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Abstract
Large language models (LLMs) with the
Mixture-of-Experts (MoE) architecture achieve
high cost-efficiency by selectively activating
a subset of the parameters. Despite the in-
ference efficiency of MoE LLMs, the train-
ing of extensive experts from scratch incurs
substantial overhead, whereas reconstructing
a dense LLM into an MoE LLM significantly
reduces the training budget. However, exist-
ing reconstruction methods often overlook the
diversity among experts, leading to potential
redundancy. In this paper, we come up with
the observation that a specific LLM exhibits no-
table diversity after being pruned on different
calibration datasets, based on which we present
a Diversity-Enhanced reconstruction method
named DIVE. The recipe of DIVE includes
domain affinity mining, pruning-based expert
reconstruction, and efficient retraining. Specifi-
cally, the reconstruction includes pruning and
reassembly of the feed-forward network (FFN)
module. After reconstruction, we efficiently
retrain the model on routers, experts and nor-
malization modules. We implement DIVE on
Llama-style LLMs with open-source training
corpora. Experiments show that DIVE achieves
training efficiency with minimal accuracy trade-
offs, outperforming existing pruning and MoE
reconstruction methods with the same number
of activated parameters. Code is available at:
https://github.com/yuchenblah/DIVE.

1 Introduction

Large Language Models (LLMs) based on Trans-
former (Vaswani et al., 2017) have demonstrated
outstanding capabilities across various domains.
However, prevailing dense LLMs with all param-
eters activated during inference involve signifi-
canst computational and memory overheads, hin-
dering the practical deployment of LLM-based ser-
vices (Zhu et al., 2023; Gu et al., 2024). While
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Problem: diana is painting statues . she has 1 / 2 of a gallon
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paint . how many statues can she paint ?
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Figure 1: Example inputs and outputs of a dense LLM
and DIVE, sampled from MathQA (Amini et al., 2019).
Tokens highlighted with the red background are routed
to the Math expert. DIVE benefits from the inherent
diversity in the dense LLM with specialized experts.

static compression like structured pruning can re-
duce these overheads, they often incurs down-
graded capacity and generalization abilities.

Unlike reducing the size of pre-trained LLMs,
Mixture-of-Experts (MoE) LLMs, such as Mix-
tral 8x7B (Jiang et al., 2024), enable scalable pre-
training by activating only a subset of parameters
during inference, achieving superior performance
with the same or fewer active parameters compared
to dense LLMs (Lepikhin et al., 2021). MoE mod-
els typically differ from dense LLMs in the feed-
forward network (FFN), replacing the single FFN
with multiple smaller FFN experts. These experts
are selectively activated via a parameterized router,
while other components like embeddings, language
modeling heads, and multi-head attention (MHA)
modules remain unchanged.

Although MoE models share similarities with
dense LLMs, they are usually pre-trained from
scratch, which involves significant costs and po-
tential instability (Wei et al., 2024). To mitigate
these issues, there has been increasing interest in
converting dense models into MoE architectures.
However, existing methods, like duplicating FFN
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modules (Komatsuzaki et al., 2023) and random
splitting (Zhu et al., 2024), often produce homoge-
neous experts that lack diversity. This necessitates
substantial retraining to enhance expert diversity
and achieve optimal performance. In this paper, we
aim to tackle this challenge from the perspective of
expert reconstruction, addressing the following key
question:

How can we reconstruct a dense LLM into MoE
architecture while enhancing expert diversity and
significantly reducing training costs?

In pursuit of enhancing diversity, we investi-
gate structured pruning approaches, which derive
smaller but potentially less generalizable models
from existing LLMs. Pruning typically relies on
a calibration set to assess weight importance (An
et al., 2024). Given the aggressive nature of prun-
ing and the limited size of calibration sets com-
pared to pre-training corpora, certain pruning meth-
ods exhibit sensitivity to the calibration set. We
observe that LLMs pruned with different calibra-
tion sets exhibit notable diversity across evaluation
domains, and models pruned on specific domain
data struggling to generalize. While such sensitiv-
ity can be a drawback, it effectively uncovers the
inherent diversity in the weights of dense LLMs.

Building on the above insights from pruning,
we propose a Diversity-Enhancing expert recon-
struction method of LLM named DIVE. As illus-
trated in Figure 1, DIVE leverages the inherent
diversity of the original LLMs, and construct ex-
perts with varying capabilities. We firstly use do-
main affinity mining to identify expert domains
and deploys pruning-based expert reconstruction.
Then, we design an efficient retraining pipeline to
recover the model’s capabilities, only the recon-
structed modules (routers, experts, and normaliza-
tions) need to be retrained with parameter-efficient
tuning (PEFT). As a summary, our contributions
are as follows:

• We introduce DIVE, an effective MoE recon-
struction method for dense LLMs that en-
hances expert diversity, inspired by static prun-
ing techniques.

• We propose an efficient retraining method, de-
signed to minimize training costs. Only less
than 1% of the parameters are required to be
tuned.

• Experiments show the effectiveness and ro-
bustness of DIVE. With a 50% sparsity of

the original FFN, DIVE outperforms existing
pruning and MoE reconstruction methods, ex-
celling in both language modeling and various
downstream tasks.

2 Preliminary

2.1 Dense FFN in Transformer
The FFNs in standard Transformer-based dense
LLMs (Vaswani et al., 2017) consist of fully con-
nected layers that operate independently for each
token. Given an input vector x, the forward pass
through the FFN is:

FFN(x) = Fdown
(
σ
(
Fup (x)

))
, (1)

where Fup and Fdown are linear transforma-
tions, and σ stands for activation functions (e.g.,
ReLU (Agarap, 2018)). For the SwiGLU activation
used in Llama-style LLMs,

σ(Fup(x)) = ς(Fgate)⊙ Fup(x), (2)

where Fgate is an additional linear transforma-
tion with the same shape as Fup, ς is the Swish
function and ⊙ denotes element-wise multiplica-
tion (Shazeer, 2020).

2.2 Sparse FFN in Mixture-of-Experts
Different from dense LLMs, in Transformer-
based MoE LLMs, the FFN layers are typi-
cally replaced with MoE layers consisting of
a router R and n original FFN-type experts
{FFN1, FFN2, . . . , FFNn}, with only the top-
k being activated. The router, often a lightweight
feed-forward neural network, learns to optimally
allocate inputs to experts based on different data
distributions.

Given an input x, the output of an MoE layer
is the weighted sum of the outputs from selected
experts:

o(x) =
k∑

i=1

wi(x) · FFNi(x), (3)

where wi(x) = Softmax(TopK(z(x)))i represent-
ing the normalized weight for each expert with the
routing logits z(x) produced by the router.

3 Method

Aiming at improving expert diversity in MoE re-
construction, we introduce DIVE. Our method con-
sists of three components: domain affinity mining,
pruning-based expert reconstruction, and efficient
retraining.
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Figure 2: The heatmap shows normalized perplexity (PPL) with a 75% FFN pruning ratio on LLaMA2-7B.
According to the definition of normalized PPL in Eq. 5, the redder the color, the better the performance. Subfigure
(a) presents the evaluation results across different calibration sets. In (b), we highlight calibration sets from (a) that
lead to strong performance on other evaluation tasks, and (c) correspondingly shows that certain evaluation tasks
benefit significantly from specific calibration sets. (d) isolates these tasks for a clearer view of the emerging patterns.

3.1 Domain Affinity Mining
We begin with aligning the expert reconstruction
with structured pruning for LLMs, applying the
same pruning ratio to each FFN. An effective prun-
ing method is FLAP (An et al., 2024), which mea-
sures channel importance by assessing the fluctu-
ation across the calibration dataset in the hidden
state features. From the observations of perfor-
mance gaps in FLAP across different calibration
datasets (Appendix A.2), we hypothesize that fluc-
tuation is sensitive to the domain of the calibration
sets, resulting in diversity of pruning outcomes. To
verify this, we conduct domain affinity mining on
LLaMA2-7B using 24 datasets from various do-
mains (Appendix D.1).

For each calibration task ti in the set of tasks T ,
given N samples, we calculate the pruning mask
Mℓ

ti base on the fluctuation variance. The impor-
tance score for each weight group Wℓ

:,j is com-
puted as follows:

Sℓ
:,j, =

1

N − 1

N∑

n=1

(Xℓ
n,j,:,ti−X

ℓ
:,j,:,ti)

2 · ||Wℓ
:,j ||22,

(4)
where Xℓ

n,j,:,ti
and X

ℓ
:,j,:,ti represent the hidden

state feature for the n-th sample and the baseline
fluctuation in the j-th channel. After pruning, chan-
nels with the highest scores are retrained. Impor-
tantly, our pruning targets the intermediate dimen-
sions of each FFN, focusing on reconstructing the

MoE layer, as discussed in Section 2.2.
To evaluate the pruning results, we measure the

normalized perplexity (PPL) on evaluation tasks
for models pruned using various calibration task
sets. Given the variability of PPL values across dif-
ferent evaluation tasks, we introduce the definition
of normalized PPL as follows:

norm(p)i,j =
min(p):,j

pi,j
, (5)

where pi,j denotes the original PPL of the i-th cali-
bration datasets on the j-th evaluation datasets, and
min(p):,j denotes the minimum PPL on the j-th
evaluation dataset.

Figure 2 shows evaluation results after pruning
across all calibration sets with the FFN pruning
ratio of 75%. We identify key phenomena that
shed light on the effects of pruning across different
calibration sets:

(1) Calibration sets from similar domains ex-
hibit strong correlations. For mathematic QA
tasks (MathQA and GSM8K), the model pruned
with one calibration set demonstrates strong gener-
alization on the other task, indicating that pruning
can effectively capture domain-specific expertise.

(2) Affinity is more sensitive to data than task
types. The affinity between QNLI and other NLI
tasks (e.g., ANLI and MNLI) is not as strong as
that with SQuAD2, which stems from both QNLI
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Figure 3: Demonstration of diversity-enhanced reconstruction of LLMs from dense to MoE. In each lane, the
upper part exhibits the expert division with the domain affinity heatmap. The reconstruction of FFNs is concretely
illustrated in the middle part. And, the modifications to the overall LLM architecture are depicted in the lower part.

and SQuAD2 being derived from SQuAD1.1 data
(Rajpurkar et al., 2018).

(3) C4 exhibits generalization as a calibration
set. C4, a cleaned web crawl corpus (Raffel et al.,
2020), shows broad generalization when used as
a calibration set, reflecting its diverse linguistic
features and robustness.

We further perform domain affinity mining on
various LLM backbones (Appendix D.2). These
findings back up our hypothesis and motivate prun-
ing with affinity domains to achieve diversity-
enhanced MoE reconstruction.

3.2 Pruning-Based Expert Reconstruction

In this section, we describe how to conduct pruning-
based reconstruction of domain-specific experts
upon the above domain affinity mining. The re-
construction process is defined as follows: Given
a dense LLMM, obtain a converted sparse MoE
LLM M̃, with FFN modules replaced by MoE
layers. Each MoE layer is composed of a router
and multiple experts, which are pruned from the
original dense FFNs.

We begin by calculating the domain correlations.
The correlation between each pair of calibration
sets is computed with the Pearson correlation coef-

ficient:

corr(d1, d2) =
cov(d1, d2)
σ(d1)σ(d2)

, (6)

where cov(d1, d2) is the covariance between d1 and
d2, and σ(d1) and σ(d2) are the standard devia-
tions of d1 and d2, respectively. The correlation
value measures the linear correlation between two
datasets, with values ranging from -1 to 1.

We use hierarchical clustering to group the cal-
ibration datasets into 8 clusters based on Eq. 6,
and construct final calibration datasets for pruning
domain-specific experts by uniformly mixing data
within each cluster. For each cluster, we prune an
LLM on intermediate dimensions of the FFNs on it.
The pruned FFNs are then restructured as experts,
with each layer guided by a randomly initialized
noisy router to form the MoE layers, replacing the
original FFNs.

3.3 Efficient Retraining
Since the LLM is partially reorganized, it is essen-
tial to retrain the model on a large-scale dataset to
recover its general performance. Considering the
sparse gradients and non-differentiability raised by
the top-k operation in routers, we perform a two-
stage retraining: (1) dense training for routers
using a tiny amount of data, with all experts be-
ing activated, and (2) sparse training for experts
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and normalization modules on a large dataset with
PEFT, only activating the correlated experts.

During the dense training stage, we introduce a
temperature coefficient t to routers as in Eq.7. This
operation aims to align the routing behavior better
with sparse inference. Further clarifications of the
two-stage retraining design are in Appendix B.2
and B.3.

wi(x) = Softmax

(
z(x)

t

)

i

. (7)

We use Low-Rank Adaptation (LoRA) (Hu et al.,
2022) to retrain the experts, with fully fine-tuning
the routers and the normalization modules. There
is no need to update the parameters of MHA and
other modules, as verified by experiments in Sec-
tion 4.4.2.

3.4 Overview of DIVE
Generally, DIVE is designed with the workflow
described in Figure 3 and Algorithm 1. With the
original dense LLMM and target expert number
N , M is first pruned and evaluated on different
pairs of tasks. Then, the clustering-based data se-
lection is performed with the distance metric of
task correlation. With the grouped datasets G,M
is pruned with calibration data sampled from G
into N dense LLM {M′

1, · · · ,M′
N}. AsM′

N

are with the same parameters with the only excep-
tion of FFN modules, they can be merged into an
MoE architecture M̃. Finally, a two-stage retrain-
ing on M̃ FFN modules with PEFT recovers the
performance and yields the final MoE LLM M̃∗.

Algorithm 1 Workflow of DIVE
Input: dense LLMM, expert number N , tasks T
Output: MoE LLM M̃∗

1: for (ti, tj) ∈ T × T do
2: Pi,j ← PPL(PRUNE(M, ti), tj)
3: end for
4: G ← CLUSTER(NORM(P ), N, dist = corr)
5: for i← 1 to N do
6: Ci ← SAMPLE(Gi)
7: M′

i ← PRUNE(M, Ci)
8: end for
9: M′ ← RECONSTRUCTION({M′

1, · · · ,M′
N})

10: FREEZE(M′) and UNFREEZE(M′.Router)
11: M̃ ← TRAIN(M′.Router)
12: FREEZE(M̃) and UNFREEZE(M̃.LN)
13: M̃∗ ← TRAIN(M̃.LN ∪ M̃.FFN.LoRA)
14: return M̃∗

Method FFN Size WikiText2 LAMBADA1024 2048

LLM-Pruner 50% 17.59 15.62 56.66
FLAP 50% 14.51 12.84 33.22
LLaMA-MoE 1/8 50% × 1 19.57 17.26 87.27
DIVE 1/8 (Ours) 50% × 1 13.52 11.95 24.84
LLaMA-MoE 2/8 25% × 2 20.78 18.46 121.00
DIVE 2/8 (Ours) 25% × 2 16.58 14.67 51.95

Table 1: Perplexity on WikiText2 and LAMBADA lan-
guage modeling. WikiText2 commonly exceeds the
maximum length of the model, and the length of LAM-
BADA is below 1024. Best results are in bold.

4 Experiments

4.1 Experimental Settings

Baselines. We implement experiments on
TinyLlama-1.1B (Zhang et al., 2024), a Llama-
style LLM with dense SwiGLU FFNs (Shazeer,
2020). We compare DIVE with existing structured
pruning and MoE reconstruction methods for
LLMs, including LLM-Pruner (Ma et al., 2023),
FLAP (An et al., 2024), and LLaMA-MoE (Zhu
et al., 2024). We set the same size of 50% of a
single original FFN for all methods and apply
identical retraining procedures. FLAP is imple-
mented on a mixed calibration set of all 24 datasets.
Additionally, to make LLaMA-MoE adaptable
to reconstruct MoE models with various sizes,
we make adjustments to its expert construction
method, as detailed in Appendix A.

Retraining Setup. We use the SlimPajama
dataset for retraining, which is a cleaned and dedu-
plicated version of the RedPajama dataset, contain-
ing 627B tokens of training data (Soboleva et al.,
2023). Experiments of MoE reconstruction meth-
ods are conducted on randomly sampled 0.5B to-
kens for dense training of routers and 5B tokens for
sparse training, with a sequence length of 1024, if
not specified. Experiments of pruning methods are
aligned with the sparse training stage. We set the
temperature coefficient to 0.05 for DIVE 1/8 and
0.5 for DIVE 2/8. Detailed hyper-parameters are
provided in Appendix B.1.

Evaluation Metrics. The language modeling
ability is evaluated with perplexity on Wiki-
Text2 (Merity et al., 2017) and LAMBADA (Pa-
perno et al., 2016). We use lm-evaluation-
harness (Gao et al., 2023) to evaluate the perfor-
mance on downstream tasks. Following LLaMA-
MoE (Zhu et al., 2024) and FLAP (An et al., 2024),
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Method FFN Size SciQ PIQA WinoGrande ARC-e ARC-c (25) MathQA

TinyLlama-1.1B 100% 89.30 72.60 59.43 61.66 35.67 24.32
LLM-Pruner 50% 79.20 63.17 51.46 42.85 22.87 21.68
FLAP 50% 80.50 66.10 55.72 47.69 24.49 22.61
LLaMA-MoE 1/8 50% × 1 76.30 61.10 52.17 43.18 22.70 21.84
DIVE 1/8 (Ours) 50% × 1 83.00 68.12 52.72 51.77 24.91 22.45
LLaMA-MoE 2/8 25% × 2 77.10 60.66 54.93 40.70 21.84 22.18
DIVE 2/8 (Ours) 25% × 2 81.10 64.53 52.49 46.68 22.70 23.02

Method FFN Size HellaSwag (10) LogiQA BoolQ OBQA MMLU (5) Average

TinyLlama-1.1B 100% 46.45 21.51 55.99 25.20 26.79 47.18
LLM-Pruner 50% 33.17 21.04 59.02 16.20 24.61 39.57
FLAP 50% 35.37 20.28 61.86 17.60 23.39 41.42
LLaMA-MoE 1/8 50% × 1 33.24 18.74 61.71 16.60 25.16 39.34
DIVE 1/8 (Ours) 50% × 1 37.09 19.35 58.81 20.20 25.40 42.17
LLaMA-MoE 2/8 25% × 2 31.93 19.20 61.93 16.20 25.00 39.24
DIVE 2/8 (Ours) 25% × 2 32.86 22.12 59.88 18.00 26.78 40.92

Table 2: Few-shot performance of pruning and MoE reconstruction methods on TinyLlama-1.1B, measured by
accuracy on downstream tasks. The FFN size with a multiplier of ×1 or ×2 indicates the number of experts, while
dense models do not use the multiplier. The best results are highlighted in bold.

our evaluation covers 11 commonly used bench-
marks for LLMs: 0-shot of SciQ (Welbl et al.,
2017), PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2020), ARC-e (Clark et al., 2018),
MathQA (Amini et al., 2019), LogiQA (Liu et al.,
2020), BoolQ (Clark et al., 2019) and OBQA (Mi-
haylov et al., 2018), 25-shot ARC-c (Clark et al.,
2018), 10-shot HellaSwag (Zellers et al., 2019) and
5-shot MMLU (Hendrycks et al., 2021).

4.2 Main Results

4.2.1 Language Modeling
Table 1 presents the language modeling results of
DIVE and other methods after retraining. Models
are grouped by single FFN size: 50% × 1 and 25%
× 2. The perplexity scores demonstrate that DIVE
1/8 significantly outperforms other methods with
the same number of activated parameters. In par-
ticular, compared to the second-best results, DIVE
1/8 reduces the perplexity by 8.38 on LAMBADA,
and by 0.99 and 0.89 on WikiText2 with sequence
lengths of 1024 and 2048, respectively.

We further analyze the performance of MoE re-
construction methods during retraining, focusing
on the perplexity for WikiText2 with the sequence
length of 1024 and the training loss. As shown
in Figure 4, our models consistently outperform
LLaMA-MoE counterparts, during retraining with
1B to 5B tokens. Notably, DIVE 1/8 trained on
merely 1B tokens surpasses FLAP trained on 5B
tokens, highlighting the efficiency of our method.
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Figure 4: Perplexity curves of DIVE and the baselines,
consisting of perplexity on WikiText2 (left) and training
loss for DIVE and LLaMA-MoE (right). Loss curves
are smoothed with a 0.05B token window.

4.2.2 Downstream Tasks

Table 2 presents the few-shot performance of ac-
curacy across 11 downstream tasks. DIVE 1/8
achieves the best average performance among 50%
× 1 models, excelling in SciQ, PIQA, ARC-e,
ARC-c, HellaSwag, OBQA, and MMLU. It im-
proves accuracy on BoolQ by 3.55% compared to
the original model. And while DIVE 2/8 slightly
lags behind DIVE 1/8 and FLAP on average, it
outperforms LLM-Pruner and LLaMA-MoE 2/8 by
1.35% and 1.68%, despite LLM-Pruner benefiting
from a more refined pruning ratio.

To illustrate the changes of model capabilities
during retraining process, we present performance
curves on ARC-e and PIQA in Figure 6. As the
results on these benchmarks gradually grow, DIVE
1/8 consistently outperforms all other methods re-
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Figure 5: Routing distribution of DIVE 1/8 (left) and DIVE 2/8 (right), shown as activation ratios of the correspond-
ing experts across all layers. The indexes of experts correspond to the domain clustering results in Appendix D.2.
Note that, since DIVE achieves expert initialization through pruning, the IDs of domain-specific experts remain
consistent across layers.
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Figure 6: Performance curves of DIVE and baselines
on 0-shot ARC-e (left) and PIQA (right). Solid lines
indicate the performance changes of models during re-
training to 5B tokens, and dashed lines represent the
performance of models retrained on 5B tokens.

trained on 5B tokens. Meanwhile, compared with
LLaMA-MoE models, both DIVE 1/8 and DIVE
2/8 demonstrate superior performance. We further
retrain the MoE models on 15B tokens to validate
the effectiveness of our approach (Appendix C).

4.3 Diversity Analysis

To assess the diversity of DIVE models, we analyze
routing distributions across 24 pruning datasets,
with representative results shown in Figure 5. The
values in heatmaps represent activation ratios, cal-
culated as the frequency of tokens routed to a spe-
cific expert index across all layers, normalized by
the total token activations in each evaluation set.
Notably, since our MoE layers are derived through
pruning, the expert indices in each layer are fully
aligned with the domain clusters.

Based on the analysis, we find several obser-

vations aligned with the phenomena discussed in
Section 3.1:

1. After dense training of routers, most task to-
kens (such as MathQA, GSM8K, PIQA, and
HellaSwag) are correctly routed to their corre-
sponding experts.

2. Certain tasks (QNLI and SQuAD2) exhibit
sensitivity to data structure, activating Expert
1 due to shared features, while Expert 2 is
mainly triggered by other NLI tasks.

3. Tokens in C4 demonstrate strong generality,
activating experts in a balanced manner with
nearly uniform distribution.

4. Compared to DIVE 1/8, DIVE 2/8 shows
smoother activation ratios across experts due
to the increased number of activated experts,
aligning with expectations.

These findings confirm the success of MoE di-
versity and routing allocation. Full heatmaps along
with a case study are provided in Appendix E.

4.4 Ablation Studies

4.4.1 Domain Affinity Mining
To validate the effectiveness of our domain affin-
ity mining (D.A.M) approach, which enhances
the diversity of MoE models, we compare DIVE
reconstructed with D.A.M against models using
randomly selected calibration data from all 24
datasets. We categorize the downstream tasks into
in-distribution (ID) tasks and out-of-distribution
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DIVE 2/8 - D.A.M.

WikiText2 ↓ 18.09 20.02 (+1.93)
LAMBADA ↓ 63.45 76.03 (+12.58)
ID tasks ↑ 47.88 47.08 (-0.80)
OOD tasks ↑ 27.67 26.15 (-1.52)

Table 3: Performance of DIVE 2/8 with and without
D.A.M, retrained on 1B tokens. Tasks marked with
downward arrows (WikiText2 and LAMBADA) are
measured by perplexity and inversely correlated with
performance, others (ID and OOD tasks) are down-
stream tasks measured by accuracy.
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Figure 7: Comparison of DIVE 1/8 (left) and DIVE 2/8
(right) perplexity results on WikiText2, retrained on 1B
tokens with and without MHA modules.

(OOD) tasks, based on whether they belong to the
24 datasets used for pruning.

As the loss and performance remain relatively
stable during training from 1B to 5B tokens in Fig-
ure 4 and 6, we conduct our ablation studies with
1B tokens to balance the computational efficiency
and the validity of results. As shown in Table 3,
DIVE 2/8 with D.A.M reduces the perplexity on
WikiText2 with the sequence length of 1024 and
LAMBADA by 1.93 and 12.58, and achieves ac-
curacy improvements of 0.80% and 1.52% over
the model without D.A.M. This underscores the
critical role of domain affinity mining in the re-
construction process and highlights the importance
of diversity in improving model performance. De-
tailed information of task categories and full results
are provided in Appendix F.

4.4.2 Retraining Targets

In this section, we explain the rationale behind our
efficient retraining targets. We focus on perplex-
ity results on WikiText2 across various sequence
lengths to evaluate general performance.

Figure 7 shows the performance of the initial
reconstructed MoE models and models retrained
on 1B tokens with and without MHA modules. For
DIVE 1/8, cutting the MHAs out of the tunable
parameters only leads to less than a 0.29 degra-

dation in performance. For DIVE 2/8, the model
retrained without MHA surprisingly outperforms
the one with MHA by up to 0.37. These results sup-
port the retraining targets of our method, indicating
the MHA modules are unnecessary to be retrained.

5 Related Work

5.1 Dense Compression

Statically pruning LLMs to an optimal size en-
ables efficient deployment (Xia et al., 2022; Shen
et al., 2022), while posing challenges due to per-
formance impacts and the need for retraining ad-
justments. Gradient-based methods have been ex-
tensively studied, such as LLM-Pruner (Ma et al.,
2023) using Taylor expansion derived from opti-
mal brain damage (OBD) (LeCun et al., 1989),
and Sheared-LLaMA (Xia et al., 2024), employ-
ing parameterized masks. In contrast, gradient-free
methods like TransAct (Shen et al., 2024), typically
use activation magnitude for co-designing pruning
metrics and architectures, enhancing general capa-
bilities but reducing internal diversity. FLAP (An
et al., 2024) emphasizes domain-specific diversity,
as discussed in Section 3.1.

5.2 Sparse Acceleration

Beyond static compression, dynamic computation
methods like early exiting (Del Corro et al., 2023)
and layer skipping (Raposo et al., 2024) accel-
erate LLM inference by reducing model depth,
though they may increase memory demands. To
address this, sparsity-aware offloading techniques
(e.g., LLM-in-a-flash (Alizadeh et al., 2024) and
PowerInfer (Song et al., 2023)) exploit sparse acti-
vation patterns for efficient computation. Given the
successful deployment and acceleration of the Mix-
tral MoE LLM (Xue et al., 2024), DIVE appears
highly compatible with these offloading strategies.

5.3 From Dense to Sparse

While dense LLMs dominate the landscape, agilely
derive an MoE LLM from existing dense LLMs
minimize the sunk cost. MoEfication (Zhang et al.,
2022) introduces expert construction strategies for
T5, including random splitting, parameter cluster-
ing, and co-activation graph methods. On decoder-
only architectures, sparse up-cycling (Komatsuzaki
et al., 2023) initializes experts using FFN mod-
ules, as demonstrated by Skywork-MoE (Wei et al.,
2024), which expands a 13B dense LLM into a
146B MoE model with 16 diverse experts. Expert
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diversity proves crucial, as diverse experts outper-
form duplicated ones despite higher early-stage
training loss. LLaMA-MoE (Zhu et al., 2024) ad-
vocates for a random split approach which divide
the dense FFNs into non-overlapping experts.

6 Conclusion

In this work, we propose DIVE, a diversity-
enhanced MoE reconstruction method which signif-
icantly reduces the training cost. The three-phase
framework of DIVE consists of domain affinity
mining, pruning-based expert reconstruction, and
efficient retraining, enabling a seamless and effec-
tive reconstruction from dense to MoE LLMs. Ex-
periments on language modeling and downstream
tasks validate the efficacy of our approach with
perplexity reduction and improvements on task ac-
curacy. The analysis of diversity validates the cor-
relation between pruning and MoE expert diversity
in enhancing overall performance, while ablation
studies highlight the robustness of our method.

Limitations

Although DIVE demonstrates generalization across
different models and sizes, the models used in ex-
periments are no larger than 7B due to resource con-
straints. Future efforts could focus on scaling up
model sizes and exploring broader domains to fur-
ther validate the effectiveness of DIVE, as splitting-
based methods and up-cycling have proven effec-
tive in larger models.

Ethics Statement

Our work focuses on efficiently reconstructing
dense LLMs into MoE architectures while enhanc-
ing the diversity of the reconstructed models. The
datasets used in our study are publicly available
and widely recognized in the research community,
sourced from open-source repositories. No pro-
prietary or sensitive data were used during either
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purely algorithmic and do not promote or amplify
harmful biases by design.
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A Baseline Details

A.1 Expert Reconstruction of LLaMA-MoE
LLaMA-MoE (Zhu et al., 2024) presents two
groups of expert reconstruction methods: Neuron-
Independent and Neuron-Sharing, with each cat-
egory containing two distinct methods. We ini-
tially consider selecting the best method from
each group, specifically IndependentRandom and
SharingInter, based on their reported performance.
However, due to the restriction of SharingInter,
which requires setting aside neurons shared by
most experts as independent residual blocks, it is
not suitable for reconstructing 1/8 MoE models. So
we adapt IndependentRandom, which is originally
supports reconstructing models with a fixed total
number of parameters. We make revision to allow
it to be adaptive to varying FFN sizes and to enable
a fair comparison.

We redefine expert reconstruction as the task of
partitioning intermediate neurons into equal-sized
subsets. Given a universal set U that contains the
indices of all intermediate neurons {1, 2, . . . , dh},
we randomly divide U into equal sized n subsets
S1, S2, . . . , Sn, potentially constructing experts of
varying sizes as:

n⋃

i=1

Si = U. (8)

In this context, we omit the original condition⋂n
i=1 Si = ∅ from LLaMA-MoE.

A.2 Discussion on FLAP
For the structured pruning method in FLAP (An
et al., 2024), given a calibration set C and N sam-
ples, we first compute the baseline fluctuation of
the j-th channel in the input feature of layer ℓ with
the average sample fluctuation variance:

X
ℓ
:,j,:,C =

1

NL

N∑

n=1

L∑

k=1

Xℓ
n,j,k,C . (9)

Then, we calculate the fluctuation variance for
each input feature in layer ℓ, which gives the im-
portance score Sℓ

:,j,C for the weight group Wℓ
:,j :

Sℓ
:,j,C =

1

N − 1

N∑

n=1

(Xℓ
n,j,:,C−X

ℓ
:,j,:,C)

2·||Wℓ
:,j ||22.

(10)
The pruning mask Mℓ

C is determined using these
importance scores, by retaining the channels with

the highest scores. The output of each pruned layer
can be formulated as:

Wℓ
CX

ℓ
C ≈ (Mℓ

C ⊙Wℓ)Xℓ
C +Bℓ

0,C , (11)

with Bℓ
0,C = Wℓ((1−Mℓ

C)⊙X
ℓ
C) representing

the bias of the relevant linear layer.
For all pruning processes, we set the calibration

size to 1024 and the sample length to 256. To
assess the impact of the calibration set, we conduct
an experiment comparing language modeling and
downstream task performance using FLAP pruning
on C4 and a mixed set of 24 datasets, alongside our
DIVE 1/8 with only routers trained.

As shown in Table 4, FLAP models pruned on
different calibration sets show inconsistent perfor-
mance across tasks. Specifically, FLAP (C4) lags
behind FLAP (Mixed) by up to 9.90 in perplexity
of LAMBADA and WikiText2 (sequence length
1024), but outperforms it by 1.39% on the average
results of downstream tasks. In contrast, DIVE
1/8 achieves the best performance in both language
modeling (perplexity) and downstream task (av-
erage accuracy), benefiting from the diversity of
experts. This highlights the sensitivity of existing
pruning methods and underscores the effectiveness
of our approach.

A.3 Discussion on LLaMA-MoE

For Neuron-Sharing methods of LLaMA-MoE,
which rely similarly on a pruning-based approach
to construct experts and clusters data via sentence
embeddings, they prune the model based solely
on clustering results from the same dataset, with-
out acknowledging the impact of different datasets.
This limitation mirrors the issue we discuss with
FLAP above, which can be summarized as a lack
of diversity.

In contrast, our method focuses on the insight of
the diversity of pruning outcomes, achieving better
performance on various tasks. And we explore to
reconstruct 1/8 MoE models and adjust the retrain-
ing phase to resolve the sparse gradients, especially
for the top-1 routers.

B Retraining Details

B.1 Hyper-parameters

The training parameters for the sparse training
stage are presented in Table 5. Our experiments are
conducted on 4 A800 (80G) GPUs with a global
batch size of 512, utilizing BFloat16 precision. We
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Method WikiText2 ↓ LAMBADA ↓ SciQ PIQA WinoGrande ARC-e ARC-c (25)

FLAP (C4) 26.32 70.27 84.30 60.94 53.67 40.40 23.12
FLAP (Mixed) 22.67 60.37 85.20 62.40 53.99 44.28 23.21
DIVE 1/8 17.30 42.55 83.60 65.72 52.96 48.57 25.09

Method MathQA HellaSwag (10) LogiQA BoolQ OBQA MMLU (5) Average

FLAP (C4) 22.61 33.66 20.28 62.29 17.00 23.01 40.12
FLAP (Mixed) 23.62 32.83 20.89 39.91 16.80 22.92 38.73
DIVE 1/8 23.15 35.71 22.43 51.50 17.60 26.16 41.14

Table 4: Performance of FLAP pruned on C4 and mixed data, and DIVE 1/8 reconstructed without sparse training.
Tasks marked with downward arrows (WikiText2 and LAMBADA) are evaluated by perplexity, which is inversely
correlated with performance. Others are downstream tasks measured by accuracy, with averages shown in the last
column. The best results are in bold, and the second-best results are underlined.

Training Parameter Value

# GPUs 4
Sequence length 1024
Data type Bfloat16
Learning rate 1e-4
Learning rate scheduler Cosine
Cosine minimum ratio 0.1
Warmup ratio 0.03
Optimizer AdamW
Global batch size 512
LoRA rank 8
LoRA alpha 16
LoRA dropout 0.1
DeepSpeed Zero-2

Table 5: Training parameters used in the experiments.

set the warmup ratio to 3% and employ a cosine
learning rate scheduler, decaying the learning rate
from 1e-4 to 1e-5. Each model is retrained on 5B
tokens. Our implementation is based on Hugging-
face Transformers (Wolf et al., 2020) and Deep-
Speed (Rasley et al., 2020).

For the dense training stage of MoE reconstruc-
tion methods, we specifically set a constant learn-
ing rate of 1e-4, with a global batch size of 256.
We adjust each temperature coefficient (t) based on
their validation loss, as shown in Table 6. For all
MoE models, we do not adopt the re-scaling factor
in LLaMA-MoE.

B.2 Clarification of Two-Stage Retraining

As our models are reconstructed based on pruning
results from pre-trained LLMs and the abilities of
experts are partially retained, it is straightforward
to separate the retraining process into two stages to

Method t

DIVE 1-8 0.05
DIVE 2-8 0.5
LLaMA-MoE 1-8 0.01
LLaMA-MoE 2-8 0.1

Table 6: Temperature coefficient(t) for MoE reconstruc-
tion methods used in dense training.

better optimize the different reconstructed modules
(routers and experts).

1. Dense training (for routers): Due to the re-
tained abilities of reconstructed experts, the is-
sues of diversity and generalization of pruning
can be addressed by focusing sorely on dense
router training, as discussed in Appendix A.2.
Activating all experts can deal with the sparse
gradients and non-differentiability of the top-
k operation in routers.

2. Sparse training (for experts): To further en-
hance the model’s capabilities, we focus on
training the experts and the associated nor-
malization modules. With reasonable routing
allocations already established, only the ap-
propriate expert need to be activated during
each forward and backward pass.

Based on the considerations above, we design a
two-stage retraining approach of dense-then-sparse
training, which is more suitable for our framework
than an end-to-end training process.

B.3 Temperature Coefficient

In this section, we explain the rationale behind
our temperature coefficient settings. The original
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(a) (b)

Figure 8: Training and validation loss for (a) DIVE 1/8 and DIVE 2/8 with and without temperature coefficient (t),
trained on 0 to 0.5B tokens, and (b) DIVE 1/8 with t, trained on 0 to 1B tokens.

Method WikiText2 ↓ LAMBADA ↓ SciQ PIQA WinoGrande ARC-e ARC-c (25)

LLaMA-MoE 1/8 18.60 73.96 77.40 61.15 52.81 43.56 22.10
DIVE 1/8 13.23 24.15 83.00 68.01 54.70 52.53 24.40
LLaMA-MoE 2/8 19.45 96.80 77.90 62.84 53.51 42.89 22.01
DIVE 2/8 15.87 47.68 81.50 64.96 54.78 47.10 23.12

Method MathQA HellaSwag (10) LogiQA BoolQ OBQA MMLU (5) Average

LLaMA-MoE 1/8 21.07 33.73 20.58 61.71 16.60 25.47 39.65
DIVE 1/8 22.55 37.17 19.35 59.88 20.20 25.88 42.52
LLaMA-MoE 2/8 23.08 32.23 21.51 61.77 14.60 25.14 39.77
DIVE 2/8 22.58 33.27 21.97 58.47 18.20 26.33 41.12

Table 7: Performance of LLaMA-MoE and DIVE models further retrained on 15B tokens. Tasks marked with
downward arrows (WikiText2 and LAMBADA) are evaluated by perplexity with a sequence length of 1024, and
others are downstream tasks measured by accuracy. The last column shows the average accuracy of all downstream
tasks. The best results are in bold, and the second-best results are underlined.

routing logits of a sparse MoE are defined as:

wi(x) = Softmax(TopK(z(x)))i, (12)

which leads to a gap between the propagation dur-
ing dense training and the sparse inference. To
address this, we introduce a temperature coefficient
t to sharpen the logits and approximate the top-k
operation, ensuring alignment between the routing
behaviors. The router output is modified as:

wi(x) = Softmax

(
z(x)

t

)

i

. (13)

Figure 8 (a) shows the training and validation
loss throughout dense training of routers, from 0
to 0.5B tokens. For both DIVE 1/8 and DIVE
2/8, the models with the temperature coefficient
consistently outperform those without it (validation
loss of 2.82 vs 2.87, 3.65 vs 3.69), which aligns
with our expectations. Furthermore, as shown in
Figure 8 (b), the models converge around 0.5B
tokens, which is the point we use to standardize the
dense training stage.

C Further Retraining Details

C.1 Hyper-parameters

To further validate our approach, we retrain the
DIVE and LLaMA-MoE models on an expanded
training dataset. The experiments are conducted
using 4 A800 (80GB) GPUs with a global batch
size of 256 and a fixed learning rate of 1e-5. Each
model is further trained on an additional 10B to-
kens, resulting in a total of 15B tokens including
the initial retraining. Detailed parameters are pro-
vided in Table 8; unless otherwise specified, the
settings are consistent with those in Appendix B.1.

C.2 Results

Table 7 reports the performance of DIVE and
LLaMA-MoE models after retraining on the ex-
tended token budget. The first two columns,
marked with downward arrows, report perplexity
on language modeling benchmarks, while the re-
maining columns present accuracy results on a suite
of downstream tasks.
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Figure 9: Full routing distribution of DIVE 1/8 (left) and DIVE 2/8 (right), shown as activation ratios of the
corresponding experts across all layers. The indexes of experts correspond to the domain clustering results in
Appendix D.2.

Training Parameter Value

# GPUs 4
Learning rate 1e-5
Learning rate scheduler Constant
Global batch size 256

Table 8: Training parameters for the further retraining
experiments (an additional 10B-token training phase,
totaling 15B tokens), applied to DIVE and LLaMA-
MoE models.

Among the four models evaluated, DIVE 1/8
achieves the best overall performance, with the low-
est perplexity scores on both WikiText2 and LAM-
BADA, and the highest average accuracy across
downstream tasks. In particular, it reduces the per-
plexity of the LLaMA-MoE models by at least
5.37 on WikiText2 and 49.81 on LAMBADA, and
improves the best average downstream accuracy
of LLaMA-MoE by 2.75%. It shows strong per-
formance on SciQ, PIQA, ARC-e, ARC-c, Hel-
laSwag, and OBQA. DIVE 2/8 achieves the second-
best overall results, with notable improvements in
WinoGrande, LogiQA, and MMLU. These results
demonstrate that our approach consistently out-
performs LLaMA-MoE when retrained with more

data, highlighting the robustness of our method.

D Domain Clustering Details

D.1 Domain Affinity Mining Datasets

In domain affinity mining, we conduct a large-scale
empirical study on the relationship between 24 cal-
ibration datasets used for pruning and the perfor-
mance of the pruned models. Our dataset selection
is inspired by SPoT (Vu et al., 2022), a transfer
learning approach using a learned prompt in source
tasks and then initializing the prompt for a target
task, which gains superior performance in a variety
of downstream tasks, demonstrating its generaliza-
tion. Considering generalization and an exploration
of specialization, we use the source task groups in
SPoT and extend them by specialized tasks, using
their training sets as calibration datasets and test
sets as the evaluation datasets.

These datasets include language modeling
(C4 (Raffel et al., 2020), WikiText2 (Mer-
ity et al., 2017)), natural language inference
(ANLI (Nie et al., 2020), MNLI (Williams et al.,
2018), QNLI (Zhang et al., 2015), RTE (Wang
et al., 2019)), question answering (SQuAD2 (Ra-
jpurkar et al., 2018), BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), DROP (Dua et al.,
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Method WikiText2 ↓ LAMBADA ↓ SciQ PIQA WinoGrande MathQA HellaSwag

DIVE 1/8 13.90 27.09 82.90 67.19 55.01 22.55 36.97
- D.A.M 14.25 31.08 81.60 65.40 54.62 22.35 35.84
DIVE 2/8 18.09 63.45 81.50 63.98 52.96 22.65 32.26
- D.A.M 20.02 76.03 79.90 60.72 52.33 22.48 30.40

Method LogiQA BoolQ ARC-e ARC-c (25) OBQA MMLU (5) Average

DIVE 1/8 18.59 59.54 51.56 25.94 18.80 25.10 42.20
- D.A.M 20.74 61.31 50.67 26.11 20.60 23.86 42.10
DIVE 2/8 21.66 60.18 44.87 22.18 16.60 27.03 40.53
- D.A.M 21.81 61.31 40.74 21.67 17.20 24.98 39.47

Table 9: Performance of DIVE with and without D.A.M, retrained on 1B tokens. Tasks marked with downward
arrows (WikiText2 and LAMBADA) are evaluated by perplexity with a sequence length of 1024, and others are
downstream tasks measured by accuracy. The last column shows the average accuracy of all downstream tasks. The
best results are in bold.

2019), CoQA (Reddy et al., 2019), LogiQA (Liu
et al., 2020), ReCoRD (Zhang et al., 2018)),
math problems (GSM8K (Cobbe et al., 2021),
MathQA (Amini et al., 2019)), specialized knowl-
edge question answering (SciQ (Welbl et al., 2017),
Qasper (Dasigi et al., 2021), PubMedQA (Jin et al.,
2019), RACE (Lai et al., 2017)), commonsense
reasoning (WinoGrande (Sakaguchi et al., 2020),
HellaSwag (Zellers et al., 2019)), paraphrase de-
tection (QQP (Wang et al., 2019), MRPC (Dolan
and Brockett, 2005)), sentiment analysis (SST-
2 (Socher et al., 2013)).

D.2 Domain Clustering Results

We apply our domain-specific data selection to var-
ious dense LLM backbones with different activa-
tion functions, including LLaMA2-7B, TinyLlama-
1.1B, OPT-6.7B and Qwen2.5-7B, resulting in 8
hierarchical clusters on each LLM with FFN prun-
ing ratios of 50% and 75%. These clusters are
used to define the domains of experts in the re-
construction phase. The clustering results are
presented in Table 10. Each pruning ratio is in-
versely related to the size of a single FFN, where
FFN Size = 1− FFN Pruning Ratio.

E Diversity Analysis Details

E.1 Routing Distribution

As described in Section 4.3, we analyze routing
distributions across 24 pruning datasets to assess
expert diversity. The complete heatmaps are shown
in Figure 9, where each value indicates the normal-
ized activation ratio of tokens routed to a specific
expert. Expert indices are aligned with domain clus-
ters. These results demonstrate the effectiveness of

our retraining setup and the successful realization
of diverse expert routing.

E.2 Case Study

We do a case study on routing distribution to fur-
ther analyze the diversity, specifically on DIVE 1/8.
In Table 11, we select data from the test set of four
datasets: C4, MathQA, GSM8K and PubMedQA,
and analyze the routing results. The original sen-
tences and expertised ones, which are tokenized
and routed, are shown. The corresponding expert
is determined by the expert with the highest fre-
quency of the current token across all 22 layers of
TinyLlama-1.1B.

As expected, the tokens in the C4 dataset is
routed relatively evenly across experts, while the
data in MathQA, GSM8K and PubMedQA tends
to be more concentrated in their corresponding
domain-specific experts. Specifically, many tech-
nical terms, such as "Neuronal" and all numerical
expressions, are routed to the appropriate experts
(Expert 3 and Expert 4). This confirms the success
of our diversity approach and routing distribution.

F Ablation Details

In Section 4.4.1, to intuitively demonstrate the
contribution of domain affinity mining (D.A.M)
to DIVE, downstream tasks are categorized into
in-distribution (ID) and out-of-distribution (OOD)
groups, based on whether they belong to the 24
datasets used for pruning. Specifically, ID tasks
include SciQ, PIQA, WinoGrande, MathQA, Hel-
laSwag, LogiQA, and BoolQ, while OOD tasks
include ARC-e, ARC-c, OBQA, and MMLU.

Besides the ablation study on DIVE 2/8, we also
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conduct one on DIVE 1/8 with and without D.A.M.
The full results are shown in Table 9. These results
indicate that incorporating D.A.M into DIVE 1/8
reduces perplexity on WikiText2 and LAMBADA
by 0.35 and 3.99, respectively. Furthermore, down-
stream task performance of DIVE 1/8 consistently
improves with D.A.M, highlighting its significant
role and impact on overall model effectiveness.
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Dense Model FFN Pruning Ratio Cluster Index Calibration Datasets

LLaMA2-7B 50%

0 C4, MNLI, ANLI, RACE, CoQA
1 QNLI, SQuAD2, BoolQ
2 WikiText2, RTE, DROP, ReCoRD, MRPC
3 SciQ, Qasper, PubMedQA
4 GSM8K, MathQA
5 PIQA, HellaSwag
6 WinoGrande, SST-2
7 LogiQA, QQP

LLaMA2-7B 75%

0 C4, MNLI, ANLI, CoQA
1 QNLI, SQuAD2, BoolQ
2 WikiText2, RTE, DROP, ReCoRD, MRPC
3 SciQ, Qasper, PubMedQA
4 GSM8K, MathQA
5 PIQA, WinoGrande, HellaSwag
6 RACE, QQP, SST-2
7 LogiQA

TinyLlama-1.1B 50%

0 C4, RACE, QQP, SST-2
1 WikiText2, QNLI, RTE, SQuAD2, BoolQ, DROP, ReCoRD, MRPC
2 MNLI, ANLI, CoQA
3 SciQ, PubMedQA
4 GSM8K, MathQA
5 PIQA, WinoGrande, HellaSwag
6 Qasper
7 LogiQA

TinyLlama-1.1B 75%

0 C4, MNLI, CoQA, RACE
1 WikiText2, RTE, ANLI, BoolQ, DROP, ReCoRD, MRPC
2 QNLI, SQuAD2, LogiQA
3 PIQA
4 GSM8K, MathQA
5 WinoGrande, HellaSwag, QQP, SST2
6 Qasper, PubMedQA
7 SciQ

OPT-6.7B 50%

0 C4, LogiQA
1 WikiText2, QNLI, SQuAD2, BoolQ
2 MNLI, ANLI, CoQA
3 RTE, DROP, ReCoRD, MRPC
4 GSM8K, MathQA, HellaSwag, PIQA
5 RACE, WinoGrande, SST2
6 QQP
7 SciQ, Qasper, PubMedQA

OPT-6.7B 75%

0 C4, QNLI
1 WikiText2, SQuAD2, BoolQ
2 ANLI, CoQA
3 RTE, DROP, ReCoRD, MRPC
4 GSM8K, MathQA, HellaSwag, QQP, PIQA
5 WinoGrande, SST2
6 MNLI, RACE
7 LogiQA, SciQ, Qasper, PubMedQA

Qwen2.5-7B 50%

0 C4, RACE, SST2
1 WikiText2, QNLI, SQuAD2, BoolQ, DROP
2 MNLI, RTE, ANLI, CoQA, ReCoRD, MRPC
3 PIQA, HellaSwag
4 GSM8K, MathQA
5 WinoGrande
6 SciQ, Qasper, PubMedQA
7 LogiQA, QQP

Table 10: Clustering results of LLaMA2-7B, TinyLlama-1.1B, OPT-6.7B and Qwen2.5-7B for FFN pruning ratios
of 50% and 75%.
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Data Source Sentence

C4 (Original) Who am I? What’s this all About? You could say I grew up traveling, when
I was young I lived in Lagos with my family. Over the years I spent there
we traveled to some of the countries you see highlighted in green.

C4 (Expertised) <s> _Who _am _I ? _What ’ s _this _all _About ? _You _could _say _I
_grew _up _travel _ing "," _when _I _was _young _I _lived _in _Lag os
_with _my _family . _Over _the _years _I _spent _there _we _tra ve led _to
_some _of _the _countries _you _see _hightlight ed _in _green .

MathQA (Original) a multiple choice test consists of 4 questions, and each question has 5 answer
choices. in how many r ways can the test be completed if every question is
unanswered?

MathQA (Expertised) <s> _a _multiple _choice _test _consists _of _ 4 _questions "_," _and _each
_question _has _ 5 _answer _choices _. _in _how _many _r _ways _can
_the _test _be _completed _if _every _question _is _un answer ed _?

GSM8K (Original) To make the pizza, Kimber half as many teaspoons of salt as the number
of cups of flour, meaning she needs 1/2*16 = «16*1/2=8»8 teaspoons of
salt. The total number of cups of flour and teaspoons of salt she needs is
8+16 = «8+16=24»24 She also needs 10 cups of water, which means the
total number of cups of water and flour and teaspoons of salt she needs is
24+10 = «24+10=34»34 #### 34

GSM8K (Expertised) <s> _To _make _the _p izza "," _Kim ber _half _as _many _te as po ons
_of _salt _as _the _number _of _cu ps _of _fl our , _meaning _she _needs
_ 1 / 2 * 1 6 _= _« 1 6 * 1 / 2 = 8 » 8 _te as po ons _of _salt . _The _total
_number _of _cu ps _of _fl our _and _te as po ons _of _salt _she _needs _is
_ 8 + 1 6 _= _« 8 + 1 6 = 2 4 » 2 4 _She _also _needs _ 1 0 _cu ps of _water
"," _which _means _the _total _number _of _cu ps _of _water _and _fl our
_and _te as po ons _of _salt _she _needs _is _ 2 4 + 1 0 _= _« 2 4 + 1 0 = 3
4 _#### _ 3 4

PubMedQA (Original) Neuronal signals via the hepatic vagus nerve contribute to the development
of steatohepatitis and protection against obesity in HFD fed Pemt(-/-) mice.

PubMedQA (Expertised) <s> _Ne ur onal _signals _via _the _he p _atic _v ag us _n erve _contribute
_to _the _development _of _ste ato he pat itis _and _protection _against _ob
es ity _in _H FD _fed _P em t (- / -) _m ice .

Table 11: Case study on DIVE 1/8. (Original) refers to the original data, while the (Expertised) ones denote the
routing results to experts of tokenized sentences and are marked by colors. Purple, green, yellow, orange, red,
magenta, cyan and blue respectively denote the Expert IDs of 0-7.
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