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Abstract

We analyze the evolution of English noun com-
pounds, which we represent as vectors of time-
specific values. We implement a wide array
of methods to create a rich set of features, us-
ing them to classify compounds for present-day
compositionality and to assess the informative-
ness of the corresponding linguistic patterns.
Our best results use BERT — reflecting the sim-
ilarity of compounds and sentence contexts —
and we further capture relevant and comple-
mentary information across approaches. Lever-
aging these feature differences, we find that the
development of low-compositional meanings
is reflected by a parallel drop in compositional-
ity and sustained semantic change. The same
distinction is echoed in transformer processing:
compositionality estimates require far less con-
textualization than semantic change estimates.

1 Introduction

Noun compounds are composed of at least two con-
stituents, whose relatedness to the overall meaning
ranges from compositional (e.g., love song) to id-
iomatic (e.g., glass ceiling). Given their ubiquitous
nature and downstream challenges for NLP sys-
tems, compounds have been extensively modeled
in present-day language (for overviews, see e.g.
Baldwin and Kim, 2010; Mileti¢ and Schulte im
Walde, 2024). But what happened in the evolution
of glass ceiling that triggered its idiomatic usage
denoting societal barriers to success? And does this
process differ from the development of love song,
which still straightforwardly refers to a song about
love? With only limited empirical evidence avail-
able to date, these questions remain largely open in
historical linguistics. Moreover, since compound-
ing is a highly productive process, understanding
how it unfolds is also relevant in applications such
as adapting NLP systems to evolving language use.

Empirical research directly addressing these is-
sues is limited to a small number of studies suggest-
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Figure 1: We analyze the temporal evolution of noun
compound compositionality. Given a compound’s uses
from COHA and a feature extraction method, we repre-
sent the compound as a vector of time-specific values.
These vectors are used to classify the target compounds
for present-day compositionality and thereby assess the
informativeness of the linguistic features we compare.

ing that the evolution of features such as frequency,
productivity, and time-specific cooccurrences is
predictive of present-day compositionality (Dhar
et al., 2019; Maurer et al., 2023; Mahdizadeh Sani
et al., 2024). But none of these studies system-
atically compared linguistic features of different
complexity; used the more versatile neural mean-
ing representations; or directly estimated degrees
of lexical semantic change (cf. Tahmasebi et al.,
2021), a broader phenomenon closely connected to
changes in compositionality (Bybee, 2015). As a
result, we still lack a comprehensive understanding
of diachronic compositionality evolution.

Our paper aims to robustly identify empirical
linguistic factors explaining different meaning pat-
terns in noun compound evolution. We also exam-
ine the effect of common modeling choices on the
quality of our linguistically motivated feature set.
We pose the following research questions:

RQ1 Which diachronic properties are predictive
of present-day compositionality?

RQ2 What is the relationship between composi-
tionality evolution and semantic change?

RQ3 How robust are different features to changes
in data settings and modeling strategies?
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Figure 1 presents a high-level overview of our ap-
proach centered on binary classification of present-
day compositionality. Our primary objective is not
to achieve high classification accuracy, but rather
to assess the predictive power of the evolution of
different types of linguistic information. We use
various modeling approaches to define a rich fea-
ture set which is linguistically motivated and highly
variable in complexity, going from raw corpus in-
formation to diverse strategies of deriving semantic
knowledge from BERT-family models. We test
over 7,000 constellations of experimental settings.

Our contributions are as follows. (1) An in-depth
analysis of diachronic linguistic features for compo-
sitionality prediction, highlighting the strong infor-
mativeness of context-specified BERT information
(0.849) but also the complementarity of simpler
approaches. (2) A direct comparison of composi-
tionality and semantic change estimates, with novel
empirical insights into their joint role in the devel-
opment of low-compositional meanings. (3) An
analysis of feature robustness, notably linking com-
positionality and semantic change to diverse de-
grees of contextualization in transformer models.!

2 Related Work

Computational models of noun compound compo-
sitionality operationalize the relatedness of the con-
stituents to the overall compound meaning. This is
usually done by comparing their respective repre-
sentations in word embedding models (Reddy et al.,
2011; Schulte im Walde et al., 2013, 2016; Salehi
et al., 2014, 2015; Cordeiro et al., 2019; Alipoor
and Schulte im Walde, 2020). A more recent line
of work uses noun compound compositionality to
examine the linguistic knowledge in pretrained lan-
guage models (Shwartz and Dagan, 2019; Garcia
et al., 2021a,b; Dankers et al., 2022; Mileti¢ and
Schulte im Walde, 2023; Buijtelaar and Pezzelle,
2023), generally finding compositionality informa-
tion to be encoded but also strongly localized.
Diachronic linguistic research proposes specific
trajectories of change in compound meanings (e.g.,
from compositional to non-compositional; Bybee,
2015), but very few computational studies model
this phenomenon. Dhar and van der Plas (2019)
classify novel noun compounds for plausibility
based on diachronic features. Dhar et al. (2019) use
time-specific cooccurrences to predict present-day

'The code used for our analyses is available at https:
//github.com/FilipMiletic/CompoundEvolution/

compositionality in a regression task. Maurer et al.
(2023) and Mahdizadeh Sani et al. (2024) frame
the task as binary classification and respectively
use diachronic frequency and productivity features,
and time-specific cooccurrence and topic models.
All these studies find that diachronic evolution of
features is predictive of present-day compositional-
ity, but the extent of this trend is method-dependent.
This points to the need for a controlled evaluation
of different, and more recent, methods.

More general research on semantic change de-
tection has proposed a variety of methods (Gulor-
dava and Baroni, 2011; Hamilton et al., 2016a,b;
Schlechtweg et al., 2019; Giulianelli et al., 2020;
Gonen et al., 2020; Rosin et al., 2022; Cassotti
et al., 2023, i.a.), but they have not been applied to
multiword expressions such as noun compounds.
Moreover, several transformer models have been
pretrained on historical data (Hosseini et al., 2021;
Manjavacas and Fonteyn, 2022; Schweter et al.,
2022), making them potentially useful for semantic
change tasks; they are yet to be evaluated at scale.

3 Data

As corpus data, we use the clean version of the
Corpus of Historical American English (CCOHA,;
Davies, 2012; Alatrash et al., 2020), a genre-
balanced collection of texts from 1810 to 2009
with ~430m words. The first two decades are dis-
carded due to limited size. We use the lemmatized,
POS-tagged version. Further, we assess the infor-
mativeness of different available amounts of data
by defining two types of time slices: fine-grained
(one decade: 1830-1839, 1840-1849, etc.) and
coarse-grained (three decades: 1830-1859, 1860-
1889, etc.). A higher temporal resolution should
reflect language changes more precisely; on the
other hand, some methods are sensitive to limited
data, so aggregating periods could be more robust.
See Appendix A for sizes of individual time slices.
We use gold standard compositionality ratings
for noun compounds by Reddy et al. (2011) and
Cordeiro et al. (2019). Each item has three ratings:
compound-level compositionality, meaning contri-
bution of the modifier, and meaning contribution of
the head (examples in Table 1). Raters gave type-
level literality judgments from O (not at all literal)
to 5 (very literal). We start from the 210 noun—
noun compounds in the datasets, and retain the 166
which appear in our corpus at least once in at least
two successive time slices of both granularities.

20072


https://github.com/FilipMiletic/CompoundEvolution/
https://github.com/FilipMiletic/CompoundEvolution/

Item Modifier Head Compound
time difference |4.8 +0.5 HI [4.9 402 HI |49 +02 HI
47 +05 HI|3.2 £19 LO|4.7 +04 HI
4.8 404 HI |04 +07 LO|0.9 £1.1 LO
0.2 £04 L0|0.2 404 LO|0.2 £04 LO

health care
loan shark
silver lining

Table 1: Sample items with compositionality informa-
tion on the level of the modifier, head, and compound:
mean gold standard ratings, standard deviations, and
binary labels (HI: high comp., LO: low comp.).

4 Experimental Setup

We frame compositionality prediction as a binary
classification problem. For each of three types
of compositionality ratings (on the level of the
compound, the modifier, and the head), we rank
the compounds by that rating, retaining the first
60 and the last 60 as the low-compositional and
high-compositional extremes (cf. sample targets in
Table 1 and further details in Appendix B). This
provides a balanced dataset that also avoids issues
with average ratings in the mid-range, which often
reflect strong annotator disagreement rather than
the actual mid-range property of the scale (Pol-
lock, 2018; Knuples et al., 2023). The same ap-
proach is used in prior work on compositionality
(Shwartz and Dagan, 2019; Maurer et al., 2023;
Mahdizadeh Sani et al., 2024).

To assess the predictive power of the evolution
of different linguistic properties, we represent each
compound with a diachronic feature vector whose
dimensions correspond to time slices. Given a fea-
ture, each dimension of the diachronic vector cor-
responds to that feature’s value in one time slice.
We define a linguistically motivated set of features
which describe distinct and interpretable aspects
of a compound’s usage at a given point in time.
We start from direct features (§4.1), i.e., empirical
corpus information quantifying compound and con-
stituent rate of use. On a more complex level, we
induce a wide range of derived features (§4.2) from
high-dimensional meaning representations. They
capture semantically richer patterns of compound
and constituent relatedness: based on lexical and
topical patterns; in and out of sentence context;
within and across time periods.?

The diachronic feature vectors are used as in-
put to a support vector machine, implemented us-

Further approaches could yield stronger performance
(e.g., a classifier directly on top of transformer embeddings)
but without capturing compound usage in an interpretable way
comparable to our other features. Such approaches therefore
fall outside our focus on interpretable linguistic insights.

ing the SVC class with default parameters from
scikit-learn (Pedregosa et al., 2011). We train
binary classifiers for each of the three types of com-
positionality ratings, yielding compound, modifier,
and head predictions. To minimize overfitting, we
use repeated k-fold cross-validation with 5 folds
and 10 repetitions, and report mean accuracy across
those runs. Any missing values are imputed with
the mean value for the dimension in question.

4.1 Direct Features

On the simplest level, we characterize a com-
pound’s evolution with straightforward dispersion
measures, and directly populate diachronic feature
vectors with these time-specific values. We com-
pute the frequency of all compounds and their con-
stituents; and the productivity of all constituents
formulated as morphological family size (de Jong
et al., 2002), i.e., the number of unique compound-
types in which a constituent appears in that specific
role (modifier or head). We calculate productivity
by counting all compound candidates containing
a constituent; these are heuristically defined as a
sequence of two nouns, neither preceded nor fol-
lowed by a noun. For example, in the time slice
corresponding to the 2000s, the compound beauty
sleep has a raw modifier productivity of 103, re-
flecting the fact that beauty is used as the modifier
in 103 distinct compounds in that time slice (beauty
product, beauty salon, etc.). Both frequency and
productivity are calculated for each time slice and
then normalized by the respective slice’s total size.

4.2 Derived Features

On a more complex level, we derive feature values
from high-dimensional meaning representations
which capture richer patterns of compound usage.
We first discuss the meaning representation models
we implement (§4.2.1) and then describe the pro-
cess of deriving feature values from them (§4.2.2).

4.2.1

We implement (i) static representations — cooccur-
rence, word2vec, and topic models — to identify
broad type-level tendencies of compound usage;
and (ii) contextualized representations from trans-
former models, to better reflect finer-grained phe-
nomena such as polysemy.

Meaning Representation Models

Cooccurrence models. For each time slice, we
represent a target word’s meaning as a vector of
cooccurrence counts within a 10-word symmetrical
window. We only use content words (nouns, verbs,
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adjectives, adverbs) as vector dimensions. We also
create a more restricted variant to compute distribu-
tional neighbors (cf. below): as potential neighbors,
we only use nouns; as context words, we exclude
the 50 most frequent ones and retain only those that
appear at least 500 times throughout CCOHA. For
comparisons of vectors across two time slices, we
use the intersection of two models’ context words
as their dimensions.

word2vec. As an alternative neural approach,
we train time-specific word2vec models (Mikolov
et al., 2013) using skip-gram with negative sam-
pling and setting window size to 10, vector dimen-
sions to 100, minimum frequency to 1, and other
parameters to default values. We train the mod-
els using the gensim library (Rehiifek and Sojka,
2010). For each time slice, we train the model on
all CCOHA data from that time slice.> When com-
paring vectors from two time slices, we first align
the models to a shared vector space using Orthog-
onal Procrustes, which corresponds to finding the
best rotational alignment between two matrices so
as to minimize the distance between their vectors.
We use the implementation proposed by Hamilton
et al. (2016b) and independently align all pairs of
successive time slices.

Topic models. We represent topics using the
stochastic block model (Peixoto, 2019), which au-
tomatically determines the number of topics in
a hierarchical manner. It defines a graph whose
nodes correspond to target words, and relies on
identifying community structures within it. We
use the first three levels of hierarchy, with respec-
tively 3088, 83, and 9 topics for coarse-grained
time slices; and 2164, 103, and 20 topics for fine-
grained time slices. Target words are represented
as vectors whose dimensions correspond to topics,
and values correspond to a topic’s probability of
being represented for the target.

Transformer models. To deploy a transformer
model, we collect all occurrences of a compound
from a given time slice and feed them into the
model, one sentence at a time. We retain embed-
dings for each token in the sequence at every layer.
We use 9 pretrained models of different complexity
and pretraining data, starting with BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) as
well-established base architectures. We explore

3Due to randomness, we train five word2vec models per
time slice and report average values.

two computationally efficient alternatives: Distil-
BERT (Sanh et al., 2019), trained using knowl-
edge distillation from BERT; and ALBERT (Lan
et al., 2020), based on a simplified architecture
which shares parameters across layers. Given our
focus on noun compounds, we use SpanBERT
(Joshi et al., 2020) as it was trained on predicting
spans of multiple tokens. And since we are work-
ing with diachronic data, we use models optimized
for historical language: hmBERT (Schweter et al.,
2022), a multilingual model whose English pre-
training data contains books from 1510 to 1900;
histLM (Hosseini et al., 2021), pretrained on En-
glish books from 1760 to 1900; MacBERTh (Man-
javacas and Fonteyn, 2022), pretrained on various
corpora (including COHA) from 1450 to 1950; and
MacBERThwsgp, finetuned on word sense disam-
biguation. See App. C for implementation details.

4.2.2 Deriving Feature Values from Models

Given a meaning representation model described
above, for each compound we derive diachronic
feature values through pairwise comparisons of vec-
tors representing different linguistic structures of
interest in a given time slice. We now describe the
types of target vectors on which we rely; the tem-
poral settings in which we compare them (within a
time slice or across a pair of successive time slices);
and the similarity functions applied in the pairwise
comparisons. A summary is shown in Figure 2.

Target vectors. We experiment with different
target vectors, i.e., representations of different lin-
guistic structures of interest taken from one of the
meaning representation models described above.
We consider the following types of target vectors:
comp, corresponding to the compound (e.g., cli-
mate change); modif, corresponding to the modi-
fier (e.g., climate); head, corresponding to the head
(e.g., change); and only in transformer models,
cont, corresponding to the sentential context of
a compound, i.e. the average of all tokens in a sen-
tence except for the compound, [CLS] and [SEP].
Note that in static models, comp is a dedicated
vector learned from the preprocessed (underscore-
joined) occurrences of a compound; in transformer
models, we are bound by the pretrained tokenizer
so we calculate comp by averaging modif and head.

Temporal settings. Pairwise comparisons of cho-
sen target vectors are performed in two temporal
settings: within a time slice, which corresponds
to standard approaches for predicting the degrees
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Figure 2: Illustration of different strategies to obtain
derived feature values using within-time comparisons
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Type-level processing is applied to (i) vectors from
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of compositionality of noun compounds (Cordeiro
et al., 2019; Mileti¢ and Schulte im Walde, 2023);
and across time slices, which corresponds to stan-
dard approaches for predicting degrees of semantic
change over time (Schlechtweg et al., 2019; Giu-
lianelli et al., 2020). For within-time estimates,
we use all pairwise combinations of target vectors:
comp—modif, comp—head, modif-head and, only
in transformer models, comp—cont, head—cont,
and modif—cont. We use the directly obtained val-
ues, as well as three well-established composition
functions (Reddy et al., 2011) to combine modifier
and head information. Given pairwise estimates
for (modif, comp) and (head, comp), the composite
measures are: ADD, the sum of the two estimates;
MULT, the product of the two estimates; COMB,
the sum of ADD and MULT. We also use cont in-
stead of comp. For across-time estimates, given a
pair of successive time slices ¢1 and t9, we compare
the representations of a given target — limited to
comp, modif, or head — from ¢ and ¢5.

Similarity functions. Pairwise comparisons of
target vectors rely on different similarity functions.
As the default, we compute the pairwise cosine
score over two target vectors. This is straight-
forward for static models since they provide only

one vector for each target word. With transformer
models, we encode individual examples of a target
word, yielding a different vector for each occur-
rence. We then need to aggregate this information,
which we do using two approaches. In type-level
processing, we first average over all contextualized
vectors for a given target type (comp, modif etc.)
and then compute the cosine for pairs of aggregated
target vectors; this last operation is directly parallel
to that for static models. In token-level processing,
we compute the cosine directly for contextualized
vectors and then average those cosine scores. For
within-time estimates, we consider each sentence
individually and compute the cosine for all pairs of
target vectors in that sentence (comp-modif, comp—
head etc.). For across-time estimates, we consider
all contextualized vectors for a given type of target
vector (e.g., comp occurring in sentence 1, 2, ...,n)
and compute cosine scores for all pairs of those
vectors which come from different time slices.

For cooccurrence and word2vec models, we also
compute semantic neighborhood estimates since
using a broader set of words may alleviate instabil-
ity due to data sparsity. In across-time settings, this
further obviates the need for noise-prone model
alignment (cf. Dubossarsky et al., 2017). We adopt
two measures proposed for semantic change detec-
tion, but generalize them to comparisons of any two
targets, within and across time. Given k& nearest
neighbors of two words, NNsgarg is the propor-
tion of overlapping neighbors in the two sets (Go-
nen et al., 2020). NNos is obtained by taking the
union of the neighbors; defining a vector for each
target populated with the cosine scores for that tar-
get and each neighbor in the union; and taking the
cosine over the two vectors (Hamilton et al., 2016a).
We use k& € {10, 20, 50, 100, 200, 500, 1000} fol-
lowing Gonen et al. (2020).

5 Results and Discussion

5.1 Informativeness of Different Features

We begin by addressing RQ1 and identifying di-
achronic features which are most predictive of
present-day compositionality based on classifica-
tion performance. We compare features across dif-
ferent approaches, constituents, and target items.

Performance across approaches. We first com-
pare approaches based on their single best classifi-
cation result (Table 2; for details on corresponding
implementations, see Appendix D). We interpret
these results as the least conservative estimates of

20075



Accuracy
Family Approach Comp Modif Head
Dispersion frequency 0.631 0.608 0.619
productivity 0.622  0.629 0.566
Static cooccurrences 0.767 0.743 0.763
representations  word2vec 0.844 0.871 0.776
topic model 0.746  0.793 0.693
Transformers BERT 0.849 0.748 0.792
(general) RoBERTa 0.726  0.720 0.724
ALBERT 0.847 0.774 0.760
DistilBERT 0.793 0.742 0.769
SpanBERT 0.740 0.688 0.751
Transformers histLM 0.716  0.704 0.688
(historical) hmBERT 0.613  0.650 0.642
MacBERTh 0.682  0.692 0.660
MacBERTh-WSD  0.668  0.692 0.660
Random 0.500 0.500 0.500

Table 2: Best results across method families and indi-
vidual approaches (bold: best in a family; shading: best
overall). Accuracy is reported for compositionality rat-
ings on the level of the compound, modifier, and head.

the informativeness of each approach, i.e., best-
case results which may be subject to variability
under different implementations (explored below).

All methods reach performance well above the
random baseline, confirming that diachronic fea-
tures from all our approaches are predictive of
present-day compositionality, but to variable ex-
tents. The lowest-performing features are, perhaps
unsurprisingly, the simplest. Frequency and pro-
ductivity yield accuracy in the range of 0.6, com-
parable to the setup by Maurer et al. (2023); and
static count-based representations (cooccurrence
and topic models) are in the range of 0.7-0.8, simi-
larly to Mahdizadeh Sani et al. (2024).

The approaches we introduce yield a further ac-
curacy increase of =~ 0.1 points. The strongest
values are 0.849 for compound predictions; 0.871
for modifier predictions; and 0.792 for head pre-
dictions. They are mostly obtained by BERT-based
approaches, suggesting that present-day composi-
tionality is best captured by representations which
directly reflect the use of target expressions in sen-
tence context. But this result does not entail that
classification accuracy is monotonic with respect
to modeling complexity. In fact, decontextualized
representations from word2vec — a considerably
simpler, shallow neural architecture — perform on
par with or, in some settings, better than BERT.
Moreover, transformer models other than BERT
are generally weaker; one exception is ALBERT,
with results competitive or superior to BERT’s (es-

Accuracy

Compound Modifier Head
Mean acc.  0.555 +0.080 0.542 +0.074 0.537 40.075
Alt. info A
Compound —0.001 #+0.056 0.007 =+0.056
Modifier ~ —0.006 +0.058 0.001 =£0.073
Head —0.024 +0.056 —0.029 +0.078

Table 3: Top: predictability of different types of compo-
sitionality ratings, measured as mean accuracy across all
implementations. Bottom: relative informativeness of
features specific to different compound structures, mea-
sured as mean change in accuracy when substituting a
classification setting containing features specific to the
predicted type of compositionality rating (on the level of
the compound, modifier, or head; columns) with those
corresponding to other parts of the compound (rows).
Shading: Wilcoxon signed-rank test p < 0.05.

pecially for modifier predictions) despite a simpler
architecture.

Surprisingly, transformer models aligned with
our target expressions (SpanBERT) and domain
(historical pretraining data) do not fare well. Their
performance is in the 0.6-0.7 range, placing them
above dispersion-based features but — strikingly
— below even count-based vector representations.
While we expected to benefit from the broader tem-
poral coverage in the historical models’ pertaining
data, based on these results we hypothesize that
they go too far back in time relative to our corpus.

Performance across constituents. We now turn
to differences across types of compositionality rat-
ings (for the compound as a whole, modifier, or
head), which we take to reflect the role of com-
pound structures in compositionality evolution. As
an indication of predictability of different scores,
we note that the strongest mean accuracy is for
compound-level predictions, followed by the mod-
ifier and then the head (Table 3, top). Looking
at prior studies on (a subset of) the same gold
standard, this trend parallels most diachronic ap-
proaches (Maurer et al., 2023; Mahdizadeh Sani
et al., 2024; but contra Dhar et al., 2019) and con-
trasts synchronic ones (Schulte im Walde et al.,
2016; Mileti¢ and Schulte im Walde, 2023), which
report overall better results for head information.
We further analyze the relative informativeness
of features which target the whole compound, the
modifier, or the head. To do so, we calculate the
change in accuracy when substituting a feature spe-
cific to the predicted type of compositionality with
another one (e.g., for modifier compositionality
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Figure 3: Spearman’s correlation between approaches
based on item-level proportion of misclassifications.

prediction, we compare the use of modifier fre-
quencies vs. head frequencies, modifier—compound
vs. head—compound embeddings, etc.), while keep-
ing all other experimental settings fixed. Table 3
(bottom panel) shows the mean changes in accuracy
across such pairs of experimental configurations.

Compound features are the most informative:
they yield the best results for compound-level com-
positionality, and are non-detrimental or even ben-
eficial for constituent compositionality. Modifier
features are slightly less informative, as they some-
what penalize compound compositionality but not
other prediction scores. Head features are the least
informative, on average yielding clear drops in per-
formance for both compound and modifier com-
positionality. While we should not overstate the
mean differences in accuracy, together with score
predictability (as defined above) they suggest that
present-day compositionality is most closely re-
flected by the evolution of compound and mod-
ifier properties, and less directly by changes in
head properties.

Performance across target items. We now as-
sess if individual approaches better predict the com-
positionality of some subset of target items. For
each compound, we calculate the proportion of
classification runs in which it was misclassified,
aggregating over all implementations of a given
approach. We then use these compound-level rates
of misclassification to compute Spearman’s corre-
lation between all pairs of approaches. Figure 3
shows that approaches from the same family (dis-
persion, static representations, general transform-
ers, and historical transformers) are more corre-
lated with one another than with approaches from

other families. Indeed, mean correlations for ap-
proaches from the same family are systematically
higher than their mean correlations with any other
family. This indicates that different diachronic
features capture qualitatively different aspects
of relevant information rather than being more or
less informative along a single dimension.

5.2 Compositionality vs. Semantic Change

Zooming into qualitative differences, we now an-
swer RQ2 by contrasting the informativeness of
compositionality vs. semantic change estimates.

Within- vs. across-time estimates. The overall
mean accuracy for within-time estimates (0.546 +
0.080) is statistically significantly higher than for
across-time estimates (0.538 + 0.062).* We fur-
ther break down this trend across approaches and
types of compositionality ratings (Appendix E). Al-
though across-time estimates obtain better results
for a subset of approaches (ALBERT and some
historical transformers), most cases align with the
aggregate trend. This indicates that the process of
semantic change explains some aspects of com-
positionality evolution, but is not the only factor.

Evolution of features. To understand how these
multiple factors interact, we inspect the evolution
of a subset of features (Figure 4). Over time, high-
compositional compounds increase in frequency
and in relatedness of compounds to constituents
and to sentential context (within-time estimates). A
given compound’s time-specific representations are
never perfectly related, i.e., its meaning changes
across decades, but the rate of that change is smaller
(across-time estimates). Looking at individual com-
pounds, love song has an atypical frequency pattern,
but shows expectedly high and stable composition-
ality estimates and low semantic change estimates.
By contrast, bank account has less stable compo-
sitionality estimates — possibly reflecting cultural
changes captured by context — but follows class
trends for frequency and semantic change.
Low-compositional compounds diverge from
these patterns in a variety of ways: their frequency
also increases over time, but far more slowly; the re-
latedness between compound and constituent mean-
ings decreases; and the relatedness between com-
pounds and sentences is relatively stable. They
exhibit systematically lower relatedness across
decades, i.e., their meaning changes at a higher

*Mann-Whitney—U test (p < 0.001).
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Figure 4: Evolution of features for high-compositional vs. low-compositional compounds (class-level mean with
95% CI and sample compounds). Top: within-time (compositionality) estimates; bottom: across-time (semantic
change) estimates. Since all estimates use vector similarity, low across-time values indicate high semantic change.
The plot shows best-performing implementations for each approach family in the fine-grained setting (see App. D).

rate. The example of elbow room closely mirrors
these class-level trends. It is contrasted by silver
spoon, whose estimates exhibit strong variance and
overlap with the high compositionality ranges. This
may be due to the compositional meaning still com-
peting with the (now prevalent) non-compositional
interpretation. These results overall indicate that
the development of low-compositional meanings
is reflected by a decrease in compositionality par-
alleled by a sustained rate of semantic change.
This empirical finding is consistent with the theoret-
ical claim that compounds first emerge with com-
positional interpretations and only later develop
non-compositional ones (Bybee, 2015).

5.3 Feature Robustness

Turning to RQ3, we now assess whether experi-
mental settings affect diachronic features derived
from different approaches and, by extension, our
understanding of the underlying linguistic patterns.

Diachronic data. We compare diachronic fea-
tures against a synchronic setup using the last time
slice. Diachronic information yields a mean per-
formance improvement (0.006 + 0.050) which is
limited, but positive and statistically significant
across approaches (Appendix F). This indicates
that diachronic information tends to be help-
ful in compositionality classification. We also
compare fine-grained (10-year) and coarse-grained
(30-year) time slices. Mean accuracy difference
favors coarse-grained data (0.005 + 0.040), but its
polarity and significance vary across approaches,
suggesting a lack of clear trend.

love song song_nn, madrigal_nn, melody_nn,
(1890-1910) ditty_nn, lullaby_nn

love affection_nn, lover_nn, lovingness_nn,
(1890-1910)  pure-minded_jj, passion_nn

song sing_vv, melody_nn, love_song_nn,
(1890-1910) madrigal_nn, ditty_nn

love song ballad_nn, song_nn, lyric_nn,

(1980-2000)
love
(1980-2000)
song
(1980-2000)

bluesy_jj, ditty_nn
unconsummated_jj, unrequited_jj,
lover_nn, joy_nn, passion_nn
tune_nn, sing_vv, ballad_nn,
lyric_nn, love_song_nn

Table 4: Top 5 neighbors for love song (word2vec).

Static representations. Features derived from
static representations (cooccurrences, word2vec,
topic model) yield consistently strong predictions
using pairwise cosine scores. For cooccurrences
and word2vec, we also use neighborhood-based es-
timates NNcos and NNgspgarg. They provide com-
petitive or single best results, but are subject to
variability across approaches (NNcos strongly pe-
nalizes cooccurrence models) and temporal settings
(stronger contribution in across-time settings). We
conclude that on the type level, compositionality
evolution is most robustly reflected by directly
measured cooccurrence similarities, but is also
captured by even a small number of nearest
neighbors. The informativeness of neighborhood
information is qualitatively illustrated in Table 4,
which shows different patterns for love song: per-
sistent within-time compositionality (cf. neighbor
overlap with song) and slight semantic change over
time (cf. neighbor differences between the periods).
See Appendix G for further quantitative results.
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Figure 5: Accuracy for transformer models (mean and 95% CI). X-axis shows the layer used for representations.

Transformer models. The features derived from
transformer models are distinguished by the layer
and type-level vs. token-level processing (cf. Fig-
ure 5 for compound predictions; Appendix H for
modifier and head predictions). Within-time esti-
mates generally perform best in the initial layers,
whereas across-time estimates relatively steadily in-
crease in performance towards the final layers. Put
differently, on the token level, compositionality
evolution is best captured by weakly contextual-
ized within-time information and strongly con-
textualized across-time information. As further
illustration, consider the following examples:
(1) The cabin in which we dined is below [...] and one
hundred and eighty persons can sit down at once and

each have elbow room sufficient for all the purposes of
figuring with the knife and fork (1907)

(2) The Piedmont Park [...] will have a lot more elbow
room in a few years if the group that oversees the park
can pull off an ambitious expansion plan (2007)

We hypothesize that contextualization penalizes
within-time estimates — which compare different
target structures within the same sentence — by
reducing the distinctiveness of those target struc-
tures (e.g., elbow room vs. remaining tokens in
a given sentence). By contrast, contextualization
may benefit across-time estimates — which compare
the same target structure across different sentences
— by better capturing the meaning differences re-
flected by the surrounding context and in that way
disambiguating the target structure’s usages (e.g.,
comparing elbow room in the two time periods).
That said, historical models benefit less from in-
creased contextualization in across-time settings.
A potential reason is that pretraining on historical
data produces representations which directly reflect

historical usages, whereas pretraining on contem-
porary data might require contextual information
to make the representations useful for semantic
change. For further analyses, see Appendix H.

In terms of broader insights, our results support
the tentative consensus that compositionality infor-
mation is more recoverable in lower layers (Mileti¢
and Schulte im Walde, 2024). The interaction we
posit between contextualization and within-time
vs. across-time estimates is compatible with the
encoding of type-level semantics in lower layers
(Vuli€ et al., 2020) and senses in higher layers (Co-
enen et al., 2019). We also replicate results for
token-level vs. type-level processing, confirming
their limited effect on compositionality prediction
(Mileti¢ and Schulte im Walde, 2023) and benefits
from token-level approaches on semantic change
prediction (Laicher et al., 2021). Our results come
from a single experiment and as such constitute a
more stringent replication of diverse prior findings.

6 Conclusion

We analyzed the evolution of English noun com-
pounds using binary classification of present-day
compositionality. We implemented a sweeping, lin-
guistically motivated set of diachronic features, and
analyzed their informativeness with respect to com-
positionality. While all our approaches can predict
compositionality well above the random baseline,
their informativeness is highly variable and com-
plementary in nature. Further, the development of
low-compositional meanings is reflected by a paral-
lel drop in compositionality and sustained semantic
change, a distinction also reflected in degrees of
contextualization of transformer representations.
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Limitations

This study evaluated methods to represent noun
compound meanings over time and, based on those
representations, predict their present-day compo-
sitionality. While we aimed for a comprehensive
setup providing insights into different model mech-
anisms, this could be further expanded in different
ways. With respect to transformer models, our fo-
cus was on differences in architectures and pretrain-
ing data, but another important factor is model size;
architectures with different numbers of parameters
could therefore be compared.

We also considered using instruction-tuned au-
toregressive models. In preliminary experiments,
we prompted LLMs to generate compositionality
and semantic change scores given input sentences
from our corpus. We were unable to identify a
reasonably robust prompting setup, suggesting the
need to strongly optimize the models’ instruction-
following for the target tasks. We consider that this
prerequisite falls outside the scope of the present
paper and we reserve it for future work. Recall
moreover that we aim to contrast linguistically in-
terpretable types of information. Our setup already
includes a variety of BERT-derived features, which
are linguistically closely related to LLM-derived
features (i.e., they both reflect compound usage in
sentence context). We therefore do not consider
LLMs as central to the empirical focus of our work.

We used a relatively small gold standard dataset
(we retained 120 instances for classification),
which is however well-established on the task of
compositionality prediction, and we are unaware
of larger comparable datasets. Moreover, the com-
positionality ratings it contains are limited to a syn-
chronic present-day perspective by virtue of them
being produced by contemporary speakers. For ob-
vious reasons, we cannot know with certainty how
speakers from earlier stages of language use (say,
100 years ago) would have perceived the composi-
tionality of the same target items.

From a different perspective, our experiments are
limited to a single type of multiword expressions
in one European language, English. The conclu-
sions that we draw must be seen within this spe-
cific context. Expanding our approach to include
different types of expressions (e.g. particle verbs,
idioms, or light verb constructions) and different
languages would provide more robust insights in
model behaviors as well as the underlying linguis-
tic mechanisms.
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A Data Details

Data distribution across time. The distribution
of data from CCOHA across individual time slices
is presented in Table 5.

Time slice size

Decade Fine Coarse
1830s 15.3
1840s 17.7 51.3
1850s 18.3
1860s 18.8
1870s 20.6 61.6
1880s 22.2
1890s 22.4
1900s 24.3 71.7
1910s 25.1
1920s 28.2
1930s 27.1 82.1
1940s 26.9
1950s 27.3
1960s 26.6 80.2
1970s 26.4
1980s 28.0
1990s 31.0 91.8
2000s 32.7

Table 5: Corpus size (in millions of tokens) for fine-
grained and coarse-grained time slices.

Dataset use and licenses. Our use of datasets
is in line with their intended use for research, as
described below in more detail. While it is conceiv-
able that the corpus data may contain offensive or
otherwise sensitive content, we use it for an aggre-
gate analysis of lexical semantics on the level of
noun compounds and only obtain numerical system
outputs. None of the instances in the gold standard
dataset are offensive.

COHA: We acquired COHA with an academic
multi-user license prior to this study. For copyright
compliance, corpus creators use the @ symbol to
redact 10 tokens after every 832,200 tokens.

Compositionality ratings: The gold standard
data by Reddy et al. (2011)° and Cordeiro et al.
(2019)° is publicly available and is not associated
with a specific license.

5http://www.dianamccarthy.c:o.uk/downloads.html

6https ://pageperso.lis-lab.fr/carlos.ramisch/
?page=downloads/compounds
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B Target Selection

Following the general overview in Section 3, we
now elaborate on the process of target selection
from the gold standard compositionality datasets
by Reddy et al. (2011) and Cordeiro et al. (2019).

Frequency threshold. We start from the 210
noun—noun compounds in the datasets and retain
those appearing in CCOHA at least once in at
least two successive time slices of both granular-
ities. We exclude the following 44 items: agony
aunt, armchair critic, baby blues, backroom boy,
blame game, call centre, carpet bombing, cash
cow, cheat sheet, cloud nine, contact lenses, copy
cat, couch potato, cutting edge, diamond wedding,
end user, eye candy, fine line, head teacher, honey
trap, information age, injury time, insane asylum,
insider trading, job fair, labour union, mailing list,
music journalist, number crunching, panda car,
pecking order, rat run, sacred cow, search engine,
shrinking violet, sitting duck, smoking gun, snail
mail, spinning jenny, stag night, top dog, video
game, web site, zebra crossing. The excluded items
have lower average compositionality ratings than
the retained items: on the level of the compound
(2.4 £ 1.4 vs. 2.941.6), the modifier (2.8 & 1.6 vs.
3.0 £+ 1.8), and the head (2.7 & 1.8 vs. 3.3 &+ 1.6).

Binary labels. We define binary composition-
ality labels for the 166 targets retained after fre-
quency filtering. For each compositionality rating
(on the level of the compound, the modifier, and the
head), we sort the items based on that rating. We
retain the lowest 60 as low-compositionality items,
the highest 60 as high-compositionality items, and
discard those in the middle. Their distribution
across the rating scale is shown in Figure 6. Al-
though the low-compositional class encompasses
a broader range of values (largely due to the fre-
quency skew noted above), the two classes remain
clearly distinct, as also shown by sample items
in Table 6. Importantly, this approach enables
us to replicate the classification setup from prior
work (Maurer et al., 2023; Mahdizadeh Sani et al.,
2024) with a comparable number of targets and also
limit the potentially detrimental effect of mid-range
items with high standard deviation.

excl mid
excl freq

® |ow comp L]
® high comp x

2.0 4 compound

1.5 1

1.0 1

0.5 1

0.0

2.0 A

1.5 1
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2.0 1
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0 1 2 3 4 5
average compositionality rating

Figure 6: Distribution of gold standard targets based
on their average compositionality ratings (x-axis) and
standard deviation across annotators (y-axis). Subplots:
ratings on the level of the whole compound, the mod-
ifier, and the head. Categories: low compositionality
class (blue); high compositionality class (red); items
excluded due to insufficient frequency (gray crosses);
items excluded as part of the mid-range (gray dots).
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Compound targets Modifier targets Head targets

basket case 0.2 +04 | basket case 0.1 =04 | elbow grease 0.2 =06
silver lining 0.2 404 | kangaroo court 0.2 404 | sex bomb 0.2 +05
guinea pig 0.2 +0.6 | silver lining 0.2 +04 | silver lining 0.2 =04
sugar daddy 0.2 +04 | crocodile tear 0.2 +0.5 | loan shark 04 <07
nut case 0.2 404 | sugar daddy 0.2 +0.7 | elbow room 04 +09
gravy train 0.3 +0.6 | nut case 0.2 +0.6 | nut case 04 +11
flower child 04 405 | ratrace 0.2 +05 | gravy train 04 +08
elbow room 04 +0.6 | gravy train 0.3 +0.5 | word painting 0.5 =+07
goose egg 0.4 +0.8 | goose egg 0.3 +0.7 | think tank 0.5 =06
sex bomb 0.4 +0.7 | snake oil 0.4 40.6 | guinea pig 0.5 =07
cotton candy 1.6 408 | silver screen 1.4  +1.6 | market place 24 £20
lip service 1.6 +1.1 | silver spoon 1.6 +1.5 | brain teaser 24 414
firing line 1.7 41.7 | firing line 1.6 +1.7 | cocoa butter 2.7 416
night owl 1.9 +1.3 | polo shirt 1.7 414 | cable car 2.8 1.6
fairy tale 1.9 =£1.3 | fairy tale 1.8 +£1.0 | banana republic 2.8 £1.9
con artist 1.9 +1.3 | pocket book 1.8 4+1.1 | jetlag 29 414
foot soldier 1.9 +1.3 | china clay 2.0 41.8 | rush hour 29 414
think tank 2.0 +1.1 | lip service 2.0 1.3 | life belt 3.1 +17
pain killer 2.0 414 | beauty sleep 2.1 41.1 | health care 32 419
crash course 2.1 413 | tennis elbow 2.1 +1.7 | silver screen 32 +14
car park 4.2 £1.0 | bow tie 4.5 £0.9 | crime rate 45 +08
rice paper 4.2 +£1.1 | calendar month 4.6 £1.0 | peace conference 4.5 +09
speed trap 4.2  +09 | travel guide 4.6 +08 | graveyard shift 45 07
traffic jam 4.3 +1.0 | pillow slip 4.6 +0.7 | world conference 45 +13
health check 43 +09 | computer expert 4.7 0.7 | chain reaction 45 07
skin tone 4.3 41.0 | radio station 47 41.0 | research project 45 410
incubation period 4.3 408 | ground floor 47 40.7 | street girl 46 409
football season 4.3 =+0.8 | credit card 4.7 £0.5 | mail service 4.6 06
phone book 4.3 +0.7 | public service 477 +0.7 | prison term 4.6 06
food market 4.3 +0.8 | fair play 477 +0.7 | subway system 4.6 06
engine room 4.9 £0.3 | mail service 4.9 +03 | academy award 49 =02
time difference 49 102 | speed limit 4.9 102 | cocktail dress 5.0 +0.0
winter solstice 4.9 +02 | computer program 4.9 +0.2 | grandfather clock 5.0 +0.0
climate change 5.0 0.2 | health check 5.0 +£0.0 | graduate student 5.0 +00
insurance company 5.0 +0.0 | crime rate 5.0 0.0 | engine room 5.0 +00
music festival 5.0 40.0 | insurance company 5.0 +0.0 | lime tree 5.0 400
prison term 5.0 40.0 | music festival 5.0 40.0 | polo shirt 5.0 400
prison guard 5.0 40.0 | wedding anniversary 5.0 +0.0 | milk tooth 5.0 400
wedding anniversary 5.0 +0.0 | wedding day 5.0 40.0 | wedding anniversary 5.0 +0.0
wedding day 5.0 40.0 | winter solstice 5.0 40.0 | tear gas 5.0 400

Table 6: Targets retained for prediction of compositionality on the level of the compound, the modifier, and the
head. Top: low-compositionality class; bottom: high-compositionality class. The targets are sorted by average
compositionality rating. For space reasons, we omit 40 intermediate targets for each class.
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C Transformer Models and
Computational Infrastructure

Architectures and infrastructure. We use trans-
former model implementations from HuggingFace
Transformers (Wolf et al., 2020). We provide an
overview of deployed pretrained models in Table 7,
together with their number of parameters and the
corresponding identifier on HuggingFace Hub. We
use base, uncased, monolingual English models,
except for hmBERT (only available as cased and
multilingual) and SpanBERT (only available as
cased). All models have 12 hidden layers, except
for DistilBERT which has 6. We ran experiments
on a single Nvidia GeForce RTX A6000 GPU with
48 GB of memory. Inference requires around one
hour per model, for a total runtime of ~10 hours.

Model Params HuggingFace Hub ID
ALBERT 12M  albert/albert-base-v2
BERT 109 M google-bert/bert-base-uncased
DistilBERT 66 M distilbert/distilbert-base-uncased
histLM 109 M Livingwithmachines/bert_1760_1900
hmBERT 111 M  dbmdz/bert-base-historic-
multilingual-cased
MacBERTh 109 M emanjavacas/MacBERTh
MacBERThywsp 109 M emanjavacas/MacBERTh-metric-wsd
RoBERTa 125 M FacebookAI/roberta-base
SpanBERT 108 M SpanBERT/spanbert-base-cased

Table 7: Summary of used pretrained models

Further implementation details. As input se-
quences, we used compound examples extracted
from the lemmatized, POS-tagged version of
CCOHA, but they were stripped of POS tags be-
fore being fed into the models. While the models
are pretrained on non-lemmatized text, we opted
for lemmatized input because it can benefit predic-
tions on tasks such as semantic change detection
(Laicher et al., 2021); it also allowed us to maintain
direct comparisons with the remaining approaches.
We set the maximum size of input sequences to
256 tokens and truncate them otherwise. The pre-
trained tokenizer splits out-of-vocabulary tokens
into subword fragments; when this occurs for a to-
ken of interest, we average over the subwords. If it
occurs when computing the embedding of the full
compound, we take the micro-average of all tokens
produced for the modifier and the head.

We do not fine-tune the models principally be-
cause we are comparing models pretrained on dif-
ferent types of data, whose effect we do not wish
to obscure. More generally, our measures rely on
meaning differences in context, which off-the-shelf

models capture both for compositionality (Mileti¢
and Schulte im Walde, 2023) and semantic change
(Laicher et al., 2021).

D Best Performing Configurations

Details on individual best-performing configura-
tions are presented in Table 8.

E Comparison of Within-Time and
Across-Time Estimates

The distribution of accuracy values obtained using
within-time vs. across-time estimates is plotted in
Figure 7.

F Additional Results for Diachronic Data
Settings

We provide further analyses on the effect of tem-
poral granularity (fine-grained vs. coarse-grained
time slices); and using the full range of diachronic
information vs. only the most recent time slice (di-
achronic vs. static approach). We plot relative ac-
curacy differences in Figure 8 and examine their
distribution across approaches.

Regarding temporal granularity, positive values
indicate a better performance of the fine-grained ap-
proach. While the median difference tends to hover
around 0, we also observe model-specific behav-
iors. The extreme median values are the ones for
ALBERT (0.017), indicating a preference for fine-
grained information; and for word2vec (—0.014),
suggesting a preference for coarse-grained infor-
mation. The latter trend aligns with the sensitivity
of word2vec to the amount of training data, which
increases approximately three-fold in the coarse-
grained setup. Beyond the central tendency, most
methods show clear outliers, with the highest ab-
solute differences in accuracy of ~ 0.2. This in-
dicates that specific combinations of experimental
settings are strongly affected by granularity.

As for the diachronic vs. static approaches, pos-
itive values indicate a better performance of the
diachronic setting. The strongest median effect is
shown by the frequency-based approach (0.027),
followed by word2vec and topic models (0.009 for
both); as before, we note clear outliers across the
methods. Importantly, although median values are
overall low, they are all positive (with the sole ex-
ception of MacBERTh-WSD). Compared to the
disparate results for granularity, this trend points to
a more consistent effect and confirms the general
potential of diachronic information.
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Approach Dims ‘ Pred. ‘ Granularity Similarity Estimate Target vectors Param. ‘ Acc.

Best implementations overall for each approach

comp | coarse direct within comp 0.631
frequency 1 | modif | fine direct within modif 0.608
head | coarse direct within comp 0.619
comp | fine direct within modif 0.622
productivity 1 | modif | fine direct within modif 0.629
head | fine direct within head 0.566
comp | coarse nn-share within comp COMB k10 0.767
from 233k . r .

cooccurrences 10 489Kk modif | coarse nn-share within comp modif k10 0.743
head | coarse nn-share within comp ADD k10 0.763
comp | coarse cos within comp modif 0.844
word2vec 100 | modif | coarse nn-cos within comp modif k500 0.871
head | coarse nn-share within comp ADD k500 0.776
comp | coarse cos within comp modif h2 0.746
topic model coarse2(9) modif | coarse cos within comp modif A2 0.793
fine head | fine cos within comp MULT h2 0.693
comp | fine cos-token  within cont COMB [l 0.849
BERT 768 | modif | fine cos-type within cont  ADD 2 0.748
head | fine cos-type within cont COMB [l 0.792
comp | coarse cos-type within cont MULT [0 0.726
RoBERTa 768 | modif | coarse cos-token  within comp MULT [0 0.720
head | coarse cos-token  within head  cont 10 0.724
comp | fine cos-token  across modif 110 0.847
ALBERT 4096 | modif | coarse cos-token  across modif 110 0.774
head | fine cos-token  across modif I8 0.760
comp | coarse cos-token  within cont MULT [0 0.793
DistilBERT 768 | modif | coarse cos-token  within cont muLT [0 0.743
head | fine cos-type within cont ADD [l 0.769
comp | coarse cos-token  within cont COMB [0 0.740
SpanBERT 768 | modif | coarse cos-token  across head 3 0.688
head | coarse cos-type within head  cont 0 0.751
comp | fine cos-type within comp cont 1 0.716
histLM 768 | modif | fine cos-token  within modif cont 1 0.704
head | fine cos-type within comp cont 1 0.688
comp | fine cos-type within head  cont 14 0.613
hmBERT 768 | modif | fine cos-type within cont MULT [12 0.650
head | coarse cos-type within modif cont 17 0.642
comp | fine cos-token  across modif 112 0.682
MacBERTh 768 | modif | fine cos-token  within cont MULT [0 0.692
head | coarse cos-type within cont ~ MULT [0 0.660
comp | coarse cos-token  across modif 112 0.668
MacBERThwsp 768 | modif | fine cos-token  within cont MULT [0 0.692
head | coarse cos-type within cont MULT [0 0.660

Best implementations for compound-level predictions in fine-grained setting (plotted in Figure 4)
frequency 1 | comp | fine direct within comp 0.627
word2vec 100 | comp | fine cos within comp modif 0.827
BERT 768 | comp | fine cos-token  within cont COMB [l 0.849
histLM 768 | comp | fine cos-type within comp cont 1 0.716
cooccurrences 26k-240k | comp | fine nn-share across modif k1000 | 0.667
ALBERT 4096 | comp | fine cos-token  across modif 110 0.847
MacBERTh 768 | comp | fine cos-token  across modif 112 0.682

Table 8: Details on best-performing implementations across approaches and predicted scores (compositionality
on the level of the compound, head, and modifier). Dims: number of dimensions of the corresponding meaning
representations (before deriving feature values used for diachronic compositionality classification); note that for
cooccurrence models it varies depending on granularity and time slice. Param: additional parameter depending on
the approach (k: number of nearest neighbors; h: hierarchy level for stochastic block model; I: transformer layer).
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Figure 7: Distributions of accuracy values for within-time vs. across-time estimates, across the three predicted types
of compositionality scores. Statistical significance markers report the Mann-Whitney-U test: p < 0.001 (**%),
p < 0.01 (**), p < 0.05 (*). Frequency and productivity are only implemented as within-time estimates, but are

provided for comparison.
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Figure 8: Differences in accuracy depending on data
settings. Granularity: positive values indicate better per-
formance of fine-grained time slices (accgne—acCcoarse)-
Time span: positive values indicate better performance
of the diachronic setting (acCgiachr—aCCstatic)- Statistical
significance markers report the Wilcoxon signed-rank
test for the corresponding distributions of accuracy val-
ues: p < 0.001 (*¥**), p < 0.01 (*%), p < 0.05 (*¥).

G Additional Results for Static
Representations

We implemented three approaches based on static
representations: the SBM topic model, count-based
cooccurrence vectors, and word2vec. The results
are summarized in Figure 9.

On the broadest level, the predictions based on
pairwise cosine scores taken over meaning vectors
(gray boxes) show that topic models and cooccur-
rence vectors have a similar range of performance,
and are clearly outperformed by word2vec. Regard-
ing topic-based representations, recall that we use
different hierarchy levels induced by the stochas-
tic block model (§4.2.1); the number of topics in
successive levels differs by roughly an order of
magnitude. Each stepwise move from a lower to a
higher hierarchy level reduces mean accuracy by
around 0.010 points. However, the single best re-
sult for all three prediction targets is obtained by
the highest hierarchy level (i.e., the lowest number
of topics), suggesting that the corresponding rep-
resentational information is highly informative in
some parameter combinations, but not very robust
given its outlier status (Table 9).

For cooccurrence and word2vec models, we also
use the neighborhood-based estimates NN¢cog and
NNsuare. The best of the two for a given model
is competitive with or outperforms cosine-based
predictions. However, there is variability across
approaches: NNcos strongly penalizes cooccur-
rence models, whereas it is the better of the two
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Figure 9: Accuracy for topic models, count-based cooccurrences and word2vec. Top: distribution for all estimates.
Bottom: neighbor-based estimates (mean accuracy and 95% confidence interval) depending on the number of
nearest neighbors.

pred. score level mean min max
compound 0 0.630 0.459 0.717
1 0.619 0485 0.710
2 0.611 0.440 0.746
modifier 0 0.618 0.502 0.718
1 0.605 0.441 0.723
2 0.593 0.431 0.793
head 0 0.600 0.450 0.686
1 0.593 0.430 0.685
2 0.581 0.418 0.693

Table 9: Accuracy values for the topic model broken
down by the types of compositionality ratings and the
level of hierarchy in the stochastic block model.

estimates for word2vec. There are also differences
depending on temporal settings: in comparison
to cosine-based estimates, neighborhood estimates
are particularly useful in across-time comparisons,
possibly reflecting a greater degree of representa-
tional stability compared to the standard cosine
approach which requires model alignment.

As for the number of nearest neighbors &, within-
time performance tends to decline with an increase
in k, except for word2vec’s NNspgare. In contrast,
across-time performance marginally but steadily in-
creases for NNcos and peaks around £ = 100 for
NNsuare. Put differently, within-time estimates,
which directly correspond to compositionality pre-
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dictions, benefit from a word’s most immediate
semantic neighborhood. Across-time estimates,
which measure semantic change, are more accurate
with a broader range of points of comparison.

H Additional Results for Transformers

Average performance across layers. Full results
for compositionality prediction using transformer-
based models are provided in Figure 10 for modifier
predictions; and in Figure 11 for head predictions.
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Figure 10: Modifier compositionality prediction.
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Figure 11: Head compositionality prediction.
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Figure 12: Correlation matrix (Spearman’s p) compar-
ing the performance of different transformer models
across their individual implementations.

Across-model patterns of feature robustness.
Moving beyond raw performance ranges (§5.3), we
analyze the similarity of different models regarding
their robustness to constellations of experimental
parameters. We compute Spearman’s correlation
coefficient across pairs of models, comparing the
prediction accuracy two models obtain while keep-
ing other parameters unchanged (Figure 12).

Most BERT variants trained on present-day data
are moderately correlated to one another (BERT,
RoBERTa, DistilBERT, SpanBERT). This likely
reflects the use of the same pretraining data mix.
One exception to this trend is ALBERT, which
was also pretrained on the same data, but presents
a clearly distinct performance trend which aligns
more closely to historical models. This pattern is
indicative of a stronger effect of the architecture
changes introduced with ALBERT (in particular, a
strong optimization focus with parameter sharing
across layers) compared to other BERT variants.

Historical BERT models exhibit weaker correla-
tions to other models on a general level. Strikingly,
though, they tend to be more strongly correlated to
general-purpose models rather than to other histori-
cal models. The specifics of this trend vary across
types of compositionality ratings (on the level of
the compound, modifier, or head), likely due to
distinct roles of compound structures in their evo-
lution (cf. §5.1). Furthermore, hmBERT is the only
model with a clear tendency towards negative cor-
relations with other models, which may be due to
it being only available as a cased and multilingual
model (and not uncased and English-only, like the
other models we deployed). Such effects should be
taken into consideration by future work relying on
off-the-shelf historical language models.

More generally, while this analysis highlights
different subgroups of models, it also yields pair-
wise correlations which are only weak to moderate
(average p ~ 0.2). This indicates that different
models are sensitive to rather different sets of pa-
rameter settings, which we further explore below.
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Ablation study. We examine the robustness of
each transformer model with respect to individual
experimental parameters through an ablation study.
For each model and each type of compositionality
rating (on the level of the compound, the modi-
fier, and the head), we take as reference point the
best performing experimental configuration. We
then assess the drop in accuracy when replacing
the value of one experimental setting at a time —
layers, target embeddings, type-level/token-level
processing, and temporal granularity — with other
potential values for that setting, and keeping all
other settings unchanged. We plot the results in
Figure 13.

On a general level, different models vary notice-
ably with respect to their sensitivity to experimental
parameters. Most remarkably, BERT obtains the
single best result in our experiments, but it is also
the least robust to changes in parameters, with po-
tential drops in accuracy close to 0.4 points. The
second strongest transformer model, ALBERT, ex-
hibits a similar trend. This tendency is contrasted
by models with weaker top results which are how-
ever less sensitive to parameter changes. For ex-
ample, RoOBERTa and DistilBERT lose up to ~ 0.3
accuracy points with specific layer choices.

Regarding the relative effect of different pa-
rameters, the choice of layers and target embed-
dings clearly plays a decisive role for model per-
formance on our task. Values alternative to the
best-performing choice yield an average accuracy
decrease of ~ 0.1 — 0.2 depending on the model.
By contrast, the choice of type-level vs. token-
level processing has a comparatively limited ef-
fect in within-time settings. But its role is much
more pronounced — similar to that of layers — in
across-time settings, where higher results are near-
systematically obtained using token-level process-
ing. Finally, the difference between fine-grained
and coarse-grained time slices is overall limited, in
general yielding a difference < 0.1 accuracy.

Within-time Estimates Across-time Estimates
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Figure 13: Drop in accuracy (x-axis) compared to the
best-performing setting when manipulating the values
of one experimental parameter at a time.
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