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Abstract

To enhance immersive experiences, binaural
audio offers spatial awareness of sounding ob-
jects in AR, VR, and embodied Al applica-
tions. While existing audio spatialization meth-
ods can generally map any available monaural
audio to binaural audio signals, they often lack
the flexible and interactive control needed in
complex multi-object user-interactive environ-
ments. To address this, we propose a Text-
guided Audio Spatialization (TAS) framework
that utilizes flexible text prompts and evaluates
our model from unified generation and compre-
hension perspectives. Due to the limited avail-
ability of premium and large-scale stereo data,
we construct the SpatialTAS dataset, which en-
compasses 376,000 simulated binaural audio
samples to facilitate the training of our model.
Our model learns binaural differences guided
by 3D spatial location and relative position
prompts, augmented by flipped-channel audio.
It outperforms existing methods on both sim-
ulated and real-recorded datasets, demonstrat-
ing superior generalization and accuracy. Be-
sides, we develop an assessment model based
on Llama-3.1-8B, which evaluates the spa-
tial semantic coherence between our gener-
ated binaural audio and text prompts through
a spatial reasoning task. Results demonstrate
that text prompts provide flexible and interac-
tive control to generate binaural audio with
excellent quality and semantic consistency
in spatial locations. Dataset is available at
https://github.com/Alice01010101/TASU.

1 Introduction

Humans can identify the location of objects by
processing auditory differences between their ears,
even when they cannot see or are not physically
present in the scene. Binaural audio contains spa-
tial information for each sound source, it is es-
sential for applications in Virtual Reality (VR) or
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Augmented Reality (AR) (Li et al., 2018; Kim
et al., 2019b; Xu et al., 2024), and embodied
AI (Liu et al., 2024c). The audio spatialization
task (Gao and Grauman, 2019; Zhou et al., 2020;
Rachavarapu et al., 2021; Parida et al., 2022; Garg
et al., 2023; Dagli et al., 2024) continues to be a vi-
brant area of research. This task involves mapping
monaural audio signals to binaural audio signals,
allowing users to experience immersive surround-
ings as if they were physically present in the scenes.
Most existing methods are visually guided (Gao
and Grauman, 2019; Zhou et al., 2020; Garg et al.,
2023), performing mono-to-binaural mapping us-
ing visual frames captured by cameras of different
Field Of Views (FOV). However, accurate mapping
between sound sources in binaural audio and visi-
ble objects in frames is impeded by sound sources
located outside the camera’s view and complex en-
vironments with extraneous noise.

To address these challenges, we propose a Text-
guided Audio Spatialization (TAS) framework that
incorporates flexible text prompts and evaluates our
model innovatively from the perspective of unified
generation and understanding. To the best of our
knowledge, the only relevant study in this area Li
et al. (2024b) manually labeled text prompts for
the FAIR-Play dataset (Gao and Grauman, 2019)
from extracted visual frames, resulting in subopti-
mal performance due to its simplistic approach and
limited dataset scale. To mitigate the lack of cor-
responding datasets, we propose sampling from a
large-scale simulated binaural dataset (Zheng et al.,
2024) and refining it with more detailed text de-
scriptions. This results in the SpatialTAS dataset,
which contains approximately 376K training sam-
ples. Since providing precise azimuth or elevation
information is not always feasible in practical sce-
narios, we generate two primary types of descrip-
tions, as illustrated in Figure 1. The first type cate-
gorizes eight spatial directions based on the Carte-
sian product of spherical coordinates: (left, right),
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The baby cry is located right,
behind, above, 3m away. And the
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Figure 1: We propose the Text-guided Audio Spatializa-
tion (TAS) framework. It utilizes diverse text descrip-
tions to specify the 3D spatial information of multiple
sound sources, serving as prompts to transform monau-
ral audio into binaural audio in complex environments.

(front, behind), (above, below), along with their
distances to the receiver. In certain real-time inter-
action scenarios, humans can only make subjective
judgments about the relative spatial relationships
between two concurrently active sound events. For
the second type, we offer descriptions of the rel-
ative positions between any two sound sources.
These text descriptions enable selective location
instructions for specific target objects, thereby en-
hancing user-friendliness and adaptability to vari-
ous contexts. This is in contrast to most previous
methods (Gao and Grauman, 2019; Zhou et al.,
2020; Rachavarapu et al., 2021; Parida et al., 2022;
Garg et al., 2023; Dagli et al., 2024) that require
guidance for all sound sources within an audio
mixture to avoid obvious performance drop. In-
spired by PseudoBinaural (Xu et al., 2021), we aim
to train our model on the constructed large-scale
simulated SpatialTAS dataset, which can transfer
freely to in-the-wild monaural audios (Section 5.2).

Recent works (Li et al., 2024a,b) have achieved
impressive performance using diffusion models in
the audio spatialization task. However, these ap-
proaches employ a diffusion model directly in the
waveform space, utilizing a cross-attention module
to interact with audio and text embeddings. In con-
trast to this approach, we leverage a latent diffusion
model (Rombach et al., 2022) that is directly condi-
tioned on text embeddings to learn the binaural dif-

ference between the left and right audio channels,
as illustrated in Figure 1. By learning the latent rep-
resentations of audio signals without modeling the
cross-modal relationship, our model improves both
generation quality and computational efficiency.
Furthermore, recognizing the absence of spatial au-
dio alignment in the pretrained text encoder during
training, we introduce a text-audio coherence mod-
ule. This module employs flipped-channel audio to
finetune the encoder, thereby enriching the spatial
representation of text embeddings.

While numerous metrics exist for evaluating
monaural audio, specific metrics for generated bin-
aural audio remain lacking. In this work, we first
establish an assessment model by finetuning Llama-
3.1-8B (Dubey et al., 2024) on the SpatialTAS with
the spatial audio reasoning task. Then we utilize
the assessment model to assess the spatial semantic
coherence between our generated audio and text
prompts. Experimental results on the SpatialTAS
dataset demonstrate that our generated binaural au-
dio not only exhibits high audio quality but also
captures distinct and interpretable spatial character-
istics for spatial audio understanding. Furthermore,
it shows strong generalization ability when tested
on the FAIR-Play (Gao and Grauman, 2019) and
360° YouTube-Binaural (Garg et al., 2023) datasets,
which consist of real-world binaural recordings, in-
cluding various audio types such as music, speech,
and natural sounds.

2 Related Work

2.1 Audio Spatialization

Some studies utilize video frames for self-
supervision to infer the positions of sound-emitting
objects (Morgado et al., 2018; Garg et al., 2023;
Gao and Grauman, 2019; Zhou et al., 2020). Mor-
gado et al. (2018) introduced two datasets for audio
spatialization using 360° videos: REC-STREET
and YT-ALL. Garg et al. (2023) enhanced the YT-
Clean dataset by converting ambisonic audio to bin-
aural audio with Normal Field-Of-View (NFOV)
video clips, creating the YouTube-Binaural dataset,
which we use alongside the original 360° videos.
Gao and Grauman (2019) proposed the FAIR-Play
dataset, focusing on NFOV video and binaural au-
dio with multiple music tracks. Other studies im-
proved alignment between binaural audio and vi-
sual features(Garg et al., 2023; Liu et al., 2024b; Li
et al., 2024a). Recently, Li et al. (2024b) labeled
the FAIR-Play dataset with object location descrip-
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tions and suggested guiding audio spatialization
with text.

2.2 Binaural Audio Generation

Recently, several text-to-audio generation methods
have been proposed (Liu et al., 2023, 2024a; Vyas
et al., 2023; Evans et al., 2024a,b; Lee et al., 2023;
Yang et al., 2023), with some focusing specifically
on text-to-binaural audio generation (Singh Kush-
waha et al., 2024; Sun et al., 2024). Singh Kush-
waha et al. (2024) utilized text as the sole input, in-
troducing a multi-conditional encoder to unify spa-
tial and semantic information for context-aligned
binaural audio generation. Similarly, Sun et al.
(2024) proposed the BEWO-1M dataset, demon-
strating a novel approach with promising results.
Since large-scale monaural datasets are readily
available in the real world, we focus on text-guided
audio spatialization, leveraging text prompts to
provide flexible and interactive control that better
aligns with real-world application needs.

3 Method

3.1 Generating Prompts for Training

Our object is to establish a text-guided audio spa-
tialization framework that uses positional text de-
scriptions Tprompes to transform a monaural audio
Amono into binaural audio, along with a unified
evaluation for generation and understanding.
Given the limited scale of most real-recorded bin-
aural audio datasets and the absence of text prompts
for sound source locations, we introduce Spatial-
TAS, a large-scale simulated dataset meticulously
crafted by sampling and refining data from the Spa-
tialSoundQA (Zheng et al., 2024) dataset by GPT-
40 (Hurst et al., 2024). Notably, SpatialTAS incor-
porates more fine-grained text prompts tailored for
binaural audio generation. As detailed in Table 1,
our dataset encompasses approximately 256K sam-
ples with text descriptions for Direction Of Ar-
rival (DOA) and Distance Estimation (DE), comple-
mented by an additional 120K samples featuring de-
scriptions of relative relationships between sound
sources. The SpatialTAS dataset provides compre-
hensive 3D spatial location prompts that convey the
direction and distance of each sound source, along
with versatile relative position prompts that facil-
itate flexible specification of spatial relationships
between any two sound sources. In Table 1, Ex-
ample A and Example B exemplify detailed spatial
location prompts. Example A represents a scenario

with a single sounding source, while Example B
depicts a situation with two sound sources in an
audio mixture. Regarding the versatile relative po-
sition prompts, Example C conveys information
about the relative distance between the two sources,
whereas Examples D, E, F, and G describe their
relative spatial locations. The dataset comprises
hundreds of diverse audio events carefully selected
from 10-second audio clips in AudioSet (Gemmeke
et al., 2017). We aim to train a model on this large-
scale simulated dataset, enabling seamless transfer
to in-the-wild audios.

3.2 Audio Spatialization Framework

During training, we train a diffusion model to learn
the channel difference A;,. from Gaussian noise,
which signifies the distinction between the left and
right channels. Given the simulated binaural audio
Ap = (A, A,), the monaural audio Apepo is Ob-
tained by mixing the left and right channels, while
the target channel difference audio Ay, is obtained
by subtracting the channels:

Amono = Al + AT7 Alr = Al - Ar, (1)

where Apono 18 utilized as model input during train-
ing. We train the latent diffusion model to learn
the channel difference A;, from the Gaussian dis-
tribution. During inference, we compute generated
binaural audio A, = (A;, A,) as follows:

Amono + Alr n Amono - Alr

A, = Smene T Zr
5 ; 5 (2)

A=
The generated binaural audio A retains the same
spatial positional information for each sound
source as in Ay. Furthermore, the model demon-
strates strong generalization capabilities for real-
world binaural audio generation, encompassing var-
ious audio types, including music, speech, and di-
verse sound effects. We train a latent diffusion
model Fy to learn the binaural difference A;,. con-
ditioned on text embeddings 7. and embedded
monaural audio A., together with a spatial coher-
ence module.

Conditional latent diffusion model. As illustrated
in the lower left of Figure 2, we employ a Varia-
tional AutoEncoder (VAE) (Kingma, 2013) latent
encoder Enc(+) to compress the mel-spectrogram
of Ay, which has a shape of R”* ¥, into a compact
continuous representation z € R X5 xC Here,
T and F represent the time length and frequency
dimensions, respectively. C' denotes the number of
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Table 1: Overview of text condition types. The SpatialTAS dataset includes about 256,000 samples with 3D spatial
location and distance prompts for each sound source, along with approximately 120,000 samples for relative spatial
relationships among multiple sound sources. Sources indicates the number of sound sources present in each sample.

Text Type Sources Example
DOA & DE 1 A: The emergency vehicle is located right, behind, below, 5Sm away.
B: The music is located left, behind, below, 8.5m away. And the whip is located right,
(256K, 68%) 2 .
behind, below, S5Sm away.
C: The distance between the sound of the animal and the sound of the spray is 3m away.
D: The sound from the music on the back is located further away, while the sound from the
Relative telephone dialing with DTMF is closer to the front.
Relationships 2 E: The sound from the scratching originates on the left, and the sound from the children

(120K, 32%)

playing originates on the right.
F: The sound from the music is above and the sound from the boat, water vehicle is below.

G: The sound from speech is further away from you in Euclidean distance than the sound

from a mechanical fan.

channels in the latent representation, and r is the
downsampling ratio that determines the compres-
sion level of the latent space. After the diffusion
model, we use the VAE latent decoder Dec(+) to
reconstruct the latent representation z back into
the mel-spectrogram format of A;,.. Additionally,
we incorporate a HiFi-GAN vocoder (Kong et al.,
2020a) to convert the mel-spectrogram into a high-
quality waveform. Both the latent encoder Enc(-)
and the latent decoder Dec(-) consist of stacked
convolutional modules.

Given the encoded latent representation of the in-
put audio zp = Enc(A;,.), we apply a forward pro-
cess during training to obtain the noised representa-
tion z; at each time step ¢. This is done by injecting
noise € according to the equation z; = azg + fe,
following the noise schedule (Song et al., 2020).
Here, € is random noise drawn from an isotropic
Gaussian distribution A(0, I'). We define the train-
ing loss Ly as the objective to predict the noise €
added to the noisy latent representation, guided by
the text embedding 7; and the embedding of the
monaural audio A, = F4(Amono)- This is achieved
by minimizing the following loss function:

Ly = EeE/\/(O,I),tH6 - FQ(Ztv t,Te, Ae)”% 3)

The Classifier-Free Guidance (CFG) (Ho and Sali-
mans, 2022) is crucial for generating audio that se-
mantically matches and temporally aligns with the
text instructions, while preserving the model’s gen-
erative diversity and enhancing its generalization
capability. Therefore, during training, we randomly
replace the condition pair (7, A.) with a zero ten-
sor with a probability of 0.1. And during sampling,
we modify the vector field using the formula as

follows:
Fe(zt7t7TeaAe) - (4)
7F9(zt7t7Tea Ae) + (1 - 7>F9(zt7t7 ®7 ®)7

where 7 is the guidance scale trading off the sample
diversity and generation quality, and Ey degener-
ates into the original vector field Fy when v = 1.
Text and audio embeddings. CLAP (Elizalde
et al., 2023) and TS5 (Raffel et al., 2020) are com-
monly used models for extracting text embeddings.
While CLAP captures global features, it lacks tem-
poral sensitivity (Elizalde et al., 2023). An ablation
study by Sun et al. (2024) shows that CLAP accel-
erates convergence compared to TS but performs
worse in spatial tasks. To improve text embed-
dings with better temporal cues and spatial infor-
mation, we utilize the pretrained FLAN-TS5 lan-
guage model (Chung et al., 2024). This enhanced
version of TS has been fine-tuned on a variety of
tasks, enabling us to extract text embeddings 7,
from Tjprompts-

Text spatial coherence augmentation. Most
audio-language models, such as CLAP (Elizalde
et al., 2023) and FLAN-T5 (Chung et al., 2024),
lack specialized training on datasets that provide de-
tailed text spatial coherence for sound localization.
To address this, we propose a module that enhances
the spatial expressive capacity of the text embed-
dings. We generate misalignment samples between
Ay = A;— A, and the flipped A, := A, — A; to
capture spatial localization differences. As shown
in the upper left of Figure 2, the classifier P inte-
grates the selected features with the text represen-
tation 7, to assess whether the audio differences
align with the text descriptions. This encourages
the text features to reason about the relative posi-
tions of sound sources and identify cues indicat-
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Figure 2: The detailed structure for the text-guided audio spatialization model. The dashed lines indicate
processes that occur only during training. We train a latent diffusion model that adds noise to the monaural audio
Amono based on the concatenation of the encoded text embedding 7, and audio embedding A.. During inference,
the model predicts the binaural difference A;,- from the Gaussian noise. Additionally, we finetune a LLM to perform
spatial reasoning, verifying the accuracy of the spatial semantic information in our generated binaural audio.

ing the perceived direction of sound. To evalu-
ate the classifier’s performance in predicting audio
flipping, we calculate the Binaural Cross-Entropy
(BCE) loss, represented as ground truth indicator

= P(A;|A4,1,T.), where | denotes the logical
OR operation. The indicator g indicates the ground
truth of whether the audio is flipped, leading to the
computation of the BCE loss for spatial coherence
as follows:

'Cloc = BCE (P(Alr|Arla Te)a g) . (5)

The total loss is the combination of the diffusion
loss Ly and the spatial coherence loss L;,.. The
Ly is aimed at optimizing the parameters of the
diffusion model, while £;,. is mainly designed to
finetune the text encoder.

3.3 Spatial Understanding Metrics

In addition to evaluating audio quality through gen-
eration metrics, we assess the spatial semantic co-
herence between our generated binaural audio and
text prompts using a spatial audio reasoning task.
This evaluation is detailed in the understanding
part of Figure 2. Firstly, we follow Zheng et al.
(2024) to develop an assessment model for spa-
tial audio question answering. We fine-tune the
Llama-3.1-8B model (Dubey et al., 2024) on Spa-
tial TAS, integrating the pretrained Spatial AudioEn-

coder (Zheng et al., 2024) to extract spatial audio
features. Secondly, we send the ground-truth bin-
aural audio and our generated binaural audio to the
assessment model along with the corresponding
spatial questions, obtaining the prediction accuracy
discrepancy between them. A lower discrepancy
indicates superior spatial fidelity in our generated
binaural audio. Spatial question types are detailed
in Appendix C.

4 Experiments

4.1 Model Implementation Details

For our experiments, we employ the pretrained
VAE and HiFi-GAN vocoder (Kong et al., 2020a)
from Liu et al. (2024a), with both modules frozen
during training. It is trained on the combina-
tion of AudioSet (Gemmeke et al., 2017), Audio-
Caps (Kim et al., 2019a), BBC Sound Effects and
Freesound (Fonseca et al., 2021) datasets. Our
model utilizes a U-Net backbone for the diffu-
sion process, consisting of four encoder and de-
coder blocks that incorporate downsampling and
upsampling operations, with a bottleneck layer
positioned between them. Multi-head attention
is employed in the last three encoder blocks and
the first three decoder blocks, featuring 64 head
dimensions and 8 heads per layer. The Varia-
tional Autoencoder (VAE) is configured with a
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compression level r of 4 and a latent dimension
d of 8. During the forward process, we implement
N=1000 steps with a linear noise schedule that
ranges from S31=0.0015 to Sx=0.0195 for noise
generation. Additionally, we leverage the DDIM
sampling method (Song et al., 2020) with 200 sam-
pling steps. For classifier-free guidance, we set
the guidance scale A to 2.5, as detailed in Equa-
tion Equation (4). Training is conducted using the
AdamW optimizer (Loshchilov, 2017) with a learn-
ing rate of 1074, 3,=0.95, 3,=0.999, e=10"9, and
a weight decay of 103 training for 500,000 steps.

4.2 Dataset

Spatial TAS Dataset. The SpatialTAS dataset, de-
rived from the SpatialSoundQA (Zheng et al., 2024)
dataset, contains large-scale simulated binaural au-
dio with detailed and flexible text descriptions of
sound source locations. We split the dataset into
376,104 training samples, 732 validation samples,
and 4,000 testing samples. The training samples
consist of 138,338 single-object DOA and DP sam-
ples, 117,519 two-object DOA and DP samples,
50,501 relative direction samples, and 52,747 rel-
ative distance samples. The testing samples are
evenly distributed, with 1,000 samples for each
category.

Revisiting FAIR-Play and YouTube-Binaural
Dataset. The FAIR-Play Dataset (Gao and Grau-
man, 2019) contains 1,871 ten-second video clips
accompanied by binaural audio recordings, totaling
5.2 hours of content, primarily focused on musical
instrument sounds. To evaluate our model further,
we also use the audio from the YouTube-Binaural
Dataset (Garg et al., 2023), which includes 426
corresponding 360° videos. This dataset is sourced
from the YT-Clean dataset (Morgado et al., 2018),
featuring in-the-wild 360° YouTube videos col-
lected using spatial audio-related queries, with lim-
ited superimposed sources like room conversations
and individuals playing instruments. For fair com-
parison, we extract one frame from each video and
generate text prompts describing the locations of
each sound source. Using GPT-4o0 (Hurst et al.,
2024), we set task parameters related to the Field
Of View (FOV) and the receiver’s position, instruct-
ing it to generate captions based on the frames.
More details about the caption generation process
can be found in Appendix A.

4.3 Evaluation Metrics

During evaluation, we use both generation met-
rics and understanding metrics to assess the gen-
erated binaural audio. The generation quality met-
rics include Fréchet Distance (FD), Fréchet Au-
dio Distance (FAD), Kullback-Leibler Divergence
(KL), and Inception Score (IS). We also compare
our model with previous non-generative models
using STFT Distance (STFT) and Envelope Dis-
tance (ENV). The understanding metrics comprise
Direction of Arrival (DOA) and Distance Estima-
tion (DE) for perception-related questions, as well
as Direction and Distance for reasoning questions.
More details about these metrics are provided in
Appendix B.

5 Results

We first present the experimental results on the test
set of the proposed Spatial TAS dataset, using both
generation and understanding metrics. Next, we
report results from the real-recorded FAIR-Play
dataset (Gao and Grauman, 2019) and the 360°
Youtube-Binaural dataset (Garg et al., 2023), with
the corresponding image-to-caption text descrip-
tions. We then conduct ablation studies focused on
the effects of separately modifying the direction,
distance, or relative position components of the text
prompts. Finally, we visualize several generated re-
sults alongside their spectrograms, using different
kind of text prompts.

5.1 SpatialTAS Evaluation Results

The performance of our model is comprehensively
evaluated on the testing set of SpatialTAS. The de-
tailed results are presented in Table 2, where we
compare our approach with two baselines: Mono-
Mono and PseudoBinaural (Xu et al., 2021). Mono-
Mono serves as a baseline to verify whether our
model can effectively distinguish between the two
channels, achieved by duplicating the same monau-
ral audio to create a two-channel input. PseudoBin-
aural (Xu et al., 2021) shares a similar concept
with our method in leveraging large-scale pseudo-
generated binaural audio for training and demon-
strating generalization to real audio. Originally pro-
posed with a U-Net structure and cross-attention
mechanism utilizing extracted visual features, we
re-train PseudoBinaural on SpatialTAS with the
corresponding text descriptions to ensure a fair
comparison.

As detailed in Table 2, we conduct an exten-
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Generation Metrics

Understanding Metrics

Method Perception Reasoning
FDy FAD| KLy ISt DOA| DE| Direction] Distancel
Mono-Mono 9.03 3,67 099 1.61 19.66 18.12 12.79 15.33
PseudoBinaural (2021)" 7.23 281 0.65 1.85 639  4.00 10.36 12.91
Ours 493 144 058 223 3.07 245 6.99 8.16
Ours w/o text 6.77 254 0.63 200 587 4.03 9.25 11.40
Ours w/o Flipper 508 1.72 0.61 215 414 289 8.63 10.03

* indicates that we re-train it on the SpatialTAS dataset.

Table 2: Results on the testing set of SpatialTAS. Mono-Mono refers to duplicating the mono audio. Our model
demonstrates strong performance in both Generation Metrics for audio quality and Understanding Metrics for spatial
semantic correctness. Additionally, we present ablation results without text conditions and the flipped-channel audio

augmentation module.

sive comparison of the models on a range of qual-
ity metrics that evaluate the overall quality of the
generated audio, as well as spatialization metrics
that specifically assess the accuracy of spatializa-
tion achieved through text-based spatial question-
answering. Our model consistently demonstrates
superior performance across multiple metrics, par-
ticularly in the spatial perception and reasoning
tasks, which involve evaluating the generated audio
based on questions focusing on "the relative posi-
tions between any two sounding sources" and "esti-
mating the relative distance between any two sound-
ing sources". Notably, in the reasoning part of the
understanding metrics, we observe a significant per-
formance improvement of 5.80% and 7.17% com-
pared to the Mono-Mono baseline. In contrast, the
PseudoBinaural approach achieves improvements
of only 2.43% and 2.42% over Mono-Mono. This
observation suggests that PseudoBinaural may lack
the necessary capabilities to effectively generate
corresponding binaural audio guided by relative
position text descriptions. To further analyze the
impact of different components in our model, we
conduct ablation studies by evaluating models with-
out text-guided descriptions and models trained
without the text spatial coherence augmentation
(i.e., without the binaural channel flippers). The
results clearly demonstrate the significance of both
text conditions and the spatial coherence module
in achieving superior performance.

5.2 Real-recorded Binaural Audio Evaluation

We extend our evaluation to the FAIR-Play Dataset
and the 360° Youtube-Binaural Dataset, which en-
compass in-the-wild binaural audio recordings of
music and life-like sounds. Since these datasets

FAIR-Play Dataset

Method STFT) ENV| WAV | SNRt

Mono-Mono 1.155 0.153 7.666 5.735
L2BNet (2021) 1.028 0.148 - -

Mono2Binaural (2019) 0.959 0.141 6.496 6.232
APNet (2020) 0.889 0.136 5.758 6.972
Sep-binaural (2020) 0.879 0.135 6.526 6.422
Main-net (2021) 0.867 0.135 5.750 6.985
Complete-net (2021)  0.856 0.134 5.787 6.959
AVSN (2024b) 0.849 0.133 - -

Cyclic (2024a) 0.787 0.128 5.244 7.546
TAS (2024b) 0.914 0.137 6.092 6.771
Ours 0.773 0.126 5.019 7.966

Table 3: Results on the FAIR-Play Dataset. Our model
performs well in real-world scenarios with diverse mu-
sical sound sources and outperforms visually guided
models, underscoring the importance of text prompts.

are originally video-based, we generate text de-
scriptions for the locations of each sounding source
based on the videos using GPT-4o0 (Hurst et al.,
2024). Notably, we generate different spatial posi-
tion descriptions according to the extracted frames
with varying Field of View (FOV), considering that
the extracted frames in the FAIR-Play Dataset are
not 360° views, while those in the 360° Youtube-
Binaural Dataset are omnidirectional views. This
approach ensures that our model is evaluated on a
diverse set of real-world binaural audio recordings.

As comprehensively presented in Table 3, we
conduct an extensive comparison of our model with
other visual-guided and text-guided methods. Our
model consistently outperforms the others across
almost all metrics. It is noticing that TAS (Li et al.,
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360° Youtube-Binaural

Method STFT,  ENV]
Mono-Mono 4715 0.261
Audio-only 3.129 0.213
Mono2Binaural (2019) 2.892 0.208
APNet (2024b) 2.733 0.204
SimBinaural (2023) 2.544 0.196
Ours 2471 0.188

Table 4: Results on the 360° Youtube-Binaural
Dataset. The results indicate that our model easily
extends to various types of real-recorded sounds, includ-
ing speech and diverse natural sounds.

2024b) exhibits inferior performance compared
to previous visual-guided methods. In contrast,
our method surpasses these visual-guided methods.
This observation suggests that utilizing more flex-
ible text descriptions for the location of sounding
sources, encompassing both 3D spatial position
descriptions and relative position descriptions, pro-
vides the model with more generalized guidance
for audio spatialization. Furthermore, as illustrated
in Table 4, we demonstrate performance improve-
ments on the 360° Youtube-Binaural Dataset, show-
casing the generalization capabilities of our model
to in-the-wild scenarios.

5.3 Ablations for Text Prompts

As illustrated in Figure 3, we present the results
of our ablation studies, focusing on how changes
in text prompts related to direction, distance, and
multi-source relative positions affect sound local-
ization. Figure 3(a) demonstrates the impact of
changing the directional component of the text
prompt from "right" to "left". This adjustment en-
ables us to evaluate the Interaural Time Difference
(ITD), which measures the time delay for sound to
reach each ear. The goal of estimating the ITD is to
ascertain the difference in arrival times of a sound
at two microphones. Our results indicate that modi-
fying the directional aspect effectively localizes the
sound to the specified direction. Figure 3(b) illus-
trates the Interaural Level Difference (ILD) when
the distance of the sound source is changed from
"4m away" to "9m away". The ILD refers to the
difference in sound pressure levels reaching each
ear. We observe that altering the distance results
in a lower ILD, demonstrating how distance af-
fects perceived loudness. Figure 3(c) represents the
differences in spectrograms when changing the rel-
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Figure 3: Ablations for text prompts. We systemati-
cally alter the direction, distance, and relative position
in the text prompts, and present the differences observed
before and after these changes.

ative position from "is nearer to" to "is farther away
from". Given the significant frequency differences
between the sounds of a baby crying and dance mu-
sic, we can analyze the changes in the directional
spectrogram by examining variations in energy lev-
els. The sound of a baby crying primarily occupies
the lower left section of the spectrogram, while
dance music predominantly occupies the upper re-
gion. This results in a noticeable change in energy:
the baby cry exhibits a transition from high to low
energy, whereas the dance music shows a shift from
low to high power. Overall, these findings demon-
strate that text prompts can provide more detailed
and flexible control over the localization of sound
sources.

5.4 Visualization Results

As illustrated in Figure 4, we present several gen-
eration results from the test set of the SpatialTAS
dataset. First, we display text prompts that provide
detailed descriptions of single-object locations for
music and speech. Next, we showcase flexible
text prompts designed for multi-object relative lo-
cation descriptions for a broader range of natural
sounds. The results indicate that our method gen-
erates audio with a more natural distribution that
closely aligns with the ground truth compared to
PseudoBinaural.
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below.

Figure 4: Visualization for binaural difference pre-
diction. We present the binaural difference results using
various spatial text prompts, including 3D sound source
descriptions and relative position descriptions for music,
speech, and natural sounds.

6 Conclusion

We propose a Text-guided Audio Spatialization
(TAS) framework, providing a more flexible and
interactive control to map monaural audios to bin-
aural ones. We especially train the latent diffusion
model on large-scale simulated datasets and can
perform well on real-recorded datasets. We eval-
uate the binaural audio quality from generation
metrics and spatial coherence through spatial audio
reasoning with LLM. Results show that we can gen-
erate binaural audios with both high-quality and
semantic consistency in spatial locations.

Limitations

Our model does not account for changes in the lo-
cation of each sounding object. For instance, a car
approaching the listener would produce a change
in perceived distance from far to near. Additionally,
due to data limitations, our model currently relies
solely on text modality to guide audio spatializa-
tion. We do not incorporate both text and image
modalities, or even motion cues from videos as
conditioning factors.
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A Image Caption Engineering

We extract the required sound sources of the video
frame and its corresponding description of the ori-
entation and distance, which is summarized into a
caption using large language model(LLM). Prompt-
ing allows a pre-trained model to adapt to differ-
ent tasks via different prompts without modifying
any parameters. LLMs like GPT-40 have shown
strong zero-shot and few-shot ability via prompt-
ing. Prompting has been successful for a variety of
natural language tasks, hence we design prompt for
GPT-4o for sound source detection and attribute
inference in images. We provide an image of video
and a list of detected sound sources. Then we
require sound objects with attributes (relative ori-
entation and distance from the lens). The prompt-
guided caption complies with (1) accurately detect
the sound source object (2) describe the required
attributes as general captions do, and (3) provide
auxiliary information in the caption if necessary.
Figure 5 illustrates the GPT-40 prompt we use for
image caption engineering.

Figure 5: The caption engineering and an example.

B Evaluation Details

FD and FAD assess the distribution similarity be-
tween real and generated audio using different clas-
sifiers, with FAD employing VGGish (Hershey
et al., 2017) and FD using PANNs (Kong et al.,
2020b). KL quantifies distribution similarity, while
IS evaluates the quality and diversity of the gener-
ated audio. Additionally, we compare our model
with previous non-generative models using STFT
Distance (STFT) and Envelope Distance (ENV).
STFT is calculated as the Euclidean distance be-
tween the ground-truth and predicted complex spec-
trograms, scaled to represent raw audio energy lev-
els. ENV involves computing the envelope of both
ground-truth and predicted waveforms, as direct
waveform comparisons may not capture perceptual
similarity effectively.

C QA Pairs for Spatial Audio Reasoning

As shown in Appendix C, the questions can be cat-
egorized into spatial perception and spatial reason-
ing types. The perception questions primarily focus
on Direction of Arrival (DOA) and Distance Esti-
mation (DE), addressing the direction and distance
descriptions for each sound source. In contrast, the
reasoning questions involve the relative direction
and distance between any two sound sources.

D Discussion about failure cases

Case 1 When two sources have similar charac-
teristics with similar energy distributions in spec-
trogram, the generated results lead to distortion
for the text embeddings may map to the same
spectrogram part. In the future, we will specifi-
cally apply spectrogram-similar sound sources and
spectrogram-different sound sources for targeted
analysis.

Case 2 Incorrect text-embedding to audio mapping
can result in unwanted sounds, especially in speech,
which presents more stringent requirements com-
pared to music and natural sounds. To address this
issue, we will curate a diverse and representative
dataset, employ advanced embedding techniques
to capture nuanced differences, implement regular-
ization methods to mitigate overfitting, and apply
domain adaptation tailored to specific audio types.
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Spatialization QA Type Example

Q: (In single sound source.) How would you describe the location of the music’s sound in terms of
direction and distance?
Perception DOA &  A: right, behind, below; 4m
DER Q: (In double sound source.) At what distance and in which direction, is the writing’s sound originating?
A: left, behind, above; 2.5m

Q: Measuring the shortest path in a straight line, is the sound of camera more distant from you
than the sound of music? / A: Yes
Q: Is the sound of bird flight, flapping wings further from you than music when considering
the direct paths? / A: Yes
Direction & Q: Can you estimate the distance from the sound of the speech to the sound of the drawer open or close?
Distance  A: 1.5m
Q: What is the sound on the below side of the sound of the wind instrument, woodwind instrument?
A: slap, smack
Q: Could you determine whether the breaking’s sound is to the left or right of the music’s sound?
A: left

Reasoning

Table 5: QA pairs used the spatial llm reasoning task. The first four types focus on perception, while the last
emphasizes reasoning. DP: Distance Prediction; DOA: Direction-of-Arrival. Numbers (e.g., 139K, 15.9%) indicate
the QA sample count and their percentages in the dataset.
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