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Abstract

Argument Mining (AM) involves the automatic
identification of argument structure in natural
language. Traditional AM methods rely on
micro-structural features derived from the in-
ternal properties of individual Argumentative
Discourse Units (ADUs). However, argument
structure is shaped by a macro-structure cap-
turing the functional interdependence among
ADUs. This macro-structure consists of seg-
ments, where each segment contains ADUs
that fulfill specific roles to maintain coher-
ence within the segment (local coherence) and
across segments (global coherence). This pa-
per presents an approach that models macro-
structure, capturing both local and global co-
herence to identify argument structures. Exper-
iments on heterogeneous datasets demonstrate
superior performance in both in-dataset and
cross-dataset evaluations. The cross-dataset
evaluation shows that macro-structure enhances
transferability to unseen datasets.

1 Introduction

Argument Mining (AM), a Natural Language
Processing (NLP) task, involves identifying and
analysing argument structures within natural lan-
guage (Persing and Ng, 2016; Stab and Gurevych,
2017; Eger et al., 2017; Potash et al., 2016;
Lawrence and Reed, 2020). It involves argument
component segmentation (ACS), argument compo-
nent type classification (ACTC), argument relation
(AR) identification (ARI), and AR type classifi-
cation (ARTC) (Peldszus and Stede, 2015a; Eger
et al., 2017; Lawrence and Reed, 2020). This study
focuses on ACTC, ARI, and ARTC, assuming that
ADUs are provided as input..

The identification of argument structures re-
quires modeling the roles of ADUs and ARs as
functions of a global structure, governing coherent
arrangement of these components to fulfill the over-
arching Discourse Purpose (DP) (Grosz and Sidner,

1986; Freeman, 2011). The global structure is de-
composed into local structures, each aligned with a
specific Discourse Segment Purpose (DSP). These
localised structures ensure segment-level coher-
ence by organising ADUs and ARs into functional
units, much like how words combine into phrases
to convey meaning (Grosz and Sidner, 1986). For
instance, Figure 1 illustrates four localised struc-
tures in a COVID-19 contact tracing argument: (1)
government preparedness (2) the effectiveness of
South Korea’s contact tracing, (3) non-app-based
tracing, and (4) advancements in testing. In each
local structure, the ADUs fulfill the DSP of that
segment. For example, the ADUs in segment (3)
address the DSP of non-app-based tracing.

The arrangement of ADUs and the ARs within
the local structures is shaped by the intentions of
the arguer and the sequential ordering of ADUs
ensuring a natural flow for maintaining coherence
(Travis, 1984; Freeman, 2011; Wang et al., 2019;
Kazemnejad et al., 2024). The intentional structure
captures the logical flow of ADUs and can extend
beyond proximity to connect ADUs based on their
roles and contributions to the DSP of the segment
(Grosz and Sidner, 1986; Freeman, 2011). Figure 1
illustrates this interplay, demonstrating the sequen-
tial flow of arguments (e.g., ADU1 → ADU2 →
ADU3 → ADU4 → ADU5) alongside logical re-
lationships transcending proximity (e.g., A14 →
A17, A13 → A19, or A20 → A23). This under-
scores the importance of modeling macro-structure
governing the intentional and the sequential flow
of ADUs and their ARs. See details in Appendix C
and more examples in Figure 3.

However, most previous works focus on features
derived from the internal structure of ADUs, often
referred to as the micro-structure (Freeman, 2011),
while overlooking the broader macro-structure.
They frame AM tasks as either dependency pars-
ing (Peldszus and Stede, 2015b), sequence tag-
ging (Eger et al., 2017), sequence classification
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Figure 1: An example of an argument structure composed of 21 argument relations, which together form the
global structure, is shown decomposed into four local structures (labelled 1 to 4). It shows how ADUs and AR
are shaped by the intentional structure, where consecutive ADUs may span different segments (local structures),
and non-consecutive ADUs can share the same segment. The argument is taken from QT30, illustrating a dialog
between two participants, highlighted in light blue and yellow (Hautli-Janisz et al., 2022).

(Reimers et al., 2019; Ruiz-Dolz et al., 2021), or de-
compositionality (Gemechu and Reed, 2019; Traut-
mann, 2020), concentrating primarily on isolated
ADU pairs. End-to-end AM approaches model
dependencies between tasks, employing various
techniques, including biaffine operations for learn-
ing non-tree AM structures (Morio et al., 2020), a
transition-based model for constructing both tree
and non-tree argument graphs (Bao et al., 2021),
and positional encodings in generative AM frame-
works to mitigate order biases (Bao et al., 2022).
Recent advancements in language models (LM)
have enhanced their ability to capture higher-level
structures for processing long documents by en-
coding document sections, hierarchies, and global
contexts, resulting in notable improvements in NLP
tasks like document classification and summarisa-
tion (He et al., 2024; Cao and Wang, 2022; Liu
et al., 2022; Bai et al., 2021). However, in the do-
main of AM, aside from position-aware discourse
self-attention for identifying discourse elements
(Song et al., 2020) and end-to-end approaches fo-
cusing on capturing dependencies between tasks,
there has been limited progress in addressing the
critical aspect of modeling macro-structures, which
often remains implicit. To our knowledge, no AM
work has proposed a unified architecture that mod-
els coherence by integrating macro-structure en-
coding logical and sequential ADU flows at both
local and global levels, while anchoring AM tasks
to this coherence.

In this study, we propose CU-MAM: Coherence-
Driven Unified Macro-Structures for Argument
Mining, an approach that anchors ACTC, ARI, and

ARTC tasks to a unified macro-structure. Given a
pair of ADUs and the entire argument as context,
the model predicts the ADU types (ACTC) and the
AR between them (ARI and ARTC), considering
both local and global structural information. This
is accomplished through a multi-task learning ap-
proach that jointly models ACTC, ARI, and ARTC
as primary tasks while treating local and global
structure learning as auxiliary tasks. The argument
is represented as a graph, where ADUs are nodes
and ARs are edges, capturing the complete argu-
ment structure. Local and global structures learning
is achieved by classifying graph edges into their re-
spective local or global categories. A self-attention
layer attends to the graph’s nodes and edges to
encode the local and global structures relevant to
the ADU pair under consideration. To contextu-
alise ADU type and AR predictions within these
macro-structures, the self-attention layer’s output is
fused with the ADU-pair representation via a cross-
attention mechanism. Additionally, the sequential
flow of the argument is modeled by incorporating
ADU-level positional encodings into the ADU em-
beddings. These positional encodings are derived
from the order of ADUs and discourse participant
transitions (e.g., proponent-opponent shifts) (Free-
man, 2011; Budzynska and Reed, 2011).

This paper makes the following contributions:
(a) We propose a macro-structure to capture the co-
herent arrangement of ADUs. (b) We introduce an
architecture combining a graph-based neural model
with a dual attention mechanism to capture local
and global argument structures. A multi-task learn-
ing framework anchors ACTC, ARI, and ARTC
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to these macro-structures. (c) We achieve state-
of-the-art (SOTA) results across multiple datasets,
including a cross-dataset evaluation where previous
SOTA models struggle to surpass random chance.

2 Related Work

2.1 Argument Mining

Argument Mining has been studied through diverse
paradigms, emphasising the micro-structure of ar-
guments. One common approach frames AM as
a dependency parsing task (Peldszus and Stede,
2015b), leveraging discourse parsing techniques
(Muller et al., 2012). Peldszus and Stede (2016) ex-
tend this by mapping Rhetorical Structure Theory
(RST) trees (Taboada and Mann, 2006) to argument
structures. Other works model AM as token-based
sequence tagging (Eger et al., 2017), classifying
tokens into argument components and AR types
using the BIO tagging scheme. Gemechu and Reed
(2019) decompose ADUs into fine-grained compo-
nents, predicting ARs based on their interactions.
Recent studies fine-tune pre-trained LMs, employ-
ing sequence-pair classification setups (Reimers
et al., 2019; Ruiz-Dolz et al., 2021). These config-
urations focus on the internal structure of ADUs,
while neglecting the broader macro-structure.

Efforts toward end-to-end AM have largely
focused on leveraging task interdependencies.
Pipeline architectures train independent models for
sub-tasks, integrating global constraints through
Integer Linear Programming (ILP) (Persing and
Ng, 2016; Stab and Gurevych, 2017). Neural ap-
proaches adopt joint multi-task setups to model
interdependencies across tasks (Eger et al., 2017).
Morio et al. (2022) introduce a cross-corpus train-
ing strategy, while Bao et al. (2022) propose a
generative framework incorporating constrained
pointer mechanisms and reconstructed positional
encodings into an end-to-end AM setup. Despite
these advancements, these methods emphasize task-
level dependencies, offering limited or no explicit
modeling of the macro-structure.

2.2 Structural Encoding in Language Models

Recent advancements in LMs have improved the
capacity to encode long texts and represent docu-
ment structures (He et al., 2024; Cao and Wang,
2022; Liu et al., 2022; Bai et al., 2021; Zaheer et al.,
2020; Beltagy et al., 2020). For instance, He et al.
(2024) and Cao and Wang (2022) utilise section
structures to encode document hierarchies, while

Liu et al. (2022) employ hierarchical sparse atten-
tion and specialised tokens to capture local and
global information within a document. Similarly,
Bai et al. (2021) use positional encoding at various
linguistic segments to capture hierarchies. Belt-
agy et al. (2020) introduces Longformer, which
combines local windowed attention with global
for long-document. Zaheer et al. (2020) propose
BigBird, a model leveraging sparse attention mech-
anisms that integrate global, local, and random
attention patterns to handle long sequences. Al-
though these models provide avenues for encoding
macro-structures, their effectiveness in addressing
the unique challenges of argumentation’s macro-
structure remains limited (see Tables 2 and 3),
primarily due to their reliance on static document
structural features, which fail to capture the distinct
characteristics of argumentation—such as logical
relationships, argumentative flows, and the inter-
play between ADUs.

3 Method

3.1 Data

Heterogeneous datasets encompassing various do-
mains and genres are utilised, including stu-
dent persuasive essay corpora (AAEC) (Stab and
Gurevych, 2017), Consumer Debt Collection Prac-
tices (CDCP) (Park and Cardie, 2018), the US
2016 presidential debate corpus (US2016) (Visser
et al., 2019), and a corpus of argument and con-
flict in broadcast debate (QT30) (Hautli-Janisz
et al., 2022). The AAEC and CDCP, are mono-
logical, while the US2016 and QT30 are dia-
logical. The datasets CDCP, AAE, QT30, and
US2016 employ different annotation standards
for ADUs and ARs. CDCP defines five ADU
types—Reference, Fact, Testimony, Value, and Pol-
icy—and two AR types—Reason and Evidence.
AAE uses three ADU types—MajorClaim, Claim,
and Premise—and four AR types—Support, At-
tack, For, and Against. In the QT30 and US2016
datasets, ADUs are not explicitly labeled; instead,
their types are inferred from the direction of the
ARs (premise to conclusion), resulting in two ADU
types: Premise and Conclusion.

3.1.1 Global Structure
The global structure consists of all valid ARs within
the argument structure, which are essential for
achieving the DP. These valid ARs represent a sub-
set of the possible permutations of connections
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Data No_arg No_ADU No_AR No_LOC Dist_ARs

AAEC 402 6089 5338 3.3 2.6
US2016 499 8610 3772 5.1 3.2
QT30 724 11266 3314 7 4.8
CDCP 731 4779 1353 5.6 3.4

Table 1: Dataset summary of argument counts (No_arg),
average number of ADUs (No_ADU), ARs (No_AR),
local structures (No_LOC), and ADU distance in ARs
(Dist_ARs) per argument.

between the ADUs in the argument. For example,
in Figure 1, the argument consists of 24 ADUs,
which could potentially form up to 552 unique con-
nections (24 × 23), excluding self-links. However,
only 21 of these connections are valid, forming the
global structure that conveys the discourse purpose
by meaningfully linking the ADUs.

3.1.2 Local Structure
An argument structure is represented as graphs
where ADUs are nodes and ARs forming the
edges. Local Structure identification involves up-
ward and downward traversals of the graph from
each AR node. The upward traversal identifies
chains of ADUs leading to the AR, capturing the
local structure that establishes its context. The
downward traversal, traces the chain of ADUs fol-
lowing the AR, ensuring the continuity of the argu-
ment segment. The beginning of a local structure
is identified by a node with no inward connections
(start ADU), marking the segment’s starting point,
while its end is defined by a node without succes-
sors (end ADU), indicating the segment’s conclu-
sion. In cases where the start ADU involves mul-
tiple downward chains (divergent structures), all
such chains are included. Furthermore, every sub-
graph—whether serial, divergent, convergent, or
linked—between the start and end ADUs is incor-
porated to ensure a complete and coherent segment.
The argument shown in Figure 1 consists of four
segments numbered 1 through 4. More details and
examples are provided in Appendix D. Table 1 pro-
vides a summary of the dataset statistics. Among
the argument structures, 73% involve more than
one local structure, with 67% containing between
2 to 7 local structures. Additionally, 64% of ARs
occur between ADUs positioned 1 to 5 apart, and
17% involve ADUs that are within a distance of 1.

3.2 Model

This section provides an overview of the task defi-
nition, model architecture, and baselines.

3.2.1 Task Definition
Given an argument A comprising a sequence of
ADUs and a specific ADU pair (ADUi, ADUj),
the model’s primary task is to predict the types
of ADUi, ADUj , and the AR between them, one
pair at a time, within the context of the argument’s
macro-structure (local and global structure). To
achieve this, the model is trained on auxiliary tasks
that predict local and global structures, anchor-
ing the primary task to these macro-structures in
a multi-task setting. During inference, only the
primary task is used. See Section A.2 for input
details.

3.2.2 Architecture
As shown in Figure 2, the model consists of five
key components: (A) Unified ADU Represen-
tation, which combines ADU embeddings with
positional information; (B) Argument Structure
Encoder, which employs a graph network where
ADUs are nodes and ARs between them are edges;
(C) ADU-Pair Encoder, which encodes the spe-
cific pair of ADUs under consideration; (D) Macro-
Attention Layer, which attends to the graph’s nodes
and edges to capture the ADUs and ARs that con-
stitute the local and global structures relevant to
the ADU pair; and (E) Classification Layers, which
predict ADU types, ARs, and classify graph edges
as local, global, or none, in a multi-task setting.

(A) Unified ADU Representation (UAR)
ADU representation combines a pre-trained LM
embedding, with two ADU-level positional embed-
dings capturing sequential argument flow. Given an
argument A = {ADU1, ADU2, . . . , ADUn}, the
unified representation, ADU′

i is given by:

ADU′
i = ADUi ⊕Oi ⊕Pi (1)

where ADUi is the sentence embedding (S) of the
ADU obtained by mean pooling token embeddings
from LM. Oi is the order-based positional embed-
ding indicating the ADU’s sequential index, and
Pi is the participant transition embedding, captur-
ing participant shifts in multi-participant dialogues,
with all ADUs assigned the same index in mono-
logues. We experiment with sinusoidal absolute
positional encodings (Vaswani et al., 2017) and rel-
ative positional embeddings (Shaw et al., 2018).
Absolute positional embeddings are added to ADU
embeddings, while relative embeddings are fused
during attention computation (See Section B.2).
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Figure 2: CU-MAM Architecture.

(B) Argument Structure Encoder (ASE)
A Graph Neural Network (GNN) (Brody et al.,
2021) models the argument structure as a graph
G = (V,E), where nodes V = {v1, v2, . . . , vn}
represent ADUs, and edges E ⊆ V × V capture
ARs between ADUs, facilitating local and global
structure predictions relevant to a given ADU pair.
The graph is constructed using the unified ADU
embeddings from Equation 1, where each node rep-
resents an ADU within the argument. Initially, the
graph is fully connected—every node is linked to
every other node—without any prior assumptions
about the existence or direction of argument rela-
tions. During training, the model learns to infer the
correct argument structure, as detailed in section
(E). At each layer, node states are updated as:

h(k+1)
v = σ


Wkh

(k)
v +

∑

u∈N (v)

W′
kh

(k)
u


 (2)

where h(k)
v is the node state at layer k, and N (v)

denotes neighboring ADUs. Each AR between
ADUs is represented by the concatenation of their
node embeddings.

(C) ADU-Pair Encoder (APE)
Encodes the relationship between the pair of ADUs
(ADUi, ADUj) under consideration. A feedfor-
ward layer is applied to the unified embeddings of
ADUi and ADUj to capture their interaction.

(D) Macro-Attention Layer (MAL)
Two self-attention layers attend to the argument
graph from step B, learning the local and global
structures relevant to the ADU pair from step C.
The self-attentions are applied to the edge embed-
dings of the argument graph to capture the relation-
ships between nodes (i.e., the AR between ADUs).
The outputs from both attention layers pass through

fully connected layers, and used to classify the
edges into their respective macro-structures.

To contextualise the ADU type and AR predic-
tions within the macro-structural context, the out-
puts of the self-attention layers are fused with the
ADU-pair representation from step C using a cross-
attention mechanism. The queries are derived from
the ADU-pair encoder’s output, while the keys and
values are projections of the summation of the self-
attention layers. The final representation of the
ADU pair, denoted as RADU-pair, is obtained by
adding the cross-attention’s output to the original
ADU-pair encoder’s output. This final representa-
tion combining both the structural context and the
ADU pair representation is used to predict both the
ADU types and the ARs between them.

(E) Classification Layers
Linear classifiers are used for predicting the ADU
pair types (ACTC) and AR between them (ARI
and ARTC), using the contextualised ADU-pair
representations, RADU-pair. We jointly model ARI
and ARTC, following the approach in (Bao et al.,
2021), while also modeling ARI independently for
comparison with studies treating them separately.

The local and global structures are learned by
modeling the presence or absence of edges in the
argument graph as binary classification tasks, using
gold-standard labels prepared in Sections 3.1.1 and
3.1.2. For global structure learning, the model con-
siders all possible edges between ADU pairs within
the argument graph. Each edge is assigned a binary
label: a positive label indicates the existence of a
valid argumentative relation, while all remaining
edges are labeled as negative. For local structure
learning, the focus is restricted to a subgraph de-
fined by a specific segment—bounded by the start
and end ADUs of a local argument span as defined
in Section 3.1.2. Only the edges that lie within this
span and correspond to valid argumentative rela-
tions are labeled as positive; all others are labeled
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negative. This dual-structure supervision guides
the model to capture both the broader argumen-
tative flow and the finer-grained local discourse
dependencies. These macro-structures predictions
are framed as auxiliary tasks within a multi-task
setup.

The model trains using a loss function (L) that
integrates task-specific losses and a regularisation
term, L = L0 + L1 + L2 + L3 + R, where L0

is the loss for ADU type prediction, L1 for AR
classification, L2 for global-structure prediction,
L3 for local-structure prediction, and R for the reg-
ularization term. Due to the significantly higher
number of non-AR edges compared to AR edges,
L2 is computed exclusively for AR edges, exclud-
ing non-AR edges. Similarly, L3 ignores both AR
edges and non-AR edges outside the local structure.
However, this approach leads to model overfitting
on AR edges. To mitigate this issue, a regularisa-
tion term (R) based on the distance editing score
is introduced to penalise deviations from the gold
argument structure, encouraging correct classifica-
tion of both AR and non-AR edges.

3.2.3 Baselines
We establish two baselines using RoBERTa (Liu
et al., 2019), reportedly achieving strong perfor-
mance in AM and BigBird (Zaheer et al., 2020),
for its architecture in capturing global context. The
first baseline, Vanilla Sequence-Pair Classification
(V-SeqCls), fine-tunes the LMs on concatenated
ADU pairs. The second, Vanilla Argument Context
(V-ArgC), includes the entire argument as context
alongside ADU pairs for direct comparison to CU-
MAM. Since both LMs are used in CU-MAM for
ADU embeddings, evaluating them as standalone
baselines ensures robust comparisons. BigBird
serves as a strong baseline due to its global context
modeling (see Appendix A.3 for more details).

4 Experiment

4.1 Training setup

The models are trained for six epochs with a batch
size of 16 using Adam optimiser (Kingma and Ba,
2014) with a learning rate of 2×10−5. The primary
tasks use categorical cross-entropy, while auxiliary
tasks for graph edge prediction use binary cross-
entropy. Results are averaged over three runs with
different random seeds. Additional experimental
details are in Appendix A. The code and dataset
are available at https://github.com/arg-tech/cumam.

4.2 Implementation Details
For the AAEC and CDCP, we use the provided
training and test data, sampling 10% of the train-
ing set for validation. We split the US2016 and
QT30 datasets into 70% training, 20% testing,
and 10% validation. For AAEC, results are re-
ported at the essay level (AAEC-E), with two
paragraph-level results for comparison with related
works. The AAEC-P

+
merges the Claim:Against

and Claim:For labels into a single Claim label,
while AAEC-P uses the original annotations. For
cross-dataset evaluations, we use AAEC-P

+
since

US2016 and QT30 do not include Major Claim
as an argument component type. Similarly, we
merge ’For’ and ’Against’ into Support and Attack,
respectively in the AAEC, while the ’Rephrase’
ARs in QT30 and US2016 are merged into Support
relation.

ADU embeddings in the CU-MAM configura-
tions are obtained from RoBERTa and BigBird.

4.3 Evaluation Setup
The models are evaluated using two setups: In-
Dataset Evaluation (ID) and Cross-Dataset Eval-
uation (CD). For ID, the models are trained and
evaluated on the same dataset using the provided
training-test split. In CD, the models are trained on
one dataset and evaluated on the remaining n− 1
datasets to assess their performance on unseen data.
CDCP is excluded from the CD setup due to dif-
ferences in ADU and AR type annotations. Across
both setups, average macro F-scores (F) are re-
ported for the test dataset. We also report the F1
score for comparison with related works.

4.4 Comparison Systems
CU-MAM is benchmarked against related works,
including Bao et al. (2021), Morio et al. (2020),
Ruiz-Dolz et al. (2021), Gemechu and Reed (2019),
Potash et al. (2017), Kikteva et al. (2023) and GPT-
4o (OpenAI, 2023). GPT-4o serves as a strong base-
line due to its design for advanced reasoning tasks.
It is evaluated using a few-shot prompting setup,
with details of the prompting strategy provided in
Section B.3. We also make indirect comparisons
with Eger et al. (2017), Morio et al. (2022), and
Bao et al. (2022), which combine argument seg-
mentation with ACT, ARI, and ARTC.

4.5 Results
Tables 2 and 3 compare the performance of CU-
MAM and the two baselines (Section 3.2.3) across
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LM Model ACTC ARI ARTC
AAEC CDCP US2016 QT30 AAEC CDCP US2016 QT30 AAEC CDCP US2016 QT30

RoBERTa V-SeqCls (Baseline) 69.4 77.6 69.7 71.1 56.6 62.1 72.5 71.7 50.1 14.2 67.1 68.3
V-ArgC (Baseline) 66.4 73.3 65.0 66.4 54.4 59.2 68.5 69.4 49.3 13.4 64.8 67.3
CU-MAMrel (ours) 77.5 83.1 75.9 75.5 68.1 70.4 78.7 77.1 58.1 30.6 75.8 76.6

BigBird V-SeqCls (Baseline) 69.2 77.4 68.4 70.3 57.8 64.3 69.2 71.1 50.1 15.2 67.4 68.2
V-ArgC (Baseline) 70.7 78.3 70.3 71.6 60.9 64.8 74.2 74.1 49.4 16.7 68.9 68.4
CU-MAMrel (ours) 77.2 84.6 75.4 76.8 70.4 72.3 80.7 78.4 58.4 31.4 76.6 75.2

Table 2: In-dataset evaluation performance of CU-MAM and baseline models (V-SeqCls and V-ArgC).

LLM Model ACTC ARI ARTC
AAEC US2016 QT30 AAEC US2016 QT30 AAEC US2016 QT30

RoBERTa V-SeqCls (Baseline) 52.1 55.4 48.9 46.2 48.2 47.8 38.9 45.1 44.4
V-ArgC (Baseline) 47.5 52.4 48.6 38.9 46.9 47.5 36.9 44.2 41.6
CU-MAMrel (ours) 64.6 66.1 66.4 56.2 62.0 60.5 50.9 58.5 58.0

BigBird V-SeqCls (Baseline) 55.5 51.4 50.2 43.9 53.6 54.3 40.6 45.4 45.3
V-ArgC (Baseline) 56.6 53.5 55.5 47.3 56.7 56.5 43.6 46.5 47.1
CU-MAMrel (ours) 65.7 67.4 66.3 57.7 66.0 64.5 51.8 61.1 60.5

Table 3: Cross-dataset evaluation performance of CU-MAM and baseline models (V-SeqCls and V-ArgC).

the datasets in ID and CD setups. CU-MAM refers
to full configuration with local and global structure
prediction and Macro-Attention (unless specified).
The main results are reported for CU-MAM with
relative positional encoding (CU-MAMrel) due to
its superiority over absolute encoding. Tables 2 and
3 clearly show that incorporating macro-structural
features improves performance across all tasks in
both ID and CD, as described below.

In-Dataset (ID) Evaluation
As can be seen in Table 2, CU-MAM consistently
outperforms the two baseline methods that rely
solely on fine-tuning LMs across all tasks. In aver-
age, for ACTC, CU-MAM improves by 6.6% over
V-SeqCls and 8% over V-ArgC. For ARI, the im-
provements are 8.9% and 9%, respectively, while
for ARTC, CU-MAM shows 10.9% and 11.3% im-
provements over V-SeqCls and V-ArgC. These re-
sults highlight the effectiveness of macro-structural
features, leading to superior performance compared
to the baselines. To calculate the improvement over
V-SeqCls, we subtract the average performance of
BigBird and RoBERTa V-SeqCls from the average
performance of BigBird and RoBERTa CU-MAM.
Similar approach is used for calculating the im-
provements over V-ArgC.

Cross-Dataset (CD) Evaluation
Similarly, Table 3 shows that CU-MAM excels in
CD evaluations. For ACTC, CU-MAM improves
by 13.8% over V-SeqCls and 15.2% over V-ArgC.
For ARI, the improvements are 12.4% and 12.1%,

respectively. For ARTC, CU-MAM shows im-
provements of 13.5% and 14.4%. Notably, CU-
MAM consistently surpasses the baselines, often
achieving cross-dataset performance that is compa-
rable to in-dataset evaluations. For example, when
trained on the QT30 dataset and tested on US2016,
the BigBird-based CU-MAM matches in-dataset
performance. In contrast, baseline models per-
form near-random chance, showcasing CU-MAM’s
strong cross-dataset generalisation.

Comparison Systems

As can be seen in Table 4, CU-MAM outperforms
all comparison systems, including the indirect com-
parison approaches that combine argument segmen-
tation with ACT, ARI, and ARTC. The indirect
comparisons should be interpreted cautiously due
to differences in task setups. BigBird-based CU-
MAM outperforms RoBERTa-based CU-MAM
configurations in both ID and CD, highlighting
its strength in capturing global contexts. GPT-4 ex-
hibits performance variation consistent with other
comparison works.

4.6 Error Analysis

We categorise the error types in CU-MAM versus
the baselines as "Jump-to-Conclusion," "Reversed
Connection," and "Non-relational ADU Link" er-
rors, all affecting sequential and logical coher-
ence (see examples in Appendix E). The "Jump-
to-Conclusion" Error occurs, when an ADU A is
linked directly to ADU C bypassing the interme-
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Dataset Model ACTC ARI ARTC
F1 Macro F1 Macro F1 Macro

AAEC-E Eger et al. (2017) 66.2 - - - 34.8 -
Morio et al. (2022) 76.6 - - - 54.7 -
GPT-4o 61.4 59.7 54.6 56.4 51.1 49.3
CU-MAMrel 79.3 77.2 62.6 70.4 60.1 58.6

AAEC-P
Bao et al. (2022) 75.9 - - - 50.1 -
Eger et al. (2017) 70.8 - - - 45.5 -
Morio et al. (2022) 76.5 - - - 59.6 -
GPT-4o 62.1 63.3 54.9 60.2 52.3 50.4
CU-MAMrel 79.8 78.4 66.3 81.2 64.4 63.1

AAEC-P+ Potash et al. (2017) - 84.9 60.8 76.7 - -
Morio et al. (2022) 88.4 86.8 69.3 - 68.1 57.1
Bao et al. (2021) - 88.4 70.6 82.5 - 81
GPT-4o 66.4 65.6 58.2 67.7 56.5 58.2
CU-MAMrel 88.7 87.1 75.4 85.4 73.1 82.7

CDCP
Bao et al. (2022) 57.7 - - - 16.6 -
Morio et al. (2022) 81.0 82.3 40.2 - 40.1 20.4
Bao et al. (2021) - 82.5 37.3 67.8 - -
Morio et al. (2020) - 78.9 34.0 - - -
GPT-4o 58.5 68.4 30.1 61.3 32.2 23.4
CU-MAMrel 83.4 84.6 44.8 72.3 45.1 31.4

US2016 Ruiz-Dolz et al. (2021) - - - - - 70
Gemechu and Reed (2019) - - - 64 62
GPT-4o 64.9 62.3 52.6 56.7 58.4 54.6
CU-MAMrel 77.3 75.4 63.8 80.7 79.8 76.6

QT30 Kikteva et al. (2023) - - - - - 56.0
GPT-4o 65.1 64.6 51.8 57.1 58.1 52.8
CU-MAMrel 75.8 76.8 62.5 78.4 77.8 75.2

Table 4: CU-MAM performance and comparison ap-
proaches.

diary ADU B. The "Reversed Connection" error
happens when the direction of an AR is incorrect,
and the "Non-relational ADU Link" error arises
when ARs are formed between unrelated ADUs.

Misclassification errors are reduced in both lo-
cal and global structures, highlighting CU-MAM’s
effectiveness in maintaining coherence at both lev-
els. Analysis of 50 argument maps shows that 61%
of the baseline’s misclassifications occur within
the same local structure, compared to just 12% for
CU-MAM, resulting in a 77.4% reduction in errors.
While CU-MAM is more effective at reducing local
structure errors, it also reduces global misclassifi-
cations, though most errors still arise from global
structure issues, such as incorrect connections be-
tween cross-local structures or ADUs outside the
argument graph. Moreover, CU-MAM reduces
"Jump-to-Conclusion" errors to 16% (down from
56% in the baseline) and cuts "Reversed Connec-
tion" errors by 32%, demonstrating its ability to
preserve logical and sequential flow.

4.7 Ablation study

We analyse the contributions of local-structure pre-
diction and global-structure prediction by evaluat-
ing CU-MAM without local-structure prediction
(CU-MAM-L) and without global-structure predic-
tion (CU-MAM-G). We also analyse the impact
of Macro-Attention by evaluating CU-MAM with-
out the Macro-Attention (CU-MAM-Att). These
configurations are compared against: (a) the base-

Config ACTC ARTC

ID CD ID CD

Baseline 72.1 53.7 50.5 44.7

CU-MAM−G 76.7 63.5 58.7 54.5
CU-MAM−L 74.8 60.5 56.2 52.1

CU-MAM-Att 75.2 64.2 60.1 53.1
CU-MAMAtt-only 73.5 59.8 56.5 50.8

CU-MAMFull 78.5 66.5 60.3 57.8

Table 5: Ablation study of CU-MAM configurations,
reporting F1-scores under ID and CD settings. Baseline
results are included for comparison. The F1 scores are
averaged across the dataset for the ACTC and ARTC
tasks.

line performance, computed as the average of V-
SeqCls and V-ArgC, and (b) the full CU-MAM
(CU-MAMFull), which includes local-structure pre-
diction, global-structure prediction and Macro-
Attention. These configurations of CU-MAM are
based on BigBird and absolute positional embed-
dings, since it achieved the highest performance
(See Section F.1 for more details). We also assess
the impacts of the two types of positional informa-
tion and the effectiveness of absolute versus relative
embeddings (see Section F.2 for more details).

Local vs. Global Structure Prediction. As
shown in Table 5, both CU-MAM-L and CU-
MAM-G outperform the baseline, highlighting the
effectiveness of each structure prediction on its
own. However, either local-structure or global-
structure prediction can not achieve the perfor-
mance level of CU-MAMFull individually, confirm-
ing their complementary benefits. CU-MAM−L

performs worse than CU-MAM−G, suggesting that
local-structure prediction has a greater impact than
global-structure prediction.

Macro-Attention Layer (MAL). In CU-
MAM-Att configuration, local and global structures
are predicted using a stack of feedforward layers
instead of MAL, applied to the output of argument
structure encoder, ensuring the same parameter
count for a fair comparison with CU-MAMFull. We
also evaluate CU-MAM with the MAL but without
the auxiliary tasks (CU-MAMAtt-only), to isolate the
effect of MAL. In CU-MAMAtt-only, the MAL is
used only for computing the cross-attention that
contextualises the ADU-pair. As shown in Table 5,
ablating MAL results in a performance drop com-
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pared to CU-MAMFull, although it still outperforms
the baseline. However, CU-MAMAtt-only performs
worse than CU-MAM-Att, emphasising MAL is
more effective when combined with auxiliary tasks.

Positional Encoding: We evaluate the impact
of order embedding (O) and participant transition
embedding (P ) individually using absolute (Abs)
and relative (Rel) positional encodings. Table 6
shows the performance with each positional feature
ablated, highlighting the reduction in performance
when each feature is removed (e.g., P− represents
CU-MAM without P ). As can be seen from the
Table, ablating O results in a greater performance
drop compared to ablating P on both monological
and dialogical datasets, with P showing no impact
on the monological dataset. In average, Rel based
configurations outperform Abs configurations.

Config Monologue Dialogue
Full (Abs) 43.3 74.4
Full (Rel) 44.5 76.1
O− (Abs) 42.1 71.3
O− (Rel) 42.4 71.6
P− (Abs) 43.1 72.4
P− (Rel) 44.3 72.7

Table 6: F1-scores for CU-MAM configurations without
P , O on monological and dialogical datasets in the ID
evaluation. The results are averaged across the dataset
on ARTC.

5 Conclusion

This work introduces CU-MAM, the first ap-
proach modeling AM tasks as a function of macro-
structure to capture coherence. By leveraging struc-
tural representations, it models logical and sequen-
tial argument flow, capturing local and global de-
pendencies. CU-MAM achieves significant per-
formance gains over baselines and comparison ap-
proaches, setting new SOTA results across datasets.
Its strong cross-dataset adaptability overcomes do-
main adaptation challenges where existing SOTA
models struggle, demonstrating its ability to gener-
alise across diverse argumentation structures.
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Limitations

Despite its merits, the CU-MAM approach has the
following limitations:

Limited Applicability to Other NLP Tasks:
The participants transitions features and local-
structure encoding are specifically designed for ar-
gumentation tasks. As such, their applicability to
other NLP tasks that do not involve argumentative
structures is limited.

Pre-Training Objectives Not Addressed: Al-
though the evaluation focuses on fine-tuning for
leveraging macro-structural features, it does not
address the training objectives that could be em-
ployed during the pre-training phase of LLMs to
better integrate these features.

Interpretability and Explainability: The expla-
nations for the model’s performance are based on
empirical results, ablation studies, and error analy-
sis. While these analyses are valuable, additional
techniques such as attention mechanism analysis
could provide a more comprehensive understand-
ing of model behavior.
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A Experiment Setup

A.1 Training Procedure
Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost
function, using a learning rate of 2 × 10−5 and
categorical cross-entropy loss and a batch size of
16. Experimental results are reported based on the
average of three runs with different random seeds.

Gradient Clipping: To prevent exploding
gradients during training, we applied gradient
clipping. We used a maximum gradient norm
(max_grad_norm) parameter to determine the
threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employ a linear warm-up strategy for the learning
rate. The number of warm-up steps is set to 10%
of the total training steps. Following the warm-up
phase, the learning rate schedule is determined by
a lambda function. This function linearly increases
the learning rate during the warm-up phase and
decreases it linearly thereafter.

A.2 Input Setup
Except the V-SeqClas configurations, the entire
argument along with the pair of ADUs is provided
to the model.
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The Input Format:“{Argument} [EG]
{premise} [SEP] {conclusion}”, where Argument
= {ADU1 [SEP] ADU2 [SEP] ... ADUn}, with n
representing the number of ADUs in the argument.

Extracting Relevant Argument: When the
entire argument exceeds the maximum sequence
length allowed by the underlying LM, a relevant
span of the argument is extracted that includes both
the premise and conclusion while staying within
the length limit. This process is carried out as fol-
lows:

1. Length Calculation: The argument, premise,
and conclusion are tokenized using the
model’s tokenizer. The total length is then
calculated by summing the tokens for the
premise, conclusion, argument, and special
tokens ([CLS] and [SEP]).

2. Span Selection:

• If the total length is within the model’s
maximum sequence limit, the entire ar-
gument is concatenated with the premise
and conclusion.

• If the total length exceeds the limit:
– The positions of the premise and con-

clusion within the argument are iden-
tified, and a span is selected that in-
cludes both, along with additional
surrounding context, ensuring the to-
tal length fits within the limit.

– If including the span involving both
the premise and conclusion exceed
the maximum limit, start with the
premise, expand the span towards the
conclusion until the size constraint is
met, and append the conclusion to
the argument span.

Maximum Number of ADUs in an Argument:
We set the maximum number of ADUs to 128 for
computational efficiency.

A.3 Base LM
Both for the baselines and the CU-MAM configura-
tions, we utilise the HuggingFace implementation
of RoBERTa1, BigBird 2. In the baseline setup
(both with and without argument context), we fine-
tune the models based on the output of the [CLS]

1https://huggingface.co/docs/transformers/en/
model_doc/roberta

2https://huggingface.co/docs/transformers/en/
model_doc/big_bird

token from the final output layer. Similarly, ADU
embeddings in the CU-MAM configurations are
obtained from RoBERTa and BigBird.

B CU-MAM Architecture

B.1 ADU Embedding

We utilise pre-trained LMs (Liu et al., 2019; Rad-
ford et al., 2019; Zhang et al., 2020) to obtain con-
textualised token embeddings H ∈ Rn×d for the
entire input where n is the input length and d is
the hidden size of the model. ADUs are identified
within the sequence using the special separator to-
ken ([SEP]). To obtain embeddings for each ADU,
we apply mean pooling over the token embeddings
within each ADU. Let Hi ∈ Rli×d represent the
token embeddings for the i-th ADU, where li is
the length of the i-th ADU. The ADU embedding
ADUi ∈ Rd is computed as:

ADUi =
1

li

li∑

j=1

Hi,j

The resulting set of ADU embeddings forms a
matrix A ∈ Rm×d, where m is the number of
ADUs.

B.2 Positional Encoding

We experiment with both fixed and relative posi-
tional embeddings. For absolute positional embed-
dings, we employ the sinusoidal position signal,
following the approach introduced by the Trans-
former model (Vaswani et al., 2017). For relative
positional embeddings, we adopt the method pro-
posed by Shaw et al. (2018), which encodes the
relative distances between ADU in the argument,
aij = ej−i, where e represents the learnable em-
beddings and j − i indicates the relative distance
between ADU j and ADU i. We leverage dual
positional embeddings to incorporate the two types
of positional information: the index representing
the order of each ADUs within the argument (ADU
order embedding) and the participant transition em-
bedding. Both approaches are further explained
below.

Absolute Positional Encoding. The embedding
of an ADU, denoted as ADUi, is enhanced with
absolute positional information by incorporating
both order embeddings and participant transition
embeddings. This process involves the following
steps:
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1. Sinusoidal Function for Embeddings: Con-
sistent with the approach used in standard
Transformers, sinusoidal functions are em-
ployed to generate embeddings for argument
flow (Ti) based on both ADU order (Oi) and
proponent-opponent transitions (Pi):

T(index,2i) = sin

(
index

100002i/dmodel

)

T(index,2i+1) = cos

(
index

100002i/dmodel

)

where index denotes the position of the ADU
and dmodel is the dimensionality of the model.
This method applies to both ADU order and
participant transition embeddings, providing a
unified approach for incorporating positional
information.

Each ADU is represented by fusing its ADU
embedding (ADUi), order embedding (Oi),
and participant transition embedding (Pi)
to form a unified representation of ADU
(ADU′

abs) . A matrix Aabs of size n × d is
formed, where n is the number of ADUs in the
argument and d is the embedding dimension:

ADUi,j
abs = ADUi +Oi +Pi

2. Relative Positional Encoding. The attention
mechanism adjusts the attention scores A′

i,j
to integrate relative distances on the fly:

ADUi,j
rel = softmax

(
QiK

⊤
j√

dk
+RO

i,j +RP
i,j

)

where Q, K, and V are the query, key, and
value matrices, respectively, derived from the
ADUs embeddings. RO

i,j represents the em-
beddings of the relative order information and
is given by, RO

i,j = WO(posi − posj).W
O

is the learnable weight matrix for ADU posi-
tions, and Oi and Oj are the index reflecting
the order of the ADUs i and j within the ar-
gument. RP

i,j represents the relative embed-
dings for participant transition and is given
by, RP

i,j = WP(Pi − Pj).W
P is the learnable

weight matrix for turn number, and Pi and Pj

are the transition numbers of ADUs i and j
within the argument.

B.3 GPT for AR Prediction
B.3.1 Experimental Settings
We utilise the chat completion configuration of
GPT-4o for the three tasks.

1. Configurations: We use GPT-4o and set a
maximum token limit of 2048, a temperature
of 0.7, a top-p probability of 0.9.

2. Prompts Strategy: We employ few-shot
prompts, where specific examples are pro-
vided as part of the instruction. We create
prompt templates that include instructions and
two examples randomly selected from a list of
examples. An example of a prompt tamplate
for the ARTC task is shown below.

You are a 3-class classifier model tasked
with assigning a label to the argument
relation between two argument units
(argument 1 and argument 2).
Classify the following pair of arguments,
argument 1: {ADU_1}
argument 2: {ADU_2},
into:
"support" (if argument 1 supports
argument 2),
"contradict" (if argument 1 attacks
argument 2),
and "None" (if no argument relation exists
between argument 1 and argument 2).
Please enter:
1 - for support,
2 - for contradict,
0 - for None relation.
Examples from each argument
relation types are provided below:
Example 1: the argument relation between
the argument "people feel, when they have
been voicing opinions on different
matters, that they have been not
listened to", and
the argument "people feel that they have
been treated disrespectfully on all
sides of the different arguments and
disputes going on"
is support, and hence prediction label is 1.
Example 2: The argument relation between
"there would be no non-tariff barriers
with the deal done with the EU" and
the argument "there are lots of
non-tariff barriers
with the deal done with the EU"
is contradiction, and
hence prediction label is 2.

Note: We use the actual examples to show sup-
port and contradiction relations, which should be a
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placeholder variable in the final prompt template.

C Macro-Structure

An argument is a coherent arrangement of utter-
ances organised in a specific order (Grosz and Sid-
ner, 1986; Toulmin, 1958; Freeman, 2011). Free-
man (2011) propose a framework describing how
these utterances collectively contribute to natu-
ral language argumentation, particularly focusing
on their supportive roles and structural patterns,
termed as “macro-structure”. This framework en-
compasses techniques such as divergent, conver-
gent, linked, and serial reasoning, which illustrate
how reasons combine to support conclusions. It
underscores the significance of understanding the
entire sequence of ideas within an argument, in-
cluding claims, challenges, responses, and counter-
responses, to establish coherent structure.

Coherence within discourse can be viewed at
two levels: local coherence and global coherence.
Local coherence refers to coherence among the ut-
terances in a segment of an argument, while global
coherence refers to the coherence spanning seg-
ments (Grosz and Sidner, 1986; Grosz et al., 1995).
Grosz and Sidner argue that the coherence depends
on the intentional structure of discourse addressed
via the overall DP and DSP (Grosz and Sidner,
1986; Grosz et al., 1995). These intentions are
reflective of the speaker’s goals, akin to Gricean
conversational implicatures (Grice, 1975). In a
multi-party discourse, the DSP for a given segment
aligns with the intention of the conversational par-
ticipant initiating that segment (Lochbaum, 1994).
Freeman (2011) models these interactions as the
interplay between the proponents and opponents,
showing how proponents assert and address oppo-
nents’ challenges, forming a chain of reasoning
and highlighting the importance of tracing these
transitions for understanding the argument.

IAT (Budzynska and Reed, 2011) offers a frame-
work representing how argument structure is linked
to the intentional structure and the dynamics within
dialogue structure. In essence, IAT offers a macro-
structural analysis by representing the intentional
structure and illocutionary dynamics within argu-
mentative discourse, by linking dialogical moves
to their communicative intentions and illocution-
ary forces. For example, Figure (1b) illustrates
participant interactions alongside argument struc-
tures, showcasing diverse dialogue moves such as
“Asserting”, “Arguing”, “Questioning”, “Illocut-

ing”, and “Restating” (Budzynska and Reed, 2011).
Annotated corpora, such as the corpus of US presi-
dential debate 2016 (Visser et al., 2019) annotated
following such framework, exemplify how dialogi-
cal interactions unfold as a series of moves, each
mapped to a structural element within the argument
graph. Although these dynamics are common in
dialogue, similar conceptualisations apply to mono-
logue, where a speaker delivers multiple utterances
to an audience (Grosz et al., 1995).

The macro-structure is formally defined below
to clarify how it contrasts with micro-structures.
For discourse segments l0, . . . , ln, define the function:

ADU(li) =

{
Aj if li ∈ Aj

∅ if li /∈ any ADU

Let the set of ADUs be A = {A0, . . . , Ak}.
Define the argument graph (AG):

AG = ⟨A,E⟩, E ⊆ A×A

To identify the argument relation (AR) between Ai and Aj :
Micro-Structure:

fmic
(
ADU−1(Ai), ADU−1(Aj)

)

Macro-Structure:

fmac


 ⋃

Ax∈G(Ai)

ADU−1(Ax),
⋃

Ay∈G(Aj)

ADU−1(Ay)




Where G(Ai) is the set of ADUs reachable from Ai:

G(Ai) = {Aj | Path(Ai, Aj)}
Path is defined recursively:

Path(Ai, Aj) ⇔
{
(Ai, Aj) ∈ E,

∃Ax : (Ai, Ax) ∈ E ∧ Path(Ax, Aj)

D Local Structures Extraction from
Argument Map

We navigate through argument following an up-
ward traversal to identify the chain of ADUs lead-
ing to the AR node and a downward traversal to
identify the chain of ADUs following the AR node.
The algorithm marks the end of each local-structure
in the upward traversal by identifying nodes with-
out inward connections and in the downward traver-
sal by identifying nodes without successors. It in-
cludes all chains of ADUs that end at the same
node to form the local-structure.

Local-structures are segments of the argument
map that represent coherent chains of ADUs lead-
ing to and following an AR. We present Algo-
rithm 1 to outline the procedure for extracting local-
structures from a global argument map. The algo-
rithm takes as input the argument map represented
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Algorithm 1 Extract Local-Structures from Argument Map

Require: Argument map represented as nodes and edges, with each node categorised as ADU, and AR
Ensure: List of local-structures

Initialise an empty list to store local-structures: local_structures
Identify nodes corresponding to AR Nodes in the argument map
for each ADU Node in the argument map do

Perform an upward traversal to identify the chain of ADUs leading to the AR
Perform a downward traversal to identify the chain of ADUs following the AR Node
Mark the start of each local-structure in the upward traversal by identifying nodes without inward

connections
Mark the end of each local-structure in the downward traversal by identifying nodes without

successors
Include all chains of ADUs between the start and end node
Add the identified local-structure to local_structures

end for
return local_structures
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Figure 3: An example of argument structures involving multiple segments. ADUs are logically interconnected via
AR to form coherent argument structure. Figure (a) and (b) are taken from AAEC, while (c) and (d) are taken from
QT30. As can be seen from the figure, (a) and (b) forms one complete graph while (c) and (d) are scattered into
multiple disconnected graphs forming islands of argument segments.
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as nodes and edges, where each node represents
ADUs and the ARs. The relations between ADUs
are presented based on the edges between the ADU
and AR nodes. The algorithm generates a list of
local-structures that are pertinent to the respective
ARs within the argument map. To evaluate the cor-
rectness of local structures, two annotators assessed
each local structure produced by the algorithm as
either correct or incorrect. A local structure is
considered correct if it aligns with the expected ar-
gument segment. The annotators are provided with
a guideline that describes an argument segment.
The inter-annotator agreement, measured with the
Kappa statistic, was 0.78, indicating substantial
agreement.

For illustrative purposes, Figure 3 presents sev-
eral examples showcasing argument maps that fea-
ture multiple local-structures. In these examples,
the local-structures are annotated with numerical
labels. Each number used for annotation corre-
sponds to a distinct local-structure. ARs that share
the same numerical label are part of the same local-
structure.

E Error Analysis

Figure 4 presents an example of an argument map
generated by the baseline model. In this map, ar-
gument relations are labeled with numbers, and
incorrect AR predictions are highlighted with an
(x) symbol. The figure provides a visual represen-
tation of the errors made by the baseline model,
allowing for a clearer understanding of the error
types in AR predictions.

F Ablation Study Setup

In this section, we outline the setup for the ablation
study, which aims to assess the impact of different
components within the CU-MAM architecture. By
systematically removing specific components or
features, we compare the resulting configurations
against both the complete CU-MAM model (upper-
bound performance) and the baseline (lower-bound
performance). The study evaluates the effect of key
components, including local-structure prediction,
global-structure prediction, the Macro-Attention
Layer (MAL), and positional information in vari-
ous configurations of CU-MAM.

F.1 Local and Global Structure prediction
and MAL Ablation

We evaluate several configurations of the CU-
MAM architecture, each of which targets the abla-
tion of a specific component:

• CU-MAM-L: This configuration removes the
local-structure prediction, retaining only the
global-structure prediction and the Macro-
Attention Layer (MAL).

• CU-MAM-G: This configuration removes the
global-structure prediction, retaining the local-
structure prediction and MAL.

• CU-MAM-Att: This configuration removes
the MAL and replaces it with a stack of feed-
forward layers (with a comparable number
of parameters to MAL) for local and global
structure predictions. This substitution allows
a fair comparison of model size between the
two configurations.

• CU-MAMAtt-only: This configuration isolates
the effect of MAL by using it only to compute
the cross-attention between the pair of ADUs
under consideration, without involving any
auxiliary tasks. In this setup, the two classifier
layers predicting the local and global struc-
tures are removed, allowing for an evaluation
of MAL’s impact without the auxiliary tasks.

• CU-MAMFull: This configuration incorpo-
rates all components: local-structure pre-
diction, global-structure prediction, and the
Macro-Attention Layer, representing the full
CU-MAM model.

For Simplicity, the following points outline the
setup for the local and global structure prediction
and MAL ablation study:

• we consider ACTS and ARTC task.

• The study is based on BigBird based CU-
MAM configuration with relative positional
encoding since it achieve the highest perfor-
mance.

• For each configuration an average perfor-
mance across the dataset is reported for both
ID and CD to provide a single performance
value for each configuration.
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Figure 4: Example of error analysis. The argument map displays relations with arbitrary numbering, where incorrect
predictions are marked with an (x) symbol.

The baseline performance is calculated by aver-
aging the F1-scores of the two baseline, V-SeqCls
and V-ArgC, across the entire dataset for each task.
Specifically, the baseline for each task is calculated
as follows:

BaselineACTC = avg(V-SeqCls,V-ArgC)ACTC

BaselineARTC = avg(V-SeqCls,V-ArgC)ARTC

This average is computed over the complete
dataset for each respective task.

F.2 Positional Encoding Ablation
We investigate the impact of different positional en-
coding strategies through an ablation study, where
each positional feature is removed individually to
assess its effect on model performance. Specifi-
cally, we evaluate the use of two types of positional
information:

• Order embedding (O)

• Participant transition embedding (P )

For each type of positional encoding, we test
both absolute (Abs) and relative (Rel) encodings.
The ablation study is conducted by systematically
removing each of these positional features and com-
paring the resulting performance against the full
configuration, which includes both O and P em-
beddings. A drop in performance after removing
a feature highlights its contribution to the overall
model’s effectiveness. By comparing the perfor-
mance of each ablated configuration to the full
model, we isolate and quantify the impact of each
positional feature. The configurations for ablating
the positional information are as follows:

• Full (Abs): The model uses both order and
participant transition embeddings with abso-
lute positional encoding.
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• Full (Rel): The model uses both order and
participant transition embeddings with rela-
tive positional encoding.

• O− (Abs): The model is ablated by removing
the order embedding with absolute positional
encoding.

• O− (Rel): The model is ablated by removing
the order embedding with relative positional
encoding.

• P− (Abs): The model is ablated by remov-
ing the participant transition embedding with
absolute positional encoding.

• P− (Rel): The model is ablated by remov-
ing the participant transition embedding with
relative positional encoding.

For simplicity, the following points outline the
setup for the positional encoding ablation study:

• The study is conducted on the ARTC task.

• The ablation study is based on the BigBird-
based CU-MAM configuration, as it achieved
the highest performance in previous experi-
ments.

• For each configuration, the average perfor-
mance across the dataset is reported for
CD evaluations on monologue and dialogue
datasets separately, providing a single perfor-
mance value for each configuration and com-
paring their effectiveness with respect to the
dataset nature.

G complexity Analysis

The overall complexity of the proposed model
is dominated by the Argument Structure En-
coder (ASE) and Macro-Attention Layer (MAL),
which involve quadratic operations with respect to
the number of ADUs, n, and the embedding di-
mension, d. Specifically, the total complexity is
O(n2 · d), due to the graph-based and attention-
based interactions among ADUs.
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H Glossary of Abbreviations

Abbreviation Full Form / Definition
AAEC Argumentative Essays Corpus (Student Persuasive Essays)
ACTC Argument Component Type Classification / ADU Classification Task (ADU Type Classi-

fication)
ADU Argumentative Discourse Unit
APE ADU-Pair Encoder
AR Argument Relation / Argumentative Relation
ARI Argument Relation Identification
ARTC Argument Relation Type Classification
ASE Argument Structure Encoder
BigBird BigBird Transformer Model (efficient transformer for long sequences)
BIO Beginning, Inside, Outside (tagging scheme)
CD Cross-Dataset evaluation
CDCP Consumer Debt Collection Practices dataset
CU-MAM Coherence-Driven Unified Macro-Structures for Argument Mining
CU-MAMrel CU-MAM with relative positional encoding
DP Discourse Purpose
Dist_ARs Distance of Argumentative Relations within Arguments
GNN Graph Neural Network
ID In-Dataset evaluation
ILP Integer Linear Programming
LM Language Model
MAL Macro-Attention Layer
No_ADU Number of Argumentative Discourse Units
No_AR Number of Argumentative Relations
No_LOC Number of Local Structures
No_arg Number of Arguments
O Order embedding (positional feature encoding sequence order)
P Participant transition embedding (positional feature encoding speaker turns or partici-

pants)
QT30 Corpus of Argument and Conflict in Broadcast Debate
RST Rhetorical Structure Theory
RoBERTa Robustly Optimized BERT Pretraining Approach
SOTA State Of The Art
UAR Unified ADU Representation
US2016 US 2016 Presidential Debate Corpus
V-ArgC Baseline model: Vanilla Argument Context
V-SeqCls Baseline model: Vanilla Sequence-Pair Classification
Abs Absolute positional encoding
Rel Relative positional encoding
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