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Abstract

Discourse understanding is essential for many
NLP tasks, yet most existing work remains
constrained by framework-dependent discourse
representations. This work investigates whether
large language models (LLMs) capture dis-
course knowledge that generalizes across lan-
guages and frameworks. We address this ques-
tion along two dimensions: (1) developing
a unified discourse relation label set to facil-
itate cross-lingual and cross-framework dis-
course analysis, and (2) probing LLMs to as-
sess whether they encode generalizable dis-
course abstractions. Using multilingual dis-
course relation classification as a testbed, we
examine a comprehensive set of 23 LLMs of
varying sizes and multilingual capabilities. Our
results show that LLMs, especially those with
multilingual training corpora, can generalize
discourse information across languages and
frameworks. Further layer-wise analyses reveal
that language generalization at the discourse
level is most salient in the intermediate layers.
Lastly, our error analysis provides an account
of challenging relation classes.

1 Introduction

Many approaches to NLP primarily focus on
sentence-level analyses (e.g. Heinzerling and
Strube 2019; Pimentel et al. 2021; Mrini et al.
2020). However, there are many research questions
which cannot be answered without considering sen-
tences in a larger discourse: new meanings emerge
from the relationships between sentences, and since
more than one interpretation can be created, how
do we determine the intended, most reasonable or
justifiable meaning (Schiffrin et al., 2015)?

Despite significant progress in discourse pro-
cessing (Webber et al., 2024; Zeldes et al., 2025;
Stede, 2011), much of the research and resources
remain constrained by theory-/framework-specific
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Figure 1: Examples of the core discourse relation CON-
DITION (Bunt and Prasad, 2016) annotated in different
frameworks and languages using different labels.

assumptions, limiting the generalizability of find-
ings across languages, domains, and communica-
tive intents (Liu and Zeldes, 2023). This leads to
datasets that are tightly coupled to their respec-
tive frameworks and limits the development of
generalizable discourse models. While there has
been work on framework-dependent parsing that
leverages resources from other frameworks (Braud
et al., 2016) or languages (Braud et al., 2017; Liu
et al., 2021), the reliance on framework-specific
corpora, which are typically scarce and skewed to-
wards high-resource languages, further exacerbates
the challenge of multilingual discourse processing.
Thus, we need a unified view and approach to in-
vestigating discourse generalization.

From the theory and data perspectives, as ar-
gued in Bunt and Prasad (2016) and exemplified in
Figure 1, despite differences between frameworks,
there exists a set of ‘core’ discourse relations which
are commonly found in existing approaches to
discourse relations and their annotation. From
the model perspective, there is growing evidence
demonstrating that large language models (LLMs)
learn and share generalizable abstraction across ty-
pologically diverse languages (e.g. Brinkmann et al.
2025; Peng and Søgaard 2024), but such capabili-
ties remain underexplored in discourse.

In this work, we address discourse generaliza-
tion across two dimensions using discourse relation
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classification as a testbed: we first develop a unified
discourse relation label set to enable cross-lingual
and cross-framework discourse analysis on the
the multilingual DISRPT benchmark (Braud et al.,
2024). Then, we use probing (Alain and Bengio,
2018) to understand the internal discourse repre-
sentations of 23 LLMs with varying sizes and mul-
tilingual capabilities. We investigate whether their
representations capture generalizable discourse ab-
stractions across typologically diverse languages or
whether they are limited by dataset-specific biases.
We hypothesize that multilingual models might en-
code universal representations of certain relations
while adjusting to language-specific features.

We find that overall LLMs are able to generalize
at the discourse level across languages and frame-
works, and that multilingual training and larger
model sizes both increase probe performance. Our
layer-wise analyses show that language general-
ization at the discourse level is most salient in the
intermediate layers, which are most predictive of
multilingual discourse information. To our best
knowledge, this is the first work to apply a unified
label set to multilingual discourse relation classifi-
cation at scale. Lastly, we discuss challenges and
biases in LLM discourse representations, providing
insights into the limitations and potential avenues
for improving discourse modeling in multilingual
and generalization settings. The implementations
of our experiments are available on GitHub.1

2 Related Work

Unifying Discourse Relations. Discourse rela-
tions are fundamental to structuring coherent text
and conveying meaning beyond the sentence level.
Being able to identify and interpret these relations
is crucial for many downstream NLP tasks, in-
cluding machine comprehension (Narasimhan and
Barzilay, 2015; Li et al., 2020), sentiment analysis
(Huber and Carenini, 2019), question answering
(Chai and Jin, 2004), and summarization (Durrett
et al., 2016; Cohan et al., 2018; Xu et al., 2020;
Adams et al., 2023). However, due to different ap-
proaches to discourse relations, such as the Rhetor-
ical Structure Theory (RST, Mann and Thompson
1988), the Penn Discourse Treenbank (PDTB, Web-
ber et al. 2019), the Segmented Discourse Rep-
resentation Theory (SDRT, Asher and Lascarides
2003), Discourse Dependency Structure (DEP, Li
et al. 2014; Morey et al. 2018), and the Cognitive

1https://github.com/mainlp/discourse_probes

Approach to Coherence Relations (CCR, Sanders
et al. 1992), researchers have not reached a consen-
sus on a unified set of discourse relations. There
have been a few mapping proposals and exami-
nations on existing annotations (Chiarcos, 2014;
Benamara and Taboada, 2015; Bunt and Prasad,
2016; Rehbein et al., 2016; Sanders et al., 2021;
Demberg et al., 2019), but they are either merely
focused on two frameworks at a time (e.g. RST and
SDRT in Benamara and Taboada 2015), or on high-
resource languages and news-centric data such as
mapping RST-DT and PDTB v2 by Demberg et al.
(2019) and PDTB v3 by Costa et al. (2023).

In particular, while Bunt and Prasad (2016) iden-
tified a set of core discourse relations, it did not
cover DEP and was limited to English and French
only. The examined corpora in their work also did
not cover discourse phenomena concerning prag-
matics or textual organization, both of which are
indispensable aspects in discourse analysis. For
instance, BACKGROUND and MOTIVATION are two
RST-style relations that are not present in the exam-
ined RST Discourse Treebank (RST-DT, Carlson
et al. 2003). Both relations are expressed by various
perlocutionary acts to affect readers’ or speakers’
attitude and beliefs. To address these limitations,
we first conduct an extensive review of previous
work on discourse relation mapping proposals and
present a unified label set (§3) to enable empiri-
cal studies in a multilingual setting, which has not
been systematically explored before.

The 2021 DISRPT Shared Task (Zeldes et al.,
2021) introduced the first iteration of the discourse
relation classification task in a unified format. It
leveraged shared foundational assumptions across
frameworks. However, no unified discourse re-
lation labels were proposed, meaning that each
dataset has its own label set, even for the ones that
come from the same framework. We thus lever-
age this resource and propose a unified label set
that is the first to be empirically tested in discourse
relation classification across 13 languages, four
frameworks, and 26 datasets, which cover various,
modern genres, domains, and modalities.

Probing for Linguistic Representation and Gen-
eralization. A growing body of research has ex-
plored the extent to which pretrained language
models (PLMs) and LLMs encode linguistic rep-
resentations and exhibit generalizable abstraction
(Hupkes et al., 2023). They primarily focus on
probing morphology (Brinkmann et al., 2025), syn-
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tax (Conneau et al., 2018; Hale and Stanojević,
2024), semantic knowledge (Jumelet et al., 2021),
and syntax-semantics comprehension through cog-
nitive linguistics paradigms such as construction
grammar (Weissweiler et al., 2022). While some
studies demonstrate that LLMs share latent gram-
matical representations across diverse languages
(Brinkmann et al., 2025), others also highlight key
limitations in the semantic capabilities of LLMs
(Scivetti et al., 2025).

Previous work has examined the ability of
PLMs/LLMs to understand discourse (Gan et al.,
2024; Saputa et al., 2024; Miao et al., 2024), but
their investigations are either limited to framework-
dependent representations, monolingual datasets,
or focus on single domains. Specifically, Koto
et al. (2021) examined a variety of PLMs through a
set of framework-dependent probing tasks for dis-
course coherence by looking at the residual stream
(i.e. token representations), while we approach dis-
course relation classification with a unified format
and label set across various frameworks and 13
languages (§3) using attentions (§4), offering op-
portunities for investigating discourse generaliza-
tion across languages and frameworks. Kurfalı
and Östling (2021) extended discourse probing to
multilingual PLMs such as the multilingual BERT
and XLM-RoBERTa (Devlin et al., 2019; Conneau
et al., 2020) to examine how well they transfer
discourse-level knowledge across languages, but
their evaluation of discourse coherence was also
framework-dependent and was only performed on
two English datasets in the news domain. Lastly,
Kim and Schuster (2023) studied discourse under-
standing in LMs by probing their ability to track
discourse entities, but their investigation is also
limited to English.

3 A Unified Label Set

Building up on previous effort on mapping dis-
course relations across corpora and frameworks
(Benamara and Taboada, 2015; Bunt and Prasad,
2016; Liu and Zeldes, 2023), we present a uni-
fied set of 17 discourse relation classes to facili-
tate empirical investigation that is not constrained
by framework-dependent discourse representations.
This unified label set is motivated by both theoret-
ical groundings and empirical studies, and takes
annotation guidelines into considerations. Specifi-
cally, the proposed unified label set adapts the top-
level classes from the mapping proposal described

in Benamara and Taboada (2015) and extends it to
phenomena frequent in dialogues such as acknowl-
edgment, interruption, and correction (Asher et al.,
2016). Through a series of experiments, we demon-
strate how our unified label set generalizes across
languages and frameworks, providing a foundation
for future empirical studies. Below we describe
the top-level classes and include definitions and
examples for all 17 relation labels in Appendix A.

TEMPORAL is mapped to framework-specific
labels that establish a chronological sequence be-
tween events or states. Temporal relations indicate
when one event occurs in relation to another such
as before, after, or simultaneously. These rela-
tions help organize discourse by providing a time-
line of events. RST’s SEQUENCE, PDTB’s TEM-
PORAL.ASYNCHRONOUS/SYNCHRONOUS, and
SDRT’s TEMPLOC and FLASHBACK (following
Muller et al. 2012) all fall under this class.

STRUCTURING corresponds to fine-grained dis-
course relations that organize the structure of
a text or conversation without necessarily con-
veying content-based meaning, connect discourse
units of distinct context and equal prominence,
and help guide the reader or listener through
the discourse. RST-style relations such as LIST

and TEXTUAL-ORGANIZATION, PDTB’s EXPAN-
SION.DISJUNCTION, and PARALLEL and ALTER-
NATION in SDRT are mapped to this class.

THEMATIC is a broad class which includes rela-
tions among the content of the propositions, accord-
ing to Benamara and Taboada (2015). We adapt this
top-level class to contain six subclasses: FRAMING,
ATTRIBUTION, MODE, REFORMULATION, COM-
PARISON, and ELABORATION. In particular, we
introduce REFORMULATION, which corresponds to
relations by which one discourse unit re-expresses
the meaning of another in a different form and/or
from a different perspective to help reinforce un-
derstanding. RST’s SUMMARY and RESTATE-
MENT and PDTB’s EXPANSION.EQUIVALENCE are
mapped to REFORMULATION.

CAUSAL-ARGUMENTATIVE contains sub-
classes that indicate a causal relation or involve
rhetorical reasoning that shapes the coherence
and persuasiveness of an argument: CAUSAL,
ADVERSATIVE, EXPLANATION, EVALUATION,
CONTINGENCY, and ENABLEMENT. ADVERSA-
TIVE is defined as connecting discourse units for
which some incompatibility is being highlighted
and covers commonly used discourse relations
such as CONCESSION and CONTRAST.
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Figure 2: Schematic visualization of how the attention representations are obtained. We probe the concatenation
of pooled representations (D1,D2,C). Scores mapping from or to context-tokens are not considered. Note that we
study decoder-only models where attention maps only to previous tokens.

TOPIC-MANAGEMENT contains three sub-
classes that cover discourse phenomena that in-
volve interaction, topic shifts, and question-answer
pairs: TOPIC-ADJUSTMENT, TOPIC-CHANGE, and
TOPIC-COMMENT. TOPIC-ADJUSTMENT is pri-
marily used for cases where a discourse segment
modifies, redirects, or adjusts the ongoing topic of
discussion such as interruption, which signal de-
viations from the expected discourse progression,
often reflecting interactive or dynamic aspects of
communication.

4 Probing LLMs for Discourse Relations

Discourse relation classification is the task of iden-
tifying the coherence relations that hold between
different parts of a text, such as recognizing that
one sentence specifies the cause of events in an-
other, or that a subordinate clause indicates the con-
dition of a main clause (Jurafsky and Martin, 2025),
as exemplified in Figure 1. Successfully solving
this task requires combining the information con-
tained in different parts of these sequences. We
aim to investigate whether current LLMs have ac-
cess to and process this information. Since almost
all current state-of-the-art open-source models are
decoder-only Transformer models (Vaswani et al.,
2017), we focus on this particular architecture.

In the computational graph of the Transformer,
attention layers provide the only connections be-
tween the next token prediction and previous token
positions of the input sequence. We therefore argue
that generating predictions relying on discourse-
level information necessarily has to involve the
connections provided by the self-attention layers.
To uncover the extent to which discourse infor-
mation is represented, we thus propose to probe

the attention scores between the tokens contained
in the two input sequences for discourse relation
classification. Note that we do not assume that
the processing of discourse-level phenomena is ex-
clusively located in the attention layers. Rather,
observing attention scores provides a lightweight
and scalable approach to our research question.

Probing requires a fixed length representation to
enable training a classifier. Inspired by Alain and
Bengio (2018) and Koto et al. (2021), we use max-
imum pooling to turn the attention scores of vari-
able token-length sentences into a fixed-length re-
lational representation. Our approach is illustrated
in Figure 2. To be more precise, for a document
d of length N tokens, we propose to compute the
full attention matrix X ∈ RL×H×N×N of attention
scores where L is the number of layers and H is the
number of attention heads in each layer. We do this
by inputting the whole document d into the model
at once computing a single forward pass. Since
we are only interested in the model internals, we
ignore the outputs and thus do not impose any spe-
cific decoding strategy. Let I1 = (i1, i2, ..., iN1),
I2 = (j1, j2, ..., jN2) be the token indices of two
sequences s1, s2 ⊂ d where I1 < I2. The pooling
step is carried out for each attention head in each
layer. We thus have:

C = (max({Xi,j,k,l|k ∈ I1, l ∈ I2}))i,j
Dm = (max({Xi,j,k,l|k ∈ Im, l ∈ Im}))i,j

(1)

In other words, C,D1,D2 are the matrices of
maximum-pooled attention scores between and
within the two spans respectively (we only con-
sider the lower half of the attention matrix, as for
decoder models the upper half is masked). We also
ablate other strategies such as mean pooling and
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using subsets of the attention scores described (see
Table 4 and Table 5 in Appendix D), and find that
the proposed setup strikes the best balance between
performance and size of the representations. We
probe the flattened concatenation

a = flatten((D1,D2,C)) ∈ R3LH (2)

Here, we follow Tenney et al. (2019) and use a
two-layer MLP with tanh and Sigmoid activations
σ. Our probe is thus a classifier of the form

y = σ(W2tanh(W1a+ b1) + b2) (3)

where W1 ∈ RD×3LH ,W2 ∈ RC×D,b1 ∈
RD,b2 ∈ RC are parameters and y is the one-hot
encoded target vector. The hidden size D is a hyper-
parameter (more training details in Appendix C).

Since the memory requirements of this approach
scale quadratically with the number of tokens, we
restrict the maximum document length to Nmax =
4000, which is chosen to optimize the utilization of
our GPUs. For documents with length N > Nmax,
we employ a moving window approach and encode
slices of length Nmax at every stride S = Nmax

2 .
Relations that span over parts of the document that
cannot be captured by any of these windows are
discarded and encoded by the mean of the remain-
ing relations. In practice, this affects a fraction of
less than 0.2% of the DISRPT instances and thus
has a negligible effect on the results.

Note that our approach requires only one for-
ward pass per window encoding multiple relations
in parallel and furthermore incorporates the docu-
ment context into the representation.

We probe both the combined attention scores
over all layers as well as the layer-wise represen-
tations. We hypothesize that the former will lead
to better overall probe accuracy as the understand-
ing of more complex discourse relations typically
requires hierarchical processing steps. We include
the latter layer-wise analysis to study the structural
dynamics of discourse processing in the model.

5 Experimental Setup

Data. We use the DISRPT benchmark from the
DISRPT 2023 shared task (Braud et al., 2023),2 a
multilingual, multi-domain, and cross-framework
(RST, PDTB, SDRT, and DEP) dataset covering
13 languages from five language families (Dryer
and Haspelmath, 2013), with 224, 281 discourse

2https://github.com/disrpt/sharedtask2023

relation instances from 23 corpora (details in Ap-
pendix B). While all annotations from all frame-
works have been represented in a unified format,
i.e., a set of discourse unit pairs for which a dis-
course relation is known to apply (Zeldes et al.,
2021), the set of discourse relation labels is corpus-
specific, preventing multilingual discourse analysis
in a directly comparable and generalizable manner.
Thus, we map corpus-specific labels in DISRPT to
our proposed unified label set.

Models. We study a wide range of decoder-only
LLMs that reflect the diversity of the current state-
of-the-art. Generally, we select models with pub-
licly available weights along two dimensions: (1)
the size of the model, and (2) the multilinguality of
the training corpus. A full list of models including
their advertised supported languages and parameter
counts is shown in Table 2 in Appendix C.

Representing two of the most popular open-
weights model families, we include most of the
range of Qwen2.5 (Qwen et al., 2025) and Llama3
(Grattafiori et al., 2024) base models. The authors
of both models report altered shares of multilingual
data in their training corpora, with Qwen2.5 ‘sup-
porting’ 77% and Llama3 54% of the languages
included in DISRPT. Covering 62% and 100%, we
include Mistral-Small-24B (Mistral, 2025) and
Emma500 (Ji et al., 2024) as further recent multilin-
gual models. BLOOM is another model family that
targets multilinguality (Scao et al., 2023), cover-
ing 54% of the languages in DISRPT. We include
the smaller versions as well as the more recent
bloomz-7b1 model trained on additional data. Cov-
ering many languages in DISRPT with 85%, we
include the Aya-23 (Aryabumi et al., 2024) and
Aya-Expanse (Dang et al., 2024) model families.
Finally, we also include Phi-4 (Abdin et al., 2024)
as a recent monolingual model.

DisCoDisCo. To better contextualize the perfor-
mance of our simple probes, we train DisCoDisCo
(Gessler et al., 2021), the 2021 DISRPT shared task
winning system for the discourse relation classifi-
cation task (Zeldes et al., 2021). It was not tested
during the 2023 edition, but the reported scores are
better than the 2023 winning system on common
corpora (Braud et al., 2023), justifying its use as a
reference system. DisCoDisCo is a Transformer-
based model consisting of a sentence-pair classi-
fier. To ensure comparability, we train a single Dis-
CoDisCo model on the entire DISRPT benchmark
using xlm-roberta-base (Conneau et al., 2020)
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Figure 3: Mean accuracy over five runs of the probing classifiers trained on the entire DISRPT and full attention
representations. The reference system DisCoDisCo achieved a mean accuracy of 47.9% (the red dashed line).

as a multilingual encoder. We also train dataset-
specific models following the setup in Braud et al.
(2023). For all scenarios, we report both the dataset-
wise accuracy and the mean accuracy.

6 Results & Analysis

6.1 Overall Performance and Comparison

Figure 3 shows the performance of our probes on
DISRPT using the unified label set for the 23 LLMs
along with their sizes (see Table 2 in Appendix C
for a detailed overview). Overall, a clear trend
emerges wherein larger models generally achieve
higher accuracy, but with notable deviations based
on their language coverage. Interestingly, even the
Llama3-3B probe is able to outperform the fine-
tuned DisCoDisCo trained on all languages (49.1%
vs 47.9%), while the larger model probes beat it
by a margin of up to 10.3%. Despite their multi-
lingual training, the BLOOM model probes underper-
form compared to other LLMs and DisCoDisCo.
Several factors may be attributed to this including
smaller training data, tokenizer effect (Toraman
et al., 2023), and limited coverage of languages
present in DISRPT (54%: French, Spanish, Por-
tuguese, English, and Chinese). This is consistent
and further supplements Dakle et al. (2023)’s find-
ings on the evaluation of BLOOM models across a
variety of syntactic and semantic tasks as well as
their unsatisfying performance in multilingual set-
tings. In addition, Llama3 exhibits the lowest pro-
portion of DISRPT languages covered, which does
not seem to lead to a disadvantage as its probes
outperform the similarly sized smaller versions of
Qwen2.5 and match its larger counterparts, report-

ing a higher coverage of ‘supported’ languages.
Examining scaling trends, we observe a log-

linear increase in probe performance across both
the Llama3 and Qwen2.5 model families. Interest-
ingly, the English-only Phi-4 lags behind the sim-
ilarly sized Qwen2.5-14B model, suggesting that
multilingual training plays a critical role in multilin-
gual discourse analysis. This further reinforces the
importance of language coverage in training data,
beyond simple model scaling, in achieving robust
performance in discourse relation classification.
Furthermore, despite being a fine-tuned version
of Llama2-7B, Emma500’s multilingual training ap-
pears to give it an edge over the more recent and
larger Llama3-8B. Similarly, Aya-23-35B’s probe
surpasses those of the largest Qwen2.5-70B and
Llama3-72B models, despite operating with only
half the number of parameters, emphasizing the
efficiency of its learned representations. Given this
evident edge in the overall probing performance,
we focus the rest of our investigation into discourse
generalization on Aya-23-35B.

6.2 Language Generalization

We evaluate Aya-23-35B’s performance on the
DISRPT test sets across 13 languages and com-
pare different training conditions: (1) monolingual
training (MONO-PROBE), (2) multilingual train-
ing with languages from the same language family
(MULTI-LANG-PROBE), and (3) multilingual train-
ing using instances from all languages (MULTI-
ALL-PROBE). Figure 4 shows the performance of
the Aya-23-35B model trained and tested on all and
subsets of the data given different training regimes.
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Figure 4: Mean accuracy over five runs of the Aya-23-35B-probe trained and tested on various partitions of DISRPT.

MULTI-ALL-PROBE & MONO-PROBE. The
probes trained on the entire DISRPT dataset match
or outperform the monolingually trained probes
across most test partitions, including the combined
test set with all languages. This suggests that
multilingual training benefits discourse relation
classification, leveraging shared discourse patterns
across languages. This is the opposite to what we
see in the reference system DisCoDisCo, where
the dataset-specific models outperform the model
trained on all the data by a margin of 17.8%. For
Farsi and Russian, the best performance is observed
in the MULTI-ALL-PROBE, with +2% and +1.2%
over their respective MONO-PROBEs. The same
generalization is observed for Turkish, Mandarin
Chinese, and French, evidenced by an increase in
accuracy of 6.9%, 2%, and 1.7% respectively.

There is one exception to this generalization
trend: for the Thai dataset, the MONO-PROBE out-
performs MULTI-ALL-PROBE with a margin of
3.2%. This is likely due to the fact that the Thai
dataset is relatively large and contains only news
data and was only annotated with explicit discourse
relations (Prasertsom et al., 2024), which has been
reported to be considerably easier than implicit
discourse relations (Knaebel, 2021; Braud et al.,
2023) due to the presence of connectives, which,
while not unambiguous, help narrow down the
likely senses of relations (Webber et al., 2019). The
probes for Basque consistently underperform, with
the MULTI-ALL-PROBE achieving the same perfor-
mance as the Basque-only probe. This is likely due
to the fact that Basque is considered a language iso-
late, a language that has no demonstrable genetic
relationship with any other language (Campbell,
2010). Besides, most models do not include it in
their list of supported languages (see Table 2 in Ap-

pendix C). The reference system DisCoDisCo also
does not generalize well for Basque: its accuracy
drops by 26.4% compared to the dataset-specific
model. Moreover, the MONO-PROBEs for Basque
and Turkish exhibit lower accuracy, which might
mean that models trained on discourse tasks need
more language-specific adaptations, particularly
for morphologically rich and typologically differ-
ent languages.

MULTI-LANG-PROBE. Training on discourse re-
lation instances from related languages often leads
to better generalization than training on a single
language. For instance, the MULTI-LANG-PROBE

for the Indo-European languages achieves reason-
able performance across the Romance languages in
DISRPT: there are improvements over the MONO-
PROBE for Portuguese (+2.5%), Spanish (+6.5%),
and Italian (+3.1%). For the Germanic and Ro-
mance language groups, we observe a similar gen-
eralization effect, though to a lesser extent. No-
tably, the Germanic MULTI-LANG-PROBE leads to
the highest accuracy on the German test set (+0.8%
over the MONO-PROBE). These are encouraging
results as some of these languages do not have a
large amount of instances in DISRPT: from the to-
tal number of data, Spanish covers 1.7%, German
1.19%, and Italian only 0.7% (see Table 1 in Ap-
pendix B). This suggests that leveraging discourse
relation annotations from related language as well
as the same underlying framework help with gener-
alization. Adding to that, training on English only,
which has the largest number of samples covering
more than half of DISRPT, shows surprising gener-
alization to other languages, with Portuguese and
Spanish achieving an accuracy of 48.2% and 49%
respectively, and French reaching 45.3%.
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Figure 5: Layer-wise probe performance by languages and relation classes. Mean accuracy over five runs.

6.3 Layer-wise Analysis

The layer-wise probes reveal additional insights
into the structural processing of discourse informa-
tion within the model. Firstly, Figure 5a shows the
test set performance by language families. Here,
we observe a trend by which the probes in lower
to middle layers are the most performant as ac-
curacy improves rapidly in the early layers and
stabilizes around layer 10–15. In particular, for
Turkish and Thai, the probe accuracy drops by al-
most 50% in higher layers. This effect is also ob-
served for the Chinese probe but to a smaller extent.
This shows that the discourse representations are
best aligned across languages in the middle lay-
ers, which could be explained by the findings of
Wendler et al. (2024) according to which multilin-
gual computations are carried out in an English-
aligned “concept space” in the intermediate layers.
This result is also aligned with concurrent work
by Skean et al. (2025) which finds that final-layer
representations are consistently outperformed by
intermediate representations across a range of tasks
and architectures. Our work supplements this by
extending their finding to linguistic tasks such as
discourse relation classification.

Surprisingly, the final layer probes show another
increase for Chinese, Turkish, and Thai, which
is also reflected in the overall test set accuracy.
This could indicate that their probes benefit from
language-specific features, which might be more
prevalent in layers close to the outputs if we as-
sume a shared, compressed representation space in
intermediate layers as proposed by Wendler et al.
(2024) and Deletang et al. (2024).

For the MULTI-LANG-PROBEs of Romance, Ger-
manic, and Indo-European, the corresponding per-
formance is more constant, closely following the
“all” curve (MULTI-ALL-PROBE). Here, the probes
of the later layers show a drop of about 5-10%

suggesting that their representations’ alignment is
more consistent throughout the model. This also
indicates that both the higher and lower layers are
involved in the discourse processing of LLMs.

Regarding relation classes, Figures 5b shows that
STRUCTURING and TOPIC-MANAGEMENT achieve
relatively higher accuracy across layers, peaking
in the early-to-mid layers (around 5-15), whereas
TEMPORAL and CAUSAL-ARGUMENTATIVE ex-
hibit lower performance. Figure 5c zooms in on
the more fine-grained classes: ADVERSATIVE and
ENABLEMENT achieve the highest accuracy over-
all, with peaks around layers 10-20, while EVAL-
UATION and EXPLANATION remain consistently
low. Layer-wise plots for other relation classes are
provided in Figure 8 in Appendix D. Overall, dif-
ferent relation classes appear to be encoded at vary-
ing layers, with some benefiting from middle-layer
representations while others, particularly structure-
oriented ones, maintain stable performance across
layers. The drop in accuracy in later layers sug-
gests that some discourse information might be-
come less explicitly represented as the model pro-
gresses through deeper layers.

6.4 Error Analysis

To better understand the probe performance, we
plot a confusion matrix in Figure 6 to study system-
atic errors. Overall, ELABORATION is the most fre-
quent label. Here, our probe has a bias of confusing
it with labels such as FRAMING and EXPLANATION.
This suggests that the model struggles to differen-
tiate between content expansion (ELABORATION)
which sometimes overlaps semantically with EX-
PLANATION, and relations that involve additional
information but with a primary focus on contex-
tualization (FRAMING). In other words, ELABO-
RATION is mainly used to give additional informa-
tion about an entity or a proposition, while FRAM-
ING provides information with a goal to increase
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Figure 6: Confusion matrix of labels over MULTI-ALL-
PROBE (colors normalized by row).

a reader’s understanding of an entity or a propo-
sition (Mann and Thompson, 1988; Carlson and
Marcu, 2001). This corresponds to the distinction
made by Hovy and Maier (1997): ELABORATION

is considered an ideational class that is used to ex-
press states of affairs in the world, not including
the interlocutors; on the other hand, FRAMING and
EXPLANATION are considered interpersonal and
are expressed by various perlocutionary acts to af-
fect readers’ attitude and beliefs. ELABORATION is
also a highly prevalent relation in general, making
it a probable default prediction in ambiguous cases.

In addition, a majority of the COMPARISON in-
stances are predicted as ADVERSATIVE. A qual-
itative inspection reveals that this is due to some
datasets not distinguishing similarities from differ-
ences, while the proposed unified label set does.
We argue that similarity-based instances highlight
commonalities between entities or situations and
establish a shared property or behavior, reinforcing
coherence by aligning elements. On the other hand,
adversative-based cases emphasize differences, op-
position, or unexpected alignments, which serve
different pragmatic functions. Moreover, similarity-
based comparisons often reinforce or extend prior
discourse, leading to additive coherence; while
adversative-based cases introduce shifts, which re-
quire the reader to re-evaluate assumptions and
adjust interpretation. By distinguishing these two
types, we think models can better capture rhetorical
intent and argumentative structure.

7 Conclusion

Our study provides a comprehensive analysis of
discourse generalization in LLMs, revealing impor-
tant patterns in how these models encode discourse
structures for cross-lingual transfer. To this end,

we first present a unified discourse relation label
set, which serves as a foundation for our probing
experiments, allowing us to analyze discourse rep-
resentations beyond individual frameworks. This
is also the first work to apply a unified label set
across frameworks and languages to multilingual
discourse relation classification at scale.

Our probes exhibit generalization, whereby
training across languages generally outperforms
language–specific probes, which is not the case
for the reference system DisCoDisCo. Through
multi-faceted analyses, we find that model size
alone does not lead to discourse probing success;
instead, multilingual training, dataset composition,
and language-specific factors play significant roles.
While larger models generally perform better, dis-
crepancies such as the under-performing BLOOM and
the best-performing Aya-23-35B-probe emphasize
the importance of training data quality and archi-
tectural optimizations. Surprisingly, we find that
some of our probes generalize to languages unseen
during probe training. For example, the English
MONO-PROBE generalizes to Romance languages.
Furthermore, our layer-wise analysis suggests that
discourse representations are best aligned across
languages in the intermediate layers, with later lay-
ers refining these representations for specific re-
lation types. In addition, models struggle with
relations requiring implicit reasoning such as EX-
PLANATION.

Overall, our findings highlight the interplay be-
tween multilinguality, scaling, and internal rep-
resentations of LLMs for multilingual discourse
processing and provide insights into cross-lingual
alignment of discourse relations. Understanding
which discourse relations are well-captured by
LLMs and which are not could help improve dis-
course parsing models by highlighting gaps in cur-
rent representation. In addition, our findings may
be useful for designing better discourse-aware pre-
training or fine-tuning strategies. Future work can
improve cross-lingual alignment by refining rep-
resentations of challenging relation classes. More
generally, our method provides a systematic way
to investigate discourse representation encoded in
LLMs, making it a useful tool for answering lin-
guistic questions that can be formulated into a con-
secutive span representation. By advancing our un-
derstanding of discourse generalization in LLMs,
we contribute towards more interpretable and ro-
bust NLP systems capable of nuanced language
comprehension.

18673



Limitations

While this work offers a first step towards under-
standing discourse generalization in LLMs across
languages and discourse annotation frameworks,
we acknowledge the following limitations related
to data, unified representation, and methodological
approach.

Firstly, despite being multilingual, the DISRPT
benchmark is imbalanced with regard to language
coverage. English remains dominant (making up
53.5% of the DISRPT benchmark, as shown in Ta-
ble 1), which may impact the generalizability of our
findings to lower-resource languages. To maintain
comparability with prior work, we did not stratify
the training data based on language sample sizes.
However, we mitigated this by training language-
specific probes (MONO-PROBE) and MULTI-LANG-
PROBEs based on language families and reporting
their respective performance in Figure 4. Simi-
larly, while DISRPT includes multiple domains
and genres, some are underrepresented such as con-
versational data or dialogues. This results in a label
imbalance such as TOPIC-ADJUSTMENT, limiting
statistical robustness in such cases. However, this
also highlights the need for the creation of more
balanced multilingual discourse resources.

Secondly, our approach assumes a unified la-
bel set for discourse relations across languages
and frameworks, which we present in §3. While
this enables cross-linguistic and cross-framework
discourse analysis, compromises were necessary,
which to some extent simplify the complexity
and granularity of discourse relations assumed by
frameworks such as PDTB and RST. Fully stan-
dardizing and harmonizing discourse relations is
inherently challenging, and finding a good trade-off
between maintaining theoretical assumptions and
ensuring practical applicability is crucial yet com-
plex, as evidenced in previous mapping proposals
and efforts (Benamara and Taboada, 2015; Dem-
berg et al., 2019). In addition, segmentation dif-
ferences exist across frameworks, which can have
an impact on the performance of our probes for
certain relations such as ATTRIBUTION. This work
should thus be interpreted with an awareness of
the theoretical and practical difficulties in creat-
ing an informed and unified taxonomy suitable for
both theoretical studies and computational research.
This work should also be viewed as facilitating the
development of a unified discourse relation rep-
resentation for computational discourse modeling

such as the effort and initiatives that have been
put forward for dependency parsing (Universal De-
pendencies, de Marneffe et al. 2021), empirical
study of anaphora (Universal Anaphora, Poesio
et al. 2024), and semantic parsing (Uniform Mean-
ing Representation, Bonn et al. 2024).

Lastly, rather than using highly optimized archi-
tectures, we employed relatively simple probing
methods, which aligns with our interest in assess-
ing the intrinsic capabilities of LLMs for discourse
processing. While achieving state-of-the-art per-
formance was not our primary goal, better perfor-
mance could likely be achieved by fine-tuning the
LLMs. Future work would need to assess the trade-
off between generalization and task-specific opti-
mization.
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A Unified Label Set: Definitions and
Examples

The proposed unified label set adapts the map-
ping proposal described in Benamara and Taboada
(2015) and extends it to be applicable to phenom-
ena frequent in dialogues. In total, there are 17
labels corresponding to the core discourse rela-
tions identified in Bunt and Prasad (2016). Below
we provide definitions and list typical framework-
specific discourse relations that are mapped to the
unified label set.

TEMPORAL is used to map to framework-specific
labels that establish a chronological sequence be-
tween events or states. RST’s SEQUENCE, PDTB’s
TEMPORAL.ASYNCHRONOUS/SYNCHRONOUS,
and SDRT’s TEMPLOC and FLASHBACK are
mapped to this class.

STRUCTURING is mapped to RST-style rela-
tions such as LIST, PREPARATION, DISJUNC-
TION, ORGANIZATION-HEADING, JOINT, and
TEXTUAL-ORGANIZATION. SDRT-style relations
such as ALTERNATION, CONTINUATION, and PAR-
ALLEL are mapped to this class. PDTB’s EXPAN-
SION.DISJUNCTION is mapped to this class.

ATTRIBUTION informs about the source of infor-
mation, which is useful and crucial for many real-
world applications such as misinformation detec-
tion and fact-checking. It is considered a discourse
relation by RST, SDRT, and DEP. PDTB’s attribu-
tion annotation is considered a separate discourse
annotation type and is not included in DISRPT. It is
worth pointing out that ATTRIBUTION is not consid-
ered a core discourse relation by Bunt and Prasad
(2016), but it is one of the most frequent discourse
relations in most frameworks.

COMPARISON is used to group fine-grained rela-
tions that highlight similarities rather than differ-
ences between spans or entities such as PDTB’s
COMPARISON.SIMILARITY and ANALOGY in RST-
style corpora.

ELABORATION provides additional information
about an entity or a proposition. Framework-
specific relations that contain ELABORATION or are
prefixed with ELAB (e.g. ELAB-PROCESS_STEP,
ELAB-ENUMEMBER, and Q_ELAB) are all mapped
to this class. PROGRESSION used in DEP-style cor-
pora is also mapped to this class.

FRAMING is used for framework-specific rela-
tions that provide a framework for understanding
the content of the situation described in the dis-
course units (Benamara and Taboada, 2015) such
as FRAME, BACKGROUND, and CIRCUMSTANCE

MODE is used to supply information about how
events happens. Commonly mapped fine-grained
relations are MANNER and MEANS in RST-style
corpora as well as PDTB’s EXPANSION.MANNER.

REFORMULATION corresponds to relations by
which one discourse unit re-expresses the meaning
of another in a different form and ensure coherence
by providing alternative expressions of the same
idea. SUMMARY and RESTATEMENT in RST-style
corpora and PDTB’s EXPANSION.EQUIVALENCE

are mapped to REFORMULATION.

ADVERSATIVE highlights incompatibility and
covers commonly used discourse relations in all
frameworks such as CONCESSION and CONTRAST.
PDTB’s EXPANSION.EXCEPTION/SUBSTITUTION

are also mapped to this subclass given their defini-
tions in Webber et al. (2019).

CAUSAL is used to indicate a cause-and-effect
relationship. Fine-grained relations that signal that
one event, state, or proposition (the cause) leads to
or explains another event, state, or proposition (the
effect) is mapped to this class. This is one of the
most core discourse relation types recognized in all
frameworks.

CONTINGENCY is used to map condition-based
relations such as CONDITIONAL, UNLESS, UN-
CONDITIONAL, and CONTINGENCY.NEGATIVE-
CONDITION.

ENABLEMENT is used to connect discourse units
where one enables the other. Framework-specific
relations such as GOAL and PURPOSE are mapped
to this class.

EXPLANATION is used when the situation de-
scribed by one argument provides the reason, expla-
nation, or justification for the situation described
by the other (Webber et al., 2019).

EVALUATION is used where one discourse unit
provides an assessment, judgment, or commen-
tary on the content of another unit. Framework-
dependent relations such as COMMENT and INTER-
PRETATION are mapped to this class.
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TOPIC-CHANGE involves a shift or drift in topic
that links large textual units (Carlson and Marcu,
2001). This is used for fine-grained relations that
connect multiple, non-contrasting discourse units
that are of equal prominence such as JOINT-OTHER

in the eng.rst.gum corpus and PDTB’s EXPAN-
SION.CONJUNCTION.

TOPIC-COMMENT is used for framework-
specific relatiosn that involve question-answer
pairs or problem-solution pairs, commonly in
RST-style and SDRT-style corpora. PDTB’s
HYPOPHORA is also mapped to this class.

TOPIC-ADJUSTMENT is primarily used for cases
where a discourse unit modifies, redirects, or ad-
justs the ongoing topic of discussion such as COR-
RECTION and INTERRUPTED, which signal devia-
tions from the expected discourse progression.

B Data

Table 1 provides an overview of the DISRPT bench-
mark we use for our experiments. The data pro-
duced and used in this paper is in accordance with
the original licenses of the underlying resources, as
specified in the repository of DISRPT.3

C Models and Probe Training

LLMs. Table 2 provides an overview of the exam-
ined LLMs in this paper, along with their number
of parameters, multilingual capabilities, and the
proportion of languages in DISRPT covered by the
advertised supported languages.

Hyperparameters. We train our probes using
AdamW (Loshchilov and Hutter, 2018) with a
batch size of 64, learning rate of 0.0001, and
weight decay of 0.0001. To mitigate the class im-
balance that is inherent to discourse relation data,
we use a weighted cross entropy loss, where each
class’ loss is weighted by the inverse square root of
the number of samples in the respective class. For
the hidden layer, we choose a dimension of D=512.
For the input as well as the hidden layer, we reg-
ularize adding a Dropout of 0.2. Furthermore, we
use layer normalization in the hidden layer. For
the probes over all model attention scores, depend-
ing on the number of samples contained in the
train dataset, we train for 60 epochs and increase
that number to ensure at least 10000 gradient up-
date steps on smaller datasets. For the layer-wise

3https://github.com/disrpt/sharedtask2023

dataset language language
family

# of relation
instances

% of total
instances

deu.rst.pcc German

Indo-European,
Germanic

2665 1.19%

eng.dep.covdtb

English

4985 2.22%
eng.dep.scidtb 9904 4.42%
eng.pdtb.pdtb 47851 21.34%
eng.pdtb.tedm 529 0.24%
eng.rst.gum 24688 11.01%
eng.rst.rstdt 19778 8.82%
eng.sdrt.stac 12235 5.46%

eus.rst.ert Basque
Language
Isolate

3825 1.71%

fas.rst.prstc Farsi
Indo-European,
Iranian

5191 2.31%

fra.sdrt.annodis French Indo-European,
Romance

3338 1.49%

ita.pdtb.luna Italian 1544 0.69%

nld.rst.nldt Dutch
Indo-European,
Germanic

2264 1.01%

por.pdtb.crpc
Portuguese

Indo-European,
Romance

11330 5.05%
por.pdtb.tedm 554 0.25%
por.rst.cstn 4993 2.23%

rus.rst.rrt Russian
Indo-European,
Slavic

34566 15.41%

spa.rst.rststb
Spanish

Indo-European,
Romance

3049 1.36%
spa.rst.sctb 692 0.31%

tha.pdtb.tdtb Thai
Tai-Kadai,
Kam-Tai

10865 4.84%

tur.pdtb.tdb
Turkish

Altaic,
Turkic

3185 1.42%
tur.pdtb.tedm 577 0.26%

zho.dep.scidtb

Mandarin
Sino-Tibetan,
Chinese

1298 0.58%
zho.pdtb.cdtb 5270 2.35%
zho.rst.gcdt 8413 3.75%
zho.rst.sctb 692 0.31%

Table 1: Overview of datasets in DISRPT 2023 for the
discourse relation classification task.

probes, we reduce the number of epochs to 20 as
the probes converge much faster on these smaller
representations. Because token-length of encoded
sequence quadratically scales the GPU memory
required to process the attention matrix, we had
to lower the maximum window length for the
larger models. Namely, we reduced the maximum
window sizes from Nmax=4000 to Nmax=3800
for Aya-Expanse-32B and to Nmax=3400 for
Aya-23-35B, Llama3-70B, and Qwen2.5-72B.

Compute. For each model, we compute one pass
over the dataset computing all the attention repre-
sentations which we cache for the probing experi-
ments. For the smaller models, a cluster equipped
with eight Nvidia A100 GPUs was used for around
80 hours. For the large models of size 70B and
72B, we used a cluster equipped with four Nvidia
H200 GPUs for about 30 hours.

Code License. As specified in the code reposi-
tory,4 we release our code under MIT license.

4https://github.com/mainlp/discourse_probes
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model
name

model
family

# of
params

# languages
supported deu eng eus fas fra nld por rus spa tur zho tha ita fraction

supported

Qwen2.5-0.5B

Qwen 2.5

0.49B

29

✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

0.769

Qwen2.5-1.5B 1.54B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Qwen2.5-3B 2.77B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Qwen2.5-7B 7.61B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Qwen2.5-14B 14.7B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Qwen2.5-32B 32.5B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Qwen2.5-72B 72.7B ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Llama-3.2-1B

Llama 3

1.23B

8

✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

0.538

Llama-3.2-3B 3.21B ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

Llama-3.1-8B 8.03B ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

Llama-3.1-70B 70.6B ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓

bloom-560m

Bloom

0.56B

46

✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

bloom-1b1 1.07B ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

bloom-3b 3B ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

bloom-7b1 7.07B ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

bloomz-7b1 7.07B ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

aya-expanse-8b

Aya

8.03B

23

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

0.846
aya-expanse-32b 32.3B ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

aya-23-8B 8.03B ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

aya-23-35B 35B ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

phi-4 Phi 14.7B 1 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.077

emma-500-llama2-7b Emma 6.74B 546 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1

Mistral-Small-24B-Base-2501 Mistral 23.6B 10 ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 0.615

Table 2: Overview of the included LLMs and their multilingual capabilities for languages in DISRPT 2023.
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Figure 7: Sum of the absolute dot product between the
weight matrices of the probe by layer.

D Additional Results and Analysis

Table 3 provides dataset accuracy scores for all
examined LLM probes as well as the reference
system DisCoDisCo’s performance.

Figure 7 shows the layer-wise sums of the dot-
products of the weight matrices. The magnitude of
these scores can be interpreted as a feature impor-
tance and confirm that earlier layers play a crucial
role in predictions, although the higher layers also
show higher scores from layers 30 to 38, indicating
a progressive refinement of discourse representa-
tions.

E Use of AI Assistants

The implementation of this work has been writ-
ten with the support of code completions of an AI
coding assistant, namely GitHub Copilot. Comple-
tions were mostly single lines up to a few lines of
code and were always checked carefully to ensure
their functionality and safety. Furthermore, we did
our best to avoid accepting code completions that
would be incompatible with the license of our code
or could be regarded as plagiarism. We also include
this statement in the README.md of the codebase.
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D
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o
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D
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C
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deu.rst.pcc 41.1 35.9 31.1 33.5 39.6 24.8 24.2 36.3 37.5 26.6 41.4 30.5 43.3 39.4 38.3 38.8 23.2 27.8 19.4 22.5 23.1 36.2 35.2 25 46.5
eng.dep.covdtb 61.8 56.4 54.7 56.9 57.9 51.1 49.2 60.9 61.6 51.9 62.9 55.6 65.9 58.5 62.5 60.5 49.9 53.8 50.2 53.8 54.7 56.6 58.2 59.9 74.1
eng.dep.scidtb 71.8 63.2 59.5 62.7 64.0 54.4 54.4 66.2 66.8 57.8 67.3 60.5 72.4 63.9 69.5 66.3 54.5 59.1 55.0 58.8 58.9 64.2 63.9 70.7 82.7
eng.pdtb.pdtb 67.4 61.6 56.7 60.6 63.8 51.3 51.7 65.6 67.1 58.5 68.4 61.5 68.8 65.3 67.9 65.3 49.4 56.2 49.4 57.1 56.6 62.0 63.4 59.1 79.9
eng.pdtb.tedm 48.9 53.2 49.0 47.1 52.5 43.8 45.0 52.3 55.7 49.6 53.0 52.6 51.9 58.2 54.6 56.9 40.1 46.4 45.6 47.0 46.4 53.3 52.5 40.7 58.1
eng.rst.gum 54.1 47.4 43.9 45.9 50.5 40.9 40.8 54.4 54.5 45.4 56.3 48.5 55.6 49.7 55.5 52.8 40.9 45.6 40.5 46.5 45.8 49.3 50.2 44.7 64
eng.rst.rstdt 56.0 51.7 51.2 51.7 54.7 48.6 47.6 57.6 57.5 51.1 56.5 53.7 57.6 53.3 55.9 55.2 48.1 51.7 46.7 51.0 50.5 50.1 55.1 49.7 66.1
eng.sdrt.stac 48.0 44.0 41.6 43.9 44.7 40.1 41.7 46.3 46.9 42.7 48.6 42.0 49.1 45.4 47.7 45.2 39.9 41.5 38.7 41.6 41.6 43.1 45.6 45.4 60.4
eus.rst.ert 40.4 29.1 27.4 31.5 35.7 22.9 20.7 36.6 36.8 24.1 38.4 29.6 39.3 30.0 36.5 32.1 27.2 29.4 25.7 30.2 29.4 34.2 34.2 36 62.4
fas.rst.prstc 49.2 43.8 43.1 46.9 47.1 36.7 39.6 49.4 49.0 43.1 51.9 46.8 49.3 48.9 49.5 48.2 37.7 40.2 33.6 40.4 38.6 47.4 46.1 46 52.7
fra.sdrt.annodis 48.4 43.3 41.1 42.5 45.7 41.5 41.9 53.4 52.9 40.9 51.2 47.1 50.7 44.3 47.6 47.6 37.8 42.4 39.3 43.1 42.8 43.2 49.2 26.6 56.2
ita.pdtb.luna 45.7 36.1 32.7 35.4 40.2 18.2 21.1 39.8 41.7 28.7 43.7 34.6 50.9 39.8 44.5 43.9 12.9 23.4 16.6 26.7 24.2 39.9 35.0 47.1 52.1
nld.rst.nldt 40.0 31.9 34.9 33.5 34.5 32.8 33.5 40.7 42.4 33.4 44.9 35.4 41.3 34.9 40.6 35.0 27.4 30.1 25.0 31.3 31.5 34.5 38.0 37.2 56.6
por.pdtb.crpc 65.9 58.8 54.7 57.5 61.5 52.4 50.9 64.9 66.2 54.9 68.0 60.1 67.4 60.7 64.4 63.7 47.0 54.0 50.0 53.6 53.3 63.0 63.8 55.9 75.4
por.pdtb.tedm 57.1 51.6 43.0 47.4 49.3 39.3 41.1 55.2 57.0 45.1 58.7 49.6 61.4 53.2 57.4 55.4 39.7 43.9 39.8 46.7 45.7 50.4 54.1 49.2 66.2
por.rst.cstn 63.9 57.9 55.6 57.8 59.7 55.6 52.9 62.4 61.9 54.8 62.5 57.2 65.3 58.9 62.2 59.9 49.0 55.2 49.1 56.5 54.8 57.2 59.0 53.7 68.8
rus.rst.rrt 56.0 52.4 50.4 51.3 53.9 47.6 47.1 57.2 57.9 50.6 59.2 53.7 58.6 55.7 58.5 55.3 41.8 45.1 42.9 45.2 42.3 54.6 54.5 50.6 64.7
spa.rst.rststb 48.4 40.0 39.7 39.5 46.9 35.2 34.9 44.6 47.7 39.2 47.6 43.7 52.9 47.5 50.8 48.4 31.7 38.0 31.4 40.4 38.7 46.4 40.9 42 61
spa.rst.sctb 62.9 66.9 63.5 63.5 65.0 60.4 56.2 60.9 61.9 62.0 68.3 63.1 69.7 64.2 68.9 66.3 51.2 55.7 50.6 55.5 56.0 64.3 59.6 46.5 66
tha.pdtb.tdtb 85.2 76.3 65.0 72.1 77.6 55.2 56.7 81.5 82.1 69.3 83.4 72.7 83.4 75.7 81.9 76.4 27.3 37.1 25.1 39.0 34.4 77.6 78.4 90.6 84.3
tur.pdtb.tdb 52.8 47.7 42.8 44.5 48.3 39.2 38.0 54.2 56.5 43.6 56.5 48.5 57.9 51.7 56.3 49.4 33.2 34.8 30.5 36.1 32.6 50.8 50.2 40.3 68.7
tur.pdtb.tedm 48.2 43.2 39.2 43.0 48.1 32.9 32.2 49.6 50.2 35.9 52.6 43.4 49.7 44.2 50.2 46.3 17.9 24.2 20.5 23.8 23.7 48.1 42.7 27.5 53.3
zho.dep.scidtb 60.7 48.3 36.3 51.6 48.4 32.8 30.8 49.8 53.9 39.4 52.8 42.0 61.6 48.0 56.8 53.8 33.9 37.4 32.9 43.3 42.0 46.7 47.3 53.5 72.1
zho.pdtb.cdtb 75.9 71.2 70.6 72.6 75.4 62.7 65.4 76.3 77.1 66.2 78.0 71.8 76.3 74.5 78.4 74.3 57.2 68.7 55.8 66.3 66.8 65.6 73.7 68.3 93.8
zho.rst.gcdt 52.4 46.1 41.6 43.1 48.5 35.5 35.6 54.9 53.4 44.1 53.9 47.9 56.4 50.0 54.9 51.5 36.0 41.6 37.5 43.8 43.0 51.9 49.5 45.5 64.3
zho.rst.sctb 57.5 45.4 33.5 40.8 44.8 35.2 38.0 44.8 49.2 35.2 54.0 41.9 56.1 38.9 51.9 50.1 41.5 35.8 38.9 39.1 36.9 42.5 40.6 34 56.6

average 56.1 50.1 46.3 49.1 52.2 42.0 42.0 54.5 55.6 45.9 56.9 49.8 58.2 52.1 56.3 53.8 38.3 43.0 38.1 43.8 42.9 51.3 51.6 47.9 65.7

Table 3: Dataset accuracy scores by LLM probe averaged over five runs. The last two columns refer to the
DisCoDisCo reference system trained on all languages (all) and trained a multiple models with different encoders
per dataset.
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Figure 8: Layer-wise probe performance by relation classes. Mean accuracy over five runs.
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C (inter) 53.8 45.5 41.5 43.4 45.5 35.1 35.6 49.1 52.9 40.8 55.8 42.4 53.7 47.6 54.3 47.0 32.4 39.9 32.3 40.3 40.1 44.4 46.9
D1,D2 (intra) 46.0 38.2 35.2 37.3 40.1 33.3 32.9 43.5 44.5 33.4 47.4 38.3 45.5 36.0 39.9 40.3 28.5 30.8 29.0 31.9 31.3 40.4 41.3
D1,D2,C (all) 55.9 50.8 46.2 48.6 52.5 41.6 42.2 54.2 55.8 46.0 56.8 50.3 58.2 52.6 56.0 54.0 37.8 42.6 37.0 43.5 43.9 51.4 51.9

Table 4: Overall accuracy scores by LLM probe averaged over five runs training on the entire DISRPT (probe
representation ablation). We ablate different types of attention representations used for probing and find that using
all described matrices D1,D2,C yields the best results.
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mean 55.6 48.7 45.2 47.8 48.6 39.4 40.5 50.5 51.7 42.9 54.4 46.4 54.2 48.6 53.1 50.1 35.1 40.0 34.6 40.1 39.9 49.7 48.3
max 55.9 50.8 46.2 48.6 52.5 41.6 42.2 54.2 55.8 46.0 56.8 50.3 58.2 52.6 56.0 54.0 37.8 42.6 37.0 43.5 43.9 51.4 51.9
mean,max 56.1 51.0 46.5 48.6 52.8 42.6 42.8 54.0 56.0 47.1 56.1 50.8 58.4 52.8 56.9 54.2 38.5 43.7 38.4 43.2 44.0 51.5 52.0

Table 5: Overall accuracy scores by LLM probe averaged over five runs training on the entire DISRPT (pooling
strategy ablation). We ablate different attention-head-wise pooling strategies, namely mean pooling, maximum
pooling, and the concatenation of both on the attention score matrices D1,D2,C. We find that concatenating
both generally yields the best results, though usually only by a margin of less than 1%. To keep the size of the
representations shorter, we thus opt to only keep the maximum pooling.
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