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Abstract

Recommender systems are indispensable on
various digital platforms. However, traditional
methods often reinforce existing user interests,
which leads to echo chambers and limits di-
versity. Proactive Recommendation Systems
(PRS) aim to address this issue by cultivating
users’ latent interests through multi-step recom-
mendations. Despite advancements, challenges
persist particularly in optimizing long-term
rewards and adapting to real-time user feed-
back. In this study, we propose an LLM-based
Actor-Critic Agent framework to enhance PRS.
This framework utilizes the LLM-based agent
to adjust recommendations in real time based
on feedback and employs agent-tuning meth-
ods to optimize long-term rewards using three
proposed reward functions. Extensive experi-
ments validate the significant superiority of this
framework over existing methods by optimiz-
ing long-term rewards and dynamically evolv-
ing with user feedback. Our codes are available
at https://github.com/gnaWeinrE/T-PRA.

1 Introduction

Recommender systems are inherently text-
intensive, necessitating substantial natural
language processing to interpret item content (An
et al., 2019; Bhagavatula et al., 2018) and recog-
nize user interests (Cheng et al., 2023). Current
approaches (Bao et al., 2024) predominantly
focus on catering to the recognized user interest,
often leading to polarized recommendation
distributions. Over time, this will exacerbate
the filter bubble effect (Areeb et al., 2023; Gao
et al., 2023a,b), which continually narrows user
interests, undermining the long-term health of
recommendation ecosystems. In contrast, users’
latent interests are broad and developable as they
consume content (Wang et al., 2024). As such,
Proactive Recommendation (Bi et al., 2024a;
Wang et al., 2025b; Lian et al., 2025a) becomes a
promising research direction, aiming to cultivate
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Figure 1: Trade-off between user satisfaction and user
interest exploration. Catering to the recognized user in-
terest enhances user satisfaction but causes filter bubble
phenomenon. Conversely, randomly displaying adver-
tisements to broaden user interests becomes annoying
and negatively impacts user satisfaction.

latent interest throughout the recommendation
process without compromising the overall user
experience.

Existing research on proactive recommendation
mainly cultivates users’ latent interest through
multi-step recommendation strategies. Current
works, such as the Influential Recommender Sys-
tem (IRS) (Zhu et al., 2023), use a Transformer
to learn dynamic patterns of user interest and cul-
tivate latent interests by exposing multiple items.
Later, Wang et al. (2025a) incorporates the power-
ful instruction-following and planning capabilities
of Large Language Models (LLMs). They propose
LLM-IPP, achieving state-of-the-art (SOTA) perfor-
mance compared to the IRS. However, significant
limitations remain: 1) cultivating user interests re-
quires a long-term recommendation strategy while
LLM-IPP cannot optimize long-term cumulative
rewards. 2) LLM-IPP lacks flexibility, as it cannot
adapt to real-time user feedback and has the risk of
repeatedly suggesting unappealing content.

To address the limitations, we distill two key ob-
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jectives for developing an effective proactive rec-
ommendation system (PRS). (1) The PRS should
be flexible to update the recommendation strategy
in real time based on user feedback. (2) The PRS
should optimize the long-term overall rewards of
its strategy. This involves fostering user interest in
some target items that were previously less favored
while minimizing any adverse impacts on the user’s
experience, as illustrated in Figure 1. To enhance
user interest, the recommendation strategy must
maintain coherence and gradually align with the
user’s interests and target items. Additionally, re-
ducing the negative impact requires ensuring users’
acceptance toward the recommended items.

Given the aforementioned objectives, we con-
ceptualize proactive recommendation as a com-
plex path-planning problem in sequential decision-
making. The key to this problem lies in leveraging
the inherent capabilities of LLMs, particularly their
extensive world knowledge and sophisticated rea-
soning abilities. To effectively handle real-time
user feedback and dynamically adapt recommen-
dation strategies, we design an LLM-based agent
system consisting of an Actor and an Advisor. The
Actor is responsible for generating immediate rec-
ommendations, while the Advisor operates at a
slower, more deliberate pace — collecting users’
real-time feedback, reasoning user interest dynam-
ics, and adapting the current strategy to guide the
Actor’s decision-making process.

While existing LLMs offer strong foundational
capabilities, they are not inherently optimized for
proactive recommendation tasks, often leading
to suboptimal performance, see evidence in Sec-
tion 5.5.1. To address this limitation, we em-
ploy an agent-tuning approach to refine LLMs
with the goal of maximizing long-term rewards.
Specifically, we propose the Tunable LLM-based
Proactive Recommendation Agent (T-PRA), which
introduces an LLM-based Critic to evaluate the
quality of recommendations. The Critic assigns an
advantage value to each recommendation, reflect-
ing its alignment with the long-term objectives of
the proactive recommendation task. These advan-
tage values enable the construction of preferred and
dispreferred actions and thoughts for both the Actor
and Advisor. Using these comparisons, we apply
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) to fine-tune the Actor and Advisor,
enabling the LLMs to generate more favorable and
strategically aligned outputs.

To ensure the Critic produces accurate advan-

tage values that effectively capture the long-term
rewards of proactive recommendations, we design
three reward functions during the value learning
process, capturing key objectives of PRS: coher-
ence in recommendation sequences, distance to the
target item, and user acceptance. By integrating
these reward functions, T-PRA effectively aligns
recommendation strategies with both the goal of
flexible strategies and long-term reward optimiza-
tion. In conclusion, our contributions are threefold:

• We propose an LLM-based proactive recommen-
dation agent capable of dynamically incorporat-
ing real-time user feedback while optimizing for
long-term rewards in proactive recommendation.

• We introduce a novel agent-tuning approach that
enhances the ability of LLMs to generate coher-
ent, target-aligned, and user-accepted recommen-
dations, effectively cultivating user interest while
minimizing negative impacts on user experience.

• Lastly, we design and conduct a series of exper-
iments to validate the effectiveness of the pro-
posed framework for proactive recommendation
tasks, demonstrating an average increase of 38%
in effectiveness to enhance user interest in a par-
ticular item compared to the SOTA methods.

2 Related Works

2.1 LLM-based Agent

Benefiting from recent progress in LLMs (Xu et al.,
2025), LLM-based agents integrate LLMs with
autonomous decision-making processes, enabling
them to perform complex tasks across various do-
mains. Certain research focuses on agent planning,
leveraging language models to formulate action
sequences aligned with specific goals and envi-
ronmental limitations, utilizing techniques such
as In-Context Learning (Kojima et al., 2022; Yao
et al., 2023; Zheng et al., 2024) and external plan-
ning algorithms(Hao et al., 2023; Romero et al.,
2024; Lawrynowicz et al., 2024). Additional in-
vestigations concentrate on enhancing agent mem-
ory (Singla et al., 2021; Zhao et al., 2024), which
plays a pivotal role in refining decision-making pro-
cesses. This involves the exploration of long-term
memory systems like retrieval-augmented genera-
tion (Lewis et al., 2020; Zhang et al., 2023; Deng
et al., 2024) to improve data retrieval and manage-
ment. Furthermore, the concept of reflective think-
ing (Shinn et al., 2023; Wang et al., 2023) allows
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agents to critically assess their actions and assim-
ilate feedback from the environment, thereby in-
creasing adaptability. Additionally, some research
working on multi-agent systems (Hong et al., 2024;
Chan et al., 2024) aims to optimize interaction and
communication among agents to enable the com-
pletion of sophisticated tasks through cooperation
or competition. In our study, we integrate robust
planning and decision-making functionalities of
LLMs to provide timely and appropriate recom-
mendations based on previous feedback.

2.2 Proactive Dialogue

Proactive dialogue systems have made significant
improvements in recent years, enabling conversa-
tional agents to guide interactions toward specific
goals rather than merely responding to user in-
puts. These systems can be broadly categorized
into three types: open-domain, task-oriented, and
information-seeking dialogues. In open-domain
dialogues, methods like target-guided conversa-
tions and prosocial dialogues aim at leading con-
versations toward designated topics (Konigari et al.,
2021; Xie et al., 2021; Mendonça et al., 2024) or
maintaining socially responsible interactions by
detecting and addressing problematic user behav-
ior (Xu et al., 2021; Kim et al., 2022). In task-
oriented dialogues, proactive systems manage dif-
ferent scenarios (Zhou et al., 2020; He et al., 2018),
such as negotiations, and enrich task completion
by providing useful information (Sun et al., 2021;
Chen et al., 2022). In information-seeking dia-
logues, proactive agents improve the accuracy and
relevance of responses by asking clarification ques-
tions (Aliannejadi et al., 2019; Deng et al., 2022)
or actively eliciting user preferences (Shao et al.,
2023; Li et al., 2018) to refine recommendations.
These advancements reflect the shift from passive
to active engagement in conversational agents, aim-
ing to create more dynamic, efficient, and user-
centric interactions. In our research, we utilize
proactive agents to analyze user interests and ex-
plore these interests by recommending items that
users might prefer.

2.3 Proactive Recommendation

Proactive Recommendation aim at exploring users’
unobserved latent interests and enhancing users’
interest distributions without adversely affecting
their overall experience. This concept was first in-
troduced by Zhu et al. (2023), which constructs
the proactive recommendation strategy utilizing

a Transformer-based sequential model. It learns
interest-shifting patterns from users’ historical data
and encodes the characteristics of target items
to generate the strategy. Subsequently, Bi et al.
(2024b) is a model-agnostic post-processing strat-
egy that enhances the flexibility of IRS and incor-
porates an explicit IPG score design, improving
the effectiveness of proactive recommendations.
However, IPG relies on synthetic rather than real
data. Following this, Lian et al. (2025b), a novel
multi-round proactive recommendation model, con-
siders the users’ intentions to capture broad-level
evidence for subsequent steering recommendations,
thereby enhancing performance and Wang et al.
(2025a) achieves SOTA performance by employ-
ing prompt engineering techniques to utilize pow-
erful instruction-following and planning abilities
of LLMs for proactive recommendation. In our re-
search, we observed a trade-off between user accep-
tance and the breadth of user interests. By employ-
ing LLM-based agent and agent tuning methods,
T-PRA can adjust recommendations based on user
feedback and provide recommendations aimed at
long-term overall rewards without compromising
the overall user experience.

3 Task Definition

Our work builds upon the proactive recom-
mendation task formulation introduced in prior
works (Zhu et al., 2023). For a given user, the
target item is denoted as iTa. At step n, the pol-
icy πθ of the PRS generates a sequence of items
τn = {in, in+1, . . . , iTa} based on the interaction
history Hn = {i1, i2, . . . , in−1}, with the goal of
gradually expanding the user’s interest toward the
target item iTa. Formally, the policy is defined as:

τ = πθ(Hn, iTa). (1)

To optimize this task, we adopt a Reinforcement
Learning (RL) framework, where an agent learns
to make sequential decisions by interacting with
an environment. The RL framework is formalized
as a Markov Decision Process (MDP) represented
by the tuple (S,A,R), adapted to the proactive
recommendation setting as follows:

• S is the state space, encapsulating all possible
states the agent may encounter. At step n, the
state sn corresponds to the interaction history:
sn = {i1, i2, . . . , in−1}.
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Figure 2: Structure of the tunable LLM-based proactive recommendation agent (T-PRA). The left side represents
the LLM-based agent framework, which incrementally generates recommended items and optimizes them flexibly
based on feedback from the simulated environment. The right side illustrates the Agent tuning procedure. After
collecting a sufficient amount of data, it constructs a preference dataset using a rule-based reward function, with a
Critic module, to perform DPO tuning and optimize the long-term rewards.

• A is the action space, comprising all possible
recommendations the agent can make. At step n,
the action an is the recommended item in.

• R is the reward function, which provides feed-
back to the agent based on its actions. At step n,
the reward rn reflects the user’s real-time feed-
back to the recommendation in.

The recommendation process proceeds itera-
tively: at each step n, the policy recommends an
item in, and the interaction history is updated ac-
cordingly. This process continues until the target
item iTa is reached, ensuring a gradual and coher-
ent progression of user interest.

4 Methods

In this section, we provide a detailed description of
T-PRA. An overview of the framework is illustrated
in Figure 2, which consists of two key components:

• Actor-Advisor Framework: This component
adopts a dual-system approach inspired by the
fast and slow thinking paradigm (Kahneman,
2011), where the Actor makes immediate rec-
ommendations, while the Advisor performs more
strategic reasoning to refine decision-making.

• Critic-Guided Optimization: The second com-
ponent introduces a Critic module, which eval-
uates recommendations and provides structured
feedback to optimize the agent’s decision-making
process. Based on the Critic’s signals, DPO is
employed to fine-tune both the Actor and the Ad-
visor, enhancing their alignment with long-term
proactive recommendation objectives.

Example of Thought

The user’s preference score increased after
recommending “Call of Juarez”, indicating
a positive reception. To further guide them
toward the target item “Eidolon”, I should
recommend more open-world action games
with a similar gameplay experience.

Figure 3: An example of a thought produced by Advisor.

4.1 Actor-Advisor Framework

The Actor-Advisor framework is designed to pro-
cess information at two levels. Since the Actor
relies on signals provided by the Advisor, we first
introduce the Advisor module.

4.1.1 Advisor
The Advisor module is responsible for aggregat-
ing information from multiple sources, including
environmental feedback, user interaction history,
and previous recommendations made by the Actor.
At step n, the Advisor generates a structured guid-
ance signal, referred to as thought tn, based on the
user’s historical data Hn, the current state sn, and
the most recent reward from the environment rn−1:

tn = Advisor(Hn, sn, rn−1). (2)

We implement the Advisor using an LLM in-
stance, leveraging its ability to synthesize complex
information and generate strategic insights. An
example of a generated thought is in Fig. 3.
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4.1.2 Actor
The Actor is responsible for making direct deci-
sions based on the thought provided by the Advisor.
We implement the Actor module using an LLM and
adapt its generated recommendations to the dataset
using an item grounding process. At each step n,
the action a′n is generated as follows:

a′n = Actor(sn, tn), (3)

where sn is the current state, and tn is the
thought generated by the Advisor.

Item Grounding. Since LLM-generated recom-
mendations may not always align with items in the
dataset, we apply an item grounding mechanism to
ensure consistency with baseline evaluations. We
utilize Llama-3.1-8B-instruct (Dubey et al., 2024)
to encode both the generated items and those in the
dataset. The final recommendation is selected by
identifying the item with the highest cosine simi-
larity to the LLM-generated output:

an = argmax
a∈I

cos_sim(ea, ea′n), (4)

where I represents the dataset items, and ea denotes
the LLM embedding of item a.

4.2 Agent Tuning

To align the Actor and Advisor with the objec-
tives of the proactive recommendation task, we
introduce a Critic-guided tuning component. This
component evaluates the long-term impact of the
Actor’s actions and optimizes the Actor and Advi-
sor based on the Critic’s judgments.

4.2.1 Critic
The Critic serves as an LLM-based evaluator that
estimates the long-term benefits of actions taken
by the Actor. Specifically, we employ an LLM
instance to compute state values V (sn), providing
a quantitative measure of expected future rewards
from a given state:

V (sn) = Critic(sn). (5)

To mitigate variance in value estimation, we adopt
the advantage function (Mnih et al., 2016). The
advantage value A(sn, an), which quantifies the
relative benefit of selecting action an in state sn, is
computed as:

A(sn, an) = rn + γV (sn+1)− V (sn), (6)

where rn denotes the immediate reward after gen-
erating action an, and γ is the discount factor that
balances short-term and long-term rewards.

4.2.2 Preference Optimization with DPO
With the advantage values indicating the quality of
each action, we employ DPO to fine-tune the Actor
and Advisor. DPO is an effective preference learn-
ing approach that optimizes models to increase the
likelihood of preferred outputs while reducing the
likelihood of dispreferred ones. To apply DPO, we
first construct a preference dataset for actions and
thoughts.

At each step n, given the state sn, we collect all
possible actions An. Using the advantage values
computed for An, we identify the most preferred
action awn and the least preferred action aln as:





aw
n = argmax

a∈An

A(sn, a),

al
n = argmin

a∈An

A(sn, a).
(7)

Similarly, we evaluate all possible thoughts Tn for
state sn. The quality of a thought tn is assessed by
the average advantage values of all actions guided
by it. This allows us to construct the most preferred
thought twn and the least preferred thought tln:





twn = argmax
t∈Tn

1

|An|
∑

a∈An

A(sn, a),

tln = argmin
t∈Tn

1

|An|
∑

a∈An

A(sn, a).

(8)

Using these preferences, we construct a dataset
D of tuples containing preferred and dispreferred
actions. The Actor is fine-tuned by minimizing the
DPO loss function:

LDPO(πθ;πref )=−E(sn,aw
n ,al

n)∼Dℓ(πθ, πref , sn, a
w
n , a

l
n),

with ℓ(·)=log σ[β log(
πθ(a

w
n |sn)

πref (aw
n |sn)

)−β log(
πθ(a

l
n|sn)

πref (al
n|sn)

)].

(9)

Here, the policy πθ is adapted from the reference
LLM πref through fine-tuning. The Advisor is op-
timized similarly, but we omit its details for brevity.

Finally, to improve the accuracy of the Critic’s
benefit estimation, we optimize its model using a
temporal difference approach:

V (sn) = rn + γV (sn+1). (10)

4.3 Reward Functions

To compute the advantage value in Eq. (6), we
design three reward functions:
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Coherence measures the logical progression of
recommendations toward the target item. To ensure
smooth transitions, we calculate the L2 distance
between embeddings of consecutive items, an−1

and an, using Llama-3.1-8b:

RC = ∥ean−1 , ean∥, (11)

where ∥ · ∥ denotes the L2 distance.
Distance to the target quantifies progress toward
the target item iTa. We compute the difference in
L2 distances between an−1 and an relative to iTa:

RT = ∥ean−1 , eiTa∥ − ∥ean , eiTa∥. (12)

User acceptance evaluates user engagement with
recommendations. Following (Gao et al., 2023a),
we use a simulated environment trained on offline
data to provide feedback:

RA = Simulator(an). (13)

The final reward is a weighted sum of the three
components, provided as feedback to the Actor
and Advisor. Each reward’s significance is also
communicated via prompts, enabling the Advisor
to analyze and optimize recommendations:

rn = αRC + βRT + δRA. (14)

5 Experiments

In this section, we conduct experiments to address
the following research questions:

RQ1. How does our T-PRA framework compare
to SOTA approaches and other baselines in terms
of performance?

RQ2. How do the hyperparameters in our
method influence the experimental results?

RQ3. What is the performance of our method
when given different objective configurations and
modeling scenarios?

RQ4. What is the contribution of each compo-
nent of T-PRA?

5.1 Dataset
We conduct the experiment on two real-world
datasets, Steam dataset and Amazon-Book dataset.
The Steam dataset contains 190,365 users interact-
ing with 6,012 video games, resulting in a total
of 18,523 user interaction sequences after omit-
ting those shorter than 20 interactions. Similarly,
the Amazon-Book dataset includes 3,109 users and
13,864 books, culminating in 3,374 user interaction

sequences excluding sequences shorter than 20. In
our study, the target items are randomly sampled
from all items within each respective dataset. For
the purpose of training and evaluation, the datasets
are separated into training and testing sets, with
proportions of 80% and 20%, respectively.

5.2 Metrics
To comprehensively assess the methods, we employ
both LLM-based and traditional metrics. LLM-
based metrics leverage autonomous LLMs to sim-
ulate users to assess the effectiveness of the rec-
ommendations. Conversely, traditional metrics are
based on a simulator that utilizes the Transformer
model (Kang and McAuley, 2018) to evaluate the
performance.

Traditional metrics. According to prior re-
search (Bi et al., 2024a; Zhu et al., 2023; Wang
et al., 2025a), we employ Increment of Interest
(IoI) and Increment of Rank (IoR) as experimental
metrics to assess the enhancement of user interest
in target items. These metrics are evaluated by
training an independent next-item recommender
system (Kang and McAuley, 2018) that works as a
user simulator for evaluation. Additionally, based
on the same simulator, we employ the metric Ac-
curacy to measure the mean accuracy of recom-
mended items that align with user preferences:

Accuracy =
1

|τ |

|τ |∑

n=1

(1 if R(an|sn−1) < θ, else 0),

(15)
where R(·) denotes the rank of item an generated
by the user simulator based on sn−1, θ denotes the
threshold of user preference. If the rank is lower
than θ, it means the user prefers the item an.

LLM-based metrics. We implement metrics
Coherence and Acceptance in prior work Wang
et al. (2025a) to appropriately evaluate the LLM-
based method, as LLMs are more capable of re-
vealing the latent relationships between items than
traditional metrics. The prompt can be found in
Appendix A.2.

5.3 Baselines
We implement the following works as the base-
lines. For adapting the traditional recommendation
method to the PR tasks such as Caser (Tang and
Wang, 2018), GRU4Rec (Jannach and Ludewig,
2017), and SASRec (Kang and McAuley, 2018),
we use greedy search algorithm to select the most
relevant items to the target item within the top-k
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Steam Amazon book
IoI IoR Acce. Coh. Acc. IoI IoR Acce. Coh. Acc.

Optimized
Traditional

RS

POP -0.426 41.8 0.381 0.482 0.097 0.494 -205.7 0.428 0.595 0.085
Caser 0.269 89.9 0.505 0.239 0.977 0.263 317.1 0.446 0.629 0.969

GRU4Rec 0.220 60.8 0.511 0.240 0.969 0.672 725.6 0.443 0.645 0.956
SASRec 0.354 -75.14 0.259 0.257 0.484 1.06 436.8 0.438 0.506 0.563
BiLLP 0.427 308.7 0.523 0.477 0.855 1.200 655.3 0.583 0.604 0.490

Proactive
RS

IRS 0.164 218.7 0.381 0.249 0.934 0.097 166.4 0.470 0.481 0.883
LLM-IPP 0.259 340.6 0.651 0.597 0.912 1.436 845.6 0.595 0.557 0.844

LLM-IPP (CoT) 0.264 303.0 0.629 0.580 0.906 1.277 803.5 0.601 0.538 0.836
LLM-IPP (ToT) 0.282 244.1 0.571 0.509 0.861 0.944 513.0 0.522 0.533 0.765

Ours 0.584 432.8 0.588 0.403 0.894 1.783 1276.5 0.589 0.629 0.773

Table 1: Results of all methods in two datasets (Bold: Best, Underline: Runner-up).
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Figure 4: Results of different learning epochs. The dashed line illustrates the trend of values.

recommendations. These items are then aggregated
to formulate the final proactive recommendation
strategy. For other baselines: POP recommends the
most popular items; IRS (Zhu et al., 2023) adapt
a Transformer-based framework to proactive rec-
ommendation; BiLLP (Shi et al., 2024) employs
a bi-level planning approach aimed at augment-
ing long-term user engagement; LLM-IPP (Wang
et al., 2025a) utilize the LLMs for proactive rec-
ommendation based on prompt engineering tech-
niques such as Chain-of-Thought (CoT) and Tree-
of-Thought (ToT).

5.4 Implementation Details

In this study, we employ the Llama-3.1-8b-
instruct (Dubey et al., 2024) model as the base
model of all the agents in T-PRA. The prompts can
be found in Appendix A.1. During the agent tun-
ing process, these models trained for 5 epochs per
dataset. The training employs a learning rate of 5e-
5 and utilizes a cosine scheduler with a warm-up
ratio of 10% and 8 gradient accumulation steps. For
the LoRA settings, we set the LoRA rank as 8, and
train all modules. All experiments are conducted
using 2 NVIDIA A40 GPUs.

5.5 Experiment Results

5.5.1 Main Results (RQ1)
In this section, we evaluate all methods in Steam
and Amazon-Book datasets. According to the re-
sults presented in Table 1, our proposed method

Steam
IoI IoR Acce. Coh. Acc.

Ours 0.584 432.8 0.588 0.403 0.894
LLM-IPP 0.422 317.5 0.575 0.336 0.851

Amazon-Book
Ours 1.783 1276.5 0.589 0.629 0.773

LLM-IPP 1.308 704.2 0.587 0.423 0.747

Table 2: Comparison between SOTA and T-PRA with
the same base model (Llama-3.1-8b-instruct).

outperforms all baseline methods in IoI and IoR.
This outcome demonstrates that T-PRA effectively
enhances user interest in the target item, thereby
achieving the objective of exploring user inter-
ests. Regarding user acceptance and coherence, our
method achieves comparable results to the SOTA
on the Amazon-Book dataset. However, on the
Steam dataset, our method performs inferiorly to
SOTA. This discrepancy may be attributed to a
trade-off between user acceptance and the breadth
of user interest, suggesting that although IoR and
IoI improvements are notable, they may adversely
affect user acceptance and the coherence of the
recommendations. Particularly for the Caser and
GRU4Rec methods, both exhibit high levels of user
acceptance. However, they do not expand user in-
terests at all. Additionally, we conduct a case study
to demonstrate the performance of T-PRA at Ap-
pendix C.

Furthermore, our experiments utilize the Llama-
3.1-8b-instruct as the base model, whereas the
SOTA method LLM-IPP uses GPT-3.5-turbo. This
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Figure 5: Results of different temperatures. The dashed line illustrates the trend of values.
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Figure 6: Results of different target item distribution.

History Amazon-Book
Length Method IoI IoR Acce. Coh. Acc.

10 Ours 2.293 1320.3 0.521 0.572 0.650
LLM-IPP 1.444 614.0 0.577 0.492 0.809

15 Ours 1.783 1276.5 0.589 0.629 0.773
LLM-IPP 1.436 845.6 0.595 0.557 0.844

20 Ours 0.875 566.8 0.567 0.580 0.659
LLM-IPP 0.604 285.4 0.522 0.485 0.829

Table 3: Results of different history lengths.

presents inherent performance differences between
the models. We provide a comparison of LLM-
IPP’s performance using the same model in Table 2,
where our approach exceeds LLM-IPP across all
metrics.

5.5.2 Hyperparameter Tuning (RQ2)

In this section, we conduct hyperparameter tuning
studies to evaluate the impact of hyperparameters
of our framework. Training Epochs refer to the
number of iterations for agent tuning, which can
further enhance the effectiveness of agent tuning
by repeatedly obtaining preference data from the
training set. Temperature is a parameter for LLM
generation that controls the probability distribu-
tion of the next token predicted by the LLMs. A
higher temperature can provide more random ac-
tions, thereby obtaining a preference dataset with
more obvious differences, which, in turn, influ-
ences the effectiveness of agent tuning.

Figure 4 indicates that more training epochs
lead to a noticeable upward trend in both IoI and
IoR. Meanwhile, there is no significant change
in user acceptance and strategy coherence. This
demonstrates that proactive recommendations can
enhance performance through further training with-

Amazon-Book
IoI IoR Acce. Coh. Acc.

all 1.783 1276.5 0.589 0.629 0.773
only RC 1.310 906.4 0.573 0.599 0.755
only RT 1.276 836.5 0.516 0.619 0.674
only RA 1.257 914.0 0.597 0.592 0.834

Table 4: Results of different reward objectives.

out adversely affecting user experience.

From Figure 5, it is observed that our method
achieves optimal performance at a temperature set-
ting of 0.5. As the temperature increases, the rec-
ommendation performance decreases. This might
be because although a higher temperature produces
a dataset with more distinct preference compar-
isons, the increased randomness also reduces the
quality of generated actions, which consequently
decreases the effectiveness of the agent tuning.

From Table 3, our method consistently outper-
forms the SOTA across various history lengths. We
observed that both our method and LLM-IPP expe-
rience a significant performance decline when han-
dling long histories. This decline might be because
the outdated history fails to accurately reflect cur-
rent user interests, resulting in recommendations
that diverge from actual user preferences. From the
table, it is evident that LLM-IPP suffers particu-
larly severe degradation. For our method, initially,
in training epoch 1, our method had an IoI of 0.6
and an IoR of 142, which were lower than LLM-
IPP. However, through iterative agent learning, our
framework demonstrated substantial improvements
compared to LLM-IPP, underscoring the effective-
ness of our framework.
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5.5.3 Effect on Objectives (RQ3)

In this section, we study the impact of differ-
ent objective configurations of our framework on
Amazon-Book dataset. First, the differences in the
reward function enable the agent to optimize the
model for different reward targets. Next, we con-
duct experiments on the distribution differences of
target items. Based on the distance between user’s
historical record and all items, we divide the data
into three distributions: the top 10%, 45-55%, and
beyond 90%. The target items are then sampled
from each distribution for evaluation.

Table 4 indicates that employing any single re-
ward objective cannot achieve optimal outcomes.
It’s necessary to combine the three reward func-
tions to enhance the proactive recommendation per-
formance. Additionally, it is observed that utilizing
RA as the only objective for training is more ef-
fective in increasing user acceptance compared to
the other two cases, indicating the effectiveness of
reward function.

According to Figure 6, our approach consistently
outperforms the SOTA baseline across various tar-
get item distributions. It is also observed that when
the target item closely aligns with user’s historical
data, which means the user might be interested in
the item and cannot increase the interest too much,
resulting in limited enhancement of IoI and IoR.
And It’s obvious that user acceptance and overall
coherence are higher than in the other two cases.

5.5.4 Ablation Study (RQ4)

In this section, we study the contribution of each
component of T-PRA on Amazon-Book dataset.
Since the Actor is essential for generating recom-
mendations, making ablation experiments is im-
practical. We conducted experiments on the Ad-
visor and Critic. As observed from the Table 5,
the absence of either the Advisor or Critic leads
to a decline in performance. Notably, without the
Advisor, the initial performance at epoch 1 was
reasonable, with IoR at 1065.7 and IoI at 1.486.
However, upon agent learning, the performance
gradually decreases unlike others, even falling be-
low method without both Advisor and Critic. This
indicates the Advisor is a critical role in agent tun-
ing. For the method without the Critic, accurate
evaluation of long-term benefits is impeded, result-
ing in significantly lower performance compared
to our proposed method.

Amazon-Book
IoI IoR Acce. Coh. Acc.

all 1.783 1276.5 0.589 0.629 0.773
no Critic 1.608 883.5 0.501 0.554 0.736

no Advisor 0.774 546.5 0.567 0.546 0.734
without both 1.533 563.0 0.561 0.492 0.681

Table 5: Results of ablation study.

6 Conclusion

This paper proposed the Tunable LLM-based Proac-
tive Recommendation Agent (T-PRA), which can
effectively improve proactive recommendation per-
formance by being flexible to user feedback and
optimizing long-term overall rewards. We first im-
plement an LLM-based Agent framework to reflect
user feedback then improve the recommendation in
real time. After that, we utilize agent tuning meth-
ods based on A2C algorithm and DPO finetune
techniques to train the agent how to recommend
items with high long-term rewards. Experimental
results demonstrate an average increase of 38% in
effectiveness to enhance user interest in a particular
item compared to the SOTA methods.

Limitations

Our proposed framework has the following limita-
tions and corresponding future research directions.
Initially, regarding agent tuning, our method needs
to generate multiple actions at each step for com-
parison, which is time-intensive. Thus, we can find
more efficient agent tuning methods. Additionally,
proactive recommendation systems frequently en-
counter biases, such as those between actual user
needs and evaluation metrics (Gao et al., 2025a,b),
as well as the reward function configuration. Future
work could involve employing online evaluation
and inverse reinforcement learning to address these
issues. Furthermore, we can apply our proposed
approach to other tasks, such as personalized gener-
ation, where our framework could finetune LLMs
to enhance output with higher long-term user satis-
faction and experience.
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A LLM Prompts

A.1 Advisor, Actor & Critic

Advisor and Actor use the same prompt shown below, generating thoughts or actions based on the
interaction history.

Prompt for Advisor and Actor

You are a helpful planner on recommendation tasks to influence people’s interests toward the target
item. Given the user’s historical data and the target item, analyze the user’s interests and finish
the recommendation task. You should solve the recommendation task with interleaving Thought,
Action, and Observation steps.

- Thought can reason about the current situation and current user interest to help solve the question.
Don’t give the same Thoughts multiple times.
- Action can recommend an item to the user based on the user’s interest and the target item. Your
goal is to recommend a sequence of items one by one and finally let the user be interested in
the target item step by step. Try to recommend the items the user might like, and any adjacent
recommended items should have a strong relation. DO NOT recommend the items that appeared
before. If the step is more than 10 and the user’s interest is very near the target item, then you can
recommend the target item directly. Action must be in the format of: "recommend[item]".

- Observation shows the user’s feedback in the following metrics:
- User preference score: indicates the user’s preference for this recommended item. The score
ranges from 0 to 1. 0 means the user is definitely not interested in the recommended item, and 1
means the user is definitely interested in it.
- Step length reward: indicate this and the last recommended item’s distance. Range from 0 to 1, 0
means the recommended item is too different or too same as the last recommended item. 1 means
the recommended item has a proper distance from the last recommended item.
- Forward length reward: indicate whether the recommended item is closer to the target item. Range
from -1 to 1. Under 0 means that the recommended item is far away from the target item. Above 0
means that the recommended item is closer to the target item.

A.2 LLM-based evaluator

According to the prior work (Wang et al., 2025a), the prompts shown below are LLM prompts to measure
user acceptance and coherence of the recommendation sequences based on the recommendations.

Prompt for measuring user acceptability

Given the historical data, analyze the user’s interest. Based on this information, would the user be
interested in the movies in the proactive recommendation strategy step by step? Answer with a
probability for each movie between 0 and 1, where 0 means “definitely not interested” and 1 means
“definitely interested”. Please explain the reason for each score. If uncertain, make your best guess.

Prompt for measuring coherence

Given the influence path in the format of A,B,C..., what’s the relevance of each adjacent item?
Answer with a score between 0 and 1, where 0 means “definitely not related” and 1 means
“definitely related”. Please explain the reason for each score. If uncertain, make your best guess.
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B Additional Experiment Results

This section presents all the experimental results in Figures 4, 5, and 6, corresponding to Tables 6, 7,
and 8, respectively.

Steam Amazon book
Epoch IoI IoR Acce. Coh. Acc. IoI IoR Acce. Coh. Acc.

1 0.577 272.0 0.523 0.417 0.864 1.578 1069.8 0.562 0.662 0.781
2 0.570 334.7 0.527 0.434 0.870 1.434 1083.3 0.605 0.629 0.817
3 0.620 367.5 0.546 0.447 0.881 1.091 761.52 0.582 0.612 0.781
4 0.567 417.9 0.496 0.407 0.866 1.368 979.48 0.557 0.598 0.751
5 0.584 432.8 0.588 0.403 0.894 1.783 1276.5 0.589 0.629 0.773

Table 6: Results of different training epochs.

Steam Amazon book
Temp. IoI IoR Acce. Coh. Acc. IoI IoR Acce. Coh. Acc.

0.5 0.584 432.8 0.570 0.390 0.894 1.783 1276.5 0.589 0.629 0.773
0.8 0.431 269.9 0.527 0.358 0.886 1.178 861.0 0.591 0.629 0.791
1.0 0.409 256.6 0.519 0.376 0.902 1.623 1217.5 0.586 0.613 0.793
1.2 0.370 205.6 0.564 0.415 0.859 1.340 844.74 0.581 0.646 0.785
1.5 0.420 171.8 0.535 0.294 0.805 1.438 945.5 0.591 0.564 0.755

Table 7: Results of different temperatures.

Amazon-Book
IoI IoR Acce. Coh. Acc.

all T-PRA 1.783 1276.5 0.589 0.629 0.773
LLM-IPP 1.436 845.6 0.595 0.557 0.844

top 10% T-PRA 1.065 804.5 0.603 0.629 0.801
LLM-IPP 0.470 384.8 0.624 0.574 0.855

45-55% T-PRA 1.373 916.2 0.561 0.593 0.734
LLM-IPP 1.071 677.4 0.539 0.598 0.807

beyond 90% T-PRA 2.034 1346.7 0.550 0.560 0.806
LLM-IPP 1.121 770.6 0.6355 0.587 0.832

Table 8: Results of different target item distributions

C Case Study

From the case study presented below, in the beginning, the Advisor conducts an analysis based on the
user’s historical interaction behaviors at Thought 1. This thought suggests a preference for exploratory
and creative games. Consequently, Actor leads to the recommendation of "Roller Coaster Rampage,"
based on the guidance and grounded in the item most similar within the dataset. Upon receiving feedback
from the environment, the Advisor evaluated the recommendation’s effectiveness and underlying reasons
based on the three rewards. This analysis facilitated the provision of a recommendation with a higher
composite reward. Finally, in step 4, the Advisor determines that the recommended item is closely enough
aligned with the target item, and then guides the Actor to recommend the target item directly, thereby
accomplishing the proactive recommendation task.
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Case Study

The users viewing history is:
LEGOae The Hobbit, Castle Crashersae, Super Mustache, Teeworlds, Greyfox RPG, A grande
bagune7a espacial - The big space mess, Syberia II, Team Fortress 2, Platypus II, Train Valley,
Lords Of The Fallen, Lup, X-Blades, RollerCoaster Tycoonae 2: Triple Thrill Pack, House of
1,000 Doors: Family Secrets Collectors Edition.
The target item is Euro Truck Simulator.
Please recommend games for this user and try to influence the user to become interested in the
target item, and finally recommend the target item. The recommended games must be published
before 2018.

Thought 1: Based on the users viewing history, it seems that they enjoy a mix of casual, puzzle, and
adventure games with a focus on exploration and creativity. To lead them towards the target item
Euro Truck Simulator, I should recommend games that offer open-world exploration, simulation,
and a sense of freedom.
Action 1: recommend[Roller Coaster Rampage].
Observation 1: [RollerCoaster Tycoon] can not be recommended, instead, recommend[Roller
Coaster Rampage].
Observation: The episode continues. User preference score=0.20, step length reward=0.01, length
toward to the target=0.44. Final reward=1.09.

Thought 2: Although the users preference score is not high, the step length reward and length
toward the target are positive, indicating that Roller Coaster Rampage is a good starting point to
lead the user towards Euro Truck Simulator. To continue guiding them, I should recommend more
simulation and open-world games that offer a sense of freedom and exploration.
Action 2: recommend[The Sims 3].
Observation 2: [The Sims 2] can not be recommended, instead, recommend[The Sims 3]
Observation: The episode continues. User preference score=1.00, step length reward=0.25, length
toward to the target=-0.31. Final reward=1.57.

Thought 3: The users preference score increased significantly after recommending The Sims 3,
indicating that they enjoy simulation games. However, the length toward the target is negative,
suggesting that The Sims 3 is not as close to Euro Truck Simulator as I would like. To continue
guiding the user, I should recommend games that are more closely related to Euro Truck Simulator.
Action 3: recommend[Euro Truck Simulator 2].
Observation: The episode continues. User preference score=1.00, step length reward=0.60, length
toward to the target=-0.10. Final reward=2.51.

Thought 4: The users preference score is high, and the step length reward is also positive, indicating
that Euro Truck Simulator 2 is a good choice to recommend. Since Euro Truck Simulator 2 is very
close to the target item, we can directly recommend the target item Euro Truck Simulator.
Action 4: recommend[Euro Truck Simulator].
Observation: The episode finished. User preference score=0.40, step length reward=0.06, length
toward to the target=0.95. Final reward=2.36.
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