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Abstract

Be it your favorite novel, a newswire article, a
cooking recipe or an academic paper – in many
daily situations we read the same text more than
once. In this work, we ask whether it is pos-
sible to automatically determine whether the
reader has previously encountered a text based
on their eye movement patterns during reading.
We introduce two variants of this task and ad-
dress them using both feature-based and neural
models. We further introduce a general strat-
egy for enhancing these models with machine
generated simulations of eye movements from
a cognitive model. Finally, we present an anal-
ysis of model performance which on the one
hand yields insights on the information used
by the models, and on the other hand leverages
predictive modeling as an analytic tool for bet-
ter characterization of the role of memory in
repeated reading. Our work advances the under-
standing of the extent and manner in which eye
movements in reading capture memory effects
from prior text exposure, and paves the way
for future applications that involve predictive
modeling of repeated reading.1

1 Introduction

Reading is a widely practiced skill that occupies
many hours of our daily lives. During these hours,
there are various ways in which we interact with
texts. While reading is often thought of as an inter-
action with new linguistic material, in many daily
scenarios we read texts more than once. This can
happen in the framework of educational curricula
that involve repeated reading, because we want to
understand or recall the text better, re-examine spe-
cific parts of interest, or simply because we enjoyed
reading the text.

The importance of studying repeated reading for
understanding human language processing has long

1Code is available at https://github.com/lacclab/
Decoding-Repeated-Reading-from-Eye-Movements.

been recognized in psychology and psycholinguis-
tics. In these areas of study, it was shown that
when reading a text for a second time, the way our
eyes move over the text and the extent to which
the eye movements depend on the linguistic char-
acteristics of the text tend to differ compared to
the first reading. In essence, eye movements in
repeated reading reflect reading facilitation: for ex-
ample, readers tend to read faster and skip more
words compared to the first reading (Hyönä and
Niemi, 1990; Raney and Rayner, 1995; Schnitzer
and Kowler, 2006; Meiri and Berzak, 2024). Al-
though the precise differences can depend on the
experimental setup, and some are debated, the pres-
ence of facilitation effects comes as no surprise,
as when encountering a text for the second time
readers already have knowledge of its content, and
can more easily foresee what comes next at any
given time.

Despite the advances in the study of eye move-
ments in repeated reading, prior work has been
limited to descriptive analyses of overall effects, av-
eraged across texts and participants. Consequently,
it is currently unknown how much information can
be extracted regarding the type of interaction of
a specific reader with a specific text. Addressing
this question is important both for improving the
scientific understanding of the extent and manner
in which eye movements reflect the reader’s mem-
ory of the text, and for building the foundations for
practical applications in areas such as e-learning
and educational settings more broadly, where it can
be beneficial to infer in real time whether the reader
has already encountered the text.

In this work, we tackle this challenge using a
predictive modeling approach for determining the
interaction of a single reader with a specific text
from their eye movements. We pose the follow-
ing question: is it possible to decode whether the
reader is reading a text for the first or the second
time from their eye movements over the text? Ad-
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dressing this question is made possible by OneStop
Eye Movements (Berzak et al., 2025), the first pub-
licly available dataset that contains eye movement
recordings of both first and repeated reading.

We operationalize this question via a prediction
task in two variants. In the first variant, the task is
to determine whether a single eye movement sam-
ple is a first or a repeated reading. In the second,
less challenging variant, given two eye movement
samples from the same participant over the same
text, the goal is to determine which is a first reading
and which is a repeated reading. We address these
tasks with feature-based models and with multi-
modal neural models that combine eye movements
with text, and further augment the models with syn-
thetic eye movement trajectories from a cognitive
model of eye movements in reading. Finally, we
demonstrate how such predictive models can be
used to obtain insights on the determinants of eye
movements in repeated reading.

The contributions of this work are the following:

• Tasks: We introduce a new prediction task - au-
tomatically determine whether the reader has pre-
viously encountered a text, based on their eye
movements during reading. We address this task
in two variants of decreasing difficulty: (i) a sin-
gle eye movement sample; (ii) a pair of first and
second reading samples for the same text, from
the same participant.

• Modeling: We experiment with two types of pre-
dictive approaches: (i) feature-based models; (ii)
neural multimodal language models. We further
introduce a strategy for integrating into the pre-
diction pipeline synthetic data for first reading.

• Analyses: We present analyses of model per-
formance as a function of article location in the
experiment and the amount of intervening mate-
rial between readings. These analyses provide
insights on the information used by models and
on the role of memory in repeated reading effects.

2 Related Work

When we read, the eye movement trajectory, or
scanpath over the text is divided into fixations, pro-
longed periods of time during which the gaze lo-
cation is relatively fixed, and saccades, fast tran-
sitions between fixations (Rayner, 1998; Hyönä
and Kaakinen, 2019; Schotter and Dillon, 2025).
Prior work in psycholinguistics has consistently
demonstrated that this trajectory differs in repeated

reading compared to first reading, with large fa-
cilitation effects marked by shorter text reading
times, fewer fixations, shorter fixation durations,
longer saccades and fewer regressions (backward
saccades) (Hyönä and Niemi, 1990; Raney and
Rayner, 1995; Schnitzer and Kowler, 2006; Meiri
and Berzak, 2024). Several studies have also ex-
amined the interaction between repeated reading
and the effect of linguistic word properties such
as word length, frequency and surprisal on read-
ing times, mostly finding less sensitivity to word
properties in repeated reading (Raney and Rayner,
1995; Foster et al., 2013; Zawoyski et al., 2015;
Meiri and Berzak, 2024). In line with these studies,
Hyönä and Niemi (1990) further demonstrated a
reduction in the sensitivity of eye movements to the
introduction of new topics in repeated reading. All
the above studies examined individual features ag-
gregated across participants and texts, and it is cur-
rently unknown whether first and repeated reading
can be effectively distinguished using predictive
modeling at the level of an individual participant
and a single text.

In machine learning and NLP, a nascent line of
work focuses on decoding properties of the reader
and their interaction with the text, from eye move-
ments in reading. These include, among others,
decoding of linguistic knowledge (Berzak et al.,
2017, 2018; Skerath et al., 2023), reading compre-
hension (Ahn et al., 2020; Reich et al., 2022; Méz-
ière et al., 2023; Shubi et al., 2024b), subjective
text difficulty (Reich et al., 2022) and the reader’s
goals (Hollenstein et al., 2023; Shubi et al., 2024a).
The current study falls broadly within this area, but
introduces and addresses a new task of decoding
repeated reading. Following Sood et al. (2020),
our work leverages the output of E-Z Reader, a
computational cognitive model for automatic gen-
eration of reading scanpath trajectories (Reichle
et al., 1998, 2003, 2009; Veldre et al., 2023).

3 Problem Formulation

We ask whether it is possible to accurately distin-
guish between first and second readings from an
eye movement recording of a single participant
over a single textual item. We assume a setup in
which a participant S reads a textual item W , op-
tionally reads k other items {W ′}k, and then reads
W again. The parameter k can range from 0 for
consecutive repeated reading to any k > 0 for non-
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consecutive repeated reading2. Hence, a reading
r ∈ {1, 2} (first or repeated) of W has a distinct
eye movement recording EW,r

S . We define a decod-
ing task where the goal is to distinguish between
eye movements of a single participant over a single
text in first reading (r = 1) and repeated reading
(r = 2). The task has two variants:

Single Trial Task

(W, EW,r
S ) −→ r̂

In this task, the input is an eye movement recording
EW,r

S for text W , and optionally the text itself. The
output r̂ ∈ {1, 2} corresponds to whether the eye
movements E are from a first or a repeated reading
of W .

Paired Trials Task

(W, EW,r
S , EW,r′

S ) −→ ˆ(r, r′)

Here, the input consists of two eye movement
recordings EW,r

S and EW,r′
S of the same participant

S for the same text W in an unknown presentation
order, and optionally the text itself. The output is
ˆ(r, r′) ∈ {(1, 2) , (2, 1)}, i.e., which recording cor-

responds to the first reading of W , and which to
the second.

4 Data

We use OneStop Eye Movements (Berzak et al.,
2025), an eye tracking dataset collected with an
Eyelink 1000 Plus eye tracker, where native (L1)
speakers of English read Guardian newswire arti-
cles in English. The textual materials are taken
from the OneStopQA dataset (Berzak et al., 2020).
OneStop Eye Movements includes 180 participants
who read for comprehension, each reading a 10-
article batch in a randomized article order, where
each article contains between 4 and 7 paragraphs.
Participants read each paragraph on a single page,
and then answer a reading comprehension question
about the paragraph on a new page, without the
ability to return to previous pages.

After reading a 10-article batch, participants read
two articles for a second time. In repeated read-
ing, the paragraphs are identical to the first reading,
while the questions are different. The article in
position 11 is a consecutive second presentation
of the article in position 10. The article in posi-
tion 12 is a non-consecutive second presentation

2In this work, k = 0 or 2 ≤ k ≤ 10 (see Section 4).

First Reading

Repeated Reading

Figure 1: Example of eye movements from the same
participants for a single passage; top: first reading, bot-
tom: repeated reading. Circles represent fixations, and
lines represent saccades.
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Figure 2: First and repeated reading for one participant.
After reading a 10-article batch in a random order of
articles, there is a consecutive repeated reading of the
last article in position 10, and then a non-consecutive
repeated reading of one of the articles in positions 1-9.

of an article in one of the positions 1-9. Thus, half
of the repeated reading data captures immediate
consecutive rereading of the same article, and the
other half is rereading with intervening reading
material, ranging from 2 to 10 articles. Figure 1
shows example trials for first reading and repeated
reading. Figure 2 presents the experimental design
schematically.

Overall, there are 360 second presentations of
articles, 180 in consecutive rereading in position 11
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and 180 in a non-consecutive rereading in position
12. The first reading of position 12 articles occurs
36 times in position 1 and 18 times in each of the
positions 2-9. The 360 repeated article readings
correspond to 1,944 paragraph trials with a total of
105,540 word tokens over which eye movements
were collected, split equally between positions 11
and 12.

5 Modeling

We experiment with both feature-based and neural
language modeling approaches for representing eye
movements and their interaction with the text. For
the single trial variant, we present methods that di-
rectly predict first versus repeated reading. We also
propose a general approach for leveraging synthetic
scanpaths as an additional first reading reference,
which enables using the same input representations
as in the paired trials task.

5.1 Single Trial Modeling
Feature-Based Model
For feature-based modeling, we use XGBoost tree-
boosting models (Chen and Guestrin, 2016) with
the following global eye movement features, re-
sulting in an input feature vector eglobal

S ∈ Rdglobal

where dglobal = 36. The features are motivated by
the psycholinguistic literature in general, and work
on differences between first and repeated reading
in particular.

• Standard Eye Movement Measures 9 trial-
level features from the psycholinguistic litera-
ture: Skip Rate, Reading Speed, Regression Rate
per word, proportion of refixated words, and per-
word means of Total Fixation Duration, First Fix-
ation Duration, Gaze Duration, number of fixa-
tions and extra dwell time beyond the first run
(zero if no refixations). See Appendix B for defi-
nitions. Part of these features have been used in
prior prediction tasks (e.g. Mézière et al., 2023)
and differ between first and repeated reading (see
Section 2).

• Word Property Coefficients 20 features that
measure the responsiveness of reading measures
to linguistic word properties: frequency, surprisal
and length. Building on Berzak et al. (2018),
the features are coefficients from linear models
that predict the participant’s speed-normalized
eye movement measures from these three word
properties. This feature-set is motivated by prior

work that has demonstrated that the responsive-
ness of eye movements to linguistic word prop-
erties varies across reading scenarios and read-
ers (e.g. Reichle et al., 2010; Berzak and Levy,
2023; Shubi and Berzak, 2023). In repeated read-
ing, this responsiveness is weaker compared to
first reading (Meiri and Berzak, 2024). See Ap-
pendix B.1 for further details on the models.

• Saccade Network Measures Following Zhu and
Feng (2015) and Ma et al. (2023), we define a
directed graph that encodes the scanpath of eye
movements over the paragraph G = {V, T} such
that V is the set of words in the paragraph, and
for all u, v ∈ V :

T = {(u, v) : there is a saccade from u to v}

We extract 7 features which capture connectivity,
centrality and clustering measures of this graph.
Additional details and definitions of the measures,
along with network visualization examples are
provided in Appendix B.2.

Neural Models
We use two variants of the RoBERTEye multi-
modal language model (Shubi et al., 2024b), which
is a state-of-the-art approach in predictive modeling
using eye movements in reading. This model was
previously applied to the prediction of reading com-
prehension (Shubi et al., 2024b) and reading goals
(Shubi et al., 2024a) from eye movements, outper-
forming in most cases prior models from the liter-
ature. RoBERTEye extends the RoBERTa model
(Liu et al., 2019) by incorporating eye movement
information. It does so by projecting an input eye
movement feature vector for each word or fixation
into the embedding space of the language model,
aligning these projections with their corresponding
words, and then concatenating the projections with
the word embedding sequence.

The model has two variants, with word-level
and fixation-level eye movement representations.
In RoBERTEye-Words the eye movements in-

put consists of
(
e

wordj
S

)Nwords

j=1
where each ewordj

S ∈
Rdword is an eye movement feature vector for the
word j, with dword = 13 features.

In RoBERTEye-Fixations, both fixation-level
and word-level features are used. Each fixation i
on word j has a fixation vector efixi,j

S ∈ Rdfix with
dfix = 6 features of the fixation. This vector is
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concatenated with the word-level feature vector
e

wordj
S :

(
e

fixi,j
S ⊕ e

wordj
S

)Nfixations

i=1

where ⊕ denotes the concatenation operation along
the feature dimension. To help the model distin-
guish between eye movement and textual informa-
tion, two special token vectors are added, one to
all the text embeddings, and the other to all the
projected eye movement embeddings. Descriptions
of all the fixation-level and word-level features are
provided in Appendix A.

5.2 Single Trial Modeling with Synthetic
Scanpath References

We introduce a new method, where in addition to
the human eye movement data, the model input fur-
ther includes a synthetic scanpath reference EW,1

M

of eye movements E generated for each text W
from an external model M for scanpath generation.
As all existing computational models for scanpath
generation assume a first reading, in this work we
focus on the generation of first reading reference
scanpaths. In essence, this reference provides an
external source of information on how a first read-
ing of the text by an average reader should look
like. This reference addition yields an input struc-
ture that resembles that of the paired trials task,
only that one of the eye movement inputs is now
machine generated, and its reading interaction is
assumed to be first reading:

(W, EW,1
M EW,r

S ) −→ r̂.

We then obtain the following three types of feature
representations of eye movements:

Global representations This representation is
a concatenation of the human features, and the
difference between the synthetic and the human
features. Formally,

e
global
S ⊕ (e

global
M − e

global
S )

Word-level representations For each word, we
concatenate the human features with the difference
between machine-generated synthetic features and
the human features. Formally,

(
e

wordj
S ⊕ (e

wordj
M − e

wordj
S )

)Nwords

j=1

Fixation-level representations Differently from
global and word-level representations, in fixation-
level feature representations the number of features
for two different trials can differ, and there is no
direct alignment between the representations. We
therefore construct the input as follows:

(
e

fixi,j
S ⊕ e

wordj
S

)Nfixations

i=1
∥
(
e

fixi,j
M ⊕ e

wordj
M

)Ñfixations

i=1

where ∥ denotes concatenation along the sequence
dimension, and Ñfixations is the length of the scan-
path generated by M . To help RoBERTEye dis-
tinguish between human and synthetic scanpath
features, in addition to the word and human eye
movement special tokens, we introduce a third to-
ken that marks machine generated scanpaths.

E-Z Reader Scanpaths The synthetic scanpaths
are generated using E-Z Reader (Reichle et al.,
1998, 2003, 2009; Veldre et al., 2023), a promi-
nent computational cognitive model for eye move-
ments generation. The full details of the generation
process and the adaptations made to the original
model are described in Appendix C. As we expect
the effectiveness of the augmentation approach to
depend on the quality of the generated scanpaths,
we perform an evaluation of E-Z Reader outputs in
the context of our task. To this end, we compare
E-Z Reader outputs with human eye movements
in both first and repeated reading. Our analysis
examines the overall similarity of the scanpaths,
which we expect to be greater in first reading, as
well as the direction of the deviations. A necessary
condition for E-Z Reader outputs to be effective as
approximations of first reading behavior, is that on
average, they should be more similar to human first
reading than to human repeated reading.

Measure First Reading Repeated Reading

Fixation Count +0.03±0.01 −0.31±0.01

Mean TF (ms) +27±2.3 −29±1.7

Regression Rate +0.2±0.003 +0.1±0.002

Skip Rate +0.2±0.003 +0.3±0.003

Table 1: Trial-level mean differences between human
first/repeated reading and E-Z Reader-generated mea-
sures for four standard eye movement measures, with
95% confidence intervals.

Table 1 suggests that this indeed tends to be
the case. It presents four measures for which ro-

19464



bust differences between first and repeated read-
ing were previously observed (Meiri and Berzak,
2024). Using mixed-effects models with text-level
bootstrapping (see Appendix C.2), we compared
the absolute differences of E-Z Reader from first
and repeated reading. For Fixation Count and Skip
Rate, E-Z Reader is significantly closer to first read-
ing (p < 0.001), whereas Regression Rate is signif-
icantly closer to repeated reading (p < 0.001). Al-
though mean Total Fixation Duration (TF) does not
show a significant difference (p ≈ 0.53), the direc-
tion of the difference favors first reading. Overall,
these findings support the viability of E-Z Reader
as an approximation of human first reading scan-
path trajectories.

E-Z Reader is a probabilistic model that sam-
ples scanpaths for a given text. We generate 1000
synthetic scanpaths for each paragraph, and then
augment the human eye movement data with refer-
ence features derived from these first reading sim-
ulated scanpaths. To obtain global and word-level
representations, we first average measures across
all the generated scanpaths. The averaging aims to
enhance the robustness of the representations by re-
ducing noise inherent to a single scanpath. For the
fixation-level representation, averaging scanpaths
is not applicable, and we therefore follow Mézière
et al. (2024) in selecting a prototype scanpath that
minimizes the mean scanpath distance to all other
scanpaths, using the Scasim scanpath similarity
metric (Von der Malsburg and Vasishth, 2011).

5.3 Paired Trials Modeling

In the paired trials task, we use the same feature
representation as in the single trial task with ma-
chine generated scanpaths described above, only
that now both eye movement samples are from a
human participant. We shuffle the order of the two
inputs such that it is randomized, and the output of
the model is the probability of the repeated read-
ing trial being second in order. Further, differently
from the single-augmented setting, here the third
special token in RoBERTEye marks the second
human input.

5.4 Baselines

• Majority Class: the most frequent class in the
training set. As our data is balanced, this baseline
is equivalent to a random choice.

• Reading Speed: the number of words read per
second. Note that when the text is available, this

measure can be calculated from the total reading
time of the trial, and therefore does not require
eye tracking. Prior work has consistently shown
that reading is faster in repeated reading com-
pared to first reading (see Section 2). We there-
fore expect this to be a strong baseline. Crucially,
it enables determining the added value of eye
tracking information for our decoding tasks.

6 Experimental Setup

Evaluation Regimes

We use 10-fold cross validation with three evalua-
tion regimes:

• New Participant eye movement data is avail-
able for the given paragraph, but no prior eye
movement data was collected for the participant.

• New Item prior eye movement data is available
for the participant, but not for the paragraph.

• New Participant and Item no prior data is avail-
able for the participant nor for the paragraph.

• All the union of the above three regimes.

Data Splits

To allow complete matching of participants across
the first and repeated reading of each article, out
of the 10 articles read by each participant during
first reading, we use only the 2 articles that were
read twice. Further, we leverage the counterbal-
ancing properties of OneStop to obtain data splits
that fulfill the following properties: 1) the three test
regimes are balanced in number of participants 2)
the three validation regimes are balanced to the ex-
tent possible in number of participants 3) there is an
equal number of consecutive and non-consecutive
repeated readings in each portion of the split.

We define a constrained combinatorial problem
that has an algorithmic solution that satisfies these
constraints. We provide further details on the so-
lution in Appendix D. All resulting splits satisfy
that the training set has 264 participant-article pairs,
the validation set has 48 pairs, and the test set has
54 pairs, where each test regime has exactly 18
pairs, all balanced with respect to consecutive and
non-consecutive repeated reading. In Figure 3 we
present an example of one split.
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Figure 3: Visualization of a 10-article, 60-participant data split, divided into train, validation, and three test regimes.
Each non-empty cell represents a participant-article pair, comprising the first and repeated readings of an article by
the same participant. ‘⚮’ denotes consecutive repeated reading and ‘⚯’ denotes non-consecutive repeated reading
(i.e. with intervening articles between the first and second readings).

Model Training and Selection
We perform hyperparameter optimization and
model selection separately for each split. We
assume that at test time, the evaluation regime
of the trial is unknown. Model selection is
therefore based on the entire validation set of
the split. All neural network-based models
were trained using the PyTorch Lighting library
(Falcon and The PyTorch Lightning team, 2024).
Further details on the training procedure, including
the full hyperparameter search space for all models
are provided in Appendices E and F.

7 Results

Below, we summarize our main experimental find-
ings for both the paired and single-trial variants of
the task. Table 2 presents the quantitative results
on classification accuracy.

Single Trial In this task all models outperform
the reading speed baseline, demonstrating the
added value of eye movement information. The
highest All Accuracy of 70.2 is achieved with the
XGBoost model augmented with E-Z Reader Scan-
paths. However, it does not outperform the other
models statistically, and different models come first
on different evaluations, again, with no statisti-
cally significant differences from the other models.
Within each model, performance is relatively stable
across the three evaluation regimes.

Single Trial with Synthetic References While
the best performing model in the ‘All’ evaluation
regime includes a synthetic scanpath augmentation,
the gains over the non-augmented model counter-
parts are not statistically significant and not consis-
tent within models and evaluation regimes.

Paired Trials In the paired trials setup, the
model’s output is an ordering of two trials. To

make the evaluation of these predictions compara-
ble to the single-trial task, we “unaggregate” the
model’s predictions so that predicting the correct
order counts as two correct single-trial classifica-
tions (and vice versa for an incorrect prediction).
The reading speed baseline achieves a high All Ac-
curacy of 87.7. While the neural models exhibit
baseline-level results, XGBoost substantially out-
performs the baseline and the neural models in all
the evaluation regimes, reaching an overall Accu-
racy of 91.2.

In Appendix G we present validation and test re-
sults for three complementary evaluation measures:
Precision, Recall, and F1. Across all three mea-
sures and evaluation regimes, the best-performing
model in the single trial evaluations tends to be one
of the E-Z Reader augmented models.

8 Fine-Grained Analysis of Model
Performance

The controlled experimental design of OneStop en-
ables going beyond aggregated model performance
evaluation metrics and analyzing model behavior
as a function of trial characteristics. Prior work
with OneStop observed that individual eye move-
ment measures in first and repeated reading vary
systematically across different item and participant
characteristics (Meiri and Berzak, 2024). Here, we
analyze this variability through model classification
performance. This enables a detailed characteriza-
tion of model behavior across data characteristics,
and further leverages models as analytic tools for
data analysis.

We focus on the more challenging single trial
task, and analyze the assigned probabilities and
prediction accuracy of the best performing model,
XGBoost augmented with E-Z Reader scanpaths.
Figure 4 presents the mean probability assigned
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Task
Variant Model Eye Movements

Input
New Item

Seen Participant
New Participant

Seen Item
New Item &
Participant All

Single
Trial

Majority Class - 50.0|±0.0 50.0|±0.0 50.0|±0.0 50.0|±0.0 -

Reading Speed
EW,r

S 66.9±2.0 67.1±2.1 66.8±2.1 66.9±1.2 -

EW,1
EZ , EW,r

S 67.3±2.2 67.3±2.0 66.5±2.1 67.1±1.2 n.s

XGBoost
EW,r

S 69.5±2.0 70.7±2.0 68.7±2.0 69.6±1.2 ***

EW,1
EZ , EW,r

S 70.1±2.1 71.2±1.9 69.3±2.0 70.2±1.2 ***

RoBERTEye-Fixations
EW,r

S 70.7±2.1 69.4±2.0 70.3±2.0 70.1±1.1 **

EW,1
EZ , EW,r

S 69.9±2.0 71.2±2.0 69.4±2.1 70.1±1.2 ***

RoBERTEye-Words
EW,r

S 69.1±2.0 71.0±2.0 69.0±2.1 69.7±1.2 *

EW,1
EZ , EW,r

S 70.0±2.0 70.4±2.1 70.0±2.1 70.1±1.2 ***

Paired
Trials

Majority Class - 50.0|±0.0 50.0|±0.0 50.0|±0.0 50.0|±0.0 -

Reading Speed

EW,r
S , EW,r′

S

88.0±2.0 88.1±2.1 87.2±2.1 87.7±1.2 -

XGBoost 91.5±1.7 92.2±1.7 90.5±1.8 91.2±1.0 ***

RoBERTEye-Fixations 88.8±1.9 87.5±2.0 87.3±2.2 87.9±1.2 n.s

RoBERTEye-Words 90.1±1.8 89.9±1.9 89.9±1.5 89.5±1.1 **

Table 2: Test accuracy aggregated across 10 cross-validation splits, with 95% confidence intervals. EW,r
S and EW,1

EZ

are human and E-Z Reader-synthesized eye movements respectively. Differences in performance across models are
tested using a linear mixed effects model. In R notation: is_correct ∼ model+(model | participant)+(model |
paragraph). Significant gains over the reading speed baseline in the All regime are marked with ‘*’ p < 0.05, ‘**’
p < 0.01 and ‘***’ p < 0.001. Within each task and evaluation regime, the best-performing model is in bold.
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Figure 4: Analysis of the E-Z Reader-augmented XG-
Boost model’s behavior as a function of item position
in the experiment. Depicted are mean probability as-
signment for repeated reading (RR) (top) and mean
classification accuracy (bottom) with 95% confidence
intervals. (a) First and repeated reading as a function of
article position in the experiment. (b) Repeated reading
as a function of the article position in the first reading.
Dashed lines are predictions obtained from linear mixed-
effects models3.

to trials being a repeated reading trial (top) and
the mean probability of classifying trials correctly
(bottom) as a function of the position of the article
in the experiment, see Figure 2.

In first reading trials (blue) in Figure 4 (a), as
the experiment progresses, the model exhibits de-
creasing confidence in classifying trials as first

reading (p < 10−8) and goes down in prediction
accuracy (p ≈ 0.001). This outcome mirrors a
decrease in reading times during first reading as
the experiment progresses observed in Meiri and
Berzak (2024). When adding reading speed as a
predictor in models that predict the probability as-
signments for repeated reading and accuracy3, we
find that for both the effect of position is no longer
significant (p ≈ 0.7 for probabilities and p ≈ 0.5
for accuracy). This suggests that the model heavily
relies on reading speed or correlates thereof. Con-
sequently, as reading speed increases during the
experimental session and comes closer to the read-
ing speed in repeated reading, the model becomes
worse at correctly classifying first reading items.

In repeated reading trials in Figure 4 (a), the
model assigns higher probabilities to consecutive
repeated readings compared to non-consecutive
ones (p ≈ 0.02). Accuracy is also numerically
lower compared to consecutive repeated readings,
but the difference is not significant (p ≈ 0.16).
These outcomes are again in line with the analy-
sis of Meiri and Berzak (2024) who found lower

3In R notation: outcome ∼ fixed_terms +
(fixed_terms|subject) + (fixed_terms|paragraph)
where outcome ∈ {P (RR = 1), P (Correct)}, and
fixed_terms ∈ {position, position+ reading_speed}.
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reading times and less skipping in non-consecutive
versus consecutive reading. Taken together with
these results, our analysis strengthens Meiri and
Berzak (2024) interpretation that reading facilita-
tion is greater in consecutive reading, potentially
due to better memory retention of the first reading.

In Figure 4 (b) we examine repeated reading
item probabilities and accuracy as a function of
the position of the first reading. Reflecting again
reading speed and other single measure analyses in
Meiri and Berzak (2024), we find no evidence for
a better model’s classification accuracy with fewer
articles between the two readings (p ≈ 0.16). How-
ever, we do find an effect in model probabilities
for repeated reading which increases with article
position (p ≈ 0.03), hinting at a favorable effect
of the recency of the first reading. This suggests
that model performance analysis can unveil more
fine grained data patterns than traditional analysis
of individual measures.

9 Conclusion and Discussion

Our study presents the first attempt to decode the
number of prior interactions of a reader with a text
from their eye movements. We demonstrate that it
is feasible to perform this task, with various degrees
of success depending on the difficulty of the task
variant. In addition, we propose and experiment
with a general method for leveraging synthetic or-
dinary reading data to improve predictive modeling
of non-ordinary reading. Overall, the results in-
dicate that there is an informative signal for the
presence or absence of a prior text interaction in
eye movements at the level of a single paragraph
and a single reader. This signal tends to be better
captured by feature-based models than by neural
language models. Our work extends prior litera-
ture on predictive modeling from eye movements in
reading, providing further evidence for the informa-
tiveness of eye movements regarding the reader’s
cognitive state during online language processing.

Our findings also open the door for practical,
user facing applications. For example, in education,
repeated reading is used as a pedagogical technique
during the acquisition of reading skills in children,
and a large body of work supports its effectiveness
in improving reading fluency (Meyer and Felton,
1999; Faulkner and Levy, 1999; Teigen et al., 2001;
Kuhn, 2004; Ardoin et al., 2008, among others).
Varying levels of certainty in automatic identifica-
tion of prior exposure to a text could enhance ed-

ucational and e-learning platforms which involve
repeated reading by serving as an indicator of in-
formation uptake during the initial reading. It can
further facilitate special assistance to individuals
and populations that struggle with reading com-
prehension, which can potentially be diagnosed
via repeated reading. Another possible use case is
real-time content adaptation, where online content
delivery platforms, such as news outlets, could per-
sonalize recommendations by detecting a reader’s
familiarity with the current content and suggesting
novel material. While these examples are hypo-
thetical, they illustrate the broader potential for
reader–text interaction modeling to support user
goals in naturalistic reading environments.

In addition to practical applications, we believe
that the ability to predict repeated reading using
modern day machine learning models, and using
them as analysis tools for understanding reading
behavior during repeated reading will pave the way
to further scientific advances in psycholinguistics
and the psychology of reading. Such advances will
include more comprehensive accounts of reading
interactions in daily life, as well as new possibil-
ities for studying the similarities and differences
between human and machine language processing.

10 Limitations

Our work has a number of limitations that are re-
lated to the experimental design and the eye track-
ing data. Consecutive repeated reading occurs at
the level of a full article, such that there are mini-
mally 3 intervening paragraphs between two read-
ings of the same paragraph. This setup does not
address immediate repeated reading that involves
working memory. The maximal amount of inter-
vening material between two readings of the same
article is 10 articles, leaving out larger time in-
tervals between the readings. Repeated reading
always occurs after participants have already read
10 articles, and not at earlier stages of the exper-
iment, which limits the generality of the results.
The experiment is also restricted to two readings of
any given text, while in daily life the same text can
be read more than twice. Further, repeated read-
ing is always of the exact same text, leaving out
reading of texts that are similar but not identical in
content to previously read material. Finally, the un-
derlying texts are all newswire articles, and while
they include a wide range of topics, other textual
domains are not covered. We intend to collect data
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and investigate both shorter and longer repetition
intervals, repeated reading at earlier stages of the
experiment, repeated reading of paraphrased texts,
multiple repeated readings, as well as additional
textual domains in future work.

In the current work we use E-Z Reader for scan-
path augmentation. We use this model due to its
prominence in the psycholinguistic literature, as
a proof-of-concept for the viability of generating
first reading scanpaths for our task. However, there
are other cognitive models of scanpath generation,
such as SWIFT (Engbert et al., 2005), and in recent
years, neural-net based models of scanpath gen-
eration have been introduced (Deng et al., 2023;
Bolliger et al., 2025). In future work, we plan to ex-
amine the potential of such models for improving
generation quality and downstream classification
performance for our task.

An additional limitation is the experimental pro-
cedure, where reading occurs in-lab, and the pres-
ence of a reading comprehension question after
each paragraph. Both aspects can negatively af-
fect the ecological validity of the data and lead to
reading behavior that is not fully representative of
everyday life. Relatedly, while we use the term
ordinary reading to refer to reading for general text
comprehension, we acknowledge that this term,
and similar terms such as “normal reading”, are not
without faults (Huettig and Ferreira, 2022).

Further limitations concern the participants, the
experiment language and the equipment used. Al-
though OneStop (Berzak et al., 2025) is the first
public dataset that enables studying repeated read-
ing, it is restricted to adult L1 speakers, with no
cognitive impairments, and mostly with no eye con-
ditions. This pool of participants does not cover
multiple populations, including L2 speakers, chil-
dren, elderly, participants with cognitive and phys-
ical impairments and others. Moreover, the eye
tracking data and modeling work is restricted to
English. These factors limit the scope and the
generality of the results. Both data collection and
model development work is required to include ad-
ditional languages and populations. Finally, our
approach has currently only been tested using a
state-of-the-art eye tracker (Eyelink 1000 Plus) at
a sampling rate of 1000Hz. This eye tracker allows
extracting gaze position and duration at a very high
temporal resolution and character-level precision.
Such equipment is generally not available for end
users, limiting the application potential of the cur-
rent work. The feasibility of using lower spatial and

temporal resolution eye tracking systems, as well
as standard front-facing cameras on devices such
as laptops, tablets and phones should be examined
in future work.

11 Ethical Considerations

The eye tracking data used in our experiments
was collected under an institutional IRB protocol
(Berzak et al., 2025). All the participants pro-
vided written consent prior to taking part in the
eye tracking experiment and received monetary
compensation for their participation. The dataset is
anonymized. Analyses and modeling of eye move-
ments in repeated reading are among the main use
cases for which the data was collected.

As mentioned above, decoding of repeated read-
ing can be valuable in applications for monitor-
ing reading acquisition, reading comprehension
and retention of learned material. However, such
technologies also pose a potential for inaccurate
predictions and biases that may put various indi-
viduals and populations at a disadvantage. These
include L2 learners, participants with cognitive im-
pairments, participants with eye conditions and
others. Additional data collection, modeling and
analysis work for these groups is required before
considering the deployment of such technology.

Finally, it is important to consider the issues of
privacy and consent in the scope of eye tracking
technologies. It was previously shown that eye
movements contain information that can be used
for user identification (e.g. Bednarik et al., 2005;
Jäger et al., 2020). We do not perform user identifi-
cation in this study, and point out the importance
of not storing information that could enable par-
ticipant identification in future studies on repeated
reading and other reading regimes. We further
stress that future systems that perform prediction
of repeated reading are to be used only with ex-
plicit consent from potential users to have their eye
movements collected and analyzed for this purpose.

Acknowledgments

This work was supported by ISF grant 1499/22.

References
Seoyoung Ahn, Conor Kelton, Aruna Balasubramanian,

and Greg Zelinsky. 2020. Towards Predicting Read-
ing Comprehension From Gaze Behavior. In ACM
Symposium on Eye Tracking Research and Applica-

19469

https://doi.org/10.1145/3379156.3391335
https://doi.org/10.1145/3379156.3391335


tions, ETRA ’20 Short Papers, pages 1–5, New York,
NY, USA. Association for Computing Machinery.

Phillip M. Alday and Douglas Bates. 2025. Mixedmod-
els.jl.

Scott P Ardoin, Tanya L Eckert, and Carolyn AS Cole.
2008. Promoting generalization of reading: A com-
parison of two fluency-based interventions for im-
proving general education student’s oral reading rate.
Journal of Behavioral Education, 17:237–252.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
usinglme4. J. Stat. Softw., 67(1).

Roman Bednarik, Tomi Kinnunen, Andrei Mihaila, and
Pasi Fränti. 2005. Eye-movements as a biometric.
In Image Analysis: 14th Scandinavian Conference,
SCIA 2005, Joensuu, Finland, June 19-22, 2005. Pro-
ceedings 14, pages 780–789. Springer.

Yevgeni Berzak, Boris Katz, and Roger Levy. 2018. As-
sessing Language Proficiency from Eye Movements
in Reading. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1986–1996,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Yevgeni Berzak and Roger Levy. 2023. Eye move-
ment traces of linguistic knowledge in native and
non-native reading. Open Mind, 7:179–196.

Yevgeni Berzak, Jonathan Malmaud, and Roger Levy.
2020. STARC: Structured Annotations for Reading
Comprehension. Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Yevgeni Berzak, Jonathan Malmaud, Omer Shubi, Yoav
Meiri, Ella Lion, and Roger Levy. 2025. OneStop:
A 360-participant english eye tracking dataset with
different reading regimes. PsyArXiv preprint.

Yevgeni Berzak, Chie Nakamura, Suzanne Flynn, and
Boris Katz. 2017. Predicting Native Language from
Gaze. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 541–551, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Lena S. Bolliger, David Robert Reich, and Lena Ann
Jäger. 2025. Scandl 2.0: A generative model of eye
movements in reading synthesizing scanpaths and fix-
ation durations. Proceedings of the ACM on Human-
Computer Interaction, 9:1 – 29.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794.

Anthony Christopher Davison and David Victor Hinkley.
1997. Bootstrap methods and their application. 1.
Cambridge university press.

Shuwen Deng, David R Reich, Paul Prasse, Patrick
Haller, Tobias Scheffer, and Lena A Jäger. 2023. Eye-
ttention: An attention-based dual-sequence model for
predicting human scanpaths during reading. Proceed-
ings of the ACM on Human-Computer Interaction,
7(ETRA):1–24.

Steven Diamond and Stephen Boyd. 2016. CVXPY: A
Python-embedded modeling language for convex op-
timization. Journal of Machine Learning Research,
17(83):1–5.

Ralf Engbert, Antje Nuthmann, Eike M Richter, and
Reinhold Kliegl. 2005. SWIFT: a dynamical model
of saccade generation during reading. Psychological
review, 112(4):777.

William Falcon and The PyTorch Lightning team. 2024.
PyTorch Lightning.

Heather J Faulkner and Betty Ann Levy. 1999. Fluent
and nonfluent forms of transfer in reading: Words
and their message. Psychonomic Bulletin & Review,
6:111–116.

Tori E Foster, Scott P Ardoin, and Katherine S Binder.
2013. Underlying changes in repeated reading: An
eye movement study. School Psychology Review,
42(2):140–156.

H2O.ai. 2022. h2o: Python Interface for H2O. Python
package version 3.42.0.2.

John Hale. 2001. A probabilistic earley parser as a
psycholinguistic model. In Second meeting of the
north american chapter of the association for com-
putational linguistics.

Nora Hollenstein, Marius Tröndle, Martyna Plomecka,
Samuel Kiegeland, Yilmazcan Özyurt, Lena A Jäger,
and Nicolas Langer. 2023. The zuco benchmark
on cross-subject reading task classification with eeg
and eye-tracking data. Frontiers in Psychology,
13:1028824.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Falk Huettig and Fernanda Ferreira. 2022. The myth
of normal reading. Perspectives on Psychological
Science, page 17456916221127226.

Jukka Hyönä and Johanna K Kaakinen. 2019. Eye
movements during reading. Eye movement research:
An introduction to its scientific foundations and ap-
plications, pages 239–274.

Jukka Hyönä and Pekka Niemi. 1990. Eye movements
during repeated reading of a text. Acta psychologica,
73(3):259–280.

19470

https://doi.org/10.5281/zenodo.14838413
https://doi.org/10.5281/zenodo.14838413
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18653/v1/N18-1180
https://doi.org/10.18653/v1/N18-1180
https://doi.org/10.18653/v1/N18-1180
https://github.com/
https://github.com/
https://doi.org/10.18653/v1/P17-1050
https://doi.org/10.18653/v1/P17-1050
https://api.semanticscholar.org/CorpusID:278787525
https://api.semanticscholar.org/CorpusID:278787525
https://api.semanticscholar.org/CorpusID:278787525
https://doi.org/10.5281/zenodo.3530844
https://github.com/h2oai/h2o-3
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303


Lena A Jäger, Silvia Makowski, Paul Prasse, Sascha
Liehr, Maximilian Seidler, and Tobias Scheffer. 2020.
Deep eyedentification: Biometric identification using
micro-movements of the eye. In Machine Learn-
ing and Knowledge Discovery in Databases: Eu-
ropean Conference, ECML PKDD 2019, Würzburg,
Germany, September 16–20, 2019, Proceedings, Part
II, pages 299–314. Springer.

Melanie Kuhn. 2004. Helping students become accu-
rate, expressive readers: Fluency instruction for small
groups. The Reading Teacher, 58(4):338–344.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
Weight Decay Regularization. In International Con-
ference on Learning Representations.

Xiaochuan Ma, Yikang Liu, Roy Clariana, Chanyuan
Gu, and Ping Li. 2023. From eye movements to
scanpath networks: A method for studying individ-
ual differences in expository text reading. Behavior
research methods, 55(2):730–750.

Yoav Meiri and Yevgeni Berzak. 2024. Déjà vu: Eye
movements in repeated reading. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 46.

Marianne S Meyer and Rebecca H Felton. 1999. Re-
peated reading to enhance fluency: Old approaches
and new directions. Annals of dyslexia, 49:283–306.

Diane C Mézière, Lili Yu, Genevieve McArthur, Erik D
Reichle, and Titus von der Malsburg. 2024. Scan-
path regularity as an index of reading comprehension.
Scientific Studies of Reading, 28(1):79–100.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the Stability of Fine-tuning
BERT: Misconceptions, Explanations, and Strong
Baselines. ArXiv:2006.04884 [cs, stat].

Diane C. Mézière, Lili Yu, Erik D. Reichle, Titus von
der Malsburg, and Genevieve McArthur. 2023. Using
eye-tracking measures to predict reading comprehen-
sion. Reading Research Quarterly, 58(3):425–449.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock,
Ananya Harsh, Teddy Koker, Luca Di Liello, Daniel
Stancl, Changsheng Quan, Maxim Grechkin, and
William Falcon. 2022. TorchMetrics - Measuring
Reproducibility in PyTorch.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learn-
ing Research, 12(85):2825–2830.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Gary E Raney and Keith Rayner. 1995. Word frequency
effects and eye movements during two readings of
a text. Canadian Journal of Experimental Psychol-
ogy/Revue canadienne de psychologie expérimentale,
49(2):151.

Keith Rayner. 1998. Eye movements in reading and
information processing: 20 years of research. Psy-
chological bulletin, 124(3):372.

David Robert Reich, Paul Prasse, Chiara Tschirner,
Patrick Haller, Frank Goldhammer, and Lena A.
Jäger. 2022. Inferring Native and Non-Native Hu-
man Reading Comprehension and Subjective Text
Difficulty from Scanpaths in Reading. In 2022 Sym-
posium on Eye Tracking Research and Applications,
pages 1–8, Seattle WA USA. ACM.

Erik D. Reichle, Simon P. Liversedge, Denis Drieghe,
Hazel I. Blythe, Holly S.S.L. Joseph, Sarah J. White,
and Keith Rayner. 2013. Using E-Z Reader to ex-
amine the concurrent development of eye-movement
control and reading skill. Developmental Review,
33(2):110–149.

Erik D Reichle, Alexander Pollatsek, Donald L Fisher,
and Keith Rayner. 1998. Toward a model of eye
movement control in reading. Psychological review,
105(1):125.

Erik D Reichle, Keith Rayner, and Alexander Pollatsek.
2003. The ez reader model of eye-movement control
in reading: Comparisons to other models. Behavioral
and brain sciences, 26(4):445–476.

Erik D. Reichle, Andrew E. Reineberg, and Jonathan W.
Schooler. 2010. Eye movements during mindless
reading. Psychological Science, 21(9):1300–1310.
Publisher: SAGE PublicationsSage CA: Los Angeles,
CA.

19471

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2006.04884
http://arxiv.org/abs/2006.04884
http://arxiv.org/abs/2006.04884
https://doi.org/10.1002/rrq.498
https://doi.org/10.1002/rrq.498
https://doi.org/10.1002/rrq.498
https://doi.org/10.21105/joss.04101
https://doi.org/10.21105/joss.04101
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1145/3517031.3529639
https://doi.org/10.1145/3517031.3529639
https://doi.org/10.1145/3517031.3529639
https://doi.org/10.1016/j.dr.2013.03.001
https://doi.org/10.1016/j.dr.2013.03.001
https://doi.org/10.1016/j.dr.2013.03.001
https://doi.org/10.1177/0956797610378686
https://doi.org/10.1177/0956797610378686


Erik D Reichle, Tessa Warren, and Kerry McConnell.
2009. Using ez reader to model the effects of higher
level language processing on eye movements during
reading. Psychonomic bulletin & review, 16:1–21.

Hildur EH Schilling, Keith Rayner, and James I Chum-
bley. 1998. Comparing naming, lexical decision, and
eye fixation times: Word frequency effects and indi-
vidual differences. Memory & cognition, 26(6):1270–
1281.

Brian S Schnitzer and Eileen Kowler. 2006. Eye move-
ments during multiple readings of the same text. Vi-
sion research, 46(10):1611–1632.

Elizabeth R Schotter and Brian Dillon. 2025. A be-
ginner’s guide to eye tracking for psycholinguistic
studies of reading. Behavior Research Methods,
57(2):68.

Skipper Seabold and Josef Perktold. 2010. statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Omer Shubi and Yevgeni Berzak. 2023. Eye movements
in information-seeking reading. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 45.

Omer Shubi, Cfir Avraham Hadar, and Yevgeni Berzak.
2024a. Decoding reading goals from eye movements.
arXiv preprint arXiv:2410.20779.

Omer Shubi, Yoav Meiri, Cfir Avraham Hadar, and Yev-
geni Berzak. 2024b. Fine-grained prediction of read-
ing comprehension from eye movements. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 3372–3391,
Miami, Florida, USA. Association for Computational
Linguistics.

Lina Skerath, Paulina Toborek, Anita Zielińska, Maria
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A Word and Fixation Level Features

This section describes the features that constitute
both eword and efix in human and generated trials.
The full lists of eye movement features at both word
and fixation levels appear in Table 3. Additionally,
the linguistic word properties that, together with
word-level eye movement features, constitute eword

are listed in Table 4.
Here we provide definitions for the standard eye

movement measures presented in Section 5.1 that
are averaged per-word:

Total Fixation Duration (TFD) The total dura-
tion of fixations on a word.

Number of Fixations The total number of fixa-
tions on a word.

Gaze Duration (GD) The total duration of all
fixations on a word from the first time entering it to
the first time exiting it. See Appendix C for details
on GD implementation in E-Z Reader.

First Fixation Duration (FFD) The duration of
the first fixation on a word.

Regression Rate The proportion of saccades per
word that move regressively (backwards).

B Trial Level Feature Sets

For all tasks, we computed all features for each
trial independently of other trials.

In all feature-based models, we address the
strong co-linearity observed among several features
by applying Principal Component Analysis (PCA).
A PCA model is fit on the training set, and the train-
ing, validation, and test features are transformed
using the trained PCA. The number of PCA com-
ponents is determined as the minimum required to
maintain a specified fraction of explained variance.
This fraction is optimized during hyperparameter
tuning (see Appendix E for the search space we
use).

In addition to the per-word averaged standard
eye movement features listed in the previous sec-
tion, we also computed additional measures for
each trial:

• Skip Rate the proportion of skipped words
in a trial (i.e., the fraction of words where
total_skip = 1; see Table 3).

• Reading Speed the total reading time of
the paragraph divided by the number of

words in the paragraph. Implemented as
PARAGRAPH_RT / Paragraph Length; see Ta-
ble 3.

• num_of_words_with_TFD_GD_diff: This is
the proportion of fixated words for which TFD
> GD, indicating refixations on a word after
the first pass.

• mean_without_first_run_dwell_time:
For words fixated more than once (including
first pass only), this feature represents the
average extra fixation duration per additional
fixation (i.e., TFD minus GD, divided by the
number of additional fixations). If no word is
fixated more than once, the value is set to 0.

B.1 Word Property Coefficients
The formula for the linear model is:

Measure ∼ 1 + Surp+ Freq + Length+

Freq : Length+ normalized_word_index

For each trial, we fit a linear model using
the OLS function from the Statsmodels library
(Seabold and Perktold, 2010). Before fitting the
model, we normalize all measures. In order to
maintain the assumptions of the linear model, we
exclude zero values for the measures TFD, FFD,
GD (their original distribution is normally-shaped
with a point mass at zero due to the high num-
ber of skips). Surprisal (Hale, 2001; Levy, 2008)
is defined as − log2(p(word|context)) for each
word given the preceding textual content of the tex-
tual item as context, probabilities extracted from
the GPT-2-small language model (Radford et al.,
2019; Wolf et al., 2020). Frequency is based on
the Wordfreq package (Speer, 2022), formulated as
log2(p(word)). Length is defined by the number
of characters, ignoring punctuation. We also in-
clude normalized_word_index following the re-
sults presented in (Shubi and Berzak, 2023), which
show general decrease in reading times for later
words within each paragraph in OneStop.

B.2 Saccade Network Measures
As described in Section 5.1, we define the directed
graph G = {V, T} such that V is the set of words
in W , and for all u, v ∈ V :

T = {(u, v) : there is a saccade from u to v}

A visualization example of two such networks
appears in Figure 5.
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Feature Name Description

Word-Level Eye Movement Features

IA_DWELL_TIME (TFD) The sum of the duration across all fixations that fell in the current interest area

IA_DWELL_TIME_% Percentage of trial time spent on the current interest area (IA_DWELL_TIME / PARAGRAPH_RT).

IA_FIXATION_COUNT Total number of fixations falling in the interest area.

IA_REGRESSION_IN_COUNT (Regression Rate) Number of times interest area was entered from a higher IA_ID (from the right in English).

IA_REGRESSION_OUT_FULL_COUNT Number of times interest area was exited to a lower IA_ID (to the left in English).

IA_FIRST_FIX_PROGRESSIVE Checks whether the first fixation in the interest area is a first-pass fixation.

IA_FIRST_FIXATION_DURATION (FFD) Duration of the first fixation event that was within the current interest area

IA_FIRST_RUN_DWELL_TIME (GD) Dwell time of the first run (i.e., the sum of the duration of all fixations in the first run of fixations within the current interest area).

IA_TOP Y coordinate of the top of the interest area.

IA_LEFT X coordinate of the left-most part of the interest area.

normalized_Word_ID Position in the paragraph of the word interest area, normalized from zero to one.

IA_REGRESSION_OUT_COUNT Number of times interest area was exited to a lower IA_ID (to the left in English) before a higher IA_ID was fixated in the trial.

PARAGRAPH_RT Reading time of the entire paragraph.

total_skip Binary indicator whether the word was fixated on.

Fixation-level Eye Movement Features

CURRENT_FIX_INDEX The position of the current fixation in the trial.

CURRENT_FIX_DURATION Duration of the current fixation.

CURRENT_FIX_X X coordinate of the current fixation.

CURRENT_FIX_Y Y coordinate of the current fixation.

CURRENT_FIX_INTEREST_AREA_INDEX The word index (IA_ID) on which the current fixation occurred.

NEXT_FIX_INTEREST_AREA_INDEX The word index (IA_ID) on which the next fixation occurred.

Table 3: Word-level and fixation-level eye movement features, defined and extracted by SR Data Viewer.

Feature Name Description

Surprisal
(Hale, 2001; Levy, 2008), formulated as − log2(p(word|context)) for each word given the preceding textual content of the
paragraph as context, probabilities extracted from the GPT-2-small language model (Radford et al., 2019; Wolf et al., 2020).

Wordfreq_Frequency Frequency of the word based on the Wordfreq package (Speer, 2022), formulated as − log2(p(word)).

Length Length of the word in characters.

start_of_line Binary indicator of whether the word appeared at the beginning of a line.

end_of_line Binary indicator of whether the word appeared at the end of a line.

Is_Content_Word
Binary indicator of whether the word is a content word.
A content word is defined as a word that has a part-of-speech tag of either PROPN, NOUN, VERB, ADV, or ADJ.

n_Lefts The number of leftward immediate children of the word in the syntactic dependency parse.

n_Rights The number of rightward immediate children of the word in the syntactic dependency parse.

Distance2Head The number of words to the syntactic head of the word.

Table 4: Linguistic word properties and their descriptions. POS tags and parse trees were obtained using SpaCy
(Honnibal et al., 2020).

The following measures are computed for each
saccade network instance:

1. Average Degree:

Avg Degree =

∑
v∈V deg(v)

|V |
where deg(v) is the degree of vertex v, and
|V | is the number of vertices in G.

2. Density:

Density =
2|T |

|V |(|V | − 1)

for an undirected graph G, where |T | is the
number of edges in G.

3. Average Clustering Coefficient:

Avg CC =
1

|V |
∑

v∈V
C(v)

where C(v) is the clustering coefficient of
vertex v, defined as the fraction of pairs of
neighbors of v that are connected.
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Repeated Reading Saccade Network

Figure 5: Visualization of two Saccade Networks as defined in Section 5.1. Circles represent words and arcs
represent saccades between words. Different colors indicate different sentences within the paragraph. The top
network represents the first reading, while the bottom network corresponds to the repeated reading of the same
paragraph by the same participant.

4. Average Betweenness Centrality:

Avg Betweenness =
1

|V |
∑

v∈V
b(v)

where b(v) is the betweenness centrality of
vertex v, defined as the fraction of shortest
paths in G that pass through v.

5. Average Closeness Centrality:

Avg Closeness =
1

|V |
∑

v∈V
c(v)

where c(v) is the closeness centrality of vertex
v, defined as the reciprocal of the average
shortest path length from v to all other vertices
in G.

6. Transitivity:

Transitivity =
3× number of triangles

number of connected triplets

where a triangle is a set of three mutually con-
nected vertices, and a triplet is a set of three
vertices where at least two are connected.

7. Number of Bridges:

num_bridges = |{e ∈ T | G \ {e}
has more connected components than G}|

where a bridge is an edge whose removal in-
creases the number of connected components
in G.

C Scanpath Generation

For eye movement data generation we use E-Z
Reader 10.4 (Veldre et al., 2023) with the default
parameters estimated from (Schilling et al., 1998):

A = 25.0, α1 = 124.0, α2 = 11.1,

α3 = 76.0, δ = 1.68, ϵ1 = 0.1,

ϵ2 = 0.5, ϵ3 = 1.0, η1 = 0.5, ξ = 0.5

η2 = 0.1, I = 50.0, λ = 0.25,

M1 = 150.0, M2 = 25.0, ω1 = 6.0,

ω2 = 3.0, pF = 0.01, ψ = 7.0,

S = 25.0, σγ = 20.0, V = 60.0

Parameter definitions appear in (Reichle et al.,
2013). We set the includeRegressionTrials pa-
rameter to True to allow inter-word regressions.
Out of the 1000 generated scanpaths per text, we
choose the prototype scanpath to be the one which
minimizes the mean Scasim (Von der Malsburg and
Vasishth, 2011) distance to all other scanpaths. We
use Scasim with the following formula

CURRENT_FIX_DURATION ∼ CURRENT_FIX_X

+ CURRENT_FIX_Y

with the parameters center_x=1280,
center_y=720, distance=77, unit_size=1/60
and normalize=False because all scanpaths
correspond to the same text and model parameters.
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C.1 Modifications in Word and Fixation Level
Features

For each text, we compute the same set of word-
and fixation-level features used in human trials, as
detailed in Appendix A. Here, we highlight differ-
ences in feature definitions between human trials
and those generated by the E-Z Reader model.

In OneStop, each trial corresponds to a single
reading of a textual item by one subject. As a
result, the word-level measures for a trial are ex-
tracted from a single scanpath. In contrast, the E-Z
Reader model derives its word-level measures by
aggregating scanpaths from 1000 statistical sub-
jects. This aggregation introduces several differ-
ences compared to human-derived features:

• IA_SKIP:
In human trials (see Table 3), IA_SKIP is bi-
nary, indicating whether a word was skipped.
In E-Z Reader trials, however, this variable
takes on a continuous value between 0 and 1,
representing the proportion of statistical sub-
jects who skipped the word.

• Reading Time Measures for Skipped
Words:
For human data, skipped words (i.e., those
with total_skip = 1) are assigned a value
of zero for all reading-time features (e.g., TF,
GD, FFD). In the E-Z Reader model, reading-
time measures are summed over all statistical
subjects and then normalized by the number of
subjects who fixated the word. Consequently,
these measures reflect only the fixation cases.
To address this discrepancy, we excluded non-
fixated words from human trials in the analy-
sis presented in Table 1 and from the trial-level
feature extraction used in the feature-based
models.

• PARAGRAPH_RT and IA_DWELL_TIME_%:
For E-Z Reader trials, these measures
were computed using an "expected
IA_DWELL_TIME," which is calculated
as

IA_DWELL_TIME× (1− total_skip) .

This adjustment ensures that the measures
account for the proportion of fixated versus
skipped words.

Gaze Duration (GD) We retain the original im-
plementation of GD, which differs from the version
provided in SR Data Viewer. In E-Z Reader, GD is
computed at the word level as:

GD(w) =

∑
SFP

First run dwell time
|S|

Where S represents the subset of statistical subjects
who fixated on word w, and SFP represents the
subset of statistical subjects who fixated on word
w during first pass. This formulation can result in
GD being smaller than FFD in some cases.

Fixation Location on Screen For human trials,
the features CURRENT_FIX_X and CURRENT_FIX_Y
specify the coordinates of each fixation on the
screen. As E-Z Reader is inherently incapable of
providing such features, we approximate them by
using the center of each word.

C.2 Synthetic Data Analysis
For the comparison between human and E-Z
Reader generated trials, presented in Table 1, we
use the same set of trial pairs as in model training
(both first reading and repeated reading). For each
human trial, we first extract all measures listed in
Table 1, yielding a single value per measure type
and human trial (in total: 4 measures × (1944 ×
2) trials). To obtain the values presented in Ta-
ble 1, for each combination of eye movement mea-
sure and comparison type (either First Reading ver-
sus E-Z Reader or Repeated Reading versus E-Z
Reader) we fit a linear mixed model formulated as
measure_diff ∼ 1 + (1|text), and extract the
mean and standard error of the intercept.

For comparing the absolute differences between
first or repeated reading and E-Z Reader, we apply
the following procedure:

1. Modeling: For each measure (Fixation Count,
Mean TFD, Regression Rate, and Skip Rate),
we fit a mixed-effects model:

measure_diff ∼ comparison_type+ (1 | text_id)

where comparison_type is a binary indicator
being 1 for first reading minus E-Z Reader dif-
ferences and 0 for repeated reading minus E-Z
Reader differences.

2. Test Statistic: We define

d = |βFR−EZ | − |βFR−EZ + βRR−EZ |,
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Figure 6: This visualization displays histograms representing the trial-level differences between human trials and
the corresponding E-Z Reader synthesized trials. The arrangement of histograms mirrors the transposed rows and
columns of Table 1. In each histogram, the top left corner shows the mean and standard deviation of the values.

where βFR−EZ is the intercept (first reading)
and βFR−EZ + βRR−EZ is the mean for E-Z
Reader vs. repeated reading differences.

3. Bootstrapping: We perform 1000 text-level
bootstrap iterations (sampling with replacement)
to derive the sampling distribution of d and com-
pute one-sided p-values for all measures other
than Mean TFD (for which we compute two-
sided).

In addition, in Figure 6, we provide histograms that
illustrate the distribution of trial-level differences
for each measure.

D Cross-Validation and
Participant-to-Article Assignment

For our cross-validation procedure, we split the
data separately for each combination of article
batch (1–3) and reading regime (information-
seeking, ordinary reading). Each such combination
consists of 10 articles and 60 participants, result-
ing in 60 “article-participant” pairs including both
first and repeated reading version of each aritlce-
participant pair.

Data Splitting Rationale. Our data splitting is
derived from an assignment of 6 participants to
each article (for a total of 60 participants). This
assignment must satisfy the following:

1. All 6 participants assigned to article i have
reread it (repeated reading).

2. Of these 6 participants, exactly half (3) per-
formed consecutive rereading and the other
half performed nonconsecutive rereading.

3. All 6 participants assigned to article i have
read different other articles in the repeated
reading.

Section D.1 below details the algorithmic proce-
dure used to achieve this participant-to-article as-
signment.

Illustration of the Splits. Figure 3 illustrates one
of the cross-validation folds for a single combina-
tion of article batch and reading regime (60 par-
ticipants out of the 180). Participants are grouped
by columns (from 6 · (i− 1) to 6 · i) according to
the article to which they are assigned. Each table
entry corresponds to the first and repeated readings
of article i by participant j. Since each participant
reads exactly two articles in repeated reading, each
column has exactly two non-empty entries (one for
consecutive and one for nonconsecutive repeated
reading).

To create the data splits for the i-th fold, we
select article (10 − i) and its corresponding par-
ticipants as the unseen item and participants for
the validation split, and (10 + 1− i) as the unseen
item and participants for the test split. Figure 3
demonstrates this process for fold 1.

Balanced Evaluation Regimes. Thanks to the
properties of our participant-to-article assignment,
we ensure:

1. Balanced evaluation regimes for validation
and test sets. For each set, we balance “new
item,” “new participant,” and “new item &
participant” splits. Specifically, in the test
set, each regime has 6 “article readings.” In
the validation set, the new item and new par-

19477



ticipant splits have 5 “article readings” each,
while the new item & participant split has 6.

2. Balanced rereading conditions. In the test
split, all evaluation regimes are further bal-
anced with respect to consecutive and non-
consecutive repeated reading (3 of each per
regime).

D.1 Participant-to-Article Assignment
Algorithm

To assign participants to articles under the con-
straints described above, we used cvxpy (Diamond
and Boyd, 2016) to solve the optimization prob-
lem detailed in Algorithm 1. This procedure is ap-
plied independently for each combination of article
batch (3 batches) and reading regime (information-
seeking, ordinary reading). For each combination,
we extract matrices P and Q as defined in Algo-
rithm 1, then solve to obtain a feasible assignment
of participants to articles.

The optimization problem includes several key
constraints to ensure the assignment is valid and
meets the desired balance:

• Constraint 1: Each participant is assigned to
exactly one article.

• Constraints 2 and 3: Guarantee that:

1. Exactly 6 participants are assigned to
each article.

2. All 6 assigned participants had reread
that article.

3. Among them, half had read it in a con-
secutive rereading and half in a noncon-
secutive rereading.

These constraints explain the “diagonal” struc-
ture in Figure 3 and the distribution of sym-
bols ’⚮’ and ’⚯’ within each diagonal cell.

• Constraint 4: Among participants assigned
to article i, at most one participant has reread
any other article. This maximizes the cover-
age of articles in the unseen participant regime
and ensures exactly 5 different participants in
the unseen participant regime for the valida-
tion split.

This assignment directly underlies the cross-
validation splits described earlier in this appendix
(see Figure 3).

E Hyperparameter Tuning

We apply standardization for each feature in both
word and fixation level representations. Mean and
standard deviation are computed on the train set and
applied to the validation and test sets, separately
for each split. Feature normalization is performed
using Scikit-learn (Pedregosa et al., 2011).

For all the neural models, we use the AdamW
optimizer (Loshchilov and Hutter, 2018) with
a batch size of 16, a linear warmup ratio of
0.1, and a weight decay of 0.1, following best
practice recommendations from Liu et al. (2019)
and Mosbach et al. (2021). In most RoBERT-
Eye models, The search space for learning rates
is {0.00001, 0.00003, 0.0001} and for dropout
{0.1, 0.3, 0.5}. To address convergence and over-
fitting issues in the RoBERTEye-fixation models,
both for the paired-trials task variant and the aug-
mented single-trial task variant, we search over
learning rates of 0.0001, 0.001, 0.003 and set the
weight decay parameter to 10−5. For RoBERT-
Eye models, we allow the backbone RoBERTa
weights to either be frozen or trainable. For all
XGBoost based models, we searched over learning
rate ∈ {0.3, 0.01, 0.001}, number of estimators ∈
{10, 100, 1000}, maximal tree depth ∈ {4, 6, 10}
and a regularization parameter α ∈ {0, 0.1, 1, 10}.
The XGBoost search space is a subset of the default
search space used in (H2O.ai, 2022) and includes
the default hyperparameters implemented in (Chen
and Guestrin, 2016). In addition, in all feature
based models we optimize the lower bound of the
fraction of explained variance after a PCA transfor-
mation which constrains the number of components
taken ∈ {0.8, 0.9, 1}.

F Hardware and Software

All neural networks are trained using the Pytorch
Lighting library (Falcon and The PyTorch Light-
ning team, 2024; Paszke et al., 2019) and evalu-
ated using torch-metrics (Nicki Skafte Detlefsen
et al., 2022) on NVIDIA A100-40GB or compa-
rable GPUs. For RoBERTEye we adapt the code
from Shubi et al. (2024b).The baselines described
in Section 5.4 are reimplemented in this framework
as well. A single training epoch took approximately
3 minutes. We train for a maximum of 30 epochs,
stopping after 10 epochs without improvement on
the validation set. Due to convergence issues, based
on early experiments, we trained the E-Z Reader
augmented RoBERTEye-Fixations in the single
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Algorithm 1 Participant-to-articles assignment algorithm

Input: Parameters and variables:
• m: number of items (articles).
• n: number of participants.
• P ∈ {0, 1}m×n: Pi,j = 1 if participant j read article i in a consecutive repeated reading, 0

otherwise.
• Q ∈ {0, 1}m×n: Qi,j = 1 if participant j read article i in a nonconsecutive repeated reading, 0

otherwise.
Variable: B ∈ {0, 1}n×m

Objective: Minimize a constant (null optimization problem):

Minimize: 0

Constraints:

Constraint 1: ∀j ∈ [n] :
∑

i∈[m]

Bj,i = 1

Constraint 2: ∀i ∈ [m] : rowi(P ) · coli(B) = 3

Constraint 3: ∀i ∈ [m] : rowi(Q) · coli(B) = 3

Constraint 4: (P +Q) ·B − 6 · I ≤ 1

Output: Solve this constrained null optimization problem using cvxpy to obtain a feasible solution B
which satisfies all constraints. The assignment for each participant j ∈ [n] is then

assigned_article(j) = argmax(rowj(B)).

trial task variant for 50 epochs, with early stopping
after 15 epochs without improvements .

The number of trainable model parameters for
RoBERTEye is either between 2-3M parameters
(depending on RoBERTEye-Words or RoBERT-
Eye Fixations) when the backbone RoBERTa is
frozen, otherwise 355M.

The code base for this project was developed
with the assistance of GitHub Copilot, an AI-
powered coding assistant. All generated code was
carefully reviewed.

We utilized the lme4 package in R (Bates et al.,
2015) and the MixedModels package in Julia
(Alday and Bates, 2025) for fitting linear mixed-
models.

G Results

In this section, we present additional results for the
two task variations. Validation accuracy is reported
in Table 5, F1 scores for both validation and test
partitions are shown in Table 6, and Recall and
Precision for both validation and test partitions are
provided in Table 7. For all result tables, 95%

confidence intervals are standard normal bootstrap
confidence interval (Davison and Hinkley, 1997)
with B = 1000. In addition, when comparing
between models, we also experimented with adding
a random effect for the fold number, but the low
variance between folds prevented the model from
converging.
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Eval
Type

Task
Variant Model Eye Movements

Input
New Item

Seen Participant
New Participant

Seen Item
New Item &
Participant All

Validation

Paired
Trials

Reading Speed EW,r
S , EW,r′

S 87.7±2.3 88.8±2.2 87.1±2.1 87.9±1.3

Feature-Based EW,r
S , EW,r′

S 92.4±1.8 92.5±1.8 90.7±1.9 91.8±1.0

RoBERTEye Fixations EW,r
S , EW,r′

S 92.3±1.8 91.1±1.9 90.4±1.9 91.2±1.0

RoBERTEye Words EW,r
S , EW,r′

S 92.3±1.8 91.1±1.9 89.9±1.9 91.2±1.0

Single
Trial

Reading Speed
EW,r

S 66.7±2.2 66.8±2.2 66.5±2.2 66.7±1.3

EW,1
EZ , EW,r

S 67.7±2.2 66.9±2.2 66.0±2.1 66.8±1.3

Feature-Based
EW,r

S 71.1±2.2 71.4±2.1 69.8±2.1 70.7±1.3

EW,1
EZ , EW,r

S 71.1±2.2 70.1±2.2 69.4±2.1 70.1±1.2

RoBERTEye Fixations
EW,r

S 72.2±2.2 74.3±2.0 72.2±2.0 72.8±1.2

EW,1
EZ , EW,r

S 72.0±2.2 73.5±2.0 71.4±2.0 72.2±1.3

RoBERTEye Words
EW,r

S 72.7±2.1 72.0±2.2 70.9±2.0 71.8±1.2

EW,1
EZ , EW,r

S 73.3±2.1 74.3±2.1 72.0±2.0 73.1±1.2

Table 5: Validation accuracy results for the two variants of the first vs. second reading prediction task with
95% confidence intervals, aggregated across 10 cross-validation splits. EW,1

EZ denotes synthesized eye movements
generated using E-Z Reader (Reichle et al., 2003).
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Eval

Type

Task

Variant
Model Eye Movements Input

New Item

Seen Participant

New Participant

Seen Item

New Item &

Participant
All

Validation

Paired Trials

Reading Speed EW,r
S , EW,r′

S 87.9±2.4 88.5±2.3 87.3±2.2 87.9±1.3

Feature-Based EW,r
S , EW,r′

S 92.5±1.9 92.4±1.8 90.7±2.0 91.8±1.1

RoBERTEye Fixations EW,r
S , EW,r′

S 92.1±1.9 91.2±2.0 89.8±2.0 91.0±1.1

RoBERTEye Words EW,r
S , EW,r′

S 92.4±1.9 90.9±2.0 90.4±2.0 91.2±1.1

Single Trial

Reading Speed
EW,r

S 65.1±2.7 64.7±2.7 65.3±2.5 65.1±1.5

EW,1
EZ , EW,r

S 65.9±2.7 64.7±2.6 64.6±2.5 65.0±1.5

Feature-Based
EW,r

S 70.5±2.5 70.2±2.5 69.0±2.3 69.9±1.4

EW,1
EZ , EW,r

S 70.4±2.5 68.3±2.6 68.8±2.5 69.1±1.5

RoBERTEye Fixations
EW,r

S 71.6±2.5 72.8±2.4 71.5±2.4 72.0±1.4

EW,1
EZ , EW,r

S 71.9±2.5 73.6±2.2 71.4±2.3 72.2±1.4

RoBERTEye Words
EW,r

S 72.1±2.4 69.9±2.6 70.0±2.4 70.6±1.4

EW,1
EZ , EW,r

S 72.3±2.5 72.4±2.5 71.2±2.3 71.9±1.3

Test

Paired Trials

Reading Speed EW,r
S , EW,r′

S 87.8±2.2 87.9±2.2 87.2±2.1 87.6±1.3

Feature-Based EW,r
S , EW,r′

S 91.5±1.8 92.1±1.8 90.6±1.9 91.4±1.1

RoBERTEye Fixations EW,r
S , EW,r′

S 88.9±2.0 87.6±2.1 87.6±2.2 88.0±1.2

RoBERTEye Words EW,r
S , EW,r′

S 90.0±2.0 89.8±2.0 88.5±2.1 89.4±1.2

Single Trial

Reading Speed
EW,r

S 64.8±2.4 65.3±2.6 65.2±2.5 65.1±1.4

EW,1
EZ , EW,r

S 65.4±2.6 65.6±2.5 65.2±2.6 65.4±1.5

Feature-Based
EW,r

S 68.6±2.4 69.8±2.4 67.8±2.5 68.7±1.4

EW,1
EZ , EW,r

S 68.7±2.4 70.3±2.3 68.6±2.4 69.2±1.4

RoBERTEye Fixations
EW,r

S 69.7±2.4 68.2±2.5 69.5±2.3 69.0±1.4

EW,1
EZ , EW,r

S 70.0±2.3 71.1±2.3 70.2±2.4 70.4±1.4

RoBERTEye Words
EW,r

S 67.5±2.4 69.6±2.4 68.1±2.5 68.3±1.4

EW,1
EZ , EW,r

S 69.0±2.4 68.7±2.5 69.0±2.4 68.9±1.4

Table 6: F1 results for the two variants of the first vs. second reading prediction task with 95% confidence intervals,
aggregated across 10 cross-validation splits, and presented for both test and validation partitions. EW,1

EZ denotes
synthesized eye movements generated using E-Z Reader (Reichle et al., 2003).

19481



Eval Type Task Variant Model Eye Movements Input New Item Seen Participant New Participant Seen Item New Item & Participant All

Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Validation

Paired Trials

Reading Speed EW,r
S , EW,r′

S 87.1±3.2 88.7±3.1 89.0±3.1 88.1±3.2 87.5±2.9 87.2±2.9 87.8±1.8 88.0±1.7

XGBoost EW,r
S , EW,r′

S 92.0±2.7 93.1±2.4 91.2±2.7 93.7±2.3 92.1±2.5 89.5±2.8 91.8±1.5 91.9±1.5

RoBERTEye Fixations EW,r
S , EW,r′

S 90.7±2.7 93.5±2.5 90.6±2.8 91.8±2.6 88.6±2.7 91.1±2.5 89.9±1.6 92.1±1.5

RoBERTEye Words EW,r
S , EW,r′

S 92.0±2.6 92.9±2.5 91.0±2.7 90.8±2.7 92.2±2.4 88.6±2.8 91.7±1.5 90.6±1.6

Single Trial

Reading Speed
EW,r

S 68.5±3.3 62.0±3.2 69.2±3.3 60.8±3.2 67.7±3.1 63.0±3.0 68.4±1.9 62.0±1.9

EW,1
EZ , EW,r

S 69.9±3.2 62.4±3.3 69.2±3.3 60.7±3.2 67.4±3.0 62.0±3.1 68.7±1.9 61.7±1.8

XGBoost
EW,r

S 72.1±3.1 68.9±3.2 73.2±3.0 67.5±3.2 70.8±2.8 67.4±2.9 72.0±1.8 67.9±1.7

EW,1
EZ , EW,r

S 72.3±3.1 68.6±3.2 72.5±3.3 64.6±3.2 70.2±3.0 67.4±3.1 71.5±1.8 66.9±1.8

RoBERTEye Fixations
EW,r

S 73.0±3.2 70.3±3.1 77.1±3.0 69.1±3.1 73.4±2.9 69.7±3.0 74.4±1.7 69.7±1.7

EW,1
EZ , EW,r

S 72.2±3.1 71.7±3.0 73.1±2.9 74.1±2.9 71.4±2.8 71.5±2.9 72.2±1.7 72.3±1.7

RoBERTEye Words
EW,r

S 73.7±3.1 70.6±3.1 75.4±3.2 65.2±3.2 72.2±3.0 67.9±3.0 73.7±1.8 67.9±1.7

EW,1
EZ , EW,r

S 75.1±3.0 69.8±3.1 77.9±3.0 67.6±3.3 73.4±2.8 69.1±2.9 75.3±1.7 68.8±1.8

Test

Paired Trials

Reading Speed EW,r
S , EW,r′

S 88.4±2.9 87.2±3.0 88.3±2.9 87.6±3.0 88.4±2.8 86.1±3.0 88.3±1.7 86.9±1.8

XGBoost EW,r
S , EW,r′

S 90.5±2.6 92.5±2.3 91.4±2.5 93.0±2.3 91.9±2.4 89.3±2.7 91.2±1.5 91.6±1.5

RoBERTEye Fixations EW,r
S , EW,r′

S 87.2±3.0 90.6±2.6 85.8±3.0 89.4±2.8 87.3±2.9 88.1±2.8 86.7±1.7 89.4±1.6

RoBERTEye Words EW,r
S , EW,r′

S 89.7±2.7 90.4±2.6 90.0±2.7 89.6±2.8 88.5±2.0 87.1±3.0 89.9±1.5 89.0±1.6

Single Trial

Reading Speed
EW,r

S 69.2±2.9 60.9±3.1 69.1±3.0 61.9±3.1 68.4±3.1 62.4±3.2 68.9±1.8 61.7±1.7

EW,1
EZ , EW,r

S 69.4±3.2 61.8±3.1 69.4±3.1 62.2±2.9 68.0±3.1 62.6±3.1 68.9±1.8 62.2±1.8

XGBoost
EW,r

S 70.7±2.9 66.7±3.0 72.2±2.9 67.6±3.0 69.7±2.9 66.0±3.1 70.8±1.7 66.7±1.2

EW,1
EZ , EW,r

S 72.2±3.0 65.5±2.9 72.7±2.9 68.0±2.8 70.1±2.9 67.2±3.0 71.6±1.7 70.1±2.1

RoBERTEye Fixations
EW,r

S 72.2±3.0 67.4±3.0 71.1±3.1 65.5±3.0 71.4±3.0 67.6±2.9 71.5±1.7 66.8±1.7

EW,1
EZ , EW,r

S 69.8±3.0 70.4±2.8 71.5±2.9 70.6±2.8 68.5±2.9 71.9±2.9 69.8±1.7 71.0±1.7

RoBERTEye Words
EW,r

S 71.1±3.0 64.3±3.0 73.1±2.9 66.4±3.0 70.2±3.1 66.1±3.0 71.4±1.7 65.5±1.8

EW,1
EZ , EW,r

S 73.0±3.0 66.5±3.0 73.0±3.0 65.0±3.1 71.4±3.0 66.8±3.0 71.9±1.8 66.1±1.7

Table 7: Precision and Recall (repeated reading being positive and first reading being negative) results for the
two variants of the first vs. second reading prediction task with 95% confidence intervals, aggregated across
10 cross-validation splits, and presented for both test and validation partitions. EW,1

EZ denotes synthesized eye
movements generated using E-Z Reader (Reichle et al., 2003).
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