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Abstract

Natural Language to Visualization (NL2VIS)
seeks to convert natural-language descrip-
tions into visual representations of given ta-
bles, empowering users to derive insights
from large-scale data. Recent advancements
in Large Language Models (LLMs) show
promise in automating code generation to
transform tabular data into accessible visual-
izations. However, they often struggle with
complex queries that require reasoning across
multiple tables. To address this limitation,
we propose a collaborative agent workflow,
termed NVAGENT, for NL2VIS. Specifically,
NVAGENT comprises three agents: processor
for database processing and context filtering,
composer for planning visualization genera-
tion, and validator for code translation and
output verification. Comprehensive evalua-
tions on the VisEval benchmark demonstrate
that NVAGENT consistently surpasses state-of-
the-art baselines, achieving 7.88% and 9.23%
improvements in single- and multi-table sce-
narios. Qualitative analyses further highlight
that NVAGENT maintains nearly a 20% per-
formance margin over previous methods, un-
derscoring its capacity to produce high-quality
visual representations from complex, hetero-
geneous data sources. All datasets and source
code are available at: https://github.com/
geliang0114/nvAgent.*

1 Introduction

“Turning data into insight” has long been a key
goal in our increasingly data-rich, information-
driven society (Fiorina). To achieve this, Natural
Language to Visualization (NL2VIS) plays a cru-
cial role in transforming natural-language descrip-
tions into visual representations (e.g., charts, plots,

†Corresponding anthor (wanyao@hust.edu.cn).
‡Project Lead.
*A demo video is also provided. We strongly recommend

giving a try to visualize multi-table data using chat-style NL
instructions.

Show all the faculty ranks and the number of 

students advised by each rank in a bar chart.

FacID Rank …

1082 Instructor …

1121 Professor …

1148 AsstProf …

… … …

StuID Advisor …

1001 1082 …

1002 1148 …

1003 1121 …

… … …

Collaborative 

Workflow

Pre-Process Reasoning Correction

One-
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Student Faculty
Identical
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Input

Figure 1: An example to illustrate the NL2VIS task.
Formerly “One Forward” workflow struggled with
multi-table queries due to its complex and heteroge-
neous structure, which could easily cause an error.
NVAGENT uses a collaborative agent-based workflow
for iterative interaction with data and validation to en-
sure accurate and valid visualization.

and histograms) grounded on tabular data (Sah
et al., 2024). This approach enables users to inter-
act with data intuitively, facilitating the extraction
of patterns and insights from large and complex
datasets (Yin et al., 2024; Vartak et al., 2017).

Recently, Large Language Models (LLMs) have
demonstrated promising performance in NL2VIS

tasks, excelling in various stages such as data pre-
processing (Li et al., 2024b) and code generation
for visualization (Maddigan and Susnjak, 2023).
These models effectively generate readable visu-
alizations for individual datasets or databases (Li
et al., 2024a). However, existing approaches en-
counter challenges when processing queries in-
volving multiple tables due to incorrect joins or
mis-filtering conditions, leading to visualization
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errors (Maddigan and Susnjak, 2023; Dibia, 2023;
Chen et al., 2024c). These limitations severely
restrict their applicability in real-world scenarios
where data is typically distributed across multiple
related tables (Khan, 2024; Lu et al., 2024).

Figure 1 shows an example to illustrate the mo-
tivation of our study. Given a natural-language
(NL) query such as “Show all the faculty ranks
and the number of students advised by each rank
in a bar chart”, the system must understand that
“faculty” information corresponds to the column
“Advisor” and “FacID” across two tables. These
complex cross-table visualization highlights the
challenge between NL queries and databases, re-
quiring a framework that can preprocess metadata,
think “step-by-step” with plans, and iterative val-
idation to ensure correctness.

These observations inspire our NVAGENT,
a collaborative agent workflow for NL2VIS.
NVAGENT follows the “divide-and-conquer”
paradigm, consisting of three specialized LLM
agents: a processor agent for database process-
ing and context filtering, a composer agent for
planning visualization generation, and a validator
agent for code translation and output verification.
This collaborative workflow provides a more sys-
tematic approach that can effectively handle multi-
table scenarios while maintaining visualization ac-
curacy and quality.

To validate the effectiveness of NVAGENT, we
conducted extensive experiments on the VisEval
benchmark (Chen et al., 2024c), which includes
two scenarios: the single-table scenario, involving
generating visualizations from individual tables,
and the multi-table scenario, which entails inte-
grating information from multiple tables. The re-
sults demonstrate that NVAGENT outperforms all
baseline methods, achieving a 7.88% higher pass
rate in single- and 9.23% in multi-table scenarios
compared to the state-of-the-art method. Our abla-
tion study that breaks down every module within
NVAGENT provides solid evidence of our frame-
work design. Qualitative analyses further high-
light that NVAGENT maintains 3.64% and 18.15%
margin in single- and multi-table over previous
frameworks, underscoring its efficacy in produc-
ing high-quality visual representations from com-
plex, heterogeneous data sources.

In summary, this paper makes the following
key contributions: (1) We propose NVAGENT, a
collaborative agent-based workflow for complex
NL2VIS tasks, which decomposes the visualiza-

tion generation process into manageable subtasks.
(2) Extensive experiments and analysis are per-
formed to validate the effectiveness divide-and-
conquer strategy of NVAGENT for NL2VIS.

2 Problem Formulation

A typical workflow of NL2VIS tasks involves
assembling queries along with tabular data as
input, and automatically generating code based
on established visualization libraries (e.g., Mat-
plotlib (Barrett et al., 2005), Seaborn (Waskom,
2021)) to be executed in a sandboxed environ-
ment to obtain the final chart image. However,
directly generating visualization code often leads
to errors due to the complexity of visualization re-
quirements and the semantic gap between natural
language and programming constructs.

Following previous works (Luo et al., 2021b;
Wu et al., 2024b), we introduce Visualization
Query Language (VQL) as an intermediate rep-
resentation that bridges natural language queries
and visualization code. As exemplified below,
VQL combines SQL-like syntax for data oper-
ations with visualization-specific constructs (i.e.,
VisType and Binning), making the generation pro-
cess more controllable and reliable while main-
taining simplicity in structure.

VisType: VISUALIZE BAR
Data: SELECT Date_Stored, COUNT(Document_ID)
FROM ALL_Documents GROUP BY Date_Stored
Binning: BIN Date_Stored BY WEEKDAY

Formally, given a natural language query q
about a database schema S comprising multiple
tables T and columns C, the objective of NL2VIS

is to generate a visualization query v as an inter-
mediate step, which is then translated into a visu-
alization V that accurately represents the data in S
to answer the user’s query.

3 NVAGENT: Our Approach

3.1 An Overview

Figure 2 shows an overview of NVAGENT, which
is composed of three specialized agents: proces-
sor, composer, and validator, working collabora-
tively to transform natural language queries into
accurate visualizations. Starting with a user query
q and schema S, our approach first leverages the
processor to filter schema S′ and generate ad-
ditional context including augmented explanation
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Figure 2: The overall pipeline of NVAGENT. We recommend a “Zoom in” to view its detailed design: (1) The
processor agent performs schema filtering and context augmentation; (2) The composer agent generates structured
VQL representations through sketch-and-fill reasoning; (3) The validator agent ensures visualization correctness
via iterations of execution-guided validation and error-based refinement.

and query complexity classification. The com-
poser then generates a VQL query as an intermedi-
ate representation through reasoning step by step.
Finally, the validator ensures correctness via iter-
ative validation and refinement until a valid visu-
alization is produced.

3.2 Processor Agent

To handle massive data and complex queries effec-
tively, we design a processor agent that prepares
and enriches input data. Specifically, the proces-
sor agent consists of four steps:

Database Description. The processor first con-
structs a comprehensive database description,
which includes table and column schemas, with
representative value examples. This provides the
foundation for LLMs to understand the data struc-
ture and relationships. For instance, when pro-
cessing a “Products” table, it extracts column de-
tails like “product_id”, and “product_category”,
along with their value examples (e.g., “Choco-
late”, “Book”).

Schema Filtering. Subsequently, building on
this foundation, the agent performs schema filter-
ing to identify and extract tables and columns rel-
evant to the user query (e.g., filtering out unrelated
columns like “product_category”), effectively re-
ducing noise and preventing information overload.

Explanation Augmentation. To enable more
accurate query interpretation, inspired by the self-
augmented strategy (Sui et al., 2024), the proces-
sor generates augmented explanations for the fil-
tered schema like “Key points: (1) product_id in
the table Products serves as a foreign key link-
ing to the table Complaints”. These explana-
tions bring insights that provide additional context
about table relationships and column semantics.

Query Classification. Finally, the agent classi-
fies query complexity as either single or multiple
based on the number of tables involved and the op-
erations required. This classification guides sub-
sequent agents in choosing appropriate strategies
(e.g., the multiple scenario requires join operations
across tables or complex aggregations).

By providing a focused, well-explained schema
and classification, the processor agent establishes
a strong foundation of complex data understand-
ing for the subsequent stages in our framework.

3.3 Composer Agent

The composer agent is designed to bridge the
gap between natural language queries and visual-
ization code, generating structured VQL queries
through a step-by-step reasoning approach.

Strategy Decision. Based on the query classifi-
cation from the processor agent, different strate-
gies are adopted to plan the visualization gener-
ation. For example, single queries focus on ba-
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sic aggregations, while multiple scenarios require
more complex join operations.

Chain-of-Thought Reasoning. During the gen-
eration stage, the composer agent employs a
chain-of-thought (Wei et al., 2022a) approach to
break down the visualization process into man-
ageable steps. This approach is complemented
by providing few-shot examples for In-Context
Learning, enhancing the model’s adaptability to
diverse query types.

Sketch-and-Fill Process. The reasoning pro-
cess follows the “sketch-and-fill” paradigm and is
structured into three steps, including sketch con-
struction, data components filling, and final VQL
composition (prompt shown in Appendix E).

Taking the query “List the name of all prod-
ucts along with the number of complaints that they
have received in a bar chart.” (shown in Fig-
ure 2) as an example, the composer initially de-
termines the specific elements (i.e., visualization
type “Bar”) and constructs a VQL sketch (e.g.,
“Visualize bar SELECT _, COUNT(_) FROM
_ JOIN _ ON _”). Subsequently, it fills the data
components (e.g., the column “product_name” )
into the sketch and then combines them to produce
the complete VQL query.

3.4 Validator Agent
The validator agent ensures the accuracy and ex-
ecutability of generated VQL queries through an
iterative execution-guided validation and error-
based refinement process.

Translation and Execution. When receiving a
VQL representation, the validator first translates
the query into executable Python code using vi-
sualization libraries like “Matplotlib”. The gener-
ated code is then executed in a sandboxed environ-
ment, where the agent captures either successful
execution results or potential error messages.

Pass or Error. During the execution phase, the
validator monitors the return information from the
execution environment. If successful, it renders
and returns the final visualization; otherwise, if er-
rors occur (e.g., syntax errors, or invalid column
names), the agent captures specific error messages
and routes them back to the composer agent, trig-
gering the refinement process.

As shown in Figure 2(c), when the valida-
tor translates the VQL query “VISUALIZE bar
... ON t1.product_id = t2.product_id”

into Python code and executes it, an error mes-
sage “missing ‘GROUP BY’ clause” is encoun-
tered. This error is then communicated back to
the composer agent, which refines the VQL query
by adding “GROUP BY product_name” to ensure
proper data aggregation.

Iterative Refinement. The composer agent iter-
atively refines its output based on feedback from
the validator agent until a valid visualization is
produced. If any errors are detected during vali-
dation, it receives error information and adjusts its
output accordingly, ensuring the final VQL query
is correct. Notably, we design the system to re-
fine VQL query instead of Python code due to its
simpler syntax for better correction.

4 Experiments and Analysis

4.1 Experimental Setup
Dataset. VisEval (Chen et al., 2024c) is a bench-
mark designed based on nvBench (Luo et al.,
2021a) to assess the capabilities of LLMs in
the NL2VIS task. It consists of 1,150 dis-
tinct visualizations (VIS) and 2,524 (NL, VIS)
pairs across 146 databases, with accurately labeled
ground truths and meta-information detailing fea-
sible visualization options. The dataset is divided
into single-table scenario and multi-table scenario.
Moreover, visualizations are classified into four
distinct levels of hardness: easy, medium, hard,
and extra hard. Cases across different hardness
levels can be found in Appendix D.

Baselines. We conduct our experiments com-
pared with three formerly SOTA baselines†:
Chat2Vis (Maddigan and Susnjak, 2023), which
uses simple prompt engineering to generate vi-
sualizations from natural language descriptions;
LIDA (Dibia, 2023), which employs a four-step
process for incrementally translating natural lan-
guage inputs into visualizations; and CoML4Vis
(Zhang et al., 2023), which applies a few-shot
prompt method integrating multiple tables for vi-
sualization tasks. More details can be found in
Appendix A. We implement our approach and
baselines using four different backbone models
(both closed-source and open-source): GPT-4o
(OpenAI, 2024b), GPT-4o-mini (OpenAI, 2024a),

†We try the vanilla baseline similar to the GPT-4o with
code interpreter in https://platform.openai.com/docs/
assistants/tools/code-interpreter. Due to the API
still in the beta stage and often failing, we do not include
it as a baseline.
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Method Single-Table Multi-Table
Invalid(↓) Illegal(↓) Pass(↑) Read.(↑) Qual.(↑) Invalid(↓) Illegal(↓) Pass(↑) Read.(↑) Qual.(↑)

GPT-4o

CoML4Vis 0.67% 24.14% 75.17% 3.42 2.58 1.87% 26.27% 71.84% 3.45 2.48
LIDA 1.13% 21.20% 77.66% 2.53 1.99 14.80% 83.56% 1.62% 3.62 0.06
Chat2Vis 0.86% 21.37% 77.75% 3.87 3.02 38.74% 59.84% 1.40% 3.76 0.05
NVAGENT 0.72% 13.63% 85.63% 3.66 3.13 1.34% 17.57% 81.07% 3.61 2.93
∆ -0.05% +7.57% +7.88% -5.42% +3.64% +0.53% +8.70% +9.23% -3.98% +18.15%

GPT-4o-mini

CoML4Vis 0.36% 25.74% 73.88% 3.33 2.47 10.01% 33.06% 56.92% 3.24 1.86
LIDA 9.09% 23.04% 67.85% 3.10 2.12 17.61% 80.86% 1.51% 3.10 0.04
Chat2Vis 2.14% 25.92% 71.92% 3.81 2.76 35.78% 61.93% 2.27% 2.30 0.05
NVAGENT 1.97% 22.86% 75.16% 3.67 2.77 8.15% 25.99% 65.85% 3.66 2.42
∆ -1.61% +0.18% +1.28% -3.67% +0.36% +1.86% +7.07% +8.93% +12.96% +30.11%

GPT-3.5-turbo

CoML4Vis 6.17% 29.28% 64.54% 3.33 2.18 13.92% 30.09% 55.98% 3.37 1.93
LIDA 47.32% 15.84% 36.83% 3.32 1.23 62.57% 36.56% 0.86% 3.50 0.03
Chat2Vis 3.90% 28.11% 67.98% 3.03 2.08 40.77% 57.66% 1.55% 3.31 0.05
NVAGENT 2.98% 20.93% 76.08% 3.58 2.72 7.18% 28.51% 64.29% 3.61 2.32
∆ +0.92% -5.09%† +8.10% +7.51% +24.77% +6.74% +1.58% +8.11% +3.14% +20.21%

Qwen2.5-7B-Instruct

CoML4Vis 11.34% 29.11% 59.54% 3.46 2.09 20.08% 36.58% 43.32% 3.45 1.51
LIDA 21.28% 33.99% 44.72% 3.38 1.51 33.61% 65.29% 1.08% 3.61 0.04
Chat2Vis 36.72% 22.41% 40.86% 3.31 1.35 55.70 % 43.50% 0.79% 4.53 0.03
NVAGENT 11.71% 28.40% 59.87% 3.61 2.17 25.14% 33.83% 41.02% 3.61 1.48
∆ +0.37% -0.71% +0.33% +4.33% +3.82% +5.06% -2.75% -2.31% +4.63% -1.98%

* ∆ represents the percentage improvement or decrease of NVAGENT compared to the best-performing baseline for each metric.
For the first three columns, ∆ is calculated using absolute differences, while for the last two columns, it is calculated as the relative change.
†: NVAGENT actually performs best, while LIDA has a lower Illegal due to its high Invalid rate.

Table 1: Performance of our approach with baselines using different backbone models.

Model P-corr P-value

GPT-4o-mini 0.6503 0.000
GPT-4o 0.5648 0.000

Table 2: The Pearson correlations of GPT-4o-mini and
GPT-4o with human judgments on readability scores.

GPT-3.5-turbo (OpenAI, 2022), and Qwen2.5-7B-
Instruct (Qwen et al., 2025).

Evaluation Metrics. We evaluate the perfor-
mance using both rule-based and model-based
metrics for quantitative and qualitative assess-
ment. Invalid Rate and Illegal Rate represent the
percentages of visualizations that fail to render or
meet query requirements, respectively. Pass Rate
measures the proportion of valid and legal visual-
izations in the evaluation set. Readability Score is
the average score ranging from 0 to 5 assigned by

MLLM-as-a-Judge (Chen et al., 2024a; Ye et al.,
2024) to assess their visual clarity for legal vi-
sualization. We assess MLLM-scoring by cal-
culating the similarity of GPT-4o-mini and GPT-
4o with human-annotated scores in a subset with
500 samples. Empirically, we select GPT-4o-mini
as the vision model for judgment, shown in Ta-
ble 2. More details are referred to the Appendix A.
Quality Score is 0 for invalid or illegal visualiza-
tions, otherwise equal to the readability score.

4.2 Overall Performance

Table 1 shows the performance across different
methods and backbone models. Generally, our
proposed method, NVAGENT, demonstrates sig-
nificant improvements over existing approaches
across all metrics in both single- and multi-table
scenarios, particularly on pass rate and quality
score. Furthermore, NVAGENT achieves an im-
pressive 85.63% pass rate and a quality score
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Method Single-Table Multi-Table Average
Invalid Illegal Pass Invalid Illegal Pass Pass Rate

GPT-4o

NVAGENT(4-shot) 0.72% 13.63% 85.63% 1.34% 17.57% 81.07% 83.80%
w/o Processor 0.62% 14.27% 85.09% 1.26% 16.42% 82.31% 83.97%
w/o Composer 1.20% 74.56% 24.22% 2.34% 74.00% 23.64% 23.99%
w/o Validator 5.80% 12.22% 81.96% 7.01% 15.95% 77.02% 79.98%

GPT-3.5-turbo

NVAGENT(4-shot) 2.98% 20.93% 76.08% 7.18% 28.51% 64.29% 71.35%
w/o Processor 3.01% 20.15% 76.82% 9.38% 31.01% 59.60% 69.92%
w/o Composer 18.78% 30.97% 50.24% 25.02% 27.92% 47.05% 48.96%
w/o Validator 18.04% 17.50% 64.45% 22.64% 21.40% 55.94% 61.04%

Table 3: Ablation results of each agent within NVAGENT.

of 3.13 in single-table scenarios using GPT-4o,
surpassing all baseline methods. In more com-
plex multi-table scenarios, NVAGENT maintains
strong performance, significantly outperforming
other approaches. Specifically, using GPT-4o, our
method attains an 81.07% pass rate and a 2.93
quality score for multi-table queries, exceeding the
previous state-of-the-art by 18.15%. The mini-
mal gap between single- and multi-table scenar-
ios (85.63% vs. 81.07%) underscores NVAGENT’s
consistency and adaptability across varying com-
plexities, a crucial advantage in real-world appli-
cations where multi-table queries are common.

With GPT-3.5-turbo, NVAGENT also shows
considerable advantages, achieving a 76.08% pass
rate (single-table) and 64.29% (multi-table), out-
performing baselines by notable margins (e.g.,
+8.10% and +8.11% in pass rate respectively over
the best performing baseline, Chat2Vis for single-
table and CoML4Vis for multi-table).

When employing the open-source model
Qwen2.5-7B-Instruct as the backbone, its overall
performance was generally weaker compared
to the other proprietary large models. On this
foundation, NVAGENT’s performance was largely
comparable to CoML4Vis. Specifically, with
Qwen2.5-7B-Instruct, NVAGENT achieved a
59.87% pass rate in single-table tasks, marginally
surpassing CoML4Vis (59.54%). In multi-table
scenarios, NVAGENT’s pass rate of 41.02% was
slightly below CoML4Vis (43.32%), though
NVAGENT demonstrated a better illegal rate. This
further underscores the critical role of the back-
bone LLM’s capability, particularly in complex

multi-table tasks where the use of a less powerful
model can narrow NVAGENT’s advantage over
specialized baselines on several metrics.

These results demonstrate that our proposed ap-
proach generally achieves superior overall perfor-
mance with capable backbones, establishing a new
state-of-the-art for NL2VIS tasks.

4.3 Effectiveness of Each Agent

To evaluate the effectiveness of each component
in NVAGENT, we conducted comprehensive abla-
tion experiments. We perform agent workflow ab-
lation studies with GPT-4o to assess the contribu-
tions of each agent, as shown in Table 3. From this
table, we observe that the composer is the most
critical component, as its removal leads to signif-
icant drops in the overall pass rate—22.39% with
GPT-3.5-turbo and 59.81% with GPT-4o. The val-
idator also proves vital, as its absence leads to a
3.82% decrease for GPT-4o and a sharper decrease
of 10.31% using GPT-3.5-turbo, primarily due to
increased invalid rate, confirming the effectiveness
of the post-processing stage.

Interestingly, while the processor’s removal
shows only a slight overall performance decline
(1.43%), its impact varies across scenarios: a
marginal improvement in single-table cases but
a notable decrease (4.69%) in multi-table scenar-
ios. This pattern is particularly pronounced when
using GPT-3.5-turbo, highlighting the processor’s
critical role in handling complex database infor-
mation. However, more capable models like GPT-
4o may occasionally find this additional process-
ing step redundant, as similarly observed in “The
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Method Single-Table Multi-Table Average
Invalid Illegal Pass Invalid Illegal Pass Pass Rate

nvAgent(4-shot) 2.98% 20.93% 76.08% 7.18% 28.51% 64.29% 71.35%

w/o schema filtering 3.36% 20.09% 76.53% 12.08% 30.14% 57.77% 69.01%
w/o aug. explanation 3.23% 20.69% 76.06% 7.10% 30.87% 62.01% 70.44%
w/o complex. classifi. 4.77% 21.42% 73.79% 7.50% 29.80% 62.69% 69.34%
w/o CoT 15.81% 16.91% 67.27% 17.73% 24.40% 57.86% 63.50%
w/o ICL 26.80% 24.92% 48.27% 31.91% 28.41% 39.66% 44.82%

Table 4: Ablation results of each module within NVAGENT’s agentic workflow.
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Figure 4: More examples for in-context learning bring
higher pass rate, using GPT-3.5-turbo.

Death of Schema Linking” (Maamari et al., 2024).

4.4 Impact of LLM Backbones

Figure 3 illustrates the performance of different
methods across four backbone LLMs in single-
table scenarios. It can be observed that the pass
rate positively correlates with the capacity of the
backbone LLMs. However, an intriguing phe-
nomenon was noted: using GPT-4o-mini resulted
in a slight decrease in performance compared to
GPT-3.5-turbo. This unexpected outcome sug-
gests potential limitations in GPT-4o-mini’s rea-
soning abilities for this specific task, despite its
overall advancements.

Setting Invalid Illegal Pass Tokens

VQL Refine 4.66% 23.97% 71.36% 1179
Code Refine 4.11% 25.51% 70.35% 1365

Table 5: Exploration study of Python code refinement.
Tokens represent the usage in the refinement stage.

4.5 Impact of Prompting Techniques

Further ablation results of individual prompting
techniques within each agent using GPT-3.5-turbo
are demonstrated in Table 4. From this table,
we observe that all three techniques in processor
show similar results. However, the schema filter-
ing proves more beneficial for multi-table scenar-
ios (6.52%), while complexity classification ben-
efits single-table scenarios (2.29%). In the com-
poser agent, the sharp decrease (26.53%) upon re-
moval of in-context learning demonstrates the crit-
ical role of example-based prompts in task com-
prehension, and the significant increase in Invalid
Rate also highlights the step-by-step VQL gener-
ation. Moreover, as shown in Table 5, we con-
duct an exploration study for validator to refine
Python code directly and find that the pass rate de-
creased by 1.01%, indicating the effectiveness of
using VQL for correction. We also include several
exploration experiments in Appendix B.

We carefully design diverse examples including
various visualization types (e.g., grouping scatter)
and binning operations (e.g., Year, Weekday) for
prompting LLM, and Figure 4 illustrates the im-
pact of increasing the number of examples in the
prompt. The observed improvement in pass rate
suggests that the language model effectively lever-
ages knowledge from few-shot prompts.

4.6 Qualitative Analysis

ELO Score. We adopt the ELO rating sys-
tem (Elo and Sloan, 1978), a widely-used method
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Method Single-Table Multi-Table

Elo 95% CI Elo 95% CI

NVAGENT 1538.27 +2.95/-2.95 1529.86 +2.83/-2.84
CoML4Vis 1506.71 +3.00/-3.00 1514.96 +3.00/-3.00
Chat2Vis 1496.71 +3.05/-3.05 1499.44 +3.01/-3.01
LIDA 1458.31 +2.85/-2.85 1455.74 +2.94/-2.93

Table 6: Elo rankings on single- and multi-table test
sets. NVAGENT scores the highest in both scenarios.

for calculating skill levels, to evaluate model
performance. We conduct this experiment in
1,000 example pairs from single- and multi-table
datasets with equal weights for different models,
using human judgments to assess the accuracy of
natural language queries. The results in Table 6
show that our NVAGENT outperforms other base-
lines, highlighting its capability to manage com-
plex queries and produce relevant visualizations.
Implementation details are in Appendix A.

Case Study. Figure 6 presents three cases illus-
trating NL queries and their visualizations gen-
erated by NVAGENT and baseline models. The
examples showcase NVAGENT’s superior perfor-
mance. In the first case, NVAGENT correctly
orders data by the X-axis, while Chat2Vis and
CoML4Vis use the Y-axis. The second case high-
lights NVAGENT’s accurate grouping in a stacked
bar chart, unlike the baselines. In the third case,
involving a multi-table query, NVAGENT effec-
tively joins tables and groups data for a line chart,
whereas Chat2Vis struggles with the structure, and
CoML4Vis overlooks the where condition. These
examples collectively illustrate NVAGENT’s ro-
bust ability to interpret complex queries, manage
multi-table datasets, and implement specific vi-
sualization requirements, consistently outperform-
ing baseline models.

Error Analysis. As shown in Figure 5,
NVAGENT’s performance varies significantly
across chart type and difficulty level, particularly
with rare queries in temporal data, such as line
charts. Our error analysis reveals that failures
stem from insufficient handling of temporal
information and an imperfect translate func-
tion for time-series binning operations. These
challenges related to chart complexity and task
difficulty underscore the need for better tabular
data understanding in LLMs. Our future work can
be focused on improving the reasoning abilities of
LLMs in temporal information in tabular data.

Easy Medium Hard Extra Hard Total

Bar

Line

Pie

Scatter

SB

GL

GS

Total

3.72 9.99 14.79 28.38 11.82

14.29 42.19 40.00 46.15 37.40
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(a) Error distribution of NVAGENT.

Easy
Medium Hard

Extra Hard
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LIDA

Chat2Vis

nvAgent

12.58 27.52 28.38 46.15

13.08 20.51 22.97 34.62

8.94 22.80 27.03 36.54

6.62 12.48 32.43 36.54

Bar Line Pie
Scatter SB GL GS

Total

23.26 32.18 5.03 19.30 46.94 57.89 63.83 22.53

16.57 20.69 9.40 26.32 32.65 52.63 72.34 18.38

17.15 34.48 6.04 21.05 38.78 36.84 61.70 18.38

10.08 39.08 4.36 19.30 38.78 68.42 23.40 12.90
0

20

40
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80

100

(b) Errors of different methods in single-table dataset.

Figure 5: Error distributions across hardness levels and
chart types. SB, GL, and GS refer to Stacked Bar,
Grouping Line, and Grouping Scatter, respectively.

5 Related Work

NL2VIS. NL2VIS research has evolved from
rule-based systems (Narechania et al., 2020; Srini-
vasan and Stasko, 2017; Yu and Silva, 2019;
Gao et al., 2015; Luo et al., 2018) and neural
network-based approaches (Markel et al., 2002;
Luo et al., 2021c; Song et al., 2022), to more re-
cent generative model enhanced systems (Hong
et al., 2024). With the rapid advancements in
Large Language Models (OpenAI, 2022; Qwen
et al., 2025; Guo et al., 2025), current LLM-based
approaches can be broadly categorized into two
groups: (1) those utilizing prompt engineering
techniques, such as Chat2Vis (Maddigan and Sus-
njak, 2023), Prompt4Vis (Li et al., 2024b), Mir-
ror (Xu et al., 2023), LIDA (Dibia, 2023), and
Data Formulator (Wang et al., 2024b), and (2)
those involving fine-tuning of models specifically
for NL2VIS tasks, like TableGPT (Zha et al.,
2023; Su et al., 2024), ChartLlama (Han et al.,
2023) and DataVis-T5 (Wan et al., 2024). This
evolution marks significant progress in making
data visualization more accessible and intuitive.

LLM for Tabular Data. LLM-based ap-
proaches push the performance of tabular data
processing to a new boundary (Liu et al.,
2024). The emergent in-context learning capa-
bility (Dong et al., 2022) and chain-of-thought
reasoning (Wei et al., 2022b) have significantly
enhanced LLMs’ ability to handle complex
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Find the number of 
professors with a PhD 
degree in each 
department Show bar 
chart, and I want to 
sort x-axis in desc 
order.

Show me about the 
distribution of  
date_address_from and 
the sum of 
monthly_rental , and 
group by attribute 
other_details and bin 
date_address_from by 
weekday in a bar chart.

What are the actual 
delivery dates of orders 
with quantity 1, and 
count them by a line 
chart?

NL Query Chat2Vis

Readability Score: 5
Doesn't sort with department 

code in descending order.

Doesn't sort with department 

code in descending order.

Readability Score: 5

Readability Score: 5

{"field_x": "Mon", "field_y": 

1032.8717, "field_classify": 

"apartment"} not found.

NV-Agent (Ours) CoML4Vis

The data on the charts can 

not be understood.

{"field_x": "1990-11-14", 

"field_y": 1} not found.

{"field_x": "Mon", "field_y": 

1032.8717, "field_classify": 

"apartment"} not found.

Figure 6: Case study of visualization performed by NVAGENT and other baselines. The first two cases are from
single-table dataset and the third from multi-table dataset. NVAGENT performed well in most complex cases (e.g.,
stacked bar charts), while other baselines failed.

tabular tasks by mimicking examples and encour-
aging step-by-step thinking (Min et al., 2022;
Zhang et al., 2022; Wu et al., 2024a). These
advancements have been particularly impactful
in several key tasks such as Text2Analysis (You
et al., 2025; Sahu et al., 2024; He et al., 2024)
TableQA (Qiu et al., 2024; Xu et al., 2024),
Text2SQL (Wu et al., 2024c; Pourreza and Rafiei,
2024), NL2Formula (Zhao et al., 2024) and
NL2VIS (Yang et al., 2024; Li et al., 2024b; Liu
et al., 2021; Li et al., 2024c), showcasing LLM’s
versatility in handling complex tabular data tasks.

Agentic Workflow. Agentic workflow leverages
multiple LLM-based agents, each assigned differ-
ent roles to tackle complex problems (Talebirad
and Nadiri, 2023). These systems employ various
interaction modes, such as collaboration (Chan
et al., 2023; Li et al., 2023; Wu et al., 2023; Li
et al., 2025) or competition (Zhao et al., 2023),
showing remarkable success in database query
tasks (Wang et al., 2024a; Zhu et al., 2024; Cen
et al., 2024), UI design (Gui et al., 2025b,c,a)
software development (Wang et al., 2025; Hong
et al., 2023; Islam et al., 2024; Huang et al., 2024)
and mathematical reasoning (Chen et al., 2024b).
This success stems from the synergy of specialized
agents working together to overcome individual

limitations and solve complex tasks efficiently.

6 Conclusion

In this paper, we have proposed NVAGENT, a
collaborative agent-based workflow to solve the
challenging mult-table NL2VIS task and provide
a “turnkey solution” for users. NVAGENT de-
composes the process into atomic modules such
as database preprocessing, visualization planning,
and iterative optimization. Experimental results
show that NVAGENT outperforms state-of-the-art
baselines by 7.88% in single-table and 9.23% in
multi-table scenarios, demonstrating the efficacy
of NVAGENT.
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Limitations

While NVAGENT demonstrates significant im-
provements in NL2VIS tasks, we acknowledge
several limitations. Utilizing large language mod-
els as both backbone and evaluator introduces po-
tential biases that could affect output quality and
evaluation accuracy. Additionally, our error analy-
sis finds insufficient handling of temporal informa-
tion, which underscores the need for better tabular
data understanding capabilities of LLMs. More-
over, our prompting strategy and evaluation met-
rics may not fully capture the nuances of com-
plex visualizations or semantic correctness. Future
work should address these limitations by explor-
ing open-source alternatives, developing more so-
phisticated prompting and evaluation techniques,
and integrating advanced tools like retrieval aug-
mented generation to enhance the system’s capa-
bilities and mitigate biases.
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A Detailed Experiment Setups

Baselines. This study compares our approach
with three state-of-the-art baselines. We also at-
tempted to include Code Interpreter as a baseline;
however, API rate limitations prevent the direct
generation of visualizations from CSV files.

• Chat2Vis (Maddigan and Susnjak, 2023): It
generates data visualizations by leveraging
prompt engineering to translate natural lan-
guage descriptions into visualizations. It uses
a language-based table description, which in-
cludes column types and sample values, to in-
form the visualization generation process.

• LIDA (Dibia, 2023): It structures visualization
generation as a four-step process, where each
step builds on the previous one to incrementally
translate natural language inputs into visualiza-
tions. It uses a JSON format to describe col-
umn statistics and samples, making it adaptable
across various visualization tasks.

• CoML4Vis (Zhang et al., 2023): It utilizes a
few-shot prompt that integrates multiple tables
into a single visualization task. It summarizes
data table information, including column names
and samples, and then applies a few-shot prompt
to guide visualization generation.

Metrics. Our evaluation framework involves
five main metrics:

• Invalid Rate represents the percentage of visu-
alizations that fail to render due to issues like
incorrect API usage or other code errors.

• Illegal Rate indicates the percentage of visual-
izations that do not meet query requirements,
which can include incorrect data transforma-
tions, mismatched chart types, or improper vi-
sualizations.

• Readability Score is the average score (range
1-5) assigned by a vision language model, like
GPT-4V, for valid and legal visualizations, as-
sessing their visual clarity and ease of interpre-
tation.

• Pass Rate measures the proportion of visualiza-
tions in the evaluation set that are both valid
(able to render) and legal (meet the query re-
quirements).

• Quality Score is set to 0 for invalid or illegal
visualizations; otherwise, it is equal to the read-
ability score, providing an overall assessment of

visualization quality factoring in both function-
ality and clarity.

To thoroughly evaluate each main metric, we fur-
ther break them down into the following detailed
assessment criteria:

• Code Execution Check verifies that the Python
code generated by the model can be success-
fully executed.

• Surface-form Check ensures that the gener-
ated code includes necessary elements to pro-
duce a visualization like function calls to dis-
play the chart.

• Chart Type Check verifies whether the ex-
tracted chart type from the visualization
matches the ground truth.

• Data Check assesses if the data used in the
visualization matches the ground truth, tak-
ing into consideration potential channel swaps
based on specified channels.

• Order Check evaluates whether the sorting of
visual elements follows the specified query re-
quirements.

• Layout Check examines issues like text over-
flow or element overlap within visualizations.

• Scale & Ticks Check ensures that scales and
ticks are appropriately chosen, avoiding uncon-
ventional representations.

• Overall Readability Rating integrates various
readability checks to provide a comprehensive
score considering layout, scale, text clarity, and
arrangement.

The evaluation metrics are averaged across the
dataset to provide a comprehensive overview of
the model’s performance. Together, these metrics
ensure that the visualizations are both accurate in
execution and effective in conveying the intended
data narratives.

Implement Details. Our system is implemented
in Python 3.9, utilizing GPT-4o (OpenAI, 2024b),
GPT-4o-mini (OpenAI, 2024a), and GPT-3.5-
turbo (OpenAI, 2022) as the backbone model
for all approaches, with the temperature set to
0 for consistent outputs. GPT-4o-mini serves as
the vision language model for readability eval-
uation. We interact with these models through
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Method
Single Table Multiple Tables

prompt response total prompt response total

LIDA 1386.23 237.90 1624.13 N/A
Chat2Vis 414.35 451.30 865.65 N/A
CoML4Vis 2614.76 279.86 2894.62 3069.62 307.67 3377.29
NVAGENT 5122.99 777.63 5900.62 5613.96 1014.10 6628.06

Table 7: Token usage comparison for different methods. N/A indicates that LIDA and Chat2Vis cannot handle
multiple table scenarios.
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Figure 7: Comparison of score density distribution be-
tween GPT-4o, GPT-4o-mini and human average score.

Agent # Input # Output # Total

Processor 1486.07 569.58 1755.65
Composer 3268.32 221.74 3490.07
Validator 1051.82 127.85 1179.67

Table 8: Token usage of three agents in NVAGENT.

the Azure OpenAI API. The specific prompt tem-
plates for each agent, crucial for guiding their re-
spective roles in the visualization generation pro-
cess, are detailed in Appendix E. Token usages of
NVAGENT and baselines are demonstrated in Ta-
ble 7, and usage for each agent in our NVAGENT

is shown in Table 8. Additionally, our evaluations
are conducted in VisEval Benchmark (with MIT
license).

Human Annotation. The annotation is con-
ducted by 5 authors of this paper independently.
As acknowledged, the diversity of annotators
plays a crucial role in reducing bias and enhanc-
ing the reliability of the benchmark. These an-
notators have knowledge in the data visualization
domain, with different genders, ages, and educa-
tional backgrounds. The educational backgrounds

of annotators are above undergraduate. To en-
sure the annotators can proficiently mark the data,
we provide them with detailed tutorials, teaching
them how to judge the quality of data visualiza-
tion. We also provide them with detailed criteria
and task requirements in each annotation process
shown in Figure 9. Two experiments requiring hu-
man annotation are detailed as follows:

• Pearson Correlation of Visual Language
Model. We conduct human annotation frame-
works to compare the ability of the visual lan-
guage model for MLLM-as-a-Judge (Chen et al.,
2024a), providing the readability score. Our an-
notation framework is shown in Figure 9. The
final Pearson scores are demonstrated in Table 2,
with its density distribution in Figure 7. The de-
tailed instructions can be found in Figure 10.

• Qualitative comparison to calculate ELO
Scores. We conduct human-judgments evalua-
tions to compare which visualization generated
by different models meets the query require-
ment more precisely. The leaderboard is shown
in Table 6, and Figure 11 shows the judgment
framework. Each model starts with a base ELO
score of 1500. After each pairwise comparison,
the scores are updated based on the outcome
and the current scores of the models involved.
The hyperparameters are set as follows: the K-
factor is set to 32, which determines the max-
imum change in rating after a single compari-
son. We conduct two sets of evaluations: one
for single-table queries and another for multiple-
table queries, with 1000 bootstrap iterations for
each set to ensure statistical robustness. For each
model’s ELO rating, we report the 95% confi-
dence intervals computed through bootstrap re-
sampling, providing a measure of rating stabil-
ity. The evaluation process involves presenting
human judges with a query and two visualiza-
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Invalid Rate Illegal Rate Pass Rate

NVAGENT 4.66% 23.97% 71.35%
w. CoT for Validator 5.82% 23.39% 70.78%
w. original schema for Validator 4.80% 24.22% 70.97%

Table 9: Additional exploration for Validator (using GPT-3.5-turbo).

tions, asking them to select the one that better
meets the query requirements. This process is
repeated across all model pairs and queries in
our test set. The detailed guidance provides to
the human evaluators can be found in Figure 12,
which outlines the criteria for judging visualiza-
tion quality and relevance to the given query.
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Figure 8: Performance of different models using
Matplotlib and Seaborn libraries, using GPT-3.5-
turbo.

B Additional Experiment Results

We also conducted a comparison experiment of
different methods using matplotlib or seaborn li-
brary. Figure 8 demonstrates the results, in-
dicating that our method outperforms obviously
other baselines not only with matplotlib but also
seaborn.

In addition, we test techniques in the Validator
Agent, such as Chain-of-Thought. As is shown
in Table 9, integrating Chain-of-Thought reason-
ing, may affect its performance badly, likely due
to the simple refining task with complex reason-

ing. Moreover, using the original schema to check
for false schema filtering seems to be useless in
this case.

C Evaluation Results with Detailed
Metrics

We demonstrated the main results in Table 1, and
here we reported more detailed results of other
metrics in Table 10, which underscored the error
rates for each stage, including Invalid, Illegal, and
Low Readability.

D Case Study

Figure 13 shows an example of a natural language
query with its corresponding VQL representation.
The output Python code for visualization and the
final bar chart are demonstrated in Figure 14 and
Figure 15, respectively. Furthermore, we pro-
vide a case study of NVAGENT performance on
four hardness-level NL2Vis problems in VisEval
in Figure 16.

The easy case demonstrates accurate grouping
in scatter plot relationships. The medium case
shows correct handling of multi-table joins for
continent-wise statistics. The hard case exhibits
temporal data visualization with proper filtering.
The extra hard case showcases complex operations
including weekday binning and stacked visualiza-
tion. These cases highlight our system’s consis-
tent performance across varying task complexities,
particularly excelling in multiple table scenarios
and complex aggregations.
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Figure 9: Screenshot of human annotation process in readability score.
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Readability Scoring Instruction
Scoring Instructions: Please evaluate the charts based on the following criteria, with a score range from 1 to 5, where
1 indicates very poor quality and 5 indicates excellent quality. You should focus on the following aspects:

1. Chart Colors:

• Are the colors clear and natural, effectively conveying the information?

• Color blindness accessibility: Are the color combinations easy to distinguish, especially for users with color
blindness?

2. Title and Axis Labels:

• Ensure the chart has a clear title.

• Do the X-axis and Y-axis labels exist, and are they complete?

• Check if the labels are difficult to read, e.g., are they written vertically instead of horizontally?

• The title should not be a direct question; instead, it should describe the data or trends being presented.

3. Legend Completeness:

• Is the legend complete, and does it clearly indicate the color labels for different data series?

• Ensure each color has a corresponding legend, making it easy for users to understand what the data represents.

Scoring Scale:

• 1 Point: Very poor, unable to understand or severely lacking information.

• 2 Points: Poor quality, multiple issues present, difficult to extract information.

• 3 Points: Fair, conveys some information but still has room for improvement.

• 4 Points: Good, generally clear charts with minor areas for improvement.

• 5 Points: Excellent, outstanding chart design with clear and effective information presentation.

Please consider the above factors when assessing the charts and provide the appropriate score. Thank you for your
cooperation and effort!

Figure 10: Instructions for human annorators in annotating readability scoring.
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Figure 11: Screenshot of ELO score evaluation framework for Human-as-a-Judge.
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Visualization Comparison Guidance
Welcome to the visualization comparison evaluation. Your task is to judge which model-generated visualization better
meets the requirements of the natural language query.

Evaluation criteria:

1. Appropriateness of chart type: Check if the selected chart type is suitable for expressing the data and relation-
ships required by the query.

2. Data completeness: Ensure the chart includes all necessary data required by the query.

3. Readability: Assess the clarity of the chart, accuracy of labels, and overall layout.

4. Aesthetics: Consider if the chart’s color scheme, proportions, and overall design are visually pleasing.

5. Information conveyance: Judge if the chart effectively conveys the main information or insights required by
the query.

Evaluation process:

1. Carefully read the natural language query.

2. Observe the visualization results generated by two models.

3. Based on the above criteria, choose the better visualization or select a tie if they are equally good.

4. If neither visualization satisfies the query requirements well, please choose the relatively better one.

Remember, your evaluation will help us improve and compare different visualization models. Thank you for your
participation!

Figure 12: Instructions for human annorators in visualization comparison.

An Example of Natural Language Query and Corresponding VQL

Natural Language Query:
How many documents are stored? Bin the store date by weekday in a bar chart.

Corresponding VQL:
Visualize BAR
SELECT Date_Stored, COUNT(Document_ID)
FROM All_Documents
GROUP BY Date_Stored
BIN Date_Stored BY WEEKDAY

Figure 13: The natural language query case and its corresponding output VQL representation.
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Method Dataset Invalid Illegal Low Readability
Execution Surface. Decon. Chart Type Data Order Layout Scale&Ticks

GPT-4o

CoML4Vis
All 1.15 0.00 0.26 1.75 14.28 10.36 32.02 32.55
Single 0.67 0.00 0.43 1.93 13.54 10.16 31.08 32.76
Multiple 1.87 0.00 0.00 1.48 15.39 10.66 33.43 32.23

LIDA
All 6.61 0.00 1.60 3.24 40.53 4.07 32.68 15.77
Single 1.13 0.00 2.11 0.89 12.26 6.79 53.93 26.22
Multiple 14.80 0.00 0.79 8.51 80.53 0.00 1.24 0.21

Chat2Vis
All 16.05 0.00 0.62 3.99 30.14 5.96 2.37 20.88
Single 0.86 0.00 0.75 2.30 10.78 9.73 3.97 34.63
Multiple 38.74 0.00 0.43 6.51 59.08 0.32 0.00 0.34

nvAgent
All 0.97 0.00 0.08 1.28 11.07 4.05 5.07 40.03
Single 0.72 0.00 0.14 1.27 9.88 3.60 3.92 39.36
Multiple 1.34 0.00 0.00 1.30 12.84 4.73 6.79 41.03

GPT-4o-mini

CoML4Vis
All 4.23 0.00 0.20 2.31 16.64 11.83 35.23 29.35
Single 0.36 0.00 0.26 2.32 13.80 11.67 35.92 32.22
Multiple 10.01 0.00 0.10 2.31 20.87 12.07 34.19 25.05

LIDA
All 12.50 0.00 0.40 4.92 40.02 5.80 27.87 17.05
Single 9.09 0.00 0.44 2.53 12.91 9.68 45.69 28.32
Multiple 17.61 0.00 0.33 8.51 80.53 0.00 1.24 0.21

Chat2Vis
All 15.45 0.17 0.17 4.21 31.90 8.20 2.14 18.97
Single 2.14 0.29 0.41 2.53 11.99 9.68 45.69 28.32
Multiple 35.78 0.00 0.00 6.70 61.66 0.00 0.92 0.32

nvAgent
All 5.14 0.00 0.00 2.40 16.33 10.61 41.06 27.00
Single 1.97 0.00 0.14 2.97 15.21 7.49 39.30 32.39
Multiple 8.15 0.00 0.00 2.31 20.87 12.07 34.19 25.05

GPT-3.5-turbo

CoML4Vis
All 9.28 0.00 0.62 1.91 15.83 12.86 25.09 27.73
Single 6.17 0.00 0.89 2.50 14.71 13.20 26.10 29.93
Multiple 13.92 0.00 0.21 1.04 17.51 12.36 23.57 24.43

LIDA
All 53.43 0.00 1.27 3.56 22.33 0.53 14.90 6.62
Single 47.32 0.00 1.91 2.81 13.03 0.89 24.43 11.05
Multiple 62.57 0.00 0.32 4.68 36.23 0.00 0.65 0.00

Chat2Vis
All 18.68 0.00 0.28 3.66 32.47 7.20 25.45 20.15
Single 3.90 0.00 0.47 2.78 15.62 12.01 41.74 33.38
Multiple 40.77 0.00 0.00 4.97 57.66 0.00 1.12 0.37

nvAgent
All 4.66 0.00 0.08 3.06 18.24 5.64 5.25 35.34
Single 2.98 0.00 0.14 2.84 15.08 5.69 3.62 37.57
Multiple 7.18 0.00 0.00 3.38 22.95 5.56 7.69 32.02

Table 10: Detailed error rates (%) for different methods.
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1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import os
4 import duckdb
5
6 # Set data folder path
7 data_folder = 'E:/visEval_dataset/databases/cre_Doc_Tracking_DB'
8
9 # Connect to database

10 con = duckdb.connect(database=':memory:')
11
12 # Read all CSV files and create view
13 csv_files = [f for f in os.listdir(data_folder) if f.endswith('.csv')]
14 for file in csv_files:
15 table_name = os.path.splitext(file)[0]
16 con.execute(f"CREATE VIEW {table_name} AS SELECT * FROM read_csv_auto('{os.path.join(data_folder, file)}')")
17
18 # Execute SQL query
19 sql = f'''
20 SELECT Date_Stored, COUNT(Document_ID) AS count_Document_ID
21 FROM All_Documents
22 GROUP BY Date_Stored
23 '''
24 df = con.execute(sql).fetchdf()
25 con.close()
26
27 # Rename columns
28 df.columns = ['Date_Stored','count_Document_ID']
29
30 # Apply binning operation
31 flag = True
32 df['Date_Stored'] = pd.to_datetime(df['Date_Stored'])
33 df['Date_Stored'] = df['Date_Stored'].dt.day_name()
34
35 # Group by and calculate count
36 if flag:
37 df = df.groupby('Date_Stored').sum().reset_index()
38
39 # Ensure all seven days of the week are included
40 weekday_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
41 'Friday', 'Saturday', 'Sunday']
42 df = df.set_index('Date_Stored').reindex(weekday_order, fill_value=0).reset_index()
43 df['Date_Stored'] = pd.Categorical(df['Date_Stored'],
44 categories=weekday_order, ordered=True)
45 df = df.sort_values('Date_Stored')
46
47 # Create visualization
48 fig, ax = plt.subplots(1, 1, figsize=(10, 4))
49 ax.spines['top'].set_visible(False)
50 ax.spines['right'].set_visible(False)
51 ax.bar(df['Date_Stored'], df['count_Document_ID'])
52 ax.set_xlabel('Date_Stored')
53 ax.set_ylabel('count_Document_ID')
54 ax.set_title(f'BAR Chart of count_Document_ID by Date_Stored')
55 plt.xticks(rotation=45)
56 plt.tight_layout()
57 plt.show()

Figure 14: An example of python code generating module within NVAGENT.
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Figure 15: An example of generated bar chart using NVAGENT.
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Examples of NVAGENT performance on different hardness levels

Hardness Level: Easy

Dataset: Single
Input Tables: basketball_match
Input Query: Show the relation between
acc percent and all_games_percent for each
ACC_Home using a grouped scatter chart.

Response:

Hardness Level: Medium
Dataset: Multiple
Input Tables: car_makers, car_names,
cars_data, continents, countries, model_list
Input Query: Display a pie chart for
what is the name of each continent and
how many car makers are there in each one?

Response:

Hardness Level: Hard

Dataset: Multiple
Input Tables: advisor, classroom, course,
department, instructor, prereq, section,
student, takes, teaches, time_slot
Input Query: Find the number of courses
offered by Psychology department in each
year with a line chart.

Response:

Hardness Level: Extra Hard

Dataset: Multiple
Input Tables: Accounts, Documents,
Documents_with_Expenses, Projects, Ref-
_Budget_Codes, Ref_Document_Types,
Statements
Input Query: How many documents are
created in each day? Bin the document date
by weekday and group by document type
description with a stacked bar chart, I want
to sort Y in desc order.

Response:

Figure 16: Examples of NVAGENT’s performance on different hardness levels in VisEval (easy, medium, hard, and
extra hard.
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E Prompts Details

We provide detailed prompt design of our NVAGENT as follows.

Prompt template for Processor Agent

You are an experienced and professional database administrator. Given a database schema and
a user query, your task is to analyze the query, filter the relevant schema, generate an optimized
representation, and classify the query difficulty.

Now you can think step by step, following these instructions below.
[Instructions]
1. Schema Filtering:

- Identify the tables and columns that are relevant to the user query.
- Only exclude columns that are completely irrelevant.
- The output should be {{tables: [columns]}}.
- Keep the columns needed to be primary keys and foreign keys in the filtered schema.
- Keep the columns that seem to be similar with other columns of another table.

2. New Schema Generation:
- Generate a new schema of the filtered schema, based on the given database schema and your

filtered schema.

3. Augmented Explanation:
- Provide a concise summary of the filtered schema to give additional knowledge.
- Include the number of tables, total columns, and any notable relationships or patterns.

4. Classification:
For the database new schema, classify it as SINGLE or MULTIPLE based on the tables number.

- if tables number >= 2: predict MULTIPLE
- elif only one table: predict SINGLE

==============================
Here is a typical example:
[Database Schema]
[DB_ID] dorm_1
[Schema]
# Table: Student
[

(stuid, And This is a id type column),
(lname, Value examples: [‘Smith’, ‘Pang’, ‘Lee’, ‘Adams’, ‘Nelson’, ‘Wilson’].),
(fname, Value examples: [‘Eric’, ‘Lisa’, ‘David’, ‘Sarah’, ‘Paul’, ‘Michael’].),
(age, Value examples: [18, 20, 17, 19, 21, 22].),
(sex, Value examples: [‘M’, ‘F’].),
(major, Value examples: [600, 520, 550, 50, 540, 100].),
(advisor, And this is a number type column),
(city code, Value examples: [‘PIT’, ‘BAL’, ‘NYC’, ‘WAS’, ‘HKG’, ‘PHL’].)

]
# Table: Dorm
[

(dormid, And This is a id type column),
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(dorm name, Value examples: [‘Anonymous Donor Hall’, ‘Bud Jones Hall’, ‘Dorm-plex 2000’,
‘Fawlty Towers’, ‘Grad Student Asylum’, ‘Smith Hall’].),

(student capacity, Value examples: [40, 85, 116, 128, 256, 355].), (gender, Value examples:
[‘X’, ‘F’, ‘M’].)
]
# Table: Dorm_amenity
[

(amenid, And This is a id type column),
(amenity name, Value examples: [‘4 Walls’, ‘Air Conditioning’, ‘Allows Pets’, ‘Carpeted

Rooms’, ‘Ethernet Ports’, ‘Heat’].)
]
# Table: Has_amenity
[

(dormid, And This is a id type column),
(amenid, And This is a id type column)

]
# Table: Lives_in
[

(stuid, And This is a id type column),
(dormid, And This is a id type column),
(room number, And this is a number type column)

]

[Query]
Find the first name of students who are living in the Smith Hall, and count them by a pie chart

Now we can think step by step
[Filtered Schema]
{
"Student": ["stuid", "fname"],
"Dorm": ["dormid", "dorm name"],
"Lives_in": ["stuid", "dormid"]
}

[New Schema]
# Table: Student
[
(stuid, And This is a id type column),
(fname, Value examples: [‘Eric’, ‘Lisa’, ‘David’, ‘Sarah’, ‘Paul’, ‘Michael’].),
]
# Table: Dorm [
(dormid, And This is a id type column),
(dorm name, Value examples: [‘Anonymous Donor Hall’, ‘Bud Jones Hall’, ‘Dorm-plex 2000’,
‘Fawlty Towers’, ‘Grad Student Asylum’, ‘Smith Hall’].),
]
# Table: Lives_in
[
(stuid, And This is a id type column),
(dormid, And This is a id type column),
]
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[Augmented Explanation]
The filtered schema consists of 3 tables (Student, Dorm, and Lives_in) with a total of 6 relevant
columns. There is a many-to-one relationship between Student and Dorm through the Lives_in
junction table. The query involves joining these three tables to find students living in a specific
dorm (Smith Hall).

Key points:
1. The Lives_in table acts as a bridge between Student and Dorm, allowing for the association of
students with their dorms.
2. The ‘dorm name’ column in the Dorm table is crucial for filtering the specific dorm (Smith
Hall).
3. The ‘fname’ column from the Student table is required for the final output.

[Classification]
MULTIPLE

==============================
Here is a new question:

[DB_ID] {db_id}
[Database Schema]
{db_schema}

[Query]
{query}

Now give your answer following this format strictly without other explanation:

[Filtered Schema]

[New Schema]

[Augmented Explanation]

[Classification]

Prompt template for multiple classification

Given a [Database schema] with [Augmented Explanation] and a [Question], generate a valid
VQL (Visualization Query Language) sentence. VQL is similar to SQL but includes visualization
components.

Now you can think step by step, following these instructions below.
[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
[ORDER BY] [BIN BY]
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You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"
You must consider which part in the sketch is necessary, which is unnecessary, and construct a
specific sketch for the natural language query.

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When generating VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using window function, just use BIN BY to deal with time base queries

[Constraints]
- In SELECT <column>, make sure there are at least two selected!!!
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ‘None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- Ensure GROUP BY precedes ORDER BY for distinct values
- NEVER use window functions in SQL

Now we could think step by step:
1. First choose visualize type and binning, then construct a specific sketch for the natural language
query
2. Second generate SQL components following the sketch.
3. Third add Visualize type and BINNING into the SQL components to generate final VQL

==============================
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Here is a typical example:
[Database Schema]
# Table: Orders, (orders)
[

(order_id, order id, And this is a id type column),
(customer_id, customer id, And this is a id type column),
(order_date, order date, Value examples: [‘2023-01-15’, ‘2023-02-20’, ‘2023-03-10’].),
(total_amount, total amount, Value examples: [100.00, 200.00, 300.00, 400.00, 500.00].)

]
# Table: Customers, (customers)
[

(customer_id, customer id, And this is a id type column),
(customer_name, customer name, Value examples: [‘John’, ‘Emma’, ‘Michael’, ‘Sophia’,

‘William’].),
(customer_type, customer type, Value examples: [‘Regular’, ‘VIP’, ‘New’].)

]
[Augmented Explanation]
The filtered schema consists of 2 tables (Orders and Customers) with a total of 7 relevant columns.
There is a one-to-many relationship between Customers and Orders through the customer_id
foreign key.

Key points:
1. The Orders table contains information about individual orders, including the order date and
total amount.
2. The Customers table contains customer information, including their name and type (Regular,
VIP, or New).
3. The customer_id column links the two tables, allowing us to associate orders with specific
customers.
4. The order_date column in the Orders table will be used for monthly grouping and binning.
5. The total_amount column in the Orders table needs to be summed for each group.
6. The customer_type column in the Customers table will be used for further grouping and as the
third dimension in the stacked bar chart.

The query involves joining these two tables to analyze order amounts by customer type and
month, which requires aggregation and time-based binning.

[Question]
Show the total order amount for each customer type by month in a stacked bar chart.

Decompose the task into sub tasks, considering [Background] [Special Rules] [Constraints], and
generate the VQL after thinking step by step:

Sub task 1: First choose visualize type and binning, then construct a specific sketch for
the natural language query
Visualize type: STACKED BAR, BINNING: True
VQL Sketch:
Visualize STACKED BAR SELECT _ , _ , _ FROM _ JOIN _ ON _ GROUP BY _ BIN _ BY
MONTH
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Sub task 2: Second generate SQL components following the sketch.
Let’s think step by step:
1. We need to select 3 columns for STACKED BAR chart, order_date as X-axis,
SUM(total_amout) as Y-axis, customer_type as group column.
2. We need to join the Orders and Customers tables.
3. We need to group by customer type.
4. We do not need to use any window function for MONTH.

sql
“‘sql
SELECT O.order_date, SUM(O.total_amount), C.customer_type
FROM Orders AS O
JOIN Customers AS C ON O.customer_id = C.customer_id
GROUP BY C.customer_type
“‘

Sub task 3: Third add Visualize type and BINNING into the SQL components to generate
final VQL
Final VQL:
Visualize STACKED BAR SELECT O.order_date, SUM(O.total_amount), C.customer_type
FROM Orders O JOIN Customers C ON O.customer_id = C.customer_id GROUP BY
C.customer_type BIN O.order_date BY MONTH

==============================
Here is a new question:

[Database Schema]
{desc_str}

[Augmented Explanation]
{augmented_explanation}

[Query]
{query}

Now, please generate a VQL sentence for the database schema and question after thinking
step by step.

Prompt template for single classification

Given a [Database schema] with [Augmented Explanation] and a [Question], generate a valid
VQL (Visualization Query Language) sentence. VQL is similar to SQL but includes visualization
components.

Now you can think step by step, following these instructions below.
[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
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[ORDER BY] [BIN BY]

You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"
You must consider which part in the sketch is necessary, which is unnecessary, and construct a
specific sketch for the natural language query.

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When generating VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using window function, just use BIN BY to deal with time base queries

[Constraints]
- In SELECT <column>, make sure there are at least two selected!!!
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ‘None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- Ensure GROUP BY precedes ORDER BY for distinct values
- NEVER use window functions in SQL

Now we could think step by step:
1. First choose visualize type and binning, then construct a specific sketch for the natural language
query
2. Second generate SQL components following the sketch.
3. Third add Visualize type and BINNING into the SQL components to generate final VQL
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==============================
Here is a typical example:
[Database Schema]
# Table: course, (course)
[

(course_id, course id, Value examples: [101, 696, 656, 659]. And this is an id type column),
(title, title, Value examples: [‘Geology’, ‘Differential Geometry’, ‘Compiler Design’, ‘Interna-

tional Trade’, ‘Composition and Literature’, ‘Environmental Law’].),
(dept_name, dept name, Value examples: [‘Cybernetics’, ‘Finance’, ‘Psychology’, ‘Account-

ing’, ‘Mech. Eng.’, ‘Physics’].),
(credits, credits, Value examples: [3, 4].)

]
# Table: section, (section)
[

(course_id, course id, Value examples: [362, 105, 960, 468]. And this is an id type column),
(sec_id, sec id, Value examples: [1, 2, 3]. And this is an id type column),
(semester, semester, Value examples: [‘Fall’, ‘Spring’].),
(year, year, Value examples: [2002, 2006, 2003, 2007, 2010, 2008].),
(building, building, Value examples: [‘Saucon’, ‘Taylor’, ‘Lamberton’, ‘Power’, ‘Fairchild’,

‘Main’].),
(room_number, room number, Value examples: [180, 183, 134, 143].),
(time_slot_id, time slot id, Value examples: [‘D’, ‘J’, ‘M’, ‘C’, ‘E’, ‘F’]. And this is an id type

column)
]
[Augmented Explanation]
The filtered schema consists of 2 tables (course and section) with a total of 11 relevant columns.
There is a one-to-many relationship between course and section through the course_id foreign key.

Key points:
1. The course table contains information about individual courses, including the course title,
department, and credits.
2. The section table contains information about specific sections of courses, including the
semester, year, building, room number, and time slot.
3. The course_id column links the two tables, allowing us to associate sections with specific
courses.
4. The dept_name column in the course table will be used to filter for Psychology department
courses.
5. The year column in the section table will be used for yearly grouping and binning.
6. We need to count the number of courses offered each year, which requires aggregation and
time-based binning.

The query involves joining these two tables to analyze the number of courses offered by
the Psychology department each year, which requires aggregation and time-based binning.

[Question]
Find the number of courses offered by Psychology department in each year with a line chart.

Decompose the task into sub tasks, considering [Background] [Special Rules] [Constraints], and
generate the VQL after thinking step by step:
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Sub task 1: First choose visualize type and binning, then construct a specific sketch for
the natural language query
Visualize type: LINE, BINNING: True
VQL Sketch:
Visualize LINE SELECT _ , _ FROM _ JOIN _ ON _ WHERE _ BIN _ BY YEAR

Sub task 2: Second generate SQL components following the sketch.
Let’s think step by step:
1. We need to select 2 columns for LINE chart, year as X-axis, COUNT(year) as Y-axis.
2. We need to join the course and section tables to get the number of courses offered by the
Psychology department in each year.
3. We need to filter the courses by the Psychology department.
4. We do not need to use any window function for YEAR.

sql
“‘sql
SELECT S.year, COUNT(S.year)
FROM course AS C
JOIN section AS S ON C.course_id = S.course_id
WHERE C.dept_name = ‘Psychology’
“‘

Sub task 3: Third add Visualize type and BINNING into the SQL components to generate
final VQL
Final VQL:
Visualize LINE SELECT S.year, COUNT(S.year) FROM course C JOIN section S ON
C.course_id = S.course_id WHERE C.dept_name = ‘Psychology’ BIN S.year BY YEAR

==============================
Here is a new question:

[Database Schema]
{desc_str}

[Augmented Explanation]
{augmented_explanation}

[Query]
{query}

Now, please generate a VQL sentence for the database schema and question after thinking
step by step.

Prompt template for Validator Agent

As an AI assistant specializing in data visualization and VQL (Visualization Query Language),
your task is to refine a VQL query that has resulted in an error. Please approach this task
systematically, thinking step by step.
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[Background]
VQL Structure:
Visualize [TYPE] SELECT [COLUMNS] FROM [TABLES] [JOIN] [WHERE] [GROUP BY]
[ORDER BY] [BIN BY]

You can consider a VQL sentence as "VIS TYPE + SQL + BINNING"

Key Components:
1. Visualization Type: bar, pie, line, scatter, stacked bar, grouped line, grouped scatter
2. SQL Components: SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY
3. Binning: BIN [COLUMN] BY [INTERVAL], [INTERVAL]: [YEAR, MONTH, DAY,
WEEKDAY]

When refining VQL, we should always consider special rules and constraints:
[Special Rules]
a. For simple visualizations:

- SELECT exactly TWO columns, X-axis and Y-axis(usually aggregate function)
b. For complex visualizations (STACKED BAR, GROUPED LINE, GROUPED SCATTER):

- SELECT exactly THREE columns in this order!!!:
1. X-axis
2. Y-axis (aggregate function)
3. Grouping column

c. When "COLORED BY" is mentioned in the question:
- Use complex visualization type(STACKED BAR for bar charts, GROUPED LINE for line

charts, GROUPED SCATTER for scatter charts)
- Make the "COLORED BY" column the third SELECT column
- Do NOT include "COLORED BY" in the final VQL

d. Aggregate Functions:
- Use COUNT for counting occurrences
- Use SUM only for numeric columns
- When in doubt, prefer COUNT over SUM

e. Time based questions:
- Always use BIN BY clause at the end of VQL sentence
- When you meet the questions including "year", "month", "day", "weekday"
- Avoid using time function, just use BIN BY to deal with time base queries

[Constraints]
- In FROM <table> or JOIN <table>, do not include unnecessary table
- Use only table names and column names from the given database schema
- Enclose string literals in single quotes
- If [Value examples] of <column> has ‘None’ or None, use JOIN <table> or WHERE <column>
is NOT NULL is better
- ENSURE GROUP BY clause cannot contain aggregates
- NEVER use date functions in SQL

[Query]
{query}

[Database info]
{db_info}
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[Current VQL]
{vql}

[Error]
{error}

Now, please analyze and refine the VQL, please provide:

[Explanation]
[Provide a detailed explanation of your analysis process, the issues identified, and the changes
made. Reference specific steps where relevant.]

[Corrected VQL]
[Present your corrected VQL here. Ensure it’s on a single line without any line breaks.]

Remember:
- The SQL components must be parseable by DuckDB.
- Do not change rows when you generate the VQL.
- Always verify your answer carefully before submitting.
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