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Abstract
Most written natural languages are composed
of sequences of words and sentences. Similar
to humans, large language models (LLMs) ex-
hibit flexibility in handling textual positions - a
phenomenon we term position generalization.
They can understand texts with position pertur-
bations and generalize to longer texts than those
encountered during training with the latest tech-
niques. These phenomena suggest that LLMs
handle positions tolerantly, but how LLMs com-
putationally process positional relevance re-
mains largely unexplored. This work connects
the linguistic phenomenon with LLMs’ com-
putational mechanisms. We show how LLMs
enforce certain computational mechanisms for
the aforementioned tolerance in position per-
turbations. Despite the complex design of the
self-attention mechanism, this work reveals that
LLMs learn a counterintuitive disentanglement
of attention logits. Their values show a 0.959
linear correlation with an approximation of the
arithmetic sum of positional relevance and se-
mantic importance. Furthermore, we identify
a prevalent pattern in intermediate features,
which we prove theoretically enables this ef-
fect. The pattern, which is different from how
randomly initialized parameters would behave,
suggests that it is a learned behavior rather than
a natural result of the model architecture. Based
on these findings, we provide computational
explanations and criteria for LLMs’ position
flexibilities. This work takes a pioneering step
in linking position generalization with modern
LLMs’ internal mechanism.

1 Introduction

Most natural languages are written as sequences
of textual elements such as characters, words, and
sentences. Despite this sequential nature, large lan-
guage models (LLMs) exhibit remarkable tolerance
in handling textual positions, just as observed in
human studies (Bruner and O’Dowd, 1958; Rawl-
inson, 2007). LLMs can comprehend text with
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Figure 1: (a) LLMs, like humans, exhibit position gen-
eralization in various forms. (b) Self-attention in LLMs
disentangles positional and semantic components so as
not to be sensitive to position perturbations. The “dis-
tance pattern” and “semantic relevance” matrices show
two subcomponents of the logit map that depend on
positional and semantic relation, respectively.

position perturbations (Sinha et al., 2021b; Pham
et al., 2021) and generalize to longer sequences
than those seen during training with techniques like
LM-Infinite (Han et al., 2024) and InfLLM (Xiao
et al., 2024). These raise the question of how posi-
tional relevance is handled internally. While prior
research has explored various positional encoding
strategies (Su et al., 2021; Press et al., 2021), the
underlying computational mechanisms of LLMs’
position robustness remain largely unexplored.

In this work, we analyze the self-attention mech-
anism of modern LLMs to investigate how they
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Figure 2: As a starting point of our study, we find that a 3-axis linear approximation ((a)→(d)) is surprisingly
similar to the original attention logit maps. Fig (e) is a set of original logit maps (upper ones) and their constructions
(lower ones). More details are in Sec 3.1.

process positional information to enable these ca-
pabilities. Our study reveals that LLMs learn a
counter-intuitive disentanglement in attention log-
its (Sec 3.1, 3.2). With a linear sum of two com-
ponents f(q, i − j) + g(q,k), which are about
positional relation i − j and semantical relation
g(q,k), respectively, the attention logits can be
approximated with >0.95 linear correlation. Fur-
thermore, we identify a systematic pattern in in-
termediate representations, which we theoretically
prove that enables this effect (Observation 1 and
Theorem 2 in Sec 3.4). This pattern is different
from how randomly initialized parameters of LMs
would behave, which suggests that it is a learned
behavior rather than an inherent consequence of
model architecture.

Finally, we apply these findings to provide a
computational explanation for the position general-
ization phenomenon in LLMs (Sec 4). We demon-
strate how text order transpositions on up to 5% of
all words only marginally affect the LLM’s perplex-
ity and downstream performance. This linguistic
observation can be simulated by transposing the
order of hidden features or perturbing the posi-
tional indices in relative position encoding, sug-
gesting an analogy between human behaviors and
the LLM computational mechanism. We further
explain how length generalization techniques can
extend LLMs to extreme lengths without param-
eter updates. Taking insights from our analysis,
we show how self-attention is relatively tolerating
while still ensuring the attention output vectors o
fall within the training-time distribution. This ex-
plains how feature distribution shift is avoided in
length generalization techniques.

2 Related Work and Background

2.1 Self-Attention and Positional Encoding
Self-attention is the core design in most modern
LLMs for information flow to words from their con-
texts (Vaswani et al., 2017). It is also the primary
(and often the only) component to inject text posi-
tion information since the introduction of relative
position encoding (Su et al., 2021; Touvron et al.,
2023; Dubey et al., 2024; OpenAI, 2023), which is
the subject of investigation in this work. Despite
architecture variants, it is generally designed as a
Softmax-based weighted average over contextual
“value” vectors {vj |j ≤ i} before current position
i. The average weights w(qi,kj , i − j) are deter-
mined by the relevance between the current word’s
“query” vector qi, contextual words’ “key” vectors
{kj |j ≤ i}, and their relative position i − j. The
output feature vector for the current token oi is
therefore:

oi =
∑

j≤i

w(qi,kj , i− j)∑
j′≤i expw(qi,kj′ , i− j′)

vj . (1)

In spite of the existence of other choices of function
w(· · · ) like Alibi (Press et al., 2021), the de-facto
mainstream choice is RoPE (Su et al., 2021). It
decomposes q and k vectors into 2-D tuples and
lets them rotate in angle (i− j)θr, where each 2-D
tuple r has a different rotating “angular speed” θr.

2.2 Position Generalization (of both LLMs
and Humans)

Both humans and LLMs exhibit the ability to under-
stand language with variable word or sentence posi-
tions. This phenomenon is related to multiple con-
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cepts from different perspectives. Although writ-
ten languages are usually represented as sequences
of textual elements (such as characters, words,
and sentences), they differ in their Word Order
Flexibility (Bakker, 1998; Kaiser and Trueswell,
2004). Some languages (e.g., English, Chinese,
Vietnamese, Indonesian) require a strict word or-
der, while others (e.g., Hungarian, Japanese and
Latin) allow more flexibility in order,

which encodes pragmatic information such as
emphasis (Payne, 1992). This aspect has been
computationally measured (Kahane et al., 2023)
and used to evaluate linguistic complexity (Szm-
recsanyi, 2016).

Nevertheless, even when texts are perturbed to
the extent that they no longer conform to regular
language, humans can still understand them under
certain conditions. The Transposed Letter Ef-
fect (Bruner and O’Dowd, 1958; Rawlinson, 2007)
describes the ability to understand texts when the
letter order is scrambled within words. Language
models also demonstrate the ability to perform
downstream tasks on syntactically scrambled in-
puts, as shown in Unnatural Language Process-
ing (Sinha et al., 2021b; Pham et al., 2021). Sinha
et al. (2021a) report comparable or improved qual-
ity of masked language models after pre-training
on such corpora. At the sentence level, models
pre-trained on randomly ordered corpora show im-
proved performance on tasks involving complex
contextual reasoning (Shi et al., 2024).

Preliminary studies on neural mechanisms un-
derlying these phenomena in humans have been
conducted in cognitive neuroscience (Garcia-Orza
et al., 2010; Duñabeitia et al., 2012; Carreiras et al.,
2015), showing prevalent while varying robustness
to transposition effects on letters, digits, and sym-
bols in human brains.

This work offers a computational counterpart,
interpreting how position generalization is reflected
in the internal mechanism of LLMs.

3 LLMs Disentangle Position and
Semantics in Attention

How do LLMs handle the interaction between posi-
tional relation and semantic relation? The attention
logit function does not need to be smooth or simple
across distances. It can be designed with arbitrary
complexity so that at every distance i− j, the func-
tion w(i − j, ·, ·) behaves drastically differently.
RoPE adopts a complex design that could theoret-

ically implement (inverse) discrete Fourier trans-
form, allowing it to approximate arbitrary functions
with a sufficiently large dimension size. Unless oth-
erwise stated, we use the Llama-3.2-7B model as
the subject of study and extend results to other
models in the Appendix.

Counter-intuitively, in this section, we reveal
that LLMs learn a special feature pattern to em-
pirically simplify the logit function w(· · · ). The
resulting attention logits can be approximately dis-
entangled as an arithmetic addition of position rel-
evance (determined by i− j and qi) and semantic
importance (determined by kj). We will start with
an interesting observation of low-rank components
in attention maps in Sec 3.1. Taking it as an in-
spiration, Sec 3.2 shows how the attention logits
can be approximately disentangled into position
and semantic-related components. Sec 3.3 general-
izes the discussion to the relative position encoding
scheme in general. Finally, Sec 3.4 shows how
LLMs computationally achieve this mechanism by
enforcing a special pattern in key and query vec-
tors.

3.1 Starting Point: 3-Axis Linear
Approximation of Logit Matrix

Let us start by looking at an attention head’s
logit matrix W ∈ Rn×n with elements Wi,j =
w(qi,kj , i − j) in Fig 2(a). It is lower-triangular
in causal language models where only past tokens
are within the attention scope of the current token.
Despite combining information of three variables
i − j, qi,kj , there are visible 1-d patterns along
horizontal, vertical, and (off-)diagonal axes. These
three axes are coincidentally the ones associated
with the three variables as depicted in Fig 2(b): in
axis 1, i − j does not vary in a diagonal line (the
“distance axis”); in axis 2, kj and j do not vary in a
vertical column (the “key axis”); in axis 3, qi and i
do not vary in a horizontal row (the “query axis”).

Inspired by this observation, we operate a ternary
linear approximation of the logit map along the
three axes. In other words, we examine if the logit
map can be approximated with

Wi,j ≈ ai−j + bi + cj (2)

with three arrays (or three linear components) of
variables a, b, c. To obtain an approximation, we
formulate this as ridge regression, with more de-
tails in Appendix A. An example set of solved
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Figure 3: After replacing the distance value i− j with a controlled fake distance d (illustrated in (a)), we find that a
distance-axis + key-axis decomposition closely resembles the logit calculation. (b) illustrates the disentanglement
process. The key-axis and distance-axis components align well with the patterns of the fake-distance logit matrix and
sum up to a close approximation at the lower right corner. (c) presents additional examples, showing the prevalent
applicability of such approximation. More details are provided in Sec. 3.2.

arrays is illustrated in Fig 2(c). 1 By summing
the three obtained components, the reconstructed
logit matrix in Fig 2(d) shows striking similarity
with the original matrix. With more comparative
examples shown in Fig 2(e) and Appendix D, we
show the prevalence of this trend across layers and
attention heads. This simple approximation has a
correlation coefficient of 0.8650. This shows that
a great majority of W ’s variance can be explained
by Eq 2. Interestingly, its linear nature implies the
logit map contains simple components that vary
only depending on key, query, or position informa-
tion individually, but not their combinations.

This approximation, however, only serves as a
starting point for our study, as the a component
assumes a static and global positional pattern ai−j

depending on token distance i−j, due to the course
granularity of the analysis. We will move to a more
fine-grained analysis in the next subsection.

3.2 The Disentanglement Law of Attention
Logits

The previous section identified independent linear
patterns in the logit map. However, in the calcu-
lation of the attention logits w(i − j, qi,kj), the
three variables still depend on each other. This pre-
vents us from studying their effects on the logits
individually. Additionally, the “query axis” does
not have an actual effect on LLMs. It applies a
uniform offset on each logit row, which is also a

1Note that this is different from a low-rank approximation
of matrices, which approximates the full matrix (instead of the
lower-trangular part), and only involves the row and column
axes without diagonal components.

uniform offset in Eq 1. However, the softmax op-
erator is invariant under uniform offsets. 2 So, it
would make more sense to control the query axis
while fully disentangling the effect of the position
and semantics axes.

Therefore, instead of studying the real attention
logits, we use a fake distance value d to replace
the real distance i − j: w(d, qi,kj). In light of
the previous discussion, we fix a query vector q
(for which we use the last token in the document
to maximize the attention scope) and visualize the
following fake logit matrix W ′ ∈ Rn×n where
W ′

d,j = w(d, qi,kj) in Fig 3(a). After this substi-
tution, the new matrix W ′ shows apparent verti-
cal and horizontal patterns, suggesting prominent
distance-wise and key-wise components.

We follow on disentangling W ′ along these di-
rections as W ′

d,j ≈ ad+bj .3 The least-square ridge
regression solution of this approximation has an
explicit-form solution (with more details in Ap-
pendix B):

ad =
1

n

∑

j′
W ′

d,j′ −
1

2n2

∑

d′,j′
W ′

d′,j′

bj =
1

n

∑

d′
W ′

d′,j −
1

2n2

∑

d′,j′
W ′

d′,j′ .

(3)

Essentially, a and b are the average column and
row of W ′, respectively, with a constant offset of
− 1

2n2

∑
d′,j′ W

′
d′,j . This disentanglement process

is visualized in Fig 3(b), where the key-axis and
2The softmax weights remain the same after an offset:

exp(wi+c)∑
j exp(wj+c)

= expwi·exp c∑
j expwj ·exp c

= expwi∑
j expwj

.
3This is a simplification of rank-2 matrix approximation.
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Figure 4: Visualization of rotating query-key vector tuples in RoPE-based attention described in Section 3.4. (a)
The rotating tuples averaged over tokens are plotted as arrows, with tuple indices annotated from 0 to d/2 − 1.
Standard deviations over the tokens are shown as circles around endpoints, and the arc indicates the maximum
rotation over the pre-training cutoff length. The sum of the tuples’ projection along the horizontal axis is the actual
logit value. (b) lists more of such figures, with more details in Sec 3.4

distance-axis components at two corners align with
the patterns of the original fake logit matrix well.
Once we combine these two components, their sum-
mation again demonstrates high similarity with the
original matrix with details. This approximation
has an average correlation coefficient of 0.9470
across layers, with a minimum linear correlation
of the disentangling approximation of 0.914 and
a maximum of 0.967, explaining the vast major-
ity of the logits’ variance by the two simple 1-
dimensional components. We list more examples
of such approximation in Fig 3(c) and Appendix D.
These results indicate an approximated disentan-
glement of attention logits between positional rele-
vance and semantic relevance:

w(i− j, q,k) ≈ f(q, i− j) + g(q,k) (4)

. In other words, the majority of contribution from
the position relation of two tokens f(qi, i − j) is
computed independently from their semantic rela-
tion g(qi,kj) and added together.

Discussion: Triviality of Eq. 4 We here argue
that RoPE does not inherently disentangle posi-
tional and semantic information by design. As an
empirical verification, we additionally experiment
on a randomly initialized Llama-3.2-3B model. Us-
ing the same setup as described before, we carry
out a 3-axis linear approximation of the logit map
in this model on an input of length 4096. In this
case, we only observe a 0.028 linear correlation
coefficient between the original and approximated
attention logits. RoPE is mathematically equiva-

lent to evaluating an inverse discrete Fourier trans-
form along position d, which can express arbitrarily
complex correlations between q,k, d as shown in
the following Theorem, with a proof listed in Ap-
pendix E.

Theorem 1. Let f(d, x, y) ∈ [−C,C] be any
bounded function over relative position d ∈ Z and
semantic inputs x ∈ X , y ∈ Y with smoothness
properties[6]. Then, for sufficiently large feature
dimension n = 2N , there exists a set of rotation
frequencies {θr}, and features k(x), q(y) ∈ Rn

such that the RoPE attention logit approximates
f(d, x, y) with arbitrarily small error:

|w(d,k(x), q(y))− f(d, x, y)| < ϵ. (5)

3.3 Extending Discussions to General Relative
Position Encoding

This decomposition naturally extends to AL-
iBi (Press et al., 2021), another most common
form of positional encoding in current LLMs (e.g.,
MPT model family (Team, 2023)). ALiBi intro-
duces a position-dependent bias directly to the at-
tention logits, which is linearly added and separa-
ble from the semantic interaction computed via the
key-query dot product. This makes the position-
semantic decomposition even more explicit and fits
directly into the discussions above.

3.4 The Mechanism in Query-Key Space
What caused the phenomena mentioned in the last
two sections? Using the most prevalent positional
encoding of RoPE as the subject of study, we delve
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(a) Effects of text transposition on LLM
perplexity. x-axis controls the ratio of
tokens perturbed, and y-axis controls
the maximum distance of shuffled token
pairs.

(b) Effects of feature transposition on
LLM perplexity. x-axis controls ratio of
tokens with position indices perturbed,
and y-axis controls the maximum value
position offset.

(c) Effects of position encoding manipu-
lation on LLM perplexity. x-axis controls
ratio of tokens with position indices per-
turbed, and y-axis controls the maximum
value position offset.

Figure 5: Evaluating the impact of position information perturbation on LLMs’ perplexity on ArXiv documents.
With the vanilla perplexity being 3.688, our results show that shuffling text order in inputs and altering positional
encodings in self-attention layers have limited effects on model perplexity and attention outputs.

deeper into the hidden features to show that cer-
tain feature dimensions of q and k are enforced
with a large fixed norm and direction so that the
approximation in Eq 4 is possible. Recall that the
d-dimensional q and k are composed of a total
number of d/2 2-tuples rotating at different angu-
lar speeds, with lower-indexed tuples rotating much
faster than high-indexed ones. The overall logit

w(i− j, q,k)

=
∑

r

k⊤
r M

rot
r ((i− j)θr)qr

=
∑

r

∥kr∥∥qr∥ cos ((i− j)θr + θqr − θkr)

, which are sums of cos values of rotating vectors
with norms of ∥kr∥∥qr∥, starting angle of θqr−θkr

and rotating speed θr per distance.
We plot how these vectors would rotate together

on a 2-D plane in Fig 4(a). The starting positions
of these rotating vectors are plotted as arrows point-
ing from the point of origin. Each arrow’s tuple
index (∈ {0 . . . d/2 − 1}) is annotated beside the
arrowheads. To visualize the randomness in these
vectors, we also plot their standard deviation as
circles around the endpoints. We also plot an arc
to show the maximum rotation angle over the max-
imum distance allowed, i.e., the pre-training cutoff
length θmax

r = θrLpre-train. Notably, there exist a
few (two in the shown example) slow dominating
tuple dimensions with the following properties:

Observation 1. Properties observed in slow-
dominating features:

1. (Prominent dimensions) A relatively fixed av-
erage starting vector Ekr with significantly
larger norms than other dimensions that are

not slowly rotating. In these slow-rotating di-
mensions, the deviation of vectors kr from the
average vector Ekr is also small.

2. (Dimensions that are mostly static) The total
rotation angle θmax

r = θrLpre-train is usually
small if the initial angle is close to π.

More similar patterns can be found in Fig 4(b)
and Appendix D.

We theoretically demonstrate how these patterns
account for the previous entanglement in the sense
that the contributions of slow dominating tuple di-
mensions to logits disentangle the positional and
semantic components. Other tuple dimensions,
however, contribute to relatively smaller variations
in the logits. We have the following asymptotic
disentanglement of the logit function (with formal
statements and proof in Appendix C):

Theorem 2. There exists functions f(q, i −
j), g(q,k) that so that the effect of i − j and k
can be asymptotically disentangled as:

w(i−j, q,k) = f(q, i−j)+g(q,k)+o(R) (6)

, where

R = max (Range(f),Range(g))

stands for the larger one of extreme range of f and
g as i, j,k vary

. Here, f and g are only related to the positional
and semantic relation between tokens. The logit
function is approximated as the sum of two func-
tions f, g, with a diminishing term compared to the
function range of f, g. This provides computational
explanations for the observations in the previous
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two sections. Not only are these functions existen-
tial, but the proof in Appendix C provides explicit-
form solutions for f, g, which obtains a 0.959 lin-
ear correlation with the original logits. This further
validates the observations in Section 3.1 and 3.2.

Operation Qasper Accuracy

0.5 0.1 0.05 0.01 0.001

Original 42.53

Text Order 37.39 41.44 42.34 42.37 42.53
Feature Order 35.11 41.15 41.98 42.33 42.56
Position Encod-
ing

37.19 42.44 42.42 42.74 42.64

Table 1: Effect of different levels of positional infor-
mation perturbation on the Qasper Question-Answering
dataset. Up to 5% of the tokens can be transposed or
applied with perturbed position encoding (within token
distance ±5), while only resulting in a marginal effect
on model accuracy.

4 Position Generalization of LLMs

Taking insights of findings in Sec 3, this section
explains how LLMs achieve position generaliza-
tion towards perturbed text positions and unseen
lengths. These phenomena reflect the aforemen-
tioned computational mechanism of disentangling
position and semantics in attention: positional rele-
vance is not tightly bonded with semantic informa-
tion in attention inference. Instead, they contribute
linearly independently to attention logits. In the
following sections, we will empirically examine
various forms of position generalization on the rep-
resentation level.

4.1 Tolerance to Position Perturbations

Why can LLMs (like humans) read the language
in shuffled word and sentence order? In light of
the analysis in Sec 3, the positional information
does not tightly bond with semantic relation but
is more of an additive factor to the attention logit.
We experimentally examine how this mechanism
affects the capability of LLMs on various levels.
At the superficial level, we show that transposing
the positions of a ratio of words in a text sequence
has marginal effects on model behaviors. To inves-
tigate the reason further at the representation level,
we also mimic the effect of text word perturba-
tions in the LLM representations, such as shuffling
the order of the feature sequences or modifying

the position indices in positional encoding. More
specifically:

1. randomly shuffling a ratio γ of the text orders
in inputs within a maximum length lmax (Text
Transposition),

2. randomly shuffling a ratio γ of the k feature
order in each attention layer within a maxi-
mum length lmax (Feature Order Transposi-
tion),

3. randomly offsetting a ratio of γ of the k’s
position indices within self-attention layers
within a range of lmax (Position Encoding
Manipulation)

. We analyze the effects on attention output vectors
and the corresponding LLMs’ performance under
these conditions.

The results, presented in Fig. 5, show that LLMs
exhibit robustness to these perturbation methods.
The original model has a perplexity of 3.688 on
the ArXiv documents (Gao et al., 2020a). Text
transposition has a minimal impact on perplexity,
with only a 0.02 increase when 1% of tokens are
shuffled up to a distance of 1000 tokens. This sug-
gests that LLMs do not rigidly depend on strict
word order. Our intervention techniques simulate
this linguistic transposition effect in Fig. 5b and
5c. Feature transposition also introduces a modest
increase in perplexity, indicating that while posi-
tion indices contribute to contextual representation,
their precise ordering is not always critical in each
self-attention layer. As further analysis, when the
position encoding contains perturbed indices, the
perplexity still has a marginal increase when 10%
of token positions were perturbed by ±10, or in-
crease by an absolute value of 0.01 when 1% of
tokens has position encoding perturbed by ±10.
These phenomena further align with the previous
observations that position information acts as a dis-
entangled additive factor rather than being tightly
entangled with semantic relationships.

As perplexity might not reflect a model’s ac-
tual performance on downstream tasks, we eval-
uate how Llama-3.2-3B-Instruct performs on the
Qasper dataset (Dasigi et al., 2021) under these
conditions. Results are listed in Table 1. Similar to
the findings on the model perplexity, the model can
tolerate 5% or word order being shuffled up to 5 to-
ken distance in the inputs, with only a 0.6% drop in
accuracy. When we perturb the positional informa-
tion inside the model, the model exhibits flexibility
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4200 5120 6144 7168 8192

KL (LM-Infinite) 0.0789 1.2093 2.6327 3.5192 4.4401
KL (Extending Vanilla LM) 0.5493 6.4862 8.6050 12.8479 15.9810
Log-Perplexity (LM-Infinite) 1.102 0.996 0.995 1.020 1.004
Log-Perplexity (Extending Vanilla LM) 1.316 7.268 8.737 8.754 8.901

Table 2: KL divergence between the distribution of extra-length features and pretraining-length features is signifi-
cantly smaller when a length extrapolation technique (such as LM-Infinite) is applied compared to vanilla LLMs.
The distribution was approximated with a multivariant Gaussian distribution. This trend aligns with the lower loss
(lower log-perplexity) when applying a length extrapolation method.

(<0.1% drop in accuracy) under both feature order
transposition and position encoding manipulation
when the position information of up to 10% of the
features is perturbed.

4.2 When and How LLMs Generalize to
Longer Texts

In vanilla relative position encoding, the list of
distance values [d] used in the attention operation
between one query vector qi and all key features
kj sequence is just the list of inter-token distances
[i, . . . , 0]. Recent techniques like LM-Infinite and
InfLLM enable LLMs to generalize to longer text
sequences than those encountered during training.
The common practice adopted by these techniques
is to modify the relative position before apply-
ing the original self-attention mechanism. This
is equivalent to applying self-attention over a mod-
ified [ki] and [vi] sequence, which might be dif-
ferent (sometimes significantly shorter) than the
original [ki] and [vi] sequences. More specifically,
in those techniques, the resulting sequence of fea-
tures usually appears as if they are of the following
positional distances:

[LPT , · · · , LPT , LPT−1, · · · , lL, · · · , lL, · · · , 1, 0]

, where LPT is the pre-training maximum length,
and lL is a position used technically for storing a
few automatically retrieved feature vectors in the
extremely long context. The retrieved features are
usually used to enhance information retrieval.

This is in contrast to the intuition we obtained
from common machine learning practices: why do
LLMs train purely from shorter texts that general-
ize to extreme lengths (e.g., 200M in LM-Infinite)
with only minor modifications to the model archi-
tecture? Moreover, little explicit design was im-
plemented in modern SotA LLMs to enable this
extreme generalization. This phenomenon could
find support in our analysis: even though posed

to unseen extreme lengths, LLMs do not bind po-
sitional relevance information with the semantic
features of the contextual tokens. In other words,
the k and v vectors could be interpreted as a pool
of semantic features. The self-attention mecha-
nism approximately and additively applies the po-
sition component to the pool. As long as the re-
sulting distance list is similar to its normal shape
[LPT , LPT − 1, . . . , 1, 0], the attention output vec-
tor will reside in its normal distribution. Therefore,
technically, the attention output vector is still in-
distribution, so the remaining parts of LLMs on
top of the attention outputs will not take out-of-
distribution features as inputs.

To verify this claim, we visualize the atten-
tion output vectors of an arbitrary layer using the
technique above on the Pile dataset (Gao et al.,
2020b). This is a projection down to a 2-D
plane using PCA4. The blue dots are the nor-
mal attention output vectors, which mark their
normal distribution. Then, we select a set of
q vectors and associate them with different col-
ors. For each vector, we apply it over a sub-
sequence of length LPT : [ki,ki+1, . . . ,ki+LPT

]
and [vi,vi+1, . . . ,vi+LPT

]. As we vary the value
of starting position i, we trace the output vector
with colored broken lines. As shown in Figure 6,
these lines, though extending to different directions
and different ranges depending on the q, still wan-
der within the range of normal attention output
vector distribution.

In Table 2, we also empirically verify that, as the
context length increases, the distribution of length-
generalizable text features remains similar to nor-
mal feature distributions, as shown in the following
table. However, vanilla models on longer lengths
will have an increasing KL divergence from normal
features. This trend aligns with the trend of final

4https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html
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Figure 6: Visualization of attention output vectors projected onto a 2-D plane using PCA. Colored broken lines trace
attention output vectors o across a sliding window of key and value vectors in length extension techniques. This
shows that the output vectors remain within the normal distribution, supporting our explanation of the possibility of
length generalization.

perplexity. This further validates our explanation
of the length generalization and provides insights
for future manipulation of the self-attention module
for research purposes.

5 Conclusions and Future Work

In this work, we investigated the computational
mechanisms behind the position generalization ca-
pabilities of LLMs. We first demonstrated that
attention logits in LLMs can be approximately dis-
entangled into independent components represent-
ing positional and semantic relevance. This find-
ing suggests a structured decomposition within the
model’s internal computations. Through empiri-
cal analysis, we further examined various forms of
position generalization at the LLM representation
level. These insights provide both computational
explanations and insights into controlling these phe-
nomena.

Future research could delve deeper into the spe-
cific architectural choices and training data patterns
that contribute to this robustness. We also envision
practical implications where the discovered decom-
position might be important:

• Improved efficiency in attention calcula-
tion: after estimating the semantic importance
and positional patterns, some (regions of) at-
tention logits can be estimated without calcu-
lating precisely. This will be especially useful
when those logits are low so that estimation er-
rors will only translate to a small deviation in
their exponentials, which are used in the soft-
max operator later. Such techniques can be
further incorporated into novel architectures,
which will be inherently more efficient.

• KV cache compression: Similar to the bullet
above, the estimated importance component
can be used as a precise and efficient crite-
rion for filtering out k, v caches that are more
likely to receive low logits.

• Position bias mitigation: LLMs are reported
to favor options that appear at specific posi-
tions (Wang et al., 2024) or are lost in the
middle (Liu et al., 2023). The discovered po-
sitional pattern and semantic importance can
be used to re-calculate the attention logits, al-
leviating or removing such bias.
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Limitations

While our study provides new insights into the
computational mechanisms behind position gen-
eralization in LLMs, several limitations remain.
First, our study primarily evaluates position robust-
ness involving text order and length generalizations.
While these are valuable computational linguistic
phenomena, real-world language processing tasks
often involve more complex positional dependen-
cies, such as discourse coherence, document-level
reasoning, and hierarchical structures. Future work
could explore much more complicated scenarios.
Second, our findings suggest that position and se-
mantic components of attention logits can be dis-
entangled, but the extent to which models actively
leverage this property during training is unclear.
Future explanations on how such a mechanism is
acquired during training dynamics could greatly
enhance the work.
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A Details of Solving Ternary Linear
Approximation in Sec 3.1

The total residue square in Eq 2 is represented as:

L(W ;a, b, c) =
∑

j≤i

(Wi,j −ai−j − bi− cj)
2 (7)

. This is a strictly convex function, so one single op-
timal solution exists. At the optimum, the objective
has zero gradient ∇L(W ;a, b, c) = 0. Taking
derivative over all variables, this requirement is
equivalent to a linear system:

(n− i)ai +
∑

j≤n−i

bj +
∑

j≥i

cj =
∑

j≥i

Wi+j,j

∑

j≤n−i

aj + (n− i)bi +
∑

j≥i

cj =
∑

j≥i

Wj,i

∑

j≤i

(aj + bj) + (i+ 1)ci =
∑

j≤i

Wi,j

(8)

. We then apply a linear equation solver5 to this
system.

B Details of the Approximation in Sec 3.2

The total residue square in Eq 2 is represented as:

L(W ′;a, b) =
∑

d,j

(W ′
d,j − ad − bj)

2 (9)

. Taking derivative over all variables, the optimal
point satisfies a linear system:

nad +
∑

j′
bj′ =

∑

j′
W ′

d,j′

∑

d′
ad′ + nbj =

∑

d′
W ′

d′,j

(10)

. The solution set is the following family of values,
where c can take arbitrary values.

ad =
1

n

∑

j′
W ′

d,j′ + c− 1

n2

∑

d′,j′
W ′

d′,j′

bj =
1

n

∑

d′
W ′

d′,j − c

(11)

. Adding an l2-norm regularization term with any
weight, as c is the only free variable here, the opti-
mal solution will be the point where.

∑

d

ad −
∑

j

bj = 0 (12)

5Adopted solver in NumPy: https://numpy.org/doc/2.
2/reference/generated/numpy.linalg.solve.html. We
add a 1e-6 l2-norm regularization for numerical stability of
solutions

. That will require c = 1
2n2

∑
d′,j′ W

′
d′,j′ . The final

solution will become:

ad =
1

n

∑

j′
W ′

d,j′ −
1

2n2

∑

d′,j′
W ′

d′,j′

bj =
1

n

∑

d′
W ′

d′,j −
1

2n2

∑

d′,j′
W ′

d′,j′

(13)

.

C Asymptotic Disentanglement of
Attention Logit Function

Assumption 1. Consider a sequence of feature-
related variables {k(n)

r , q
(n)
r , θ

(n)
r , L

(n)
pre-train}n∈N,

where n represents an increasing parameter (e.g.,
as training steps evolve, which reflects the observa-
tion that the following observations are a learned
behavior on pre-training data). For readability, we
omit the explicit sequence index (n) in the follow-
ing statements, but all asymptotic relations are un-
derstood to hold as n → ∞. Properties observed
in slow-dominating features:

1. (Prominent dimensions) A relatively fixed av-
erage starting vector Ekr with significantly
larger norms than other dimensions. ∃Rslow

∀r′ ̸∈ Rslow, r ∈ Rslow, ∥kr′∥∥qr′∥ =
o(∥kr∥∥qr∥). Also ∀r ∈ Rslow, ∥kr −
Ekr∥ = o(∥Ekr∥).

2. (Dimensions that are mostly static) The to-
tal rotation angle θmax

r = θrLpre-train is usu-
ally small if initial angle is close to π, i.e,
θrLpre-train = o(θqr − θkr − π).

Based on the assumptions above, we provide a
more formal statement of Theorem 2 as follows:

Theorem 3. If feature properties described in
Observations 1 holds, then there exists functions
f(q, i− j), g(q,k) that so that the effect of i− j
and k can be asymptotically disentangled as:

w(i−j, q,k) = f(q, i−j)+g(q,k)+o(R) (14)

, where

R = max (Range(f),Range(g))

stands for the larger one of extreme range of f and
g as i, j,k vary.

.
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Proof. In those slow-dominating dimensions r ∈
Rslow, denote θδ = θqr − θkr − π and k̄ = Ek.
Let Rangex(f) = supx(f) − infx(f) denote the
extreme range of function f over a variable x (out
of potentially multiple variables). We have:

k⊤
r M

rot
r ((i− j)θr)qr

=∥kr∥∥qr∥ cos(θqr − θkr + (i− j)θr)

=∥k̄r + (kr − k̄r)∥∥qr∥
cos(π + θδ + (i− j)θr)

≤− (∥k̄r∥+ ∥kr − k̄r∥)∥qr∥
cos(θδ + (i− j)θr)

=− ∥k̄r∥∥qr∥ cos(θδ + (i− j)θr)

− ∥kr − k̄r∥∥qr∥(
cos θδ − 2 sin (θδ +

1

2
(i− j)θr) sin

1

2
(i− j)θr

)

=− ∥k̄r∥∥qr∥ cos(θδ + (i− j)θr

+ ∥kr − k̄r∥∥qr∥ cos θδ)
+ ∥kr − k̄r∥∥qr∥

2 sin (θδ +
1

2
(i− j)θr) sin

1

2
(i− j)θr

Let

fr(qr, i− j) =− ∥k̄r∥∥qr∥ cos(θδ + (i− j)θr)

gr(qr,kr) =− ∥kr − k̄r∥∥qr∥ cos θδ
lr(qr,kr, i− j) =− 2∥kr − k̄r∥∥qr∥

sin (θδ +
1

2
(i− j)θr)

sin
1

2
(i− j)θr

.
Now let’s split the case for discussion. When

θδ <
π
4 , cos(θδ) ≥

√
2
2 , (i− j)θr = o(π4 ),

|l(qr,kr, i− j)| ≤2∥kr − k̄r∥∥qr∥ sin
1

2
(i− j)θr

=o(∥kr − k̄r∥∥qr∥)
=o(Rangekr

(gr(qr,kr)))

When θδ ≥ π/4,

Range(cos(θδ + (i− j)θr)) ≥
1

2
(θrLpre−train)

2

|lr(kr, qr, i− j)| ≤2∥kr − k̄r∥∥qr∥ sin
1

2
(i− j)θr

≤2∥kr − k̄r∥∥qr∥
=o(∥k̄r∥∥qr∥)
=o(Rangei−j(fr(qr, i− j)))

In summary,

k⊤
r M

rot
r ((i− j)θr)qr =fr(qr, i− j) + gr(qr,kr))

+ o((Rangekr
(gr(qr,kr))

+ Rangei−j(fr(qr, i− j)))

Then, the faster-rotating dimensions have contri-
butions smaller than slower ones:

∑

r/∈Rslow

k⊤
r M

rot
r ((i− j)θr)qr)

(r0 ∈ Rslow) =|R|o(∥kr0∥∥qr0∥)

=o


 ∑

r∈Rslow

k⊤
r M

rot
r ((i− j)θr)qr




(15)

In summary:

w(i− j, q,k)

=−
∑

r∈Rslow

(∥k̄r∥∥qr∥ cos(θδ + (i− j)θr)

+ ∥kr − k̄r∥∥qr∥ cos θδ)(1 + o(1))

=f(q, i− j) + g(q,k)+

+ o((Rangek(g(q,k)) + Rangei−j(f(q, i− j)))

(16)

if we define

f(q, i− j) = −
∑

r∈Rslow

fr(qr, i− j)

g(q,k) = −
∑

r∈Rslow

gr(qr,kr)
(17)

, respectively.
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D More Example Visualization from
Other Models

E Proof of Theorem 1

Proof. Let θr = 2π r
N , and let us view

f(d, x, y) along the variable of d ∈ [0...L],
and define the Fourier spectrum F (x, y) =
[F0(x, y), ..., FN−1(x, y)]:

Fr(x, y) :=
1

N

L∑

d=0

f(d, x, y)e−idθr

We now encode the spectrum into k(x) so that

ik2r(x) + k2r+1(x) =
Fr(x, y)

iq2r(y) + q2r+1(y)

Then we have:

w(d,k(x), q(y))

=
N∑

r=1

Re
[
Fr(x, y)e

idθr
]

=f(d, x, y) +O(e−cn)

for some constant c by established bounds of
discrete (inverse) Fourier coefficients in (Nissilä,
2018).
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Figure 7: More examples of 3-axis approximation of logit matrix on Llama-2 model.
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Figure 8: More examples of disentanglement of fake-distance logit matrix on Llama-2 model.
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(a) Llama-2.

(b) Llama-3

Figure 9: More examples of the rotating vector tuples in RoPE-based attention in other models.

19424


