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Abstract
Large language models (LLMs) exhibit re-
markable capabilities in natural language pro-
cessing but face catastrophic forgetting when
learning new tasks, where adaptation to a new
domain leads to a substantial decline in per-
formance on previous tasks. In this paper,
we propose Controlled LoRA (CLoRA), a sub-
space regularization method on LoRA struc-
ture. Aiming to reduce the scale of out-
put change while introducing minimal con-
straint on model capacity, CLoRA imposes
constraints on the direction of updating ma-
trix’s null space. Experimental results on
one-stage LLM finetuning tasks and contin-
ual learning settings highlight the superiority
of CLoRA as an effective parameter-efficient
finetuning method with catastrophic forgetting
mitigating. Further investigation for model
parameters indicates that CLoRA effectively
balances the trade-off between model capacity
and degree of forgetting. The code for imple-
menting CLoRA will be publicly available1.

1 Introduction

Large language models (LLMs) demonstrate re-
markable capabilities in natural language tasks.
However, when performing continued training on
additional datasets, a key challenge may be faced,
known as catastrophic forgetting (McCloskey and
Cohen, 1989), where adaptation to a new domain
leads to a substantial decline in performance on
previous tasks.

Existing approaches to mitigate catastrophic for-
getting can be broadly categorized into data-based,
architecture-based, and learning-based methods
(Wang et al., 2023a). Data-based methods (de Mas-
son D’Autume et al., 2019) are primarily based on
rehearsing prior training data, which raises data
privacy concerns. Additionally, for LLMs, obtain-
ing the necessary prior training data samples is

*Corresponding author
1https://github.com/sutakori/CLoRA

challenging due to their training on massive data.
Architecture-based methods (Wang et al., 2023c;
Razdaibiedina et al., 2023) introduce isolated pa-
rameters for each continued training stage for re-
ducing interference. In contrast, learning-based
methods train in the shared vector space, control-
ling the learning process by adding regularization
terms to the loss or employing specific optimiza-
tion designs. Inference for architecture-based meth-
ods typically involves a selection process (Gurbuz
and Dovrolis, 2022; Kang et al., 2022), which is
more complex than that for learning-based methods.
As continued trained LLMs are generally regarded
as foundation models, flexibility is essential for
their broader applications. Consequently, due to
deployment considerations, learning-based meth-
ods are preferred over architecture-based methods
for LLMs.

The core idea of learning-based methods is to
constrain parameter updates, which aligns pre-
cisely with the Parameter-Efficient Fine-Tuning
(PEFT) research paradigm of LLMs. Although
initially proposed for computational efficiency,
PEFTs have been demonstrated to learn less and
forget less(Biderman et al., 2024), primarily due
to their constrained model capacity. Notably, a
well-established insight related to learning-based
methods in PEFT research is that LLMs are primar-
ily finetuned within a specific low-rank subspace,
this insight has led to the development of the Low-
Rank Adaptation method (LoRA)(Hu et al., 2021).

However, LoRA imposes no restrictions on pa-
rameter updates beyond the low-rank constraint,
and matrix perturbation theory suggests that even
low-rank updates can significantly influence ma-
trix properties (Sherman, 1949; Davis and Kahan,
1970). For instance, in an extreme case, it is theoret-
ically possible to learn a model that eliminates all
top-k principal components (optimal rank-k approx-
imation) through a rank-k update, thus destroying
most of the base model’s ability. Therefore, LoRA
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Figure 1: Illustration of the intuition behind our ap-
proach. For input x, the component in Null(∆W ) (null
space of the updating matrix ∆W ) would be ignored,
the change of output ∆y is obtained only from the com-
ponent in Row(∆W ) (row space of ∆W , the orthogo-
nal complement of Null(∆W )). CLoRA introduces a
pre-defined subset of Null(∆W ) by imposing orthogo-
nal regularization with pre-defined matrix P .

would benefit from more constraints for mitigat-
ing catastrophic forgetting. However, more con-
straints would reduce model capacity for updat-
ing, which influences the effectiveness of training.
For instance, adding L2 regularization significantly
restricts the norm of the updating matrix. Con-
sequently, effective management of the capacity-
forgetting balancing has become a major concern.

To address this concern, in this work, we propose
Controlled LoRA (CLoRA), a subspace regulariza-
tion method on LoRA structure. We start the design
of CLoRA from the perspective of the null space
of updating matrix. The intuition behind CLoRA
is illustrated in Figure 1, where the output change
∆y is derived from applying the updating matrix
∆W on the component of the input x that falls
within the row space of ∆W , while components
in the null space are ignored. Under this intuition,
for reducing the scale of output change, options
include reducing the scale of ∆W , and encourag-
ing more input component fall in the null space of
∆W . The former is more related to model capacity,
and for concerns of capacity-forgetting balancing,
we focus on the latter.

The dimension of the null space for the updat-
ing matrix is directly determined by the rank of
it, which LoRA already addressed. A key factor
remains, the direction of null space, which influ-
ence input components that fall in, but free-learned
LoRA does not constraint. CLoRA constraint the
direction of null space of updating matrix by intro-
ducing a pre-defined subspace, this is implemented
by orthogonal regularization with a pre-defined ma-
trix. Unlike methods that impose restrictions on

rank or norm, which significantly influence model
capacity, CLoRA introduces constraint on the di-
rection of the null space. We take experiments on
commonly used one-stage LLM finetuning evalu-
ations and continual learning evaluations, results
indicate the superiority of CLoRA as an effective
approach for parameter-efficient finetuning with
catastrophic forgetting mitigating. Additionally, we
take analysis on parameters of the learned model,
results show that CLoRA reduces the scale of out-
put change with minimal impact on model capacity.

Our contributions are summarized as follows,

• We propose CLoRA, a subspace regularization
method on LoRA, which serves as an advanced
parameter-efficient finetuning technique with
catastrophic forgetting mitigating for LLMs.

• Our proposed CLoRA demonstrates superior per-
formance on both in-domain and out-domain
evaluation in commonly used one-stage LLM
finetuning setting. Additionally, it shows remark-
able mitigating of catastrophic forgetting in con-
tinual learning setting.

• Parameter investigation results indicate that
CLoRA effectively balances the trade-off be-
tween model capacity and degree of forgetting.

2 Related Works

2.1 Mitigating Catastrophic Forgetting

Catastrophic forgetting is a significant challenge
in various transfer learning scenarios, including
continual learning (Wang et al., 2023a) and LLM
finetuning (Wu et al., 2024). In these settings, con-
tinued training on new tasks may impair abilities of
the pre-trained model. Approaches for mitigating
catastrophic forgetting can be broadly categorized
into data-based, architecture-based and learning-
based methods.

Data-based methods primarily based on re-
hearsal of prior training data or representation,
(de Masson D’Autume et al., 2019) introduce an
episodic memory for experience rehearsal, (Rebuffi
et al., 2017; Chaudhry et al., 2019) selects previous
training data for rehearsing. For LLMs, acquiring
the necessary prior training data is challenging due
to the extensive amount of data used in their train-
ing. Instead, the concept of rehearsal is commonly
adopted by mixing data from general domains for
LLM continued training. This approach is gener-
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ally orthogonal to model-related methods, thus we
will not discuss it further.

Architecture-based methods (Wang et al.,
2023c; Razdaibiedina et al., 2023) introduce iso-
lated parameters for each continued training stage
to reduce interference. (Wang et al., 2023c) use
isolated parameters for each task, and enables a
selecting mechanism during inference. Progressive
Prompts (Razdaibiedina et al., 2023) sequentially
concatenates prompts for each task with previously
learned prompts. These architecture-based meth-
ods generally require specific techniques for infer-
ence and continued training, resulting in a lack of
flexibility, particularly in the context of LLMs.

Learning-based methods performs continued
training in a shared vector space, controlling the
learning process by adding a regularization term
on loss or applying specific optimization designs.
Notably, O-LoRA (Wang et al., 2023b) introduce
regularization with previous continually learned
parameters for reducing interference in the multi-
stage training setting. Our proposed CLoRA im-
poses orthogonal regularization similar to O-LoRA,
but the regularization matrix is not restricted to be
the previously learned parameter, thus CLoRA can
be used for one-stage continued training whereas
O-LoRA not.

2.2 LoRA and Subspace Tuning
Parameter-Efficient Fine-Tuning (PEFT) (Han
et al., 2024) aims to tune models with minimiz-
ing computational resources, which is widely used
for large-scale models including LLMs. Among
these methods, LoRA (Hu et al., 2021) and its sub-
sequent variants (Wang et al., 2024a; Liu et al.,
2024) learn a low-rank decomposition for updating
parameter matrices, and could be categorized into
learning-based continued training method, which
is the focus of our work.

The core insight of LoRA is to tune model within
a low-rank subspace, and with no additional con-
straints imposed on this tuning subspace. Some
subsequent works delve deeper into the tuning sub-
space to mitigate catastrophic forgetting for LLM
continued training, MiLoRA (Wang et al., 2024a)
and PiSSA (Meng et al., 2024) use singular value
decomposition (SVD) components of the original
parameters for LoRA initialization, with MiLoRA
uses minor components while PiSSA uses major
components; O-LoRA (Wang et al., 2023b) intro-
duce orthogonal regularization for each LoRA sub-

Notation Description
W parameter matrix in base model

∆W updating of the parameter
x input for W
y output for W , y = Wx

∆y output change, ∆y = ∆Wx
||v|| L2 norm of vector v
||A|| L2 norm(largest singular value)

of matrix A
||A||F Frobenius norm of matrix A

r rank of updating matrix
k number of regularization vectors

Table 1: Notations.

space. Our proposed CLoRA also falls within this
category, differing from the selection and utiliza-
tion of the focused subspace.

3 Preliminaries

3.1 Notations

The notations commonly used in this paper are sum-
marized in table 1. We provide some additional
notes here. While generally used for denote the in-
put and output of the whole model, we denote x, y
as input and output to a single linear layer, repre-
sented by W . ||A|| denotes L2 norm (largest singu-
lar value) in our paper, instead of Frobenius norm
(||A||F =

√∑
A[i, j]2). r and k are most impor-

tant hyperparameters for CLoRA, r is the rank of
updating matrix, which is used in all LoRA works,
k is the number of regularization vectors(column
of regularization matrix) in CLoRA.

3.2 Problem Definition

Catastrophic forgetting manifest as performance
decline on tasks from previous domain when train-
ing on new domain. In this work, we aim to miti-
gate catastrophic forgetting in LLM finetuning and
continual learning settings.

3.2.1 LLM Finetuning
In this setting, we conduct experiments on one-
stage LLM finetuning, To evaluate this, we conduct
both in-domain tasks (demonstrating the effective-
ness of training) and out-domain tasks (from previ-
ous domain, indicating the degree of forgetting) for
LLM finetuning. Specifically, we finetune a base
LLM on one training dataset, then take in-domain
and out-domain evaluations. Note that there is no
clear domain specific for base LLMs, but bench-
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Figure 2: Illustration of CLoRA on typical decoder-only transformer based LLMs. LoRA updating is applied on
v-proj in multi-head attention layer for each layer. CLoRA add orthogonal loss computes from trainable LoRA
parameters (A and B) to the original language modeling loss.

marks exist for evaluating the ability of LLMs on
wide range of domains (Gao et al., 2024), and we
take those with minimal overlap with training data
for out-domain evaluation.

3.2.2 Continual Learning
Continual learning focuses on developing learn-
ing algorithms to accumulate knowledge on non-
stationary data(Wang et al., 2023b). In this setting,
we conduct experiments for multi-stage finetuning.
Specifically, we finetune the model on a sequence
of tasksD1, . . . , Dt, where each taskDt contains a
pair of train and test datasetsDt = (Dtrain

t , Dtest
t ).

The t-th model with finetuned sequentially on
Dtrain

1 , . . . , Dtrain
t−1 is tested over all previous test

datasets Dtest
1 , . . . , Dtest

t−1 .

4 Method

In this section, we introduce Controlled Low-Rank
Adaptation (CLoRA) method. We illustrate the ap-
plication of CLoRA in transformer-based LLMs
in Figure 2. CLoRA shares the same modeling
structure with LoRA, but imposes on orthogonal
regularization term computed using LoRA parame-
ters into the loss function.

CLoRA Modeling Consistent with LoRA,
CLoRA decomposes the updating for a parameter
matrix W to a multiplication of two low-rank
matrices ∆W = ABT , where W,∆W ∈ Rm×n,
A ∈ Rm×r, B ∈ Rn×r, r � m,n.

CLoRA computes orthogonal regularization for
A and BT with pre-defined matrix PA ∈ Rm×k

and PB ∈ Rn×k, where k is a hyperparameter con-
trolling the size of regularization matrix, larger k
introduces more constraint. PA and PB are untrain-
able, and fixed during training. The orthogonal
regularization loss on one LoRA parameter A is
defined as

Lorth(A,PA) = ||ATPA||2F (1)

whereA ∈ Rm×r, PA ∈ Rm×k. Lorth(A,PA) reg-
ularize on orthogonality of every (A[:, i], PA[:, j])
pairs. The final loss of CLoRA in a transformer-
based LLM is defined as

LLM (Θ, input)+ (2)

λ
∑

i

(Lorth(Ai, PAi) + Lorth(BT
i , P

T
Bi

))

where LLM (Θ, x) is the original language model
loss on text input x with LLM parameters Θ, the
summation on Lorth is over index of all trainable
parameter matrices. λ controls the weighting of
orthogonal loss, we set it to 1 as default.

Initialization Following LoRA(Hu et al., 2021),
we initialize A with gaussian noise and B with
zeros, ensuring ∆W is zero at the beginning of
training.

For the CLoRA regularization matrices, follow-
ing the principle of Occam’s Razor, we adopt the
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simplest random initialization here. For uniform
regularization over each row in regularization ma-
trices, we suggest using orthogonal initialization.
Specifically, for regularization matrix P ∈ Rm×k,
||P [:, i]|| = 1 for every i, and P [:, i]P [:, j] = 0 for
i 6= j.

Training efficiency The vanilla transformer
implementation exhibits time complexities of
O(n2d+ nd2) for the attention layer and O(nd2)
for the FFN layer, where n represents sequence
length and d denotes hidden dimension size. As
the base for CLoRA, LoRA performs as an ef-
ficient training method by reducing the gradient
computation for origin parameter W s, while intro-
duces computation overhead with time complexity
O(ndr), which is minor as r � d, n typically
holds.

For our proposed CLoRA, additional computing
overhead is paid for regularization computation,
with time complexity of O(kdr), which is minor
compared to LoRA overhead when k � n. And
even with large k proportional to d, O(d2r) for
CLoRA additional overhead is minor compared
to the transformer as r � n generally. Thus, we
claim that CLoRA preserves the computational ad-
vantages of LoRA and introduces minor additional
overheads.

In terms of memory efficiency, CLoRA’s frozen
regularization matrix inherits LoRA’s key advan-
tage, specifically, it avoids storing full-sized param-
eters in optimizer states. This makes CLoRA as a
memory-efficient training method.

5 Experiments and Analysis

5.1 One-Stage LLM Finetuning

In this section, we conduct experiments on one-
stage LLM finetuning to evaluate our proposed
CLoRA as a parameter-efficient finetuning method.
We aim to answer the following research questions,

• RQ1: Does CLoRA perform effectively as a
parameter-efficient finetuning method for LLMs
with catastrophic forgetting mitigating?

• RQ2: How the size of regularization matrix k
influence the performance of CLoRA? Does it
differ across tasks?

• RQ3: How does CLoRA demonstrate superiority
on capability-forgetting balancing?

5.1.1 Datasets and Tasks
Following previous works on PEFT(Liu et al.,
2024; Wang et al., 2024a), we conduct experiments
on commonsense reasoning tasks and math tasks.

Commonsense Reasoning Setting We use
Commonsense170K (Hu et al., 2023) for finetun-
ing. For in-domain evaluation, eight common-
sense reasoning datasets are used, including BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2019), ARC-
e, ARC-c (Clark et al., 2018), and OBQA (Mi-
haylov et al., 2018). The tasks are formulated as
multiple-choice problem, and we report accuracy
based on the last checkpoint.

For out-domain evaluations, BIG-Bench-Hard
(Suzgun et al., 2022) and MMLU-Pro (Wang et al.,
2024b) are used. These benchmarks encompass
challenging subsets of tasks across a wide range
of domains and are widely employed for evaluat-
ing the capabilities of LLMs. Additionally, they
include samples that are more complex than those
in our training data, ensuring minimal overlap. We
use lm-eval (Gao et al., 2024), available with MIT
License, for reporting out-domain evaluation.

Math Setting We use MetaMathQA (Yu et al.,
2024) for finetuning, which contains 395K samples
augmented from the training set of GSM8K (Cobbe
et al., 2021) and MATH(Hendrycks et al., 2021).
We use test set of GSM8K and MATH for evalua-
tion and report the results on the last checkpoint.

5.1.2 Comparison Methods
• LoRA (Hu et al., 2021) is a widely-used

parameter-efficient finetuning technique, and it
serves as the foundation of our proposed CLoRA.

• DoRA (Liu et al., 2024) is a recent work on struc-
ture improvement of LoRA, we include it as a
baseline for improved LoRA.

• PiSSA (Meng et al., 2024) and MiLoRA (Wang
et al., 2024a) are two variants of LoRA, both
employing SVD components for LoRA initial-
ization, MiLoRA use minor components while
PiSSA use major. Notably, MiLoRA can be cat-
egorized as a catastrophic forgetting mitigating
method.

• Reducing the updating rank(-r*): Lower rank
r imposes stricter constraints on the updating
matrix. We maintain a consistent rank across
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In-domain Out-domain
Method BQ PQ SQ HS WG ACe ACc OQ Avg. BBH MMLU
LLaMA2-7b - - - - - - - - - 34.91 18.56

LoRAs
LoRA 71.9 80.9 78.9 90.3 83.5 83.0 70.2 80.8 79.9 26.69 14.46
DoRA 73.0 81.9 80.3 90.2 82.8 84.6 69.4 81.8 80.5 28.24 11.67
PiSSA 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8 29.54 11.33

Reducing Forgetting
MiLoRA 71.5 82.0 80.0 91.0 83.0 82.3 68.9 81.2 80.0 25.14 17.74
LoRA-r8 71.0 80.5 78.1 90.0 83.0 81.1 68.5 78.0 78.8 26.90 14.58
LoRA-r16 71.0 81.8 78.9 90.3 81.1 83.1 69.7 82.2 79.8 26.73 11.54
LoRA-L2 70.3 83.0 80.2 92.7 83.1 84.2 71.2 81.4 80.8 32.93 16.59

Ours
CLoRA-k128 72.7 84.1 77.7 91.6 83.0 85.3 69.9 81.6 80.7 30.82 12.07
CLoRA-k256 71.3 83.2 79.1 92.4 83.2 84.5 71.0 81.0 80.7 31.92 17.81
CLoRA-k512 72.8 83.0 79.5 93.0 83.9 85.7 73.0 84.8 82.0 34.32 17.00
CLoRA-k1024 73.3 84.8 79.6 91.1 86.1 86.9 73.1 85.6 82.6 36.49 19.52
CLoRA-k2048 73.7 84.5 80.9 94.5 85.9 88.1 75.9 86.0 83.7 38.67 20.59

Table 2: Results for our proposed CLoRA and baselines for in-domain commonsense reasoning evaluations and
out-domain LLM benchmarks, with accuracy scores (%) reported. Bold font indicates the highest performance for
each task across all compared PEFT methods.

all methods and consider variations in rank as a
separate baseline.

• L2 regularization(-L2) introduces L2 regular-
ization for trainable parameters, serving as a fun-
damental approach to limit updates.

• CLoRA: Our proposed CLoRA method, with
random initialized regularization matrix.

5.1.3 Experimental Configuration
We use the same base LLM choice LLaMA-2-7B
(Touvron et al., 2023) and hyperparameter configu-
rations as (Wang et al., 2024a). Details are listed
in Appendix A. Notably, we use 32 (commonsense
reasoning) and 64 (math) for updating matrix rank
r as default for all methods if not explicitly speci-
fied. For the size of CLoRA regularization matrix,
we select k in [128, 256, 512, 1024, 2048] for com-
monsense reasoning and [64, 128, 256] for more
challenging math setting. For LoRA-L2, 1e-5 is
used for weighting of L2 regularization. We note
that 1e-4 is also tested, but too large for getting
effective finetuning. We report results finetuned
on LLaMA-2-7B here, more results are listed in
Appendix A.

5.1.4 Main Results (RQ1)
For commonsense reasoning setting, we report the
results of in-domain evaluation and out-domain

LLM benchmarks in Table 2. The results demon-
strate that CLoRA outperforms on all datasets, sur-
passing the best baseline for in-domain evaluation
by an average accuracy of 2.9 points. Results for
math setting also demonstrate the superiority of
CLoRA over previous LoRA baselines (Table 3).

These outcomes suggest that, although primar-
ily proposed for mitigating catastrophic forgetting,
CLoRA also serves as an effective PEFT method.
We attribute this to the nature of LLM finetuning,
which is an instance of transfer learning. The per-
formance of LLM finetuning is strongly correlated
with the base model’s ability, when catastrophic
forgetting occurs during training, the base model’s
strength may diminish. Therefore, we claim that a
method with effective capacity-forgetting balanc-
ing would exhibit strong effectiveness in LLM fine-
tuning.

For out-domain evaluation, results show that all
baselines underperform the base model, highlight-
ing the severe issue of catastrophic forgetting in
this setup. Notably, our proposed CLoRA not only
outperforms all baselines by a significant margin
but also surpasses the base model’s performance.
We attribute this to CLoRA’s effective capacity-
forgetting balancing, which enables the extraction
of generally useful knowledge from the common-
sense reasoning training dataset.
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Method GSM8K MATH
LoRA 60.58 16.88
PiSSA 58.23 15.84
MiLoRA 63.53 17.76
CLoRA-k64 64.29 17.52
CLoRA-k128 64.59 18.38
CLoRA-k256 63.45 17.58

Table 3: Math evaluation on GSM8K and MATH, with
accuracy scores (%) reported.

The superior performance in both in-domain and
out-domain evaluations demonstrates that our pro-
posed CLoRA serves effectively as a parameter-
efficient finetuning method with catastrophic for-
getting mitigating. Thus, we answer RQ1.

5.1.5 Influences of CLoRA Hyperparameters
(RQ2)

The size of the regularization matrix k is a crucial
hyperparameter in CLoRA, balancing the trade-off
between model capacity and the degree of forget-
ting. We focus here on how k influence the perfor-
mance of finetuning LLM with CLoRA, and inves-
tigate whether the optimal k is consistent across
tasks.

In commonsense reasoning setting, results show
that larger k leads to better performance in both in-
domain and out-domain evaluations (Table 2). In
math setting, unlike the upward trend in common-
sense reasoning setting, performance decreases
when k exceeds 128(Table 3). We attribute this
discrepancy to the complexity of math tasks, which
require greater model capacity during finetuning.

Empirical results support the intuitive claim that
larger k imposes more restrictions on updates,
which helps to mitigate catastrophic forgetting but
potentially limiting finetuning model capacity and
harming performance.

Thus, we answer RQ2 by demonstrating that the
optimal k depends on task complexity. Notably, our
proposed CLoRA provides flexibility in balancing
capacity and forgetting by adjusting k, we suggest
choosing a smaller k for more challenging tasks.

For the scale of regularization loss λ, we ob-
serve that the constraint effectiveness of CLoRA
is not sensitive to that. CLoRA generally effec-
tively enforces the orthogonal constraint, achieving
near-complete suppression of updates along the
constrained directions, and under the default λ = 1
configuration, satisfactory task performances are
generally enabled.

Method ||∆W || F∆ F ↑
reference 2.42 34.91
LoRA 22.63 0.79 26.69
MiLoRA 24.32 0.92 25.14
LoRA-r16 12.70 1.03 26.73
LoRA-r8 6.45 0.95 26.90
LoRA-L2 2.07 0.29 32.93
CLoRA-k128 10.84 0.36 30.82
CLoRA-k256 10.25 0.34 31.92
CLoRA-k512 8.19 0.27 34.32
CLoRA-k1024 6.64 0.21 36.49
CLoRA-k2048 5.00 0.14 38.67

Table 4: Measuring model updating capacity(||∆W ||,
larger indicates more capacity) and degree of forgetting
for trained models. Measuring for degree of forgetting
includes both mechanism oriented (F∆, lower indicates
less forgetting) and performance oriented (F, higher for
less forgetting).

5.1.6 Understanding Capacity-Forgetting
Balancing(RQ3)

To answer RQ3, we investigate the parameter of
trained models to quantify the capacity-forgetting
balancing issue.

Measuring Model Capacity To measure model
capacity, we note that there is a gap between the-
oretical capacity of a model (Abu-Mostafa, 1989)
and the practical outcome of the learned model.
Therefore, we delegate the measurement of model
capacity to the scale of the parameters in the
learned model. Specifically, we measure the L2
norm ||∆W || for each updating parameter ma-
trix, higher ||∆W || indicates potential more ca-
pacity. We use L2 norm (largest singular value) for
highlighting the theoretical scale of output change,
||∆y|| = ||∆Wx|| ≤ ||∆W || · ||x||, which reflect
the theoretical effectiveness of output updates, and
we delegate model capacity with it.

Measuring Degree of Forgetting (Performance
Oriented) We use the out-domain evaluation on
BBH for measuring degree of forgetting for each
model, denoted as F, which is aligned with the
results in Table 2. F’s performance-oriented mea-
surement directly corresponds to the theoretical
definition of catastrophic forgetting.

Measuring Degree of Forgetting (Mechanism
Oriented) Beside the performance oriented mea-
surement of forgetting F, we try to find a mecha-
nism oriented measurement so that reflect how the

19171



CLoRA benefits.
Consider that catastrophic forgetting primarily

arises from output changes caused by parameter
updating, the greater the impact of these updates,
the more severe the catastrophic forgetting would
be. We thus measure the degree of forgetting with
the relative scale of output change in the parameter
level, to be specific, for updating matrix ∆W , with
input x, the relative scale of output change (denoted
as F) is defined as

F∆(∆W,x) =
||∆Wx||
||x|| (3)

We sample 100 real world data and performs model
forward pass for getting x in the measurement of
F∆(∆W,x), and the final F∆ is the average along
each ∆W and x.

Results and Analysis We report the measure-
ments averaged over all tokens and all updating
parameters in Table 4. All models use LoRA rank
r of 32 unless specified otherwise.

The reference row is computed using the LoRA
trained model, we note that the ||F∆|| denotes
output scale of original parameter W instead of
∆W . Compared with the reference, LoRA’s F∆

is large, suggesting that LoRA training indeed in-
troduces significant output change, thus prone to
catastrophic forgetting. Drop on F also indicates
the forgetting.

For MiLoRA, although intuitively promising,
without effective control during training, it did not
mitigate catastrophic forgetting, as evidenced by F,
also by the similar F∆ and ∆W with LoRA.

For LoRA with lower rank (r8/16), after train-
ing, with ||∆W || indicates the reduction of capac-
ity, F∆ and F does not show superiority. Although
theoretically, reducing the rank of the update ma-
trix can increase the dimension of the null space
and help to reduce the scale of output change, re-
sults not show this case. This suggests that altering
r may not an effective way to alter forgetting.

For LoRA-L2, F∆ and F indicates that it indeed
mitigate forgetting, but in a large cost of capacity,
demonstrated by the very small ||∆W ||.

For our proposed CLoRA, F demonstrates a su-
perior catastrophic forgetting mitigating. And F∆

shows a significant reduction in the scale of output
change, while a relatively larger ||∆W || is main-
tained. This indicates that CLoRA minimizes catas-
trophic forgetting caused by large updates while
having a subtle impact on model capacity. Thus,

we answer RQ3 that CLoRA performs effectively
on capacity-forgetting balancing.

5.2 Continual Learning
5.2.1 Experimental Setup
To demonstrate the effectiveness of CLoRA for
continual learning(CL) setting, we conduct experi-
ments on standard CL benchmark and more chal-
lenging large number of tasks benchmark, follow-
ing the experiment setup of O-LoRA(Wang et al.,
2023b).

Datasets and Tasks The standard CL benchmark
consists of five text classification datasets(Zhang
et al., 2015). The large number of tasks benchmark
consists of 15 datasets (Razdaibiedina et al., 2023),
include tasks for natural language understanding
and text classification. Task samples follow previ-
ous work (Wang et al., 2023b). Details for tasks
are listed in Appendix B.

Comparison Methods We compare CLoRA
with normal finetuning baselines and previous CL
methods. We include non CL results that train sep-
arate model for each task (PerTaskFT) and multi-
task learning (MTL) as reference.

• Normal Finetuing baselines include sequen-
tially training on same parameter space with
full parameter finetune (SeqFT) and LoRA
(SeqLoRA), and incremental learning of new
LoRA parameters on a sequential series of tasks.

• Continual Learning methods include data-
based methods Replay; architecture-based meth-
ods L2P(Wang et al., 2022), LFPT5(Qin and
Joty, 2022)O-LoRA(Wang et al., 2023b); and
learning-based methods EWC(Kirkpatrick et al.,
2017), LwF(Leibe et al., 2016). We include
two recent methods following O-LoRA, LC-
BL(Qiao and Mahdavi) and AM-LoRA(Liu
et al.), with improvment for inter task model-
ing. Details for these methods are listed in Ap-
pendix B.

• Proposed CLoRA includes setting that combine
the design of O-LoRA that further performs reg-
ularization for previous learned LoRAs (+ O-
LoRA).

Experimental Configuration Following O-
LoRA(Wang et al., 2023b), we use T5-large
as base model, and finetune on each task with
specified order(Appendix B). We train each task
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Standard CL Benchmark Large Number of Tasks
Method Order-1 Order-2 Order-3 avg. Order-4 Order-5 Order-6 avg.

LoRAs
SeqFT 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
IncLoRA 66 64.9 68.3 66.4 63.3 58.5 61.7 61.2

Data&Learning-Based Continual Learning
Replay 55.2 56.9 61.3 57.8 55 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9

Architecture-Based Continual Learning
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
O-LoRA 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6
LC-BL 76.9 76.5 76.8 76.7 68.4 67.3 71.8 69.2
AM-LoRA 78.1 79.8 76.2 78.0 72.7 73.3 71.8 72.6

Ours
CLoRA 79.7 79.1 78.2 79.0 73.6 66.4 72.4 70.8

+ O-LoRA 76.6 75.5 75.4 75.8 72.0 67.3 77.3 72.2
Multi-Task Learning Ceilings

PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5

Table 5: Results on two CL benchmarks with T5-large base model. Averaged accuracy after training on the last
task is reported. Bold font indicates the highest performance across all compared CL methods.

with one epoch, with constant learning rate of
1e-3, batch size of 64, dropout rate of 0.1, weight
decay rate of 0, and LoRA dim r of 8. CLoRA
regularization matrix size k is set to 256.

5.2.2 Results and Analysis
We report the results in Table 5, observations and
analysis are listed as follows.

For Standard CL Benchmark Results demon-
strate that CLoRA outperforms all comparison
methods, include the most related strong baseline
O-LoRA, with a notable margin. We attribute this
to the advantage of CLoRA toward O-LoRA: 1)
CLoRA helps learning in the first finetuning stage
while O-LoRA not; 2) CLoRA can independently
alter k for balancing learning and forgetting, while
“k” equivalent in O-LoRA is restrained by LoRA r.

When combining with O-LoRA, performance is
competitive with O-LoRA, but underperforms de-
fault CLoRA setting. We attribute this to the com-
mon knowledge that contribute to both tasks dur-
ing training, preventing LoRAs from share learned
knowledge would lead to sub-optimal results. This
is also demonstrated in the performance margin
between PerTaskFT and MTL, and also results

demonstrated by LC-BL and AM-LoRA.

For Large Number of Tasks Benchmark
CLoRA outperforms strong baselines including O-
LoRA, LFPT5, and LC-BL. When combined with
O-LoRA, the “+ O-LoRA” achieves performance
competitive with AM-LoRA. We attribute this su-
periority to CLoRA’s effective mitigation of catas-
trophic forgetting on large number of tasks bench-
mark, especially when combined with O-LoRA.

6 Conclusion

In this paper, we introduce Controlled Low-
Rank Adaptation(CLoRA), a simple yet effective
parameter-efficient finetuning method for LLMs
that mitigates catastrophic forgetting. We investi-
gate the effectiveness of CLoRA on both one-stage
LLM finetuning and continual learning settings.
Experiment results demonstrate the effectiveness of
CLoRA as a parameter-efficient finetuning method
with catastrophic forgetting mitigating. Further
investigation for model parameters indicates that
CLoRA effectively balances the trade-off between
model capacity and degree of forgetting.
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7 Limitations

There are still several limitations that we reserve
for future work: 1) We only use the simplest ran-
dom initialization and the combining with O-LoRA
for regularization matrix. Insight for more dedi-
cated choice may benefit CLoRA learning, and we
leave those to the future work. 2) We delegate the
measurement of model capacity and degree of for-
getting to simple measurement of scale. Although
these measurements reveal significant differences
between CLoRA and previous works, we believe
that further investigation would aid in the design of
methods with stronger capacity-forgetting balanc-
ing capability.
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A Detailed Experiment Setups for
One-Stage Finetuning

A.1 Hyperparameter Settings

Table 6 shows our detailed hyperparameters. This
setting follows MiLoRA(Wang et al., 2024a) and
DoRA(Liu et al., 2024).

A.2 Computation Environment

All of our experiments are conducted on 8 NVIDIA
A800 GPUs. All methods for LoRA subsequents
use Huggingface peft library2, training is con-
ducted using trainer in Huggingface transformers
library3, with DeepSpeed ZeRO(Rajbhandari et al.,
2020) integration.

A.3 Additional CLoRA variants

We use the simplest random initialization for
CLoRA regularization matrix in the main paper.
Considering the idea of PiSSA and MiLoRA that
explore the roles of singular value decomposition
(SVD) components in LLM parameters, we adopt
this intuition to initialize CLoRA regularization
matrices from SVD. For a SVD decomposition
of parameter W = USV T with rank r, where
W ∈ Rm×n, U ∈ Rm×r, S ∈ Rr×r is a diag-
onal matrix, V ∈ Rn×r. For CLoRA updating
∆W = ABT , we initialize the regularization ma-
trix PA ∈ Rm×k as U [:, s], PB ∈ Rn×k as V [:, s],
where s is a list of selecting index with length k.
We add two CLoRA variants as follows, and con-
duct experiments on commonsense reasoning set-
ting,

• CLoRA-major: Use SVD major components to
initialize CLoRA regularization matrix.

• CLoRA-minor: Use SVD minor components to
initialize CLoRA regularization matrix.

A.4 Full Results on Commonsense
Finetuning

We report the full results that we conducted on in-
domain evaluation(Table 7) and out-domain evalu-
ation(Table 8) for commonsense reasoning finetun-
ing. Results for LLaMA-3-8b are also included for
CLoRA-random. All models use LoRA rank r of
32 unless specified otherwise.

2https://github.com/huggingface/peft
3https://github.com/huggingface/transformers

A.4.1 Analysis for different CLoRA variants
Results indicate that the choice of regulariza-
tion matrix does influence the effectiveness of
CLoRA, albeit not significantly. Generally, we
recommend using random initialization (CLoRA-
random) or initialization from major SVD compo-
nents (CLoRA-major).

B Detailed Experiment Setups for
Continual Learning

B.1 Dataset Details

We list the details of the datasets used in Table 9.
Order of finetuning are listed in Table 10.

B.2 Computation Environment

All of our experiments are conducted on 1 NVIDIA
GeForce RTX 3090 GPU. All methods for LoRA
subsequents use Huggingface peft library, training
is conducted using trainer in Huggingface trans-
formers library, with DeepSpeed ZeRO integration.

B.3 Comparison Methods

Here we provide details for continual learning base-
lines for our continual learning experiment setting.

• Replay: data-based method that replay samples
from old tasks when learning new tasks to avoid
forgetting.

• L2P: architecture-based method that uses the in-
put to dynamically select and update prompts
from the prompt pool in an instance-wise fash-
ion.

• LFPT5: architecture-based method that contin-
uously train a soft prompt that simultaneously
learns to solve the tasks and generate training
samples for replay.

• EWC: learning-based method that finetune the
whole model with a regularization loss that pre-
vents updating parameters that could interfere
with previously learned tasks.

• LwF: learning-based method that constrains the
shared representation layer to be similar to its
original state before learning the new task.

• O-LoRA: architecture and learning-based
method that prevent subsequent LoRA update
interfere previous.
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Hyperparameter CS Math
LoRA rank r 32 64

LoRA α 64 128
Dropout 0.05

Optimizer AdamW
LR for LLaMA-2-7B 3e-4
LR for LLaMA-3-8B 1e-4

LR Scheduler Linear
Batch Size 16

Warmup Steps 100
Epochs 3

LoRA target modules query, key, value, MLP up, MLP down

Table 6: Hyperparameters for commonsense reasoning (CS) and Math settings.

• LC-BL: improves O-LoRA by employing
sensitivity-based analysis of low-rank matrix pa-
rameters.

• AM-LoRA: improves O-LoRA by introducing
modeling structure that efficiently leverage the
distinctive contributions of each LoRA.
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Model PEFT BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0
LLaMA-2-7B LoRA 71.9 80.9 78.9 90.3 83.5 83.0 70.2 80.8 79.9

PiSSA 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8
MiLoRA 71.5 82.0 80.0 91.0 83.0 82.3 68.9 81.2 80.0
DoRA 73.0 81.9 80.3 90.2 82.8 84.6 69.4 81.8 80.5
LoRA-r8 71.0 80.5 78.1 90.0 83.0 81.1 68.5 78.0 78.8
LoRA-r16 71.0 81.8 78.9 90.3 81.1 83.1 69.7 82.2 79.8
LoRA-L2-0.0001 - - - - - - - - -
LoRA-L2-0.00001 70.3 83.0 80.2 92.7 83.1 84.2 71.2 81.4 80.8
CLoRA-random-k128 72.7 84.1 77.7 91.6 83.0 85.3 69.9 81.6 80.7
CLoRA-random-k256 71.3 83.2 79.1 92.4 83.2 84.5 71.0 81.0 80.7
CLoRA-random-k512 72.8 83.0 79.5 93.0 83.9 85.7 73.0 84.8 82.0
CLoRA-random-k1024 73.3 84.8 79.6 91.1 86.1 86.9 73.1 85.6 82.6
CLoRA-random-k2048 73.7 84.5 80.9 94.5 85.9 88.1 75.9 86.0 83.7
CLoRA-major-k128 72.4 81.9 77.9 83.9 82.4 84.4 70.0 82.6 79.4
CLoRA-major-k256 73.2 83.5 79.6 93.0 83.3 88.1 72.6 84.2 82.2
CLoRA-major-k512 73.6 83.7 79.9 93.4 83.9 86.4 73.0 86.0 82.5
CLoRA-major-k1024 73.2 85.5 80.5 94.3 85.7 87.2 75.9 85.4 83.5
CLoRA-major-k2048 73.9 84.8 80.6 95.0 85.3 87.7 76.5 84.6 83.6
CLoRA-minor-k128 71.5 82.7 78.7 91.8 83.2 85.0 70.9 81.6 80.7
CLoRA-minor-k256 72.6 83.5 80.2 91.3 85.4 85.4 72.1 83.6 81.8
CLoRA-minor-k512 73.0 84.0 80.1 93.1 82.0 86.4 72.9 84.4 82.0
CLoRA-minor-k1024 73.1 83.7 79.2 93.7 84.8 87.1 73.2 83.2 82.3
CLoRA-minor-k2048 72.9 84.2 80.8 93.7 85.3 87.2 73.5 86.0 83.0

LLaMA-3-8B LoRA 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4
MiLoRA 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
DoRA 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
CLoRA-random-k128 75.5 89.1 81.6 95.9 87.9 92.6 81.8 86.8 86.4
CLoRA-random-k256 75.3 88.8 81.4 85.7 88.7 92.7 82.3 88.4 85.4
CLoRA-random-k512 75.9 89.3 82.6 96.3 88.9 92.1 82.9 86.8 86.9
CLoRA-random-k1024 76.5 89.1 82.1 96.3 88.6 93.0 81.7 90.0 87.2
CLoRA-random-k2048 76.2 90.0 82.7 96.6 88.8 93.3 83.4 89.2 87.5

Table 7: In-domain results on commonsense reasoning evaluations, with accuracy scores (%) reported. Bold font
indicates the highest performance for each dataset across the different PEFT methods for each base model.

19179



Model PEFT BBH MMLU-Pro Avg.
LLaMA-2-7B - 34.91 18.56 26.74

LoRA 26.69 14.46 20.58
PiSSA 29.54 11.33 20.44
MiLoRA 25.14 17.74 21.44
DoRA 28.24 11.67 19.96
LoRA-r8 26.90 14.58 20.74
LoRA-r16 26.73 11.54 19.13
LoRA-L2-0.00001 32.93 16.59 24.76
CLoRA-random-k128 30.82 12.07 21.45
CLoRA-random-k256 31.92 17.81 24.87
CLoRA-random-k512 34.32 17.00 25.66
CLoRA-random-k1024 36.49 19.52 28.01
CLoRA-random-k2048 38.67 20.59 29.63
CLoRA-major-k128 32.69 18.09 25.39
CLoRA-major-k256 35.11 18.89 27.00
CLoRA-major-k512 35.81 19.88 27.85
CLoRA-major-k1024 37.06 19.73 28.40
CLoRA-major-k2048 38.83 20.08 29.46
CLoRA-minor-k128 34.06 17.03 25.55
CLoRA-minor-k256 33.16 17.11 25.13
CLoRA-minor-k512 35.42 18.97 27.20
CLoRA-minor-k1024 37.08 18.87 27.98
CLoRA-minor-k2048 40.96 20.37 30.67

Table 8: Out-domain results on two LLM benchmarks, with accuracy scores (%) reported. Bold font indicates the
highest performance for each benchmark across all methods.

Dataset name Category Task Domain
Yelp CL Benchmark sentiment analysis Yelp reviews
Amazon CL Benchmark sentiment analysis Amazon reviews
DBpedia CL Benchmark topic classification Wikipedia
Yahoo CL Benchmark topic classification Yahoo Q&A
AG News CL Benchmark topic classification news
MNLI GLUE NLI various
QQP GLUE paragraph detection Quora
RTE GLUE NLI news, Wikipedia
SST-2 GLUE sentiment analysis movie reviews
WiC SuperGLUE word sense disambiguation lexical databases
CB SuperGLUE NLI various
COPA SuperGLUE QA blogs, encyclopedia
BoolQA SuperGLUE boolean QA Wikipedia
MultiRC SuperGLUE QA various
IMDB SuperGLUE sentiment analysis movie reviews

Table 9: Summary of datasets used in the continual learning setting.
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Order Task Sequence
1 dbpedia→ amazon→ yahoo→ ag
2 dbpedia→ amazon→ ag→ yahoo
3 yahoo→ amazon→ ag→ dbpedia
4 mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→ imdb

→ yelp→ amazon→ sst-2→ dbpedia→ ag→ multirc→ yahoo
5 multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte

→ imdb→ sst-2→ dbpedia→ ag→ yelp→ amazon→ yahoo
6 yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb

→ sst-2→ dbpedia→ ag→ yahoo→ multirc→ boolqa→ wic

Table 10: Order of finetuning in the continual learning setting.
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