Slavic Latin 52.3 high 20.1 med

Chuvash chv_Cyrl ✓ ✓ Turkic Oghuric Cyrillic 1.2 new 1.4 -
Central Kurdish ckb_Arab ✗ ✓ Indo-European Iranian Arabic 1.7 med 7.7 -
Crimean Tatar crh_Latn ✗ ✓ Turkic Common Turkic Latin 0.2 low 0.0 -

Dogri dgo_Deva ✓ ✓ Indo-European Indo-Aryan Devanagari 0.1 new 0.0 -
Greek ell_Grek ✗ ✓ Indo-European Graeco-Phrygian Greek 52.6 high 1.9 low

Estonian est_Latn ✗ ✓ Uralic Finnic Latin 16.9 high 3.2 med
Finnish fin_Latn ✗ ✓ Uralic Finnic Latin 32.6 high 2.1 low
French fra_Latn ✗ ✓ Indo-European Italic Latin 144.9 high 558.1 high
Friulian fur_Latn ✗ ✗ Indo-European Italic Latin 0.2 low 0.0 -
Galician glg_Latn ✗ ✓ Indo-European Italic Latin 6.5 med 25.2 high
Konkani gom_Deva ✓ ✗ Indo-European Indo-Aryan Devanagari 0.1 new 0.0 -

Hindi hin_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 35.6 high 4.7 med
Chhattisgarhi hne_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 0.3 low 0.0 -

Croatian hrv_Latn ✗ ✓ Indo-European Balto-Slavic Latin 17.1 high 0.0 -
Hungarian hun_Latn ✗ ✓ Uralic – Latin 32.6 high 37.1 high

Italian ita_Latn ✗ ✓ Indo-European Italic Latin 95.7 high 169.8 high
Karakalpak kaa_Latn ✓ ✓ Turkic Kipchak Latin 0.3 new 0.0 -
Kashmiri kas_Deva ✗ ✗ Indo-European Indo-Aryan Devanagari 0.1 low 0.0 -
Kazakh kaz_Cyrl ✗ ✓ Turkic Common Turkic Cyrillic 5.6 med 0.5 low

Halh Mongolian khk_Cyrl ✗ ✓ Mongolic-Khitan Mongolic Cyrillic 0.5 low 2.2 low
Kyrgyz kir_Cyrl ✗ ✓ Turkic Common Turkic Cyrillic 2.7 med 1.8 -

Northern Kurdish kmr_Latn ✗ ✓ Indo-European Iranian Latin 0.7 med 5.1 -
Ligurian lij_Latn ✗ ✗ Indo-European Italic Latin 0.2 low 1.6 -

Lithuanian lit_Latn ✗ ✓ Indo-European Balto-Slavic Latin 14.0 high 7.3 med
Lombard lmo_Latn ✗ ✗ Indo-European Italic Latin 0.3 low 0.0 -
Latgalian ltg_Latn ✗ ✗ Indo-European Balto-Slavic Latin 0.3 low 3.7 -

Standard Latvian lvs_Latn ✗ ✓ Indo-European Balto-Slavic Latin 2.8 med 11.4 med
Magahi mag_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 0.3 low 0.0 -
Maithili mai_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 0.4 low 0.0 -
Marathi mar_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 11.8 med 2.2 low

Meadow Mari mhr_Cyrl ✓ ✓ Uralic Finno-Ugric Cyrillic 0.4 new 185.9 -
Macedonian mkd_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 6.8 med 1.7 low

Erzya myv_Cyrl ✓ ✓ Uralic Mordvinic Cyrillic 0.1 new 1.2 -
Nepali npi_Deva ✗ ✓ Indo-European Indo-Aryan Devanagari 4.5 med 0.3 low
Occitan oci_Latn ✗ ✓ Indo-European Italic Latin 0.2 low 0.3 low
Aranese oci_Latn_aran1260 ✓ ✗ Indo-European Italic Latin 0.0 new 0.0 -

Southern Pashto pbt_Arab ✗ ✗ Indo-European Iranian Arabic 0.9 med 0.0 -
Western Persian pes_Arab ✗ ✓ Indo-European Iranian Arabic 15.0 high 28.9 high

Polish pol_Latn ✗ ✓ Indo-European Balto-Slavic Latin 60.4 high 20.7 med
Portuguese por_Latn ✗ ✓ Indo-European Italic Latin 116.8 high 22.0 med

Dari prs_Arab ✗ ✗ Indo-European Iranian Arabic 0.9 med 0.0 -
Romanian ron_Latn ✗ ✓ Indo-European Italic Latin 59.9 high 5.1 med
Russian rus_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 89.0 high 26.4 high
Sanskrit san_Deva ✗ ✗ Indo-European Indo-Aryan Devanagari 0.3 low 0.0 -
Sicilian scn_Latn ✗ ✗ Indo-European Italic Latin 0.2 low 0.0 -
Slovak slk_Latn ✗ ✓ Indo-European Balto-Slavic Latin 29.7 high 3.3 med

Slovenian slv_Latn ✗ ✓ Indo-European Balto-Slavic Latin 20.8 high 1.4 low
Sindhi snd_Deva ✓ ✓ Indo-European Indo-Aryan Devanagari 0.0 new 0.0 -

Spanish spa_Latn ✗ ✓ Indo-European Italic Latin 202.0 high 336.8 high
Sardinian srd_Latn ✗ ✗ Indo-European Italic Latin 0.2 low 0.5 -
Serbian srp_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 5.5 med 1.9 low
Silesian szl_Latn ✗ ✗ Indo-European Balto-Slavic Latin 0.4 low 0.0 -

Tatar tat_Cyrl ✗ ✓ Turkic Common Turkic Cyrillic 2.1 med 9.3 -
Tajik tgk_Cyrl ✗ ✓ Indo-European Iranian Cyrillic 1.1 med 0.0 -

Turkmen tuk_Latn ✗ ✓ Turkic Common Turkic Latin 0.6 low 0.8 -
Turkish tur_Latn ✗ ✓ Turkic Common Turkic Latin 47.4 high 35.1 high
Tuvan tyv_Cyrl ✓ ✗ Turkic Common Turkic Cyrillic 0.2 new 0.0 -

Uyghur uig_Arab ✗ ✓ Turkic Common Turkic Arabic 0.8 med 9.7 -
Ukrainian ukr_Cyrl ✗ ✓ Indo-European Balto-Slavic Cyrillic 12.2 med 25.1 med

Northern Uzbek uzn_Latn ✗ ✓ Turkic Common Turkic Latin 4.1 med 48.5 high
Venetian vec_Latn ✗ ✗ Indo-European Italic Latin 0.2 low 0.0 -

Table 10: Details about the languages used in our experiments.
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NLLB-200 SONAR-200 SONAR-63 charSONAR-63 SONAR-75 charSONAR-75

arg_Latn 0.867† 0.860† 0.910† 0.912† 0.931 0.917
ast_Latn 0.918 0.909 0.920 0.928 0.920 0.927
awa_Deva 0.918 0.861 0.894 0.896 0.898 0.898
azb_Arab 0.632 0.513 0.698 0.698 0.681 0.696
azj_Latn 0.910 0.741 0.863 0.868 0.865 0.870
bak_Cyrl 0.916 0.900 0.915 0.920 0.916 0.918
bel_Cyrl 0.928 0.905 0.922 0.926 0.920 0.926
bho_Deva 0.907 0.879 0.902 0.908 0.904 0.906
bos_Latn 0.961 0.953 0.960 0.960 0.959 0.960
brx_Deva∗ 0.208† 0.203† 0.217† 0.216† 0.841 0.851
bul_Cyrl 0.954 0.952 0.952 0.953 0.952 0.954
cat_Latn 0.954 0.949 0.952 0.956 0.952 0.956
cat_Latn_vale1252 0.903† 0.886† 0.952† 0.955† 0.952† 0.955†

ces_Latn 0.954 0.953 0.955 0.956 0.955 0.956
chv_Cyrl 0.240† 0.251† 0.274† 0.268† 0.851 0.855
ckb_Arab 0.881 0.872 0.882 0.889 0.884 0.890
crh_Latn 0.907 0.890 0.909 0.920 0.914 0.918
dgo_Deva∗ 0.606† 0.567† 0.575† 0.590† 0.895 0.899
ell_Grek 0.940 0.932 0.938 0.938 0.937 0.939
est_Latn 0.940 0.935 0.942 0.945 0.942 0.945
fin_Latn 0.942 0.936 0.945 0.946 0.944 0.947
fra_Latn 0.965 0.961 0.961 0.961 0.959 0.961
fur_Latn 0.931 0.930 0.937 0.938 0.936 0.938
glg_Latn 0.957 0.951 0.954 0.957 0.954 0.957
gom_Deva∗ 0.511† 0.477† 0.607† 0.635† 0.869 0.880
hin_Deva 0.939 0.935 0.934 0.935 0.934 0.938
hne_Deva 0.911 0.902 0.913 0.915 0.912 0.916
hrv_Latn 0.947 0.949 0.954 0.954 0.954 0.954
hun_Latn 0.946 0.940 0.945 0.948 0.945 0.947
ita_Latn 0.957 0.954 0.951 0.954 0.952 0.954
kaa_Latn 0.349† 0.359† 0.698† 0.767† 0.917 0.924
kas_Deva 0.657 0.600 0.674 0.704 0.681 0.710
kaz_Cyrl 0.918 0.908 0.912 0.917 0.909 0.917
khk_Cyrl 0.852 0.838 0.863 0.873 0.865 0.876
kir_Cyrl 0.908 0.898 0.911 0.915 0.909 0.915
kmr_Latn 0.784 0.776 0.789 0.804 0.789 0.800
lij_Latn 0.907 0.896 0.912 0.914 0.910 0.914
lit_Latn 0.930 0.921 0.933 0.938 0.934 0.937
lmo_Latn 0.866 0.833 0.884 0.900 0.885 0.898
ltg_Latn 0.888 0.866 0.900 0.917 0.900 0.916
lvs_Latn 0.928 0.915 0.932 0.938 0.932 0.937
mag_Deva 0.931 0.927 0.926 0.935 0.929 0.930
mai_Deva 0.930 0.881 0.907 0.905 0.906 0.906
mar_Deva 0.929 0.920 0.920 0.925 0.921 0.927
mhr_Cyrl∗ 0.262† 0.278† 0.268† 0.307† 0.896 0.901
mkd_Cyrl 0.946 0.942 0.946 0.952 0.947 0.951
myv_Cyrl 0.245† 0.243† 0.251† 0.259† 0.851 0.846
npi_Deva 0.926 0.881 0.900 0.901 0.900 0.901
oci_Latn 0.956 0.952 0.958 0.958 0.957 0.959
oci_Latn_aran1260 0.505† 0.500† 0.569† 0.576† 0.566† 0.571†

pbt_Arab 0.866 0.855 0.870 0.872 0.872 0.874
pes_Arab 0.924 0.918 0.922 0.926 0.925 0.926
pol_Latn 0.950 0.946 0.946 0.949 0.948 0.948
por_Latn 0.963 0.960 0.961 0.962 0.960 0.962
prs_Arab 0.901 0.900 0.908 0.910 0.908 0.910
ron_Latn 0.964 0.961 0.963 0.964 0.964 0.964
rus_Cyrl 0.950 0.942 0.944 0.946 0.944 0.946
san_Deva 0.749 0.702 0.731 0.737 0.732 0.742
scn_Latn 0.896 0.877 0.904 0.915 0.905 0.914
slk_Latn 0.955 0.951 0.953 0.956 0.952 0.955
slv_Latn 0.944 0.943 0.948 0.951 0.948 0.951
snd_Deva∗ 0.466† 0.464† 0.512† 0.497† 0.860 0.869
spa_Latn 0.950 0.949 0.946 0.948 0.946 0.948
srd_Latn 0.909 0.902 0.917 0.918 0.915 0.916
srp_Cyrl 0.949 0.943 0.950 0.954 0.950 0.954
szl_Latn 0.930 0.920 0.934 0.942 0.933 0.940
tat_Cyrl 0.927 0.915 0.925 0.927 0.925 0.928
tgk_Cyrl 0.915 0.903 0.915 0.925 0.916 0.923
tuk_Latn 0.893 0.882 0.898 0.910 0.904 0.912
tur_Latn 0.946 0.940 0.943 0.946 0.945 0.945
tyv_Cyrl 0.281† 0.313† 0.366† 0.381† 0.880 0.884
uig_Arab 0.863 0.853 0.859 0.868 0.859 0.867
ukr_Cyrl 0.948 0.942 0.945 0.948 0.946 0.949
uzn_Latn 0.931 0.914 0.918 0.924 0.920 0.926
vec_Latn 0.920 0.907 0.931 0.933 0.930 0.936

Table 11: Text Translation COMET (X→Eng) scores in FLORES devtest. ∗ indicates translation is evaluated on
dev split. † indicates that the result is zero-shot. Underlined is the best among the zero-shot for each language, if
any. In bold is the best for supervised results for each language, if any.
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E2E ST charSONAR Cascades Speech-charSONAR (CV) + FLEURS

Language SONAR Whisper SeamlessM4T w/ MMS w/ Whisper Random Pretrained Dual Pretrained Dual

ast_Latn∗ - - 0.752 0.821 - 0.204 0.816 0.223 0.840 0.849
azj_Latn - 0.642 0.837 0.762 0.777 0.197 0.788 0.194 0.788 0.764
bel_Cyrl 0.823 0.676 0.885 0.864 0.842 0.856 0.864 0.868 0.874 0.886
bos_Latn 0.882 0.829 0.919 0.899 0.911 - - - - -
bul_Cyrl 0.852 0.816 0.902 0.884 0.891 0.879 0.891 0.898 0.892 0.907
cat_Latn 0.886 0.874 0.929 0.893 0.929 0.903 0.900 0.922 0.913 0.930
ces_Latn 0.873 0.811 0.910 0.889 0.904 0.888 0.890 0.904 0.902 0.911
ckb_Arab∗ - - 0.766 0.786 - 0.692 0.800 0.798 0.802 0.818
ell_Grek - 0.747 0.868 0.860 0.874 0.216 0.866 0.866 0.872 0.889
est_Latn 0.805 0.629 0.898 0.908 0.902 0.877 0.910 0.912 0.918 0.914
fin_Latn 0.799 0.768 0.887 0.900 0.926 0.229 0.902 0.904 0.906 0.905
fra_Latn 0.870 0.891 0.910 0.884 0.935 0.888 0.906 0.914 0.914 0.922
glg_Latn - 0.830 0.917 0.897 0.908 0.859 0.908 0.913 0.906 0.910
hin_Deva 0.770 0.746 0.856 0.856 0.834 0.854 0.876 0.875 0.880 0.882
hrv_Latn∗ 0.866 0.816 0.895 0.903 0.912 - - - - -
hun_Latn - 0.724 0.878 0.867 0.886 0.870 0.866 0.882 0.884 0.892
ita_Latn 0.892 0.898 0.927 0.915 0.943 0.914 0.924 0.926 0.932 0.939
kaz_Cyrl - 0.349 0.846 0.844 0.774 0.198 0.849 0.198 0.866 0.876
khk_Cyrl - 0.207 0.748 0.731 0.342 0.229 0.732 0.213 0.763 0.764
kir_Cyrl∗ - - 0.854 0.837 - 0.197 0.855 0.853 0.861 0.865
lit_Latn 0.766 0.579 0.832 0.880 0.853 0.858 0.881 0.885 0.884 0.897
lvs_Latn 0.848 0.589 0.885 0.899 0.888 0.879 0.905 0.909 0.908 0.910
mar_Deva 0.734 0.503 0.821 0.812 0.684 0.734 0.836 0.843 0.840 0.846
mkd_Cyrl 0.887 0.808 0.917 0.919 0.912 0.246 0.927 0.925 0.928 0.928
npi_Deva 0.675 0.538 0.826 0.790 0.652 0.196 0.810 0.798 0.801 0.799
oci_Latn - 0.483 0.568 0.747 0.583 0.202 0.707 0.707 0.795 0.805
pes_Arab 0.810 0.666 0.887 0.867 0.851 0.875 0.890 0.884 0.887 0.899
pol_Latn 0.860 0.856 0.893 0.888 0.923 0.876 0.888 0.899 0.898 0.908
por_Latn 0.878 0.906 0.897 0.902 0.941 0.885 0.908 0.917 0.918 0.922
ron_Latn 0.856 0.867 0.909 0.895 0.919 0.855 0.900 0.904 0.906 0.905
rus_Cyrl 0.878 0.893 0.912 0.883 0.934 0.883 0.898 0.908 0.903 0.910
slk_Latn 0.885 0.822 0.914 0.911 0.924 0.876 0.909 0.917 0.919 0.921
slv_Latn 0.843 0.672 0.879 0.871 0.852 0.201 0.871 0.200 0.883 0.875
snd_Deva∗ 0.360 0.360 0.443 0.698 0.423 - - - - -
spa_Latn 0.888 0.893 0.908 0.899 0.934 0.912 0.917 0.920 0.922 0.930
srp_Cyrl 0.891 0.856 0.924 0.924 0.929 0.235 0.922 0.913 0.927 0.928
tgk_Cyrl∗ - 0.523 0.858 0.874 0.658 - - - - -
tur_Latn 0.743 0.827 0.888 0.878 0.924 0.868 0.885 0.903 0.899 0.909
ukr_Cyrl 0.858 0.865 0.912 0.890 0.931 0.887 0.903 0.904 0.911 0.915
uzn_Latn 0.736 0.326 0.846 0.753 0.527 0.798 0.839 0.843 0.846 0.854

Table 12: Speech Translation COMET scores (X→Eng) on FLEURS test. The 6 languages with ∗ where not part
of the main results of Table 7, since they were not supported either by our models or by Whisper.
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Subgrouping Script

Indic Romance Turkic Uralic Devanagari Latin Cyrillic

# Languages 4 3 3 2 4 4 4

COMET
SONAR 0.428 0.749 0.305 0.260 0.428 0.651 0.269
SONAR-75 0.866 0.813 0.882 0.869 0.866 0.839 0.867
charSONAR-75 0.875 0.814 0.888 0.874 0.875 0.842 0.871

XSIM++
SONAR-200 53.8 29.3 63.5 70.2 53.8 36.1 68.6
SONAR-75 8.7 21.6 9.6 10.5 8.7 17.7 11.0
charSONAR-75 8.2 20.9 10.1 10.8 8.2 16.9 11.8

Table 13: Text translation (COMET) and text retrieval (xSIM++) results per language subgroup and script for the 12
newly added languages. Results in FLORES devtest (X→Eng).

Subgrouping Script

Balto-Slavic Romance Turkic Indic Iranian Uralic Mongolic Greek Latin Cyrillic Devanagari Arabic Greek

# Languages 16 15 11 10 6 3 1 1 34 12 10 6 1

COMET
SONAR-200 0.934 0.926 0.850 0.849 0.871 0.937 0.838 0.932 0.917 0.916 0.849 0.818 0.932
SONAR-75 0.942 0.935 0.884 0.870 0.881 0.944 0.864 0.936 0.929 0.925 0.870 0.852 0.936
charSONAR-75 0.946 0.940 0.892 0.877 0.887 0.946 0.876 0.939 0.934 0.930 0.877 0.860 0.939

XSIM++
SONAR 8.1 8.0 13.4 13.5 10.7 7.1 13.3 9.2 8.3 9.7 13.5 16.1 9.2
SONAR-75 6.2 5.5 10.0 9.7 8.2 5.7 11.0 6.7 6.1 7.7 9.7 11.6 6.7
charSONAR 5.8 5.2 9.4 9.1 7.7 5.3 10.1 6.9 5.7 7.1 9.1 11.0 6.9

Table 14: Text translation (COMET) and text retrieval (xSIM++) results per language subgroup and script for the 63
known training languages. Results in FLORES devtest (X→Eng).

Model Ural/Cyrl Turkic Romance Avg

SONAR-200 0.925 0.857 0.932 0.905

SONAR-group 0.930 0.879 0.942 0.917
charSONAR-group 0.934 0.881 0.946 0.920
↪→ w/ Norm 0.934 0.877 0.946 0.919
↪→ w/ Norm & Noise 0.934 0.878 0.947 0.920

Table 15: Text Translation COMET scores (X→Eng) in
FLORES dev. Each encoder was trained on the respec-
tive group of languages.

Model # Tokens Inference
Time (s)

SONAR 49 127
charSONAR 158 (×3.2) 142 (+10%)

Table 16: Average number of tokens and average infer-
ence time in FLORES dev with batching (5K tokens per
batch).
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