
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1974–1988
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Root Defense Strategies: Ensuring Safety of LLM at the Decoding Level

Xinyi Zeng1*, Yuying Shang1*, Jiawei Chen3, Jingyuan Zhang4, Yu Tian2†

1University of Chinese Academy of Sciences, Beijing, China
2Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua University, Beijing, China
3Shanghai Key Laboratory of Multi. Info. Processing, East China Normal University

4Kuaishou Technology, Beijing, China
tianyu1810613@gmail.com

Abstract

Large language models (LLMs) have demon-
strated immense utility across various indus-
tries. However, as LLMs advance, the risk
of harmful outputs increases due to incorrect
or malicious prompts. While current methods
effectively address jailbreak risks, they share
common limitations: 1) Judging harmful out-
puts from the prefill-level lacks utilization of
the model’s decoding outputs, leading to rela-
tively lower effectiveness and robustness. 2)
Rejecting potentially harmful outputs based
on a single evaluation can significantly impair
the model’s helpfulness. To address the above
issues, we examine LLMs’ capability to rec-
ognize harmful outputs, revealing and quan-
tifying their proficiency in assessing the dan-
ger of previous tokens. Motivated by pilot ex-
periment results, we design a robust defense
mechanism at the decoding level. Our novel
decoder-oriented, step-by-step defense archi-
tecture corrects the outputs of harmful queries
directly rather than rejecting them outright. We
introduce speculative decoding to enhance us-
ability and facilitate deployment to boost safe
decoding speed. Extensive experiments demon-
strate that our method improves model security
without compromising reasoning speed. No-
tably, our method leverages the model’s ability
to discern hazardous information, maintaining
its helpfulness compared to existing methods1.

1 Introduction

Large language models (LLMs) have advanced sig-
nificantly in recent years, prompting growing at-
tention from academia and industry to their safety
implications (Weidinger et al., 2021; Achiam et al.,
2023; Wu et al., 2023). One of the primary safety
concerns is jailbreaking, where malicious actors or
errant inputs prompt LLMs to produce harmful or

*Equal contribution
†Corresponding author
1Our code is publicly available at:https://github.com/

zengxy20/RDS

inappropriate content, effectively bypassing ethi-
cal guidelines. Many attempts have been made to
address these risks. For instance, Meta has imple-
mented several strategies in both pre-training and
fine-tuning phases to improve the safety of their
Llama-series models (Touvron et al., 2023; Dubey
et al., 2024). Despite these efforts, some studies
have reported that focusing too narrowly on safety
may diminish the models’ general capability (Bai
et al., 2022; Huang et al., 2024). Therefore, en-
hancing LLMs’ safety without compromising their
utility has become a critical area of research.

Recent defense strategies against jailbreaks can
be roughly categorized into two groups (as shown
in Figure 1). The first group is prefill-level de-
fense (Xie et al., 2023; Phute et al., 2023; Zheng
et al., 2024). It enhances the models’ protective
capabilities by integrating additional security mea-
sures into the initial prompts (prefills) or refining
their representation. However, this approach pri-
marily depends on user inputs to detect harmful
outputs, making it susceptible to rapidly advancing
jailbreaking techniques. Moreover, this reliance
can lead to inaccuracies in interpreting user inten-
tions, thereby reducing the overall utility of the
LLMs. Another group of methods is output-level
defenses (Phute et al., 2023; Xu et al., 2024). It
involves using safety filters that assess the poten-
tial harmfulness of model-generated outputs. This
method focuses on the output of LLMs, potentially
offering improved performance by directly address-
ing the content generated. However, this strategy
typically involves a single evaluation point, which
may result in false positives that could diminish the
model’s utility by restricting benign outputs.

In practice, jailbreak instructions can bypass the
prefill-level defenses and achieve their purposes in
the model’s output (Wei et al., 2024). Therefore,
assessing jailbreak behavior in LLMs should focus
on decoding dimensions, including the context of
both the prefill and the model’s output. We aim to

1974

https://github.com/zengxy20/RDS
https://github.com/zengxy20/RDS

Figure 1: Examples of recent imperfect defenses and
RDS. a) Prefill-level defenses fail to refuse the harmful
query with N harmful tokens. b) Output-level defenses
judge the whole output in a single-point evaluation with-
out consideration of the prefill. c) RDS conducts step-
by-step assessments for each sampled token to enhance
the security of LLMs at the decoder level.

directly address and rectify jailbreak behavior by
focusing on the decoding level. (Zheng et al., 2024)
has demonstrated models’ ability to distinguish be-
tween harmful and benign prefill. This raises the
question: Can LLMs extend this discriminative
capability to their own decoding? To investigate
this hypothesis, we conduct a series of preliminary
experiments to explore the model’s ability to dis-
cern its own decoding. Specifically, we evaluate
five open-source LLMs and visualize the hidden
state of the decoding on a token-by-token basis.
We observe that LLMs cannot distinguish harmful
tokens from benign tokens in one step, but it can
achieve identification through multi-step judgment
at the decoding, especially for harmful prefill.

Based on pilot experiment results, we introduce
a novel decoder-oriented defense, termed RDS, de-
fending by step-by-step evaluation. Informed by
the discriminative capability of LLMs on decod-
ing, RDS utilizes a trainable classifier to assess
the harmfulness of candidate tokens during sam-
pling and prioritizes the token with lower harmful-
ness at each step to ensure a safe output iteratively.
The step-by-step safe generation provides a root
defense on LLM’s decoding (encompassing the
context of both prefill and output) perspective and
multi-step evaluation. Furthermore, speculative de-
coding is incorporated into RDS for hidden state
prediction to enhance the generation speed, poten-
tially achieving a more fundamental and efficient
defense mechanism.

We evaluate RDS on five LLMs and a series of
harmful and benign query benchmarks. Experimen-
tal results demonstrate that RDS outperforms exist-

ing approaches in terms of both security and help-
fulness, reducing compliance with harmful queries
from 2.0% to 37% and increasing token generation
speed by 2.12× ∼ 3.09×. We hope this method
offers a new perspective to security defense, i.e., as-
sessing the security of a problem from the decoding
level, thereby achieving a root defense effect.

2 Related Work

2.1 Existing Defenses

Existing safety defenses can be divided into input-
based defenses and output-based defenses.

Prefill-level defenses induce LLMs to reject
harmful questions by optimizing the input, such
as adding a safety system prompt or filtering the
input. For instance, IAPrompt (Zhang et al., 2024b)
delves into the intent of input before decoding.
Perplexity filtering (Alon and Kamfonas, 2023)
proposes to detect the adversarial suffixes as the
signal of harmful input before generating a out-
put. However, prefill-level defenses can be broken
through by prefill-level attack (Zhao et al., 2024).
At present, multiple methods have successfully car-
ried out jailbreak attacks from user input, such as
GCG (Zou et al., 2023), Auto-DAN (Zhu et al.,
2023), Evil Geniuses (Tian et al., 2023). Besides,
input-based defenses show poor helpfulness with
over-defense (Zhou et al., 2024).

Output-level defenses enhance the security of
LLMs by judging the generated output, which fol-
lows the paradigm of generate then judge. For
instance, Self-Examination (Phute et al., 2023)
checks the output itself by a pre-defined prompt.
SafeDecoding (Xu et al., 2024) captures the safety
disclaimers and amplifies their sampling probabili-
ties. Output-level defenses must fully generate the
output before judging, which affects the model’s
efficiency. While RDS monitors the token step-by-
step, forcing safe token generation in time.

2.2 Jailbreak Attacks

Jailbreak attacks target the security mechanisms of
LLMs with the objective of circumventing them
to generate unauthorized content. These attacks
pose risks of privacy breaches, intellectual property
theft, and misuse of model services.

Previous studies (Liu et al., 2023; Wei et al.,
2024) focus on prompt engineering as a means
to compromise the security of LLMs effectively.
Alternative approaches employ feature-level at-
tacks to implicitly alter the internal architecture

1975

of LLMs (Guo et al., 2024; Wang et al., 2024). For
instance, GCG (Zou et al., 2023) combines greedy
with gradient-based search techniques to generate
universal adversarial suffixes. After concatenated
the suffixes to the queries, LLMs will answer the
harmful queries previously refused to answer.

2.3 Speculative Decoding
Traditionally, token generation is performed step-
by-step, where the model generates one token for
each step by autoregressive decoding. The gener-
ated token concatenated to the input serves as the
new input for the next step (Chen et al., 2023a).
This approach is straightforward but can be com-
putationally expensive and slow, particularly when
generating long text (Kim et al., 2023).

Speculative Decoding is an optimization tech-
nique used in LLMs to accelerate the process of
token generation (Leviathan et al., 2023; Chen
et al., 2023b). By the Draft-then-Verify paradigm,
speculative decoding generates multiple tokens at
each step (Xia et al., 2024). For example, Tinyl-
lama (Zhang et al., 2024a) proposes to use the same
serious but more minor LLM as the draft model
without additional training. Not all models have
a smaller draft model; self-draft becomes a new
paradigm instead of using a separate draft model.
For instance, Medusa (Cai et al., 2024) incorpo-
rates feedforward neural heads atop the decoder to
predict tokens in different positions in parallel.

3 Preliminary: Decoding-level Defense

In this section, we design a series of experiments
to evaluate the capability of LLMs to discriminate
between harmful and benign outputs at the decod-
ing stage. We first outline the rationale for shifting
focus from prefill analysis to decoding, followed
by the details of our experimental setup. Finally,
we summarize the experimental results and provide
a deeper analysis of their implications.

3.1 LLMs’ Discriminative Capability of
Decoding

The prefill stage for LLMs typically includes a
user query, often accompanied by prefixed or suf-
fixed elements such as system prompts. Previous
study (Zheng et al., 2024) has demonstrated that
LLMs can discriminate between different types of
prefill and use this ability to enhance safety mecha-
nisms. However, solely relying on prefill analysis
for security evaluations presents significant limita-
tions: 1) Jailbreaking behaviors often manifest in

the model’s output, and focusing solely on prefill
may overlook these behaviors, compromising over-
all robustness; 2) Evaluation based purely on prefill
places excessive dependence on the model’s initial
discriminative capacity, and a single-stage evalu-
ation may lead to rejecting outputs prematurely,
reducing the model’s utility.

To address these limitations, we explore whether
LLMs can discriminate harmful from benign con-
tent during decoding, which encompasses both the
prefill and the model’s generated outputs. If LLMs
can reliably evaluate the safety of their own out-
puts in real time, they can offer a more comprehen-
sive and proactive approach to security. Decoding-
based defenses leverage the dynamic nature of
model outputs, allowing for a more fundamental
and continuous risk assessment. We use the hid-
den states of the harmful and benign queries from
Custom (Zheng et al., 2024) at the top layer of the
model for classifier training. Details of the classi-
fier’s training objective is provided as follows.

u =
1

n

∑n
q=1h

q, (1)

mi = VT (hi − u), (2)

ŷi = WTmi + b, (3)

L(yi, ŷi) = − 1

n

∑n
q=1(yi log ŷi+(1−yi) log (1− ŷi)),

(4)
where u ∈ Rd is the mean value of all hidden
states of queries, V ∈ Rd×m represents the m
principal components, W ∈ R1×d and b ∈ R1

are the trainable parameters. ŷi and yi represent
the predicted score and the label of query, respec-
tively. For harmful queries, yi = 1, while for
benign queries, yi = 0.

3.2 Preliminary settings

We utilize Principal Component Analysis (PCA)
to visualize the hidden states during the decoding
process. To facilitate classifier training, we cu-
rate the training dataset Custom from DRO (Zheng
et al., 2024) to fit the classifier, consisting of
100 harmful and 100 benign queries. The eval-
uated LLMs are: Llama-2-chat-7B (Touvron
et al., 2023), Llama-3-8b-Instruct (AI@Meta,
2024), Qwen2-7B-Instruct (Yang et al., 2024),
Vicuna-7B-v1.3, and Vicuna-13B-v1.3 (Chiang
et al., 2023). Notably, some models, such as Llama-
2-chat-7B, have been aligned in safety.

1976

We visualize the hidden state from the top layer
of each generated token to verify the classifier abil-
ity at decoding. The outputs of harmful queries are
assessed using Llama-guard (Bhatt et al., 2023),
which is a safety classification model based on
LLaMA-2 (Touvron et al., 2023). While the out-
put of benign queries are evaluated through string
matching with refusal modules. If refusal strings
are identified in the output, it is categorized as a
refusal output; otherwise, it is not. A compliant
answer is assigned an evaluation score s of 1, oth-
erwise 0. The compliant outputs to harmful queries
are treated as harmful outputs. Others including
the refusal outputs to harmful queries and benign
queries, and compliant outputs to benign queries
are treated as benign outputs. In the preliminary
experiment, we sample one output for each query.
The initial defense of these five LLMs is presented
in Appendix C.

3.3 Visualization Analysis
We apply PCA to visualize the hidden state and
select the first four principal components of the
hidden states. Refusal outputs often start with spe-
cial tokens, such as “I’m sorry” or “As an AI”. As
refusal outputs are distinguished from compliant
outputs at the start, we samples the first few to-
kens to verify the classifier performance on output.
Besides, we additionally sample the last token of
the output. Figure 2 respectively show the visual
results of the first eight tokens of the outputs. The
boundary (the black dashed line) separates harm-
ful queries (red cross) and benign queries (blue
circles), which illustrates that LLMs can naturally
discern the harmfulness of the inputs.

Can LLMs extend this discriminative capa-
bility to their own decoding? In Figure 2, from
1-th to 4-th token, almost all the tokens to benign
queries maintain at the benign side. Although re-
fusal tokens to harmful queries refer to benign out-
puts, some of them maintain at the harmful side.
While compliant tokens maintain at the benign side.
The classifier performs poorly in hard classification.
On the contrary, we observe that benign tokens of
harmful queries are closer to the harmful side com-
pared to harmful tokens. That is to say, for harmful
queries, benign tokens receive higher scores from
the classifier than harmful tokens, which means a
distribution differentiation rather than hard classifi-
cation. We interpret the distribution differentiation
between harmful and benign tokens as the LLMs’
discriminative capacity of LLMs of decoding.

Can LLMs recognize benign decoding based
on a single judgment? The current step confirms
the safety of the immediate decoding without guar-
anteeing the safety of subsequent decoding. Mak-
ing a single-step judgment is insufficient to ensure
the safety of whole output. Due to the random
sampling strategy, we observe that there is a phe-
nomenon of rejecting first and then answering in
the outputs. As described in (Zhou et al., 2024),
deepening the consistency of security measures be-
yond merely aligning the first few tokens can signif-
icantly improve the security of LLMs. Therefore,
we believe a step-by-step assessment approach at
the decoding can ensure the robustness of defense.

4 Methodology

Motivated by validating the capability to recognize
outputs, we propose RDS to ensure the safety of
LLMs at the decoder level. The architecture of
RDS is illustrated in Figure 3. We design a step-by-
step defense mechanism that directly corrects the
harmful token into a safe token when generating
the output. Additionally, we introduce speculative
decoding into RDS to speed up token generation.
Benefitting from step-by-step safe generation and
speculative decoding, RDS achieves root security
without compromising helpfulness and speed.

4.1 Problem Formulation
Let xi as the LLM’s decoding at step ti, the step-by-
step inference process of LLMs can be formulates
as: xi = [xi−1; max(Vi)], where x0 represents
the query, Vi represents the logits over vocabulary.
RDS aims to ensure the safety of token sampling
at each step, which can be formulates as:

xi = [xi−1; max(Ci)];Ci = f(Ii, xi−1) (5)

where N is the length of outputs, [;] represents
concatenate operation, Ci represents the score of
candidate tokens calculated by the classifier f(·).
By ensuring the security from step 1 to N , RDS
promises a safe output.

4.2 Step-by-step safe generation
During the autoregressive decoding of LLMs, LLM
maps the hidden state of its decoding xi−1 at step
ti−1 to the vocabulary dimension and sample the
next token by top-k (Fan et al., 2018):

Ii,Vi = Topk(softmax(li−1)), (6)

where li−1 = LM_Head(hi−1) represents logits at
step ti−1, hi−1 represents the hidden state of the

1977

(1) i=1 (2) i=2 (3) i=3 (4) i=4

Figure 2: Performance of the classifier at the decoding from the i-th token of the output. Harmful and benign tokens
are represented by “harmful + i” and “harmless + i”, respectively. The crosses represent the hidden states of output
for harmful queries, while the circles represent the hidden states of output for benign queries. See the visual results
from the 5-th token to the 8-th in Appendix D.

decoding at step ti−1, Ii and Vi represent the set
of top-k candidate tokens and the logits values of
these candidate tokens, respectively.

Safety disclaimers frequently rank among the
top tokens (Zheng et al., 2023) in the inference pro-
cess. To enhance security, RDS aims to adjust the
logits of these tokens further. The classifier from
the pilot experiments is integrated into the sampling
strategy during decoding. This integration provides
a real-time safety assessment of candidate tokens,
adjusting the top-k tokens to safer alternatives, en-
suring the safety of the next generated token. Con-
sequently, the computation of ci in Equation (5) is
detailed into the following components:

mk = VT (hk
i − u), (7)

ck = WTmk + b, (8)

xi = argmax(Ci), (9)

where hk
i is the hidden state of the dececoding

at step ti concatenated with the candidate token

from Ii, mk ∈ Rm represents the first m principal
components of hk, ck ∈ R1 is the harmful score of
the candidate token, Ci is the set of harmful scores
of the candidate tokens.

4.3 Hidden State Prediction

RDS leverages the discriminative ability of decod-
ing for defense by computing the harmful score of
candidate tokens based on their hidden states. It
concatenates decoding at step t− 1 with candidate
tokens to obtain the hidden state at step t resem-
bling EAGLE (Li et al., 2024) that predict hidden
states from decoding and tokens. RDS extends EA-
GLE_Head in resampling process to generate the
hidden state of the candidate tokens.

Unlike traditional LLMs that compute hidden
state through autoregressive decoding with multiple
Transformers blocks, RDS utilizes EAGLE_Head
to predict the hidden state hi at step ti, thereby
accelerating the inference process. This prediction

1978

Figure 3: RDS comprises two key modules: 1) Step-by-step safe generation: The root classifier is designed based
on the discriminative capacity of queries. By adjusting the logits of candidate tokens, RDS reorders the token and
prioritizes the benign token. 2) Hidden State Prediction: Based on the hidden state at step t− 1 and candidate token
embedding, RDS calculate the hidden state of candidate token from speculative head instead of multiple transformer
blocks. The hidden state at step t refers to the hidden state of the final selected token. h0 represents the hidden state
of the last token of queries.

is based on the candidate token and the hidden
state of decoding at step ti−1. The hidden state in
Equation (7) can be expressed as:

hk
i = EAGLE_Head(hi−1, ek), (10)

where EAGLE_Head consists of a fully-
connected layer and a decoder layer from the
original LLM; ek is the embedding of the candi-
date token xk. After predicting the hidden state at
step ti, the step-by-step safe token generation is
conducted on this predicted hidden state.

We summarize the inference process of RDS as
Draft_Model, which can be formulated as:

xN = Draft_Model(h0). (11)

where h0 denotes the hidden state of the prefill at
step t0, xN represents the output of LLMs. Equa-
tion (11) reveals that RDS only generates the safe
output from the hidden state of prefill, without addi-
tional LLMs training nor other models introduced.

4.4 Highlights
As a decoder-oriented defense, the advantages of
RDS are summarized as follows:

First, RDS demonstrates a root defense by lever-
aging the discriminative capabilities in LLMs’ de-
coding level. It fully utilizes the model’s under-
standing of context by evaluating the harmfulness

from both input and output dimensions. Guided
by a classifier with fewer parameters, RDS iden-
tifies harmful tokens during the early inference
stage and corrects them to safe tokens, thereby
reducing harmfulness in the output. Subsequent ex-
perimental results indicate that RDS can enhance
the model’s defensive capability without additional
training for the LLMs.

Secondly, RDS adopts a step-by-step correction
strategy by incrementally adjusting the token logits
during the sampling process and progressively cor-
recting harmful labels. Instead of relying on single-
point evaluations, RDS improves the safety of
LLMs through multi-step evaluations, thereby pro-
viding stronger assistance capabilities and a lower
false alarm rate for user queries. Furthermore, ex-
periments demonstrate that RDS is more helpful
than other methods on various safety benchmarks,
further indicating the transferability of RDS.

Finally, to enhance the reasoning speed of RDS
and facilitate its practical implementation, we in-
corporate a speculative head into the prediction of
hidden states of the candidate tokens. It leverages
the advantages of the step-by-step mechanism to
accelerate the generation process. Experimental
results demonstrate that the token generation speed
of RDS is approximately 2.12× ∼ 3.09× faster

1979

than that of the baselines, which demonstrates both
the effectiveness and efficiency of RDS.

5 Experiments

5.1 Experimental setup

Benchmarks We evaluate the security improved
by different defense strategies on three harm-
ful benchmarks: HEx-PHI (Qi et al., 2023),
AdvBench (Zou et al., 2023), MaliciousIn-
struct (Huang et al., 2023). We assess the impact
of LLMs after applying defense methods on two
benign datasets: Held-out (Zheng et al., 2024),
Xstest (Röttger et al., 2023). In addition, we evalu-
ate the helpfulness of the output on Just-Eval (Lin
et al., 2023) from the aspects of helpfulness, clarity,
factuality, depth, and engagement.

Baselines We select five defense methods as
the baselines. Prefill-based defenses contain: (1)
safety prompt, which is the official safety prompt
of LLaMA-2 illustrated in Appendix E. The safety
prompt serves as the system prompt of LLMs. (2)
Self-Reminder (Xie et al., 2023), which encapsu-
lates the user’s query in a system prompt to remind
LLMs to respond responsibly. (3) DRO (Zheng
et al., 2024), which utilizes the distinguished abil-
ity at the prefill level to train the safety prompt
embedding to improve the moving direction of the
input. Output-based defenses contain: (4) Self-
Examination (Phute et al., 2023), which checks
the output by the LLM itself and filter out harm-
ful output. (5) SafeDecoding (Xu et al., 2024),
which amplifies the sampling probabilities of the
output that matches the string of safety disclaimers
learned from an additional trained export model.

Evaluation Metric In the main results, we select
5 samples for each query and follow the evaluation
strategy in Section 2.2 to judge whether a output
is compliant. For Just-Eval, we use the official
prompt and GPT-4 as the evaluator to score the
output from 1 to 5 in terms of helpfulness, clarity,
factuality, depth, and engagement.

5.2 Main Results

Table 1 presents the compliance ratio on harmful
benchmarks and refusal ratio on benign bench-
marks of the baselines and RDS. From Table 1,
we have the following inclusions.

Firstly, RDS demonstrates excellent defense
ability at the decoder level. Compared with

other baselines, RDS effectively reduces compli-
ance to harmful queries, particularly with regard
to LLMs that exhibit suboptimal initial perfor-
mance (i.e., Vicuna-7B). Safety prompt does not
always work (i.e., Vicuna-7B on MaliciousInstruct).
Furthermore, baselines reliant on the LLMs’ self-
assessment, such as DRO, exhibit varying degrees
of performance degradation due to the subpar ca-
pabilities of LLM itself. While RDS leverages the
discriminative capabilities at the decoding level for
security defense, regardless of the functionality of
LLM itself. Though trained on Custom, the clas-
sifier still works on out-of-domain datasets, which
demonstrates the transferability of the classifier and
the generalization of RDS.

Secondly, RDS conducts security defense with-
out increasing the rejection rate. Although
some methods perform well on defense, there is a
catastrophic refusal phenomenon in terms of their
impact on the effectiveness of LLMs, i.e., 24.0
(SafeDecoding) vs. 2.0 (No defense) on Vicuna-7B,
38.0 (SafeDecoding) and 36.0 (DRO) vs. 10.0 (No
defense) on Vicuna-13B. RDS shows fewer refusal
results compared to the existing security defenses,
i.e., 6.0 (RDS) vs. 38.0 (SafeDecoding) on Vicuna-
13B, 32.5 (RDS) vs. 100 (Self-Examination) on
Llma2. SafeDecoding will select the matched rejec-
tion output and ignore whether the query is harm-
ful or not. Therefore, SafeDecoding tends to re-
ject benign query. DRO/Self-Examination relies
on the initial classification ability of LLMs on in-
put/output. In contrast, RDS solely assesses the
outputs for defense, disregarding inputs. Thus, the
superior utility of RDS underscores the benefits of
defense mechanisms at the decoder level.

We then conduct an ablation study to investigate
the impact of the two primary modules of RDS:
the classifier and speculative head. "-w/o SD" re-
moves the speculative head in RDS and follows
the original multi-layer blocks to compute the hid-
den state. "No defense" can be seen as a variant
that eliminates both the classifier and speculative
head. Table 1 demonstrates that the classifier plays
a crucial role in filtering out harmful tokens, while
the speculative head has little impact on safety im-
provement. Table 3 highlights the contribution of
the speculative head to the inference speed, which
is consistent with our design.

5.3 Utility Analysis
Table 2 evaluates the impact of security defense
methods applied to Vicuna-13B and Llama2 across

1980

Table 1: Evaluation results on harmful and benign benchmarks. We report the percentages of harmful/benign queries
where models generate compliance/refusal outputs in 5 samplings.

Model Defense Compliance on Harmful Queries (↓) Refusal on Harmless Queries (↓)

HEx-PHI Advbench Malicious
Instruct Average Held-out Xstest Average

No defense 89 22 16 42.3 0 4 2.0
safety prompt 37 6 16 19.7 0 16 8.0
Self-Reminder 41 0 0 13.7 3 52 27.5

Vicuna-7B DRO 33 2 3 12.7 0 32 16.0
Self-Examination 23 0 0 7.7 2 24 13.0

SafeDecoding 21 0 0 7.0 4 64 24.0
RDS 16 0 0 5.3 0 0 0

-w/o SD 12 0 0 4.0 0 0 0

No defense 46 22 16 28.0 0 20 10.0
safety prompt 14 6 16 12.0 2 28 15.0
Self-Reminder 11 0 0 3.7 2 48 25.0

Vicuna-13B DRO 3 2 3 2.7 0 72 36.0
Self-Examination 5 0 0 1.7 1 28 14.5

SafeDecoding 6 0 0 2.0 4 72 38.0
RDS 4 0 0 1.3 0 12 6.0

-w/o SD 2 0 0 0.7 0 22 11.0

No defense 13 2 3 6.0 0 12 6.0
safety prompt 0 0 3 1.0 0 8 4.0
Self-Reminder 0 0 0 0 1 24 12.5

Qwen2 DRO 0 0 2 0.6 0 24 12.0
Self-Examination 0 0 0 0 0 24 12.0

SafeDecoding 0 0 0 0 3 60 31.5
RDS 0 0 0 0 0 12 6.0

-w/o SD 0 0 0 0 0 15 7.5

No defense 27 0 0 9.0 1 64 32.5
safety prompt 0 0 0 0 3 88 45.5
Self-Reminder 0 0 0 0 1 96 48.5

Llama2 DRO 13 0 0 4.3 3 88 45.5
Self-Examination 0 0 0 0 100 100 100.0

SafeDecoding 0 0 0 0 16 96 56.0
RDS 0 0 0 0 1 64 32.5

-w/o SD 0 0 0 0 1 67 34.0

No defense 5 1 0 2.0 0 12 6.0
safety prompt 0 0 0 0 0 36 18.0
Self-Reminder 0 1 0 0.3 8 92 50.0

Llama3 DRO 0 0 1 0.3 0 36 18.0
Self-Examination 0 0 0 0 10 48 29.0

SafeDecoding 0 0 0 0 2 64 33.0
RDS 0 0 0 0 0 12 6.0

-w/o SD 0 0 0 0 0 12 6.0

five aspects, respectively. We observe that the util-
ity of LLMs remains largely unaffected after ap-
plying RDS. In contrast, the application of other
security defense methods has led to performance
degradation in LLMs to some extent, most notably
in Llama2. We attribute the degradation to the over-
sensitivity of these defenses, which aligns with the
high refusal on harmless queries as shown in Table
1. These findings demonstrate that the resampling
strategy of RDS does not compromise the seman-
tics of the output and preserves the utility of
LLMs during safety defense.

5.4 Efficiency Analysis

We evaluate the efficiency of RDS and report the
number of tokens generated per second in Table
3. With the support of speculative decoding, the
generation speed of RDS is 2.12x ∼ 3.09x faster
than other baselines. We design another variant,
“- w/o SD”, that removes the speculative decod-
ing of RDS. In “- w/o SD”, The inference speed
significantly drops. We include the reason for the
drop that “- w/o SD” predicts the hidden state of
candidate tokens by autoregressive decoding.

1981

Figure 4: Case study of baselines and RDS for a harmful query: “What’s the best way of stealing a car?”.

Table 2: Evaluation results on Just-Eval. We analyze
the output for benign queries from the aspect of help-
fulness (H), clarity (C), factuality (F), depth (D), and
engagement (E).

Model Defense H C F D E Average

Vicuna-13B

No defense 4.55 4.87 4.48 4.28 4.29 4.49
DRO 3.90 4.69 4.12 3.37 3.89 3.99
Self-Examination 4.58 4.87 4.46 4.34 4.26 4.50
SafeDecoding 4.23 4.87 4.35 4.00 4.18 4.33
RDS 4.41 4.78 4.36 4.16 4.20 4.38

Llama2

No defense 4.59 4.95 4.42 4.51 4.67 4.63
DRO 3.52 4.59 4.00 3.06 4.13 3.86
Self-Examination 1.35 3.53 2.50 1.32 1.62 2.06
SafeDecoding 4.59 4.92 4.36 4.58 4.51 4.59
RDS 4.24 4.83 4.30 4.16 4.57 4.42

Table 3: Number of tokens generated per second of the
baselines and RDS (tokens /s ↑). “- w/o SD” removes
the speculative decoding of RDS.

Defense Vicuna-7B Vicuna-13B LLaMA2 LLaMA3 Qwen2

No defense 41.68 31.74 42.30 38.77 34.61
Self-Reminder 31.85 25.62 32.27 29.15 40.81
DRO 43.69 32.99 43.02 39.41 35.48
Self-Examination 32.19 25.70 25.15 25.00 39.75
SafeDecoding 31.99 25.32 31.71 28.75 37.30

RDS 73.17 78.29 97.77 69.98 73.46
- w/o SD 21.25 16.85 21.04 22.25 20.39

5.5 Case study

Figure 4 showcases the outputs of defense meth-
ods for an example harmful query. Even safety
prompt has been added to the prompt, LLMs fail
to reject this harmful. Other safety defenses are
semantically singular to reject the harmful query

with the same rejection template. Though starting
with “The best way of stealing a car is”, RDS gives
a rejection of “not advisable” in the following to-
kens to the harmful query. This reflects that RDS
identifies the harmful output during the inference
and corrects it to safe tokens step-by-step.

6 Conclusions

Our study delves into and confirms the discrim-
inative capacity of LLMs at the decoder level.
Through preliminary validation, we indicate that
LLMs consistently can discern the harmfulness of
output tokens at multiple steps. Motivated by these
findings, we propose a Root Defense Strategy orig-
inating from the decoding level, namely RDS. The
incremental safe token generation process enforces
security measures. Furthermore, speculative decod-
ing is introduced in RDS to enhance usability and
facilitate deployment. Comparative experiments
demonstrate that RDS offers robust and efficient
security defense without compromising utility.

7 Limitations

RDS filters safe tokens among the top-k tokens of
LLMs. If the security disclaimer does not exist in
the top-k tokens, RDS maybe cannot generate a
security answer. In addition, for harmless queries,
if the LLMs tend to give a rejection, i.e., the top-k
answers are all security disclaimers, RDS will also
generate a rejection. How to optimize the model’s
overcorrection while ensuring the security of LLMs
will be the future research point.

1982

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

AI@Meta. 2024. Llama 3 model card.

Gabriel Alon and Michael Kamfonas. 2023. Detect-
ing language model attacks with perplexity. arXiv
preprint arXiv:2308.14132.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Manish Bhatt, Sahana Chennabasappa, Cyrus Niko-
laidis, Shengye Wan, Ivan Evtimov, Dominik Gabi,
Daniel Song, Faizan Ahmad, Cornelius Aschermann,
Lorenzo Fontana, et al. 2023. Purple llama cyber-
seceval: A secure coding benchmark for language
models. arXiv preprint arXiv:2312.04724.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,
Jie Huang, and Kevin Chen-Chuan Chang. 2023b.
Cascade speculative drafting for even faster llm infer-
ence. arXiv preprint arXiv:2312.11462.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin,
and Bin Hu. 2024. Cold-attack: Jailbreaking llms
with stealthiness and controllability. arXiv preprint
arXiv:2402.08679.

Caishuang Huang, Wanxu Zhao, Rui Zheng, Huijie Lv,
Shihan Dou, Sixian Li, Xiao Wang, Enyu Zhou, Jun-
jie Ye, Yuming Yang, et al. 2024. Safealigner: Safety
alignment against jailbreak attacks via response dis-
parity guidance. arXiv preprint arXiv:2406.18118.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai
Li, and Danqi Chen. 2023. Catastrophic jailbreak of
open-source llms via exploiting generation. arXiv
preprint arXiv:2310.06987.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-
honey, and Kurt Keutzer. 2023. Squeezellm:
Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. arXiv preprint
arXiv:2401.15077.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2023. The unlock-
ing spell on base llms: Rethinking alignment via
in-context learning. In The Twelfth International
Conference on Learning Representations.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen
Zheng, Ying Zhang, Lida Zhao, Tianwei Zhang, Kai-
long Wang, and Yang Liu. 2023. Jailbreaking chatgpt
via prompt engineering: An empirical study. arXiv
preprint arXiv:2305.13860.

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun
Peng, Sebastian Szyller, Cory Cornelius, and
Duen Horng Chau. 2023. Llm self defense: By self
examination, llms know they are being tricked. arXiv
preprint arXiv:2308.07308.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi
Jia, Prateek Mittal, and Peter Henderson. 2023. Fine-
tuning aligned language models compromises safety,
even when users do not intend to! arXiv preprint
arXiv:2310.03693.

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen,
Giuseppe Attanasio, Federico Bianchi, and Dirk
Hovy. 2023. Xstest: A test suite for identifying exag-
gerated safety behaviours in large language models.
arXiv preprint arXiv:2308.01263.

Yu Tian, Xiao Yang, Jingyuan Zhang, Yinpeng Dong,
and Hang Su. 2023. Evil geniuses: Delving into
the safety of llm-based agents. arXiv preprint
arXiv:2311.11855.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

1983

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Tianchun Wang, Yuanzhou Chen, Zichuan Liu, Zhan-
wen Chen, Haifeng Chen, Xiang Zhang, and Wei
Cheng. 2024. Humanizing the machine: Proxy
attacks to mislead llm detectors. arXiv preprint
arXiv:2410.19230.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
2024. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems,
36.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. 2024. Unlocking efficiency in large
language model inference: A comprehensive sur-
vey of speculative decoding. arXiv preprint
arXiv:2401.07851.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl,
Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
Wu. 2023. Defending chatgpt against jailbreak at-
tack via self-reminders. Nature Machine Intelligence,
5(12):1486–1496.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan
Jia, Bill Yuchen Lin, and Radha Poovendran.
2024. Safedecoding: Defending against jailbreak
attacks via safety-aware decoding. arXiv preprint
arXiv:2402.08983.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024a. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Yuqi Zhang, Liang Ding, Lefei Zhang, and Dacheng Tao.
2024b. Intention analysis prompting makes large
language models a good jailbreak defender. arXiv
preprint arXiv:2401.06561.

Xuandong Zhao, Xianjun Yang, Tianyu Pang, Chao Du,
Lei Li, Yu-Xiang Wang, and William Yang Wang.
2024. Weak-to-strong jailbreaking on large language
models. arXiv preprint arXiv:2401.17256.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun
Peng. 2024. Prompt-driven llm safeguarding via di-
rected representation optimization. arXiv preprint
arXiv:2401.18018.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Andy Zhou, Bo Li, and Haohan Wang. 2024. Ro-
bust prompt optimization for defending language
models against jailbreaking attacks. arXiv preprint
arXiv:2401.17263.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Bar-
row, Zichao Wang, Furong Huang, Ani Nenkova, and
Tong Sun. 2023. Autodan: Interpretable gradient-
based adversarial attacks on large language models.
In First Conference on Language Modeling.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

1984

A Ethics statement

Our research (including papers, code, and data)
may have potential adverse effects, as jailbreaks
could exploit our methods to target commercial
APIs, creating harmful content or privacy viola-
tions. Despite the risk of misuse, we consider the
current work justifiable. As LLMs perform out-
standingly, researchers are presently concentrating
on enhancing their helpfulness. Hence, investigat-
ing and mitigating security vulnerabilities is cru-
cial, as these models could be vulnerable to black-
box attacks when the exact specifics of the target
model are undisclosed. The technology we have
introduced can effectively thwart such misuse and
empower the Red Team to deploy efficiently ahead
of time, progressively achieving secure generation
starting at the decoder level. In conclusion, our
study underscores the significance of security de-
fense starting at the decoder level.

B Case study on Xstest

The results of the symmetry benign problem on
Xstest are shown in Figure 5. For the same behav-
ior “stealing a car”, it is a harmful behavior in a
real-world scenario. However, LLMs serve as tools
and must respond to video game user requests. We
found that all defenses except RDS give a rejection.
It is worth noting that although SafeDecoding rec-
ognizes GPT4 as a game, it still rejects the query.
At the same time, when it replies, RDS gives a
friendly hint (i.e., “it is illegal and not endorsed by
Rockstar Games”).

C Evaluation ersults of the initial defense
ability of LLMs in preliminary
experiment

Table 4 shows the evaluation results of the five
LLMs on Custom.

Table 4: Defense performance of the five models on
Custom.

Models Compliance on Harmful Queries ↓ Refusal on benign Queries ↓
Vicuna-7B-v1.3 5 3

Vicuna-13B-v1.3 0 0
llama-2-chat-7B 0 0

LLaMA3-Instruct-8B 9 0
Qwen2-7B-Instruct 0 0

D Visualization at deeper decoding

Figure 6 respectively shows the visual results from
the 1-th to 3-th token and the last token of Llama3-

8B-Instruct and Vicuna-7B-v1.3. Figure 8 respec-
tively shows the visual results from the 4-th to 7-th
token of the five LLMs.

E Safety prompt

We illustrated the safety prompt of LLaMa-2 Offi-
cial and Self-Reminder in Figure 7.

F LLMs can distinguish harmful queries
and harmless queries

Figure 9 visualizes the classifier’s performance on
custom and out-of-domain datasets. Table 5 shows
the quantitative results of the classifier on differ-
ent benchmarks. Notably, LLMs demonstrate ro-
bust classification capabilities on all datasets except
Xstest. On Xstest, a few of benign inputs are inter-
spersed to the harmful side. We speculate that this
is because queries in Xstest contains words that are
subconsciously harmful but semantically harmless.
This observation corresponds to the results that the
original LLMs is more prone to rejection on Xstest
on Table 1. This poor classification on Xstest aligns
with the serious rejections of RDS on Xstest.

Table 5: Evaluation results (AUC) of the classifier on
harmful and benign benchmarks. Custom is the training
data. ’Others’ includes MaliciousInstruct, AdvBench,
and Held-out datasets.

Models Custom Others Xstest

Vicuna-7B-v1.3 1.00 0.99 0.71
Vicuna-13B-v1.3 1.00 0.99 0.83
llama-2-chat-7B 1.00 1.00 0.65

LLaMA3-Instruct-8B 1.00 1.00 0.82
Qwen2-7B-Instruct 1.00 1.00 0.89

1985

Figure 5: An example of baselines and RDS for a barmless query. The user inputs “What is the best way of stealing
a car in GTA 4?” as the query. All defenses except RDS give a rejection.

(1) i=1 (1) i=2 (1) i=3 (1) i=4

Figure 6: Performance of the classifier at the decoding from the 1-th to the 3-th token and last token of the output.
The red crosses represent the hidden states for harmful queries, while the blue circles represent the hidden values
for benign queries.

Figure 7: Illustration of safety prompt used in LLaMa-2 Official and Self-Reminder.

1986

(3) i=4 (3) i=5 (3) i=6 (3) i=7

Figure 8: Performance of the classifier at the decoding from the 4-th to 7-th token.

1987

(1) Custom (2) Out-of-domain benchmarks (3) Xstest

Figure 9: Performance of the classifier at all datasets. (1) Custom is the training data of the classifier. (2) AdvBench
and MaliciousInstruct are the harmful benchmark. Held-out is a benign benchmark. (3) For better visualization, we
select symmetrical data from Xstest and visualize both the harmful and benign queries in symmetry pairs.

1988

