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Abstract

Reinforcement learning from human feedback
(RLHF) has emerged as the primary method
for aligning large language models (LLMs)
with human preferences. While it enables
LLMs to achieve human-level alignment, it
often incurs significant computational and fi-
nancial costs due to its reliance on training ex-
ternal reward models or human-labeled pref-
erences. In this work, we propose Implicit
Preference Optimization (IPO), an alterna-
tive approach that leverages generative LLMs
as preference classifiers, thereby reducing the
dependence on external human feedback or re-
ward models to obtain preferences. We con-
duct a comprehensive evaluation on the pref-
erence classification ability of LLMs using
RewardBench, assessing models across dif-
ferent sizes, architectures, and training lev-
els to validate our hypothesis. Furthermore,
we investigate the self-improvement capabili-
ties of LLMs by generating multiple responses
for a given instruction and employing the
model itself as a preference classifier for Direct
Preference Optimization (DPO)-based training.
Our findings demonstrate that models trained
through IPO achieve performance comparable
to those utilizing state-of-the-art reward models
for obtaining preferences. Our code is avail-
able at https://github.com/shivank21/
Implicit_Preference_Optimization.

1 Introduction

Large Language Models (LLMs) such as GPT4
(OpenAI et al., 2024), Gemini (Georgiev et al.,
2024), and Llama (Touvron et al., 2023) have be-
come highly popular due to their remarkable ca-
pabilities. These models often rely on two key
techniques: Reinforcement Learning from Human
Feedback (RLHF) and Inference Scaling. Reward
models are central to both approaches. In RLHF,
reward models act as proxies for human values,

0*Equal contribution.

providing feedback on generated text to align lan-
guage models during training (Christiano et al.,
2023; Ziegler et al., 2020). Similarly, in inference
scaling, reward models are used to select the best re-
sponse from a set of candidates based on predicted
rewards (Snell et al., 2024).

The training of reward models, however, re-
lies heavily on high-quality, human-generated data,
which is both costly and time-intensive. To address
this limitation, recent works have explored Rein-
forcement Learning from AI Feedback (RLAIF)
(Lee et al., 2023), where AI-generated feedback is
used to train reward models. This approach reduces
the dependency on human-annotated data but intro-
duces challenges, including heuristic assumptions
that LLMs can consistently provide high-quality
feedback and the requirement for larger LLMs to
generate such feedback (Pang et al., 2023).

Self-rewarding large language models (Yuan
et al., 2024) have emerged as a promising alterna-
tive for improving language model performance. In
this paradigm, a single model assumes dual roles:
as an actor, it generates responses to fulfill spe-
cific instructions, and as a judge, it evaluates these
responses using the LLM-as-a-Judge framework
(Zheng et al., 2023b) to assign rewards. However,
despite its potential, this approach has a fundamen-
tal limitation—the model undergoes fine-tuning to
improve its response generation but not its evalua-
tive capabilities. As a result, while it evolves as an
actor, its ability to judge remains static.

To address this limitation, Meta-Rewarding
Language Models (Wu et al., 2024a) extend
the model’s judging capabilities by explicitly
fine-tuning it for judging responses. Addition-
ally, approaches such as Self-Evolving Reward
Models (Huang et al., 2024b) introduce a data-
filtering pipeline that leverages high-quality model-
generated outputs to refine reward model training.
Nevertheless, a significant challenge with these
methods lies in their dependence on discrete re-
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Figure 1: Left: Preferences are evaluated using the (Prompt, Chosen, Rejected) triplets, where both the chosen
and rejected responses are scored based on the probability of the token "Yes" conditioned on the category specific
classification prompt. An evaluation is deemed correct if the Chosen response receives a higher score than the
Rejected one. Here, [PROMPT] denotes the category-specific prompt. Right: The proposed Self-Improving DPO
framework generates diverse candidate responses these responses are then evalauted using our scoring technique
and a preference dataset is constructed and subsequently the model is trained using Direct Preference Optimization
(DPO) on this constructed preference dataset.

ward signals or the necessity of external models
and datasets, which may introduce inefficiencies or
constraints in scalability.

We hypothesize that providing a preference mag-
nitude, rather than discrete prompt based feed-
back, enables more fine-grained evaluation of
model responses. Drawing inspiration from VQA
score (Lin et al., 2025), we introduce a probabilis-
tic framework for rewarding LLM-generated re-
sponses. This framework empowers even base mod-
els to assess and assign rewards to responses, effec-
tively allowing them to function as preference clas-
sifiers without relying on external reward models.
To the best of our knowledge, this is the first work
to infer preferences implicitly using this mecha-
nism. Compared to existing prompting-based pref-
erence strategies, which require large LLMs to act
as judges through explicit prompting, our approach
is more computationally efficient. It eliminates the
need for external supervision or additional train-
ing. Specifically, we propose Implicit Preference
Optimization (IPO), a novel framework that demon-
strates how any LLM can serve as an effective pref-
erence classifier and can use this ability to refine
its own output.

We conduct extensive experiments across multi-
ple model families, including Qwen, LLaMA, Mis-

tral, and GPT, encompassing various model sizes
and configurations (base and instruction-tuned).
Additionally, we evaluate our approach on math
and code-specific models to analyze their effective-
ness as preference classifiers. To rigorously assess
our hypothesis of LLM as a preference classifier,
we benchmark the ability of LLM to model prefer-
ences using RewardBench, a standardized reward
model evaluation suite. Our findings indicate that
LLMs can perform well as preference classifiers,
achieving accuracy levels surpassing those of
several reward models (Lambert et al., 2024).

Moreover, previous work has highlighted the
challenges of training efficient reward models for
code and maths-related tasks. Our findings sug-
gest that both general-purpose and code-specific
models can inherently function as effective pref-
erence classifiers; however, math-specific models
lack this ability. To further validate this hypothesis,
we examine IPO within a self-improving model
setup, where the model generates responses, ranks
them based on its own preferences, and leverages
these rankings for Direct Preference Optimization
(DPO)-based training. Our results demonstrate the
effectiveness of IPO in improving response qual-
ity.
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2 Background and Related Work

2.1 Reinforcement Learning for Improving
LLMs

Recent approaches for improving LLMs involve
training a fixed reward model using human pref-
erence data, which is subsequently utilized for
Reinforcement Learning (RL) to train language
models. This method, commonly referred to as
Reinforcement Learning from Human Feedback
(RLHF) (Liu et al., 2020; Ouyang et al., 2022), has
significantly enhanced the performance of mod-
els like Llama(Touvron et al., 2023; Dubey et al.,
2024) and ChatGPT(OpenAI et al., 2024).

An alternative paradigm to traditional RLHF
are methods like Direct Preference Optimization
(DPO) (Rafailov et al., 2024), which bypasses the
need for training a reward model altogether. In-
stead, it directly trains the LLM based on human
preference data. Beyond RLHF and DPO, addi-
tional techniques such as Kahneman & Tversky’s
Optimization (KTO) (Ethayarajh et al., 2024), Se-
quence Likelihood Calibration (SLiC) (Zhao et al.,
2023), Reinforced Self-Training (ReST) (Gulcehre
et al., 2023), and Rank Responses with Human
Feedback (RRHF) (Yuan et al., 2023) have been
proposed, each leveraging human preferences to
optimize LLM training.

Constitutional AI (Bai et al., 2022) uses an LLM
to provide feedback to refine responses. The feed-
back is then used to further train the language
model through Reinforcement Learning from AI
Feedback (RLAIF) (Lee et al., 2023). Similarly,
Self-Play fIne-tuNing (SPIN) (Chen et al., 2024)
introduces an Interactive DPO-like framework, de-
signed to eliminate the need for reward model train-
ing and to simplify reliance on human-labeled data
pairs.

2.2 Self Improving Models

Several studies have explored self-improvement
and self-training paradigms for language models
in supervision-free settings, where neither exter-
nal human nor AI feedback is utilized. Works
such as LMSI (Huang et al., 2022, 2024a) investi-
gate techniques that enable language models to au-
tonomously enhance their own performance with-
out relying on explicit annotations or reward sig-
nals.

The concept of LLM-as-a-Judge (Gu et al., 2024;
Ye et al., 2024; Dong et al., 2024; Li et al., 2024a)
has also been extensively studied, where vari-

ous methods have been proposed to design self-
rewarding reward functions, denoted as rself , using
carefully crafted prompting strategies. These ap-
proaches aim to enable language models to evaluate
their own outputs effectively, thereby facilitating
self-refinement.

In addition to these works, ResT-MCTS* (Zhang
et al., 2024) and SPPO (Wu et al., 2024b) have
explored algorithms based on self-training and
self-play, where models iteratively improve their
own performance through interaction with gen-
erated data. While these methods emphasize
self-guidance, many incorporate external feed-
back mechanisms, such as Supervised Fine-Tuning
(SFT) or reward-based optimization, to further re-
fine the training process (Ouyang et al., 2022).

2.3 Evaluation of Reward Models

Evaluating reward models plays a crucial role in
aligning large language models (LLMs) with hu-
man preferences. Various works, such as Alpaca-
Farm (Dubois et al., 2024b), evaluate preference
models by comparing model-generated outputs
with those from a reference model. Similarly,
ChatbotArena (Chiang et al., 2024) determines
preferences between two model-generated outputs.
These methods, however, focus on indirectly evalu-
ating reward models rather than conducting direct
evaluations.

Recent benchmarks, such as RewardBench
(Lambert et al., 2024) and RM-Bench (Liu et al.,
2024b), address this gap by creating category-wise,
high-quality binary datasets to model and evaluate
reward model performance. Given the robustness
and high quality of these datasets, we use them to
test our hypothesis.

3 LLM as Preference Model

3.1 Background

Large Language Models (LLMs) generate text in an
autoregressive manner, producing tokens sequen-
tially based on the context of previously gener-
ated tokens. Given an input context x , the au-
toregressive model predicts an output sequence
y = (y1, y2, . . . , yT ) one token at a time. Assum-
ing the model is parameterized by θ, the conditional
probability of generating the sequence y is defined
as:

pθ(y | x) =
T∏

t=1

pθ(yt | x, y<t), (1)
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where y<t = (y1, y2, . . . , yt−1). For notational
simplicity, pθ(yt | x) is used to represent pθ(yt |
x, y<t).

The probability distribution over the vocabulary
at each time step t is computed using a softmax
function on the logits z as:

pθ(yt | x) =
exp(zt/τ)∑M
i=1 exp(zi/τ)

, (2)

where zt = logitθ(yt | x, y<t), M is the vocabu-
lary size, and τ > 0 is a temperature parameter.

Various decoding strategies govern token selec-
tion during text generation. Greedy decoding se-
lects the highest probability token at each step,
while beam search expands multiple candidate se-
quences in parallel to find the most likely one. Top-
k sampling (Fan et al., 2018), on the other hand,
limits token choices to the k most probable candi-
dates, introducing diversity. Many other decoding
strategies also exist, each balancing fluency and
variability differently.

3.2 Methodology
Our approach leverages a language model as a pref-
erence model, evaluating response appropriateness
through binary classification. The model deter-
mines whether a response is suitable by generating
either "Yes" or "No." To guide this assessment, we
employ category-specific prompts, which are de-
tailed in Appendix D. The logits corresponding to
the output tokens of "Yes" and "No" are extracted
from the first output token and scaled to compute
their respective probabilities. The response with
the highest "Yes" probability is selected as the ac-
cepted response, while the one with the lowest is
classified as rejected. We hypothesize that higher-
quality responses will have a greater likelihood of
receiving a "Yes."

3.2.1 Preference Classification
In our experiments, we observed that guiding the
language model to initiate its responses with "Yes"
or "No" was essential, particularly for smaller mod-
els whose outputs are highly sensitive to prompt
phrasing. We developed broad, category-specific
prompts tailored to different query types to ensure
consistency and reliability. Following prior re-
search (Lambert et al., 2024; Liu et al., 2024b), we
classify prompts into four overarching categories:
Code, Math, Chat and Safety. Additional details
about prompts are provided in Appendix D. An
example prompt is shown in Figure 2.

Chosen:

Input:

Below is a coding-related question along with a response 
containing code. Your task is to verify whether the 
provided code is correct, functional, and aligned with the 
requirements of the question. Answer with just Yes/No.

User: Write a Python function `fib(n: int)` to solve the 
following problem: Return n-th Fibonacci number. >>> 
fib(10) 55 >>> fib(1) 1 >>> fib(8) 21

Model Response: if n == 0: return 0 if n == 1: return 1 
return fib(n - 1) + fib(n - 2)



Output:

P(Yes) = 0.67

Rejected:

Input:

Below is a coding-related question along with a response 
containing code. Your task is to verify whether the 
provided code is correct, functional, and aligned with the 
requirements of the question. Answer with just Yes/No.

User: Write a Python function `fib(n: int)` to solve the 
following problem: Return n-th Fibonacci number. >>> 
fib(10) 55 >>> fib(1) 1 >>> fib(8) 21

Model Response: if n == 0: return 0 if n == 1: return 1 if n 
== 2: return 2 return fib(n - 1) + fib(n - 2)



Output:

P(Yes)=0.35


Figure 2: Example outputs from Reward Bench using
our approach.

To quantify preferences, we extract the output
token probabilities for "Yes" and "No" from the
response. The detailed approach is outlined below:

Given an input token sequence x =
(x1, x2, . . . , xT ), a language model f(·) generates
a probability distribution over the vocabulary V for
the next token. Specifically, the model outputs a
logit vector z ∈ R|V|, where

z = f(x). (3)

To derive probabilities, we apply the softmax
function over the logits:

pi =
exp(zi)∑
j∈V exp(zj)

, ∀i ∈ V, (4)

where pi represents the probability assigned to
token i. Thus we define probability of "Yes" token
as pyes and "No" token as pno. Then we normalize
the probabilities to ensure a fair comparison:

p′yes =
pyes

pyes + pno
, p′no =

pno

pyes + pno
. (5)

The final values (p′yes, p
′
no) represent the normal-

ized likelihoods of the model predicting "Yes" or
"No" .

19428



Models
Our Approach Self Rewarding

Chat Code Math Safety Average Chat Code Math Safety Average
Llama-3.2-1B-Inst 64.37 52.84 88.14 80.48 71.45 30.47 21.03 14.54 31.55 24.39
Llama-3.2-3B-Inst 62.09 67.17 98.21 80.23 76.92 33.87 24.69 36.01 46.73 35.32
Llama-3-8B-Inst 59.56 73.88 54.97 87.88 69.07 35.43 12.29 21.70 58.35 31.94
Qwen-2.5-3B-Inst 60.89 80.59 46.31 86.05 68.46 26.72 23.88 41.61 24.43 29.16
Qwen-2.5-7B-Inst 78.26 83.13 56.24 93.24 77.71 58.73 47.93 40.49 52.20 49.82
Mistral-7B-Inst 61.25 70.93 96.20 83.85 78.05 24.55 1.6 28.18 15.39 17.43
Gemma2-2B-It 35.34 42.58 91.50 70.04 59.86 22.36 2.84 12.75 34.78 18.18
Phi-3-Mini-Instruct 55.91 75.30 89.10 75.32 73.90 46.63 35.46 22.60 56.75 40.36

Table 1: The above table compares our approach with the Self Rewarding approach. The row labels correspond to
the model name and the column labels correspond to the sub-categories. The metric used is accuracy where the
higher values indicate better performance.

3.3 Experiments
3.3.1 Benchmarking Our Approach
To evaluate our approach, we conducted experi-
ments using LLMs of varying sizes and architec-
tures. We compared instruction-tuned models with
their base counterparts. Additionally, we analyzed
the effect of fine-tuning on a specialized task like
code/math problems on preference classification
by including models fine-tuned for these tasks.
For comparisons involving a reward model we use
the Skywork Reward Llama 8B model (Liu et al.,
2024a) as the baseline. The detailed results for all
the comparisons are available in Appendix E.

In particular, we tested the following models:

• LLaMA Family (Dubey et al., 2024):
LLaMA-3.2-1B, LLaMA-3.2-1B-Instruct,
LLaMA-3.2-3B, LLaMA-3.2-3B-Instruct,
Meta LLaMA 3-8B, Meta LLaMA 3-8B-
Instruct.

• Mistral Family (Jiang et al., 2023): Mistral
7B, Mistral 7B-Instruct.

• Qwen Family (Yang et al., 2024): Qwen2.5-
3B, Qwen2.5-3B-Instruct, Qwen2.5-7B,
Qwen2.5-7B-Instruct.

• Code Generation Models: Starcoder2-7B
(Lozhkov et al., 2024), CodeGemma-7B-It
(Team et al., 2024a), Qwen-Coder-7B-Inst
(Hui et al., 2024), Qwen-Coder-3B-Inst.

• Math Generation Models: Qwen-Math-7B-
Inst, Qwen-Math-1.5B-Instruct (Yang et al.,
2024), Deepseek-Math-7B (Shao et al., 2024),
Llemma-7B (Azerbayev et al., 2024).

• Other Models: Phi-3-mini-128k-Instruct
(Abdin et al., 2024), Gemma 2B-Instruct

(Team et al., 2024b), GPT-4o Mini (OpenAI
et al., 2024).

To evaluate model performance, we selected Re-
ward Bench due to its high-quality and diversity.
Reward Bench consists of 23 question categories,
which are grouped into four broad types: Chat,
Code, Math, and Safety. We also benchmark our
approach on RM-Bench, results of which can be
found in Table 11.

We define accuracy as the proportion of cases
where the model assigns a higher probability to
the preferred response yw over the less preferred
response yl:

Acc =
1

N

N∑

i=1

I
[
pyes(xi, y

w
i ) > pyes(xi, y

l
i)
]

where I[·] is the indicator function, returning 1
if the condition holds and 0 otherwise and N is the
number of data points.

To ensure optimal model performance, we devel-
oped an automated pipeline for selecting the most
effective category-specific prompts. To highlight
the importance of task-specific prompting, we con-
ducted an ablation study in which prompts were in-
tentionally misaligned by randomly selecting them
from one of the five defined categories. Using the
Qwen-7B Instruct model on RewardBench, we ob-
served that such misalignment consistently resulted
in reduced accuracy across all categories. These
results are shown in Table 2, with additional de-
tails on the prompt selection process provided in
Appendix D.
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Category Correct (%) Missaligned (%)
Chat 78.26 73.18
Code 83.13 81.03
Math 56.24 21.48
Safety 93.24 57.94
Average 77.71 58.41

Table 2: Comparison of correct and missaligned
prompts accuracies across categories of RewardBench.

3.3.2 Comparision against Self Rewarding
Approach

We benchmarked our approach against the pref-
erence classification approach used in the Self-
Rewarding Language Model1. Their approach in-
volves scoring responses using a numerical reward
of up to 5 (Yuan et al., 2024; Li et al., 2024b).
Each response is evaluated based on its relevance,
completeness, clarity, and informativeness. The
comparative results are shown in Table 1.
Note: We used the original self-reward framework
rather than the meta-reward (Wu et al., 2024a) ap-
proach. The decision not to use the meta-reward
approach stems from the nature of our setup, which
employs an offline DPO framework rather than iter-
ative training. Since both settings are equivalent in
an offline approach, integrating meta-reward would
not provide additional benefits.

3.4 Findings
Our approach demonstrated robust and consistent
performance across all subcategories of the Reward
Bench, particularly when compared to the self-
rewarding approach. This performance gap was
particularly pronounced in smaller models, where
our approach significantly outperformed the self-
rewarding approach. The self-rewarding approach
assigns discrete rewards ranging from 1 to 5 for
each response, making it challenging to differenti-
ate between them, often rating both the chosen and
the rejected response as the same.

Most models perform well on safety, indicating
safety tuning across all the models during train-
ing. Chat performance remains relatively consis-
tent across models, suggesting a similar level of
optimization for conversational abilities. How-
ever, performance on code and math varies sig-
nificantly, largely depending on the type of train-
ing data used (Gunasekar et al., 2023; Petty et al.,

1The Self-Rewarding approach performs very poorly on
Base Models, so we tested their method on only Instruct mod-
els.

2024; Aryabumi et al., 2024). For example, the
Qwen family excels in coding tasks, while Llama
3.2, Mistral, Gemma, and Phi models demonstrate
strong mathematical capabilities.

Another finding was that larger models consis-
tently outperformed smaller models, as shown in
Table 1 and that instruction-tuned models consis-
tently outperformed their base counterparts, rein-
forcing the effectiveness of instruction-based fine-
tuning even in acting as preference classifiers. Ad-
ditional results of our approach on RM-Bench can
be found in E.

On proprietary models, such as GPT, our ap-
proach remained competitive. Results using our
approach on GPT-4o-Mini on Reward Bench can
be found in Appendix C.

3.5 Performance of Math and Code Specific
Models

To better understand the applicability of our ap-
proach in mathematical and coding tasks, we eval-
uated four models fine-tuned for code comple-
tion and four models optimized for mathematical
problem-solving. These models were benchmarked
against Skywork-Llama8B-Reward Model, which
serves as a strong baseline for preference modeling.

Among the code-specific models, Qwen consis-
tently achieved the highest performance across all
evaluated categories, performing as well as the Re-
ward Model.

In contrast, all math-specific models underper-
formed compared to both the general instruct-tuned
version and the Reward Model. We hypothesize
that this underperformance stems from the training
objective of math-specific models, which priori-
tize generating chain-of-thought reasoning (Yang
et al., 2024; Shao et al., 2024; Gao et al., 2024;
Zhou and Zhao, 2024) rather than adhering to strict
instruction-following behavior required for binary
Yes/No classification. The results are shown in
Figure 3.

4 IPO: Implicit Preference Optimization

4.1 Background

Direct Preference Optimization (DPO) is a re-
inforcement learning-free framework for aligning
large language models (LLMs) with human pref-
erences, eliminating the need for explicit reward
modeling. Instead, it directly trains the LLM using
human preferences. Given a dataset of preference
pairs (x, yw, yl), where yw is preferred over yl, the
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Figure 3: Left: Our approach on Code Specific Model where the dashed line is a reward model. Right: Our
approach on 4 different math-specific models where the striped bar is the reward model.

model πθ is optimized by minimizing the following
loss:

L(θ) = −E(x,yw,yl)∼D log σ

(
β
(
log

πθ(y
w | x)

πθ(yl | x)

− log
π0(y

w | x)
π0(yl | x)

))

(6)
Here, πθ is the current model, π0 is the initial

model, σ is the sigmoid function, and β a scaling
factor. This formulation directly aligns πθ with the
preferences, removing the need for reward-based
reinforcement learning.

Supervised Fine-Tuning (SFT) is a crucial step
before applying DPO or any other optimization
methods. While base models are pre-trained on
next-token prediction tasks, they often struggle
with instruction following, question answering, and
other tasks requiring precise alignment with user
expectations. SFT addresses this by fine-tuning the
model on task-specific data, enhancing its ability
to generate outputs in desired formats and styles.
This process strengthens the model’s ability to pro-
duce high-quality responses, establishing a robust
foundation for preference optimization.

SFT minimizes the cross-entropy loss between
the model’s predicted next token and the actual
target token for a given sequence, formally defined
as:

LSFT(θ,D) = −E(x,y)∼D




|y|∑

t=1

log pθ(yt | x, y<t)


 ,

(7)

where D = {(x, y)} is the dataset of input con-
text x and target response y, and pθ(yt | x, y<t)
denotes the model’s predicted probability of the
t-th token given the input context and preceding
tokens.

By combining SFT with DPO, LLMs can be
aligned with human preferences while maintaining
strong generalization across diverse tasks.

4.2 Methodology

4.2.1 Constructing Preference Dataset
Building on an SFT model as the foundation,
we generate four diverse responses from the SFT
model in case of Llama and the Instruct model in
case of Mistral. These samples are then assigned
rewards using our method, as described in Section
3.2.1. The response with the highest reward (Yes
probability) is selected as the accepted response,
while the one with the lowest reward is classified
as the rejected response. This process constructs
a preference dataset consisting of DPO triplets:
(Prompt, Chosen, Rejected), which serves as the
training dataset for our model.

4.3 Experiments

To evaluate the effectiveness of our method, we
conduct DPO-based training on two sets of models.
The first is a base model (Llama 3.2 1B), which
initially undergoes SFT on the Dolly-15k dataset
(Conover et al., 2023). Once the SFT model is
trained, we generate four samples for each prompt.
These samples are then rated to form a preference
dataset, as described in Section 4.2.1, in the form
of triplets: (Prompt, Chosen, Rejected). We use
4k instructions from the Ultra Feedback dataset
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Models
BBH Arc-Easy Alpaca-Eval MMLU IFEval Average

Mistral-7B-Base 3.40 11.00 1.20 9.60 26.63 10.37
Mistral-7B-Instruct 29.80 80.40 68.00 35.80 40.05 53.50
Mistral-7B-Self Rewarding 31.20 77.00 69.60 33.00 29.31 48.02
Mistral-7B-Reward 30.20 85.20 77.40 41.00 31.69 53.10
Mistral-7B-Ours 34.60 82.20 78.20 37.60 39.19 54.35
Llama-1B-Base 0.60 32.80 0.80 1.40 9.80 9.08
Llama-1B-SFT 1.40 22.40 0 5.20 10.19 7.83
Llama-1B-Self Rewarding 0.20 15.20 0.60 2.40 11.23 5.92
Llama-1B-Reward 2.20 51.20 7.20 3.40 10.68 14.93
Llama-1B-Ours 0.80 46.40 2.80 3.80 12.08 13.17

Table 3: We compare variations of Mistral-7B and LLaMA-1B models trained using preferences from different
methods. Performance is measured using accuracy for BBH, Arc-Easy, MMLU, win rate for Alpaca-Eval and
Instruction following capability in IFEval. For more details regarding the evaluations refer to Appendix B

(Cui et al., 2023) for the input prompts and catego-
rize them into four categories, namely chat, code,
math, and safety, using Bart-Zero Shot Classifica-
tion Pipeline (Lewis et al., 2019; Ott et al., 2019),
more details in Apppendix D. Additionally, to in-
vestigate the self-improving nature of these models,
we furthur evaluate a larger model, Mistral 7B-v0.1-
Instruct, where the Instruct-tuned model is used to
directly sample responses to form preference pairs
to use for DPO. By examining models of different
sizes and architectural families, we assess both the
effectiveness and generalization capability of our
framework. For all our experiments involving a
reward model we utilise the Skywork-Llama-8B
Reward model (Liu et al., 2024a). Exact training
details and hardware requirements can be found in
Appendix A.

For a comprehensive evaluation of our method-
ology, we benchmark it against the Self-Rewarding
Models baseline (Yuan et al., 2024) and the
gold-standard reward-based preference pipeline,
in which preferences are determined using scores
from a reward model. We use a subset of 500
data points from each IFEval (Zhou et al., 2023),
BBH (Suzgun et al., 2022), ArcEasy (Clark et al.,
2018), MMLU (Hendrycks et al., 2020), Alpaca
Eval (Dubois et al., 2024a) datasets for evaluation.
More details regarding the datasets and evaluation
strategy are provided in Appendix B.

4.4 Findings

From the results, a general trend across both model
sizes is that Base models consistently underper-
form across all benchmarks in a zero-shot setting
(Kojima et al., 2022), highlighting their lack of

task-specific alignment.

From the results, we observe that the Self-
Rewarding baseline performed poorly across all
benchmarks for the smaller model (Llama-1B) and
remained suboptimal for larger models (Mistral-
7B), though the performance gap was less.

Notably, for Llama-1B-SFT, we observe a perfor-
mance drop compared to Llama-1B-Base. This can
be attributed to the over-memorization of instruc-
tions during SFT (Zhang et al., 2025; Chu et al.,
2025; Kirk et al., 2023) due to which the model
repeats it’s responses (Hiraoka and Inui, 2024),
which may have negatively impacted generaliza-
tion.

In contrast, for Mistral-7B, our method showed
further improvement on Mistral-7B Instruct, which
was chosen as the reference model for perform-
ing IPO. This suggests that self-improvement can
enhance model performance beyond traditional in-
struction tuning.

IPO exhibited significant improvements, per-
forming on par with reward-model-based prefer-
ence training, whose preferences are often consid-
ered the gold standard for preference optimization.
While reward models showed a slight advantage in
some benchmarks, our approach either matched or
outperformed them in others. Moreover, we found
that the impact of IPO was more pronounced in
larger models (Mistral-7B) than in smaller models
(Llama-1B). Our results suggests that LLMs are
capable of self-alignment via judging and training
on their own generations.
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5 Conclusion

We introduced IPO, a simple yet effective frame-
work that utilizes likelihood-based preferences to
optimize language models without requiring ex-
plicit reward models or expensive human annota-
tions. Our analysis demonstrates that preference
signals can be obtained directly from the likeli-
hood of smaller base, instruction-tuned, and task-
specific LLMs, mitigating the need for prompting
large-scale models such as GPT-4.

Furthermore, we examined three settings for ac-
quiring preferences over model-generated outputs
namely self-rewarding LLMs, reward model-based
preference classification, and preference classifica-
tion using our framework for DPO. We show that
models trained using preferences derived through
our method align closely with, and in some cases
surpass, models trained with preferences obtained
from traditional reward models. These results high-
light the efficacy of IPO as a scalable and cost-
efficient alternative for preference optimization in
large language models.

6 Limitations

Our approach relies on the pre-categorization of the
dataset. However, an alternative direction worth
exploring is leveraging the model itself to generate
category labels, which could enhance adaptability
and reduce reliance on predefined classifications.
We conducted our preference optimization exper-
iments on only two model sizes—1B and 7B pa-
rameters—using a subset of 4,000 prompts from
the UltraFeedback dataset. Due to computational
constraints, we employed DPO rather than the it-
erative DPO approach used in the Self-Rewarding
baseline. Additionally, all our evaluations were per-
formed in a single run with a fixed random seed of
42, which may limit the robustness of our results.
Unlike Self-Rewarding approaches that generate
instructions using the model itself, our work relies
on instructions sourced from an external dataset.
This was due to the inability of smaller base mod-
els to produce high-quality instructions with simple
prompting. Furthermore, we also do not test our hy-
pothesis on LLMs where they are asked to pick the
better of the two responses due to the high amount
of positional bias present in them (Zheng et al.,
2023a; Li et al., 2024c).
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A Implementation and Hardware Details

We conducted all training procedures using QLoRA
with bfloat16 precision for DPO-based training and
full fine-tuning for SFT. Our LLaMA-based models
were trained on a single A100 GPU with 40GB
VRAM, while Mistral training was performed on a
single A100 GPU with 80GB VRAM. Inferences
presented in Section 3 were carried out using T4
GPUs with float16 precision, whereas evaluation
results in Section 4 were obtained using A10 GPUs
with bfloat16 precision. For sampling responses on
UltraFeedback for DPO , we used a temperature of
0.7 and a top_k value of 40.

Hyperparameter Value

Number of Training Epochs 3
Train Batch Size 4
Learning Rate 5× 10−4

Optimizer AdamW
Learning Rate Scheduler Cosine

Table 5: Training Hyperparameters for SFT Training

Hyperparameter Value

Number of Training Epochs 3
Train Batch Size 6
Learning Rate 5× 10−4

Optimizer AdamW
Learning Rate Scheduler Cosine
DPO Beta 0.1
LoRA Alpha 128
LoRA Dropout 0.05
LoRA Rank (r) 256

Table 6: Training Hyperparameters for DPO Training

B Evaluation Dataset and Strategy

To conduct our evaluation, we randomly sample a
subset of 500 examples from each of the datasets.
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Category Self-Rewarding (%) Ours (%) Binary (%)
Chat 62.64 83.72 77.63
Safety 57.14 91.74 78.44
Code 62.80 95.32 94.10
Math 34.90 59.50 73.40
Average 54.37 82.57 80.89

Table 4: Comparison of accuracy between GPT-4o-Mini-Self, GPT-4o-Mini-Ours and GPT-Binary across different
categories.

• IFEval (Instruction-Following Evalua-
tion)2: Assesses the ability of large language
models to follow explicit, verifiable instruc-
tions, such as “write in more than 400 words”
or “mention the keyword ‘AI’ at least three
times.”

IFEval has four accuracy metrics to evalu-
ate the instruction-following capabilities of
Large Language Models (LLMs). Prompt-
level strict-accuracy measures the percentage
of prompts where all verifiable instructions
are followed exactly, providing a strict eval-
uation of the model’s ability to handle com-
plex prompts without errors. Instruction-level
strict-accuracy evaluates the percentage of in-
dividual instructions followed precisely across
all prompts, offering a granular view of the
model’s performance on specific instruction
types. Prompt-level loose-accuracy is a more
lenient version of prompt-level strict-accuracy,
where responses are transformed (e.g., remov-
ing markdown tags or intros/outros) to re-
duce false negatives, accounting for minor
deviations. Similarly, Instruction-level loose-
accuracy measures the percentage of individ-
ual instructions followed with leniency, using
transformed responses to identify cases where
the model almost adheres to instructions. The
final metric is the average of all the four accu-
racies. Each category specific result of IFEval
are shown in Table 7

• MMLU (Massive Multitask Language Un-
derstanding)3: Evaluates models across 57
subjects using multiple-choice questions, cov-
ering disciplines such as humanities, STEM,
and social sciences, to measure broad knowl-
edge and reasoning capabilities.

• BBH (BIG-Bench Hard)4: BigBench Hard
2https://huggingface.co/datasets/google/IFEval
3https://huggingface.co/datasets/cais/mmlu
4https://huggingface.co/datasets/lukaemon/bbh

dataset, focuses on complex problem-solving
areas such as multistep arithmetic, algorithmic
reasoning, and advanced language comprehen-
sion.

• ARC-Easy (AI2 Reasoning Challenge
- Easy)5: Comprises grade-school-level,
multiple-choice science questions designed to
assess fundamental reasoning and knowledge.

• Alpaca-Eval6: A benchmark that compares
model-generated responses against given re-
sponses, employing GPT as an evaluator to
determine output quality.

For the evaluation of MMLU, BBH, and ARC-
Easy, we utilize GPT-4o-mini to compare model-
generated responses with ground-truth answers.
For IFEval, we employ the official evaluation code.
Similarly, for Alpaca-Eval, we use GPT-4o-mini to
compare the model-generated response against the
ground-truth response from text_davinci_003 and
determine the better output. All our sampling for
the evaluations was performed using a temperature
of 0.5 and top_k value of 40.

C Results on GPT

We also evaluated our approach on proprietary mod-
els like GPT-4o-Mini and found that it significantly
outperformed both the Self-Rewarding approach
and the Binary Approach. In the Binary Approach,
the model is given both the chosen and rejected re-
sponses along with the prompt and is asked to select
the better one. To mitigate positional bias—where
LLMs tend to favor the first response—a random
shuffle is applied to ensure that neither the chosen
nor the rejected response receivs a systematic ad-
vantage. The results for Binary Eval were taken

5https://huggingface.co/datasets/allenai/ai2_
arc

6https://huggingface.co/datasets/tatsu-lab/
alpaca_eval
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Strict Loose
Average

Prompt-Level Instruction-Level Prompt-Level Instruction-Level

Mistral Self 20.52% 33.09% 25.88% 37.77% 29.31%
Mistral Ours 31.79% 41.85% 36.60% 46.52% 39.19%
Mistral Reward 23.11% 34.05% 28.84% 40.77% 31.69%
Mistral Base 21.26% 30.10% 23.29% 31.89% 26.63%
Mistral Instruct 33.27% 43.17% 36.41% 47.36% 40.05%

Llama Base 5.95% 11.35% 8.17% 13.75% 9.80%
Llama SFT 5.02% 12.63% 7.24% 15.87% 10.19%
Llama Self 6.28% 13.19% 8.32% 17.15% 11.23%
Llama Ours 6.47% 14.27% 9.61% 17.99% 12.08%
Llama Reward 6.47% 12.71% 7.95% 15.59% 10.68%

Table 7: Performance comparison of different models under strict and loose conditions.

directely from Reward Bench7. The results for the
same are shown in Table 4.

D Prompts

Based on the predefined categories, a pool of N
prompts were generated using GPT. A small sam-
ple of 50 data points was selected from each cat-
egory in Reward Bench, and the prompts were
tested on this subset to determine the most effective
one. The model used for testing was LLaMA-1B-
Instruct, and the prompt with the highest accuracy
in each category was used for evaluation on Re-
ward Bench. The final set of selected prompts for
Reward Bench evaluations are shown in Table 8
and those for DPO are shown in 9 .

Note: For DPO-based training, instructions were
classified into four categories

Categories of Prompts:

• Code: Questions that involve generating or
interpreting code.

• Math: Questions related to mathematical
computations or reasoning.

• Chat: General conversational questions, often
open-ended or casual.

• Safety: Questions focused on evaluating or
ensuring safety in responses. For our eval-
uation on the Reward Bench dataset we fur-
ther subcategorize it into Safety General and
Safety Refusal.

7https://huggingface.co/spaces/allenai/
reward-bench

E Additional Results

To further demonstrate the effectiveness of our ap-
proach, we also evaluate our approach on an addi-
tional benchmark, RM-Bench results of which are
shown in Table 11
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Task Prompt

Chat Below is a question and its response. Assess if the response is helpful and
correct. Answer just Yes/No.

Code Below is a coding-related question along with a response containing code. Your
task is to verify whether the provided code is correct, functional, and aligned
with the requirements of the question. Answer with just Yes/No.

Maths Below is a math question along with a response containing a solution. Your
task is to verify whether the solution is correct, the reasoning is logical, and the
final answer is accurate. Answer with just Yes/No.

Safety(General) Below is a potentially unsafe or inappropriate question, along with a refusal
response. Verify whether the refusal response is appropriate. Answer Yes/No.

Safety(Refusal) Below is a question and a refusal response. Ensure the refusal response aligns
with ethical and safety guidelines while maintaining professional clarity. An-
swer Yes/No.

Table 8: Final prompts used for Evaluation on Reward and RM Bench

Category Prompt
Code Below is a coding-related question along with a response containing code. Your

task is to verify whether the provided code is correct, functional, and aligned
with the requirements of the question. Answer with just Yes/No.

Chat Below is a question, along with a response to that question. Your task is to
verify whether the response is helpful, factually correct, logically sound, and
contextually appropriate. Answer with just Yes/No.

Safety Inspect the response to ensure it is safe and appropriate for the question below.
Answer Yes/No.

Math Below is a math question along with a response containing a solution. Your
task is to verify whether the solution is correct, the reasoning is logical, and the
final answer is accurate. Answer with just Yes/No.

Table 9: Final set of prompts used for DPO.
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Dataset
Llama
3.2-1B

Llama
3.2-1B

Instruct
Llama
3.2-3B

Llama
3.2-3B

Instruct
Meta

Llama-3-8B

Meta
Llama-3-8B

Instruct
Mistral
7B-v0.1

Mistral
7B

Instruct-v0.1
Qwen
2.5-3B

Qwen
2.5-3B

Instruct
Qwen
2.5-7B

Qwen
2.5-7B

Instruct

SKYWORK
8b

reward

hep-cpp 54.88 49.39 68.29 65.24 57.32 74.39 70.12 75.00 82.93 76.22 84.76 78.05 92.68

math-prm 23.49 88.14 98.21 98.21 77.18 54.97 97.99 96.20 24.61 46.31 68.46 56.24 95.75

llmbar-adver-GPTInst 63.04 64.13 44.57 53.26 59.78 71.74 71.74 75.00 51.09 83.70 59.78 78.26 71.74

refusals-dangerous 76.00 94.00 22.00 72.00 25.00 91.00 45.00 86.00 72.00 78.00 74.00 96.00 92.00

hep-python 50.61 52.44 61.59 71.34 53.66 77.44 67.07 76.22 77.44 78.66 89.02 89.02 93.29

alpacaeval-easy 34.41 83.23 34.66 53.79 56.15 24.22 20.00 42.36 36.40 27.33 46.71 80.25 92.92

hep-java 54.88 55.49 58.54 67.68 49.39 78.05 74.39 68.29 85.37 86.59 88.41 84.15 92.68

llmbar-adver-GPTOut 55.32 46.81 36.17 44.68 29.79 44.68 46.81 53.19 53.19 48.94 53.19 59.57 68.09

alpacaeval-hard 49.69 88.20 55.16 70.43 50.81 40.62 27.70 63.23 38.63 33.66 50.06 88.45 84.60

hep-go 49.39 45.73 53.66 64.63 57.93 73.78 70.73 73.78 81.10 82.93 83.54 85.98 90.24

refusals-offensive 73.00 97.00 49.00 97.00 86.00 99.00 45.00 97.00 23.00 94.00 98.00 100.00 98.00

xstest-should-refuse 56.49 77.92 67.53 92.21 82.47 98.70 46.75 92.21 54.55 93.51 84.42 94.16 77.27

donotanswer 38.24 55.88 64.71 82.35 69.12 91.91 63.97 80.88 62.50 91.18 78.68 90.44 70.59

mt-bench-hard 51.11 60.00 64.44 64.44 48.89 48.89 48.89 53.33 55.56 55.56 64.44 66.67 71.11

llmbar-adver-neighbor 64.18 58.96 50.00 60.45 59.70 74.63 45.52 59.70 44.03 72.39 60.45 73.88 75.37

mt-bench-easy 60.71 60.71 60.71 78.57 50.00 89.29 60.71 75.00 60.71 78.57 89.29 100.00 100.00

llmbar-adver-manual 65.22 52.17 52.17 47.83 47.83 63.04 45.65 52.17 41.30 56.52 45.65 60.87 63.04

mt-bench-med 37.78 64.44 64.44 71.11 51.11 60.00 57.78 60.00 55.56 73.33 71.11 93.33 86.67

xstest-should-respond 53.60 77.60 57.60 57.60 50.00 58.80 72.40 63.20 84.40 73.60 90.40 85.60 86.40

hep-rust 48.78 53.05 64.02 65.85 51.22 68.29 63.41 62.80 79.27 74.39 85.98 74.39 90.24

hep-js 44.51 60.98 63.41 68.29 56.71 71.34 66.46 69.51 81.71 84.76 82.93 87.20 93.29

alpacaeval-length 62.61 70.43 69.94 69.44 69.94 62.11 63.11 68.82 53.42 66.83 54.41 71.68 86.71

llmbar-natural 58.00 59.00 54.00 69.00 64.00 76.00 51.00 71.00 62.00 73.00 74.00 88.00 82.00

Table 10: Reward Bench Performance Across Different Levels
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Model Levels
RM-Bench

chat
RM-Bench

code
RM-Bench

math
RM-Bench

safety response
RM-Bench

safety refuse

Llama-1B

Level 1 48.06 54.39 46.31 31.85 38.73
Level 2 64.34 55.26 48.58 69.43 53.52
Level 3 60.47 50.44 41.59 61.78 71.13
Mean 57.62 53.36 45.49 54.35 54.46

Llama-1B-Instruct

Level 1 51.16 51.32 49.53 71.34 67.61
Level 2 61.24 53.51 47.45 68.15 77.11
Level 3 60.47 49.56 45.75 73.89 63.38
Mean 57.62 51.46 47.57 71.13 69.37

Llama-3B

Level 1 54.26 51.75 47.26 68.15 7.04
Level 2 33.33 52.19 46.12 78.34 37.32
Level 3 33.33 49.12 45.75 36.94 55.28
Mean 40.31 51.02 46.38 61.15 33.22

Llama3b-Instruct

Level 1 56.59 50.88 50.09 87.90 55.28
Level 2 44.96 55.26 48.02 86.62 60.56
Level 3 52.71 49.56 47.45 94.27 76.76
Mean 51.42 51.90 48.52 89.60 64.20

Llama-8B

Level 1 54.26 53.51 48.02 99.36 2.46
Level 2 56.59 56.58 51.98 83.44 29.58
Level 3 50.39 51.75 47.26 64.33 63.38
Mean 53.75 53.95 49.09 82.38 31.81

Llama-8B-Instruct

Level 1 65.12 55.70 50.28 56.05 75.00
Level 2 36.43 55.70 49.72 96.18 30.28
Level 3 50.39 53.51 46.12 64.33 87.68
Mean 50.65 54.97 48.71 72.19 64.32

Mistral-7b

Level 1 50.39 46.49 52.17 96.18 20.42
Level 2 61.24 53.51 49.34 44.59 89.44
Level 3 51.94 46.49 43.10 75.16 84.15
Mean 54.52 48.83 48.20 71.97 64.67

Mistral-7b-Instruct

Level 1 44.19 50.88 52.55 61.78 96.48
Level 2 58.91 52.63 55.39 39.49 81.69
Level 3 58.91 53.95 48.20 52.87 96.83
Mean 54.01 52.49 52.05 51.38 91.67

Qwen2.5-3B

Level 1 65.89 48.68 54.06 95.54 94.01
Level 2 58.14 52.19 51.23 82.80 88.03
Level 3 48.84 50.44 46.12 94.90 49.65
Mean 57.62 50.44 50.47 91.08 77.23

Qwen2.5-3B-Instruct

Level 1 72.87 51.32 60.87 46.50 63.38
Level 2 55.04 53.07 57.66 31.85 90.49
Level 3 55.04 54.82 50.47 84.71 96.83
Mean 60.98 53.07 56.33 54.35 83.57

Qwen2.5-7B

Level 1 72.87 56.58 56.14 100.00 100.00
Level 2 47.29 56.58 54.06 96.82 94.72
Level 3 51.16 53.07 47.64 94.27 100.00
Mean 57.11 55.41 52.61 97.03 98.24

Qwen2.5-7B-Inst

Level 1 80.62 58.33 62.19 91.08 100.00
Level 2 61.24 58.33 62.00 85.99 96.83
Level 3 64.34 55.26 50.28 63.06 100.00
Mean 68.73 57.31 58.16 80.04 98.94

SKYWORK-8b-reward

Level 1 86.04 53.07 62.38 94.90 97.18
Level 2 55.04 53.51 65.41 82.80 98.94
Level 3 41.09 48.25 66.16 87.26 100.00
Mean 60.72 51.61 64.65 88.32 98.60

Table 11: Performance of various models, across different Levels on RM-Bench
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