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Abstract

There is a lack of an evaluation methodology
that estimates the extent to which large language
models (LLMs) use code-switching (CS) in the
same way as bilinguals. Existing methods do
not have wide language coverage, fail to account
for the diverse range of CS phenomena, or do
not scale. We propose an intervention based on
minimal pairs of CS. Each minimal pair con-
tains one naturally occurring CS sentence and
one minimally manipulated variant. We collect
up to 1,000 such pairs each for 11 language pairs.
Our human experiments show that, for every
language pair, bilinguals consistently prefer the
naturally occurring CS sentence. Meanwhile
our experiments with current LLMs show that
the larger the model, the more consistently it
assigns higher probability to the naturally occur-
ring CS sentence than to the variant. In accor-
dance with theoretical claims, the largest proba-
bility differences arise in those pairs where the
manipulated material consisted of closed-class
words.1

1 Introduction

Bilinguals take advantage of knowledge of all the
languages available to them in a given situation.
The phenomenon of code-switching (henceforth
CS) occurs when they choose to use more than one
language in the same sentence. A particularly inter-
esting form of CS involves syntactic dependencies
between material of different languages, rather than
just a simple insertion of, for instance, a technical
term in one language into the other. In the literature,
this type of CS is called alternation or congruent
lexicalization, as opposed to insertion (Muysken,
1997).

CS offers bilinguals substantial communicative
advantages, such as the ability to express oneself
more precisely, more quickly or even with added

1Benchmark, corpora and code are available from
https://github.com/igorsterner/acs.

humour (Gumperz, 1982; Myers-Scotton, 1993).
In many communities, it is even the predominant
form of communication (Grosjean, 2010). As a re-
sult, many users will want to instruct LLMs and get
responses from LLMs using CS that they deem nat-
ural. LLMs can of course already generate mixed-
language text, as in the experiments by Yong et al.
(2023) and Kuwanto et al. (2024). But the point is
not whether a text produced by any system contains
words from more than one language – it is rather
whether they are mixed in the way that a bilingual
human might.

Previous approaches to CS evaluation exist, via
specially-created sets of human judgments (e.g.,
Yong et al., 2023; Kuwanto et al., 2024; Kodali
et al., 2024). In these approaches, participants were
asked to score how acceptable each sentence ap-
pears to them, using a numeric score. However,
it is well-known that the assignment of absolute
scores is highly subjective and influenced by a wide
range of other factors (Schütze, 1996; Keller and
Asudeh, 2002). Therefore, such scores are not com-
parable across sentences, because the participant
has not seen these sentences in comparison. Given
the known context sensitivity and thus subjectivity
of CS, this substantially lowers the value of the nu-
merical scores for quantifying the quality of CS text.
Inter-annotator agreement is also unsatisfactorily
low (Kuwanto et al., 2024).

Kuwanto et al. (2024) aim to generate more
natural-sounding CS text by LLM prompting,
guided theoretical constraints according to
Poplack’s theory (1980). This theory predicts
points in the sentence where the language is
likely to change. They then use prompting to
create variants of a monolingual sentence using
these switch points. Each generated sentence
is judged independently by humans, and later
O(n×m2) pairs of CS sentences (n is the number
of original monolingual sentences and m is the
number of LLMs used) are created. In principle,
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(1) a. @USER And I said maybe etwas leiser singen, sonst ruf ich die Polizei
b. @USER And I said maybe a little leiser singen, sonst ruf ich die Polizei

[German–English, a. from Sterner and Teufel, 2023]

(2) a. Would do it myself om inte make var bilmek och nördig med det.
b. Would do it själv om inte make var bilmek och nördig med det.

[Swedish–English, a. from DeLucia et al., 2022]

(3) a. 同学们 会 大概 知道 what they want to do in the future
b. 同学们 会 大概 know what they want to do in the future

[Chinese–English, a. from Lyu et al., 2010]

the availability of several CS variants and the
idea of pairing the generations might alleviate
the problem of non-comparability. However,
the methodological problem of absolute scoring
remains. The participant, as before, operated with
absolute scores on individual sentences, never
seeing the two sentences in a pair together and
comparing them. Additionally, within each pair,
the number of differences is not constant, due to
the unpredictability of the LLM. This makes it
almost impossible to assign the naturalness of any
particular generation to syntactic or lexical changes
the LLM made to that sentence.

Meanwhile in the theoretical community work-
ing on the acceptability of monolingual text, min-
imal pairs are the accepted approach for making
controlled comparisons (Schütze, 1996; Keller and
Asudeh, 2002). Recently this was applied in the
BLiMP benchmark (Warstadt et al., 2020), which
provided a reliable way to track the progress of
LLMs. It is now used to track the progress of
smaller LLMs trained on volumes of data more
comparable to what is required for human language
acquisition (Warstadt et al., 2023; Hu et al., 2024;
Charpentier et al., 2025). Similar benchmarks have
also since been proposed in other languages (Xiang
et al., 2021; Volodina et al., 2021; Song et al., 2022;
Jentoft and Samuel, 2023; Taktasheva et al., 2024;
Suijkerbuijk et al., 2025; Liu et al., 2024; Jumelet
et al., 2025).

An important principle of the minimal-pair
methodology is that the difference in each pair is
carefully controlled: the two sentences are identi-
cal except for one single difference. Therefore, if
there is a difference in acceptability between the
sentences, it can be attributed directly to the single
textual difference. In the current paper, we will

define CS acceptability as the difference between
sentences in minimal pairs of CS. However it is not
currently possible to theoretically define acceptabil-
ity in CS as precisely as for monolingual settings.
Judgments of CS acceptability are more subjective
than those of monolingual grammaticality, and we
do not have a theoretical reference for what bilin-
guals tend to judge as acceptable, although they
themselves have strong intuitions in individual sen-
tences as to what CS they deem sounds natural
(Joshi, 1982).

Another problem is scalability. To fairly assess
how a system models the near-infinite number of
linguistic variations possible, as many fundamen-
tally different pairs in the evaluation as possible are
needed. It is therefore best to have only one pair
for each original sentence, unlike in the approach
of Kuwanto et al. (2024).

We propose that the solution to the problem is
to algorithmically create negative samples derived
from naturally occurring CS, forming minimal pairs.
This allows us to create as many minimal pairs as
we have suitable CS sentences. We can then use
the expensive human judgments more effectively,
namely by ensuring that each judgment is based
on a CS sentence pair that is fundamentally inde-
pendent of all other pairs in that experiment. Once
human judgments have been collected to validate
our method of creating minimal pairs, further judg-
ments are no longer required; human judgments are
a one-time effort.

In this paper, we

1. Create a benchmark corpus of minimal pairs
of CS covering 11 language pairs. Three exam-
ples are given in Examples 1-3 (for glosses and
translations see Appx. C.1); 1a, 2a and 3a are
sampled from naturally occurring, observed
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CS, whereas 1b, 2b and 3b are algorithmically-
derived variants (bold words are English).

2. Validate it with human judgments, showing
that bilinguals consistently prefer the observed
CS in each minimal pair. We also show that
bilinguals agree with one another on the task,
to a reasonable degree (κ=0.57).

3. Evaluate current LLMs on the benchmark.
Most LLMs we test perform poorly. The best-
performing one was the largest LLM we run
(Llama-3.1 405B). In accordance with theo-
retical claims, our analysis also shows a con-
sistent trend that minimal pairs involving ma-
nipulating closed-class words leads to larger
differences in LLM probability, as compared
to open-class words.

2 Minimal Pairs of CS

We assume that all observed CS is acceptable, and
we can get a near-unlimited supply of these from
social media. We propose to manipulate observed
CS sentences, under the assumption that on average
this manipulation will decrease acceptability. Each
naturally observed CS sentence and a manipulated
variant of that sentence together form a minimal
pair.

Our method should (1) result in minimal pairs
with noticeably different acceptability but where
both sentences are syntactically plausible (2) be
language-agnostic, and (3) generate a syntactically
and semantically diverse set of minimal pairs. We
also need to consider sentence complexity. An ex-
ample of such complexity difference would be if
the number of times the language switches is not
the same in the two sentences. Condition (4) is
therefore that the sentence complexity inside a pair
should be comparable.

We collect a large pool of suitable CS sentences
where the two languages are grammatically inte-
grated. We start from tweets which have been iden-
tified by Twitter as non-English and identify those
which nevertheless contain English words. We will
consider each word to have exactly one CS status.
Either it belongs to either one or the other of the
two languages concerned, or if its status is unclear
(words of mixed morphology, named entities, punc-
tuation), its label should be ‘Other’. Since our goal
is to collect intrasentential CS, each example should
cover exactly one sentence. A sentence segmenta-
tion tool is necessary at this stage, as social media
posts often contain more than one sentence.

We next identify the switch point in the sen-
tences.2 Our manipulation consists in translating
one single word adjacent to this switch point into
the other language. This operation can be carried
out for any language pair, provided a translation
is available. During the process, we only gener-
ate minimal pairs that have the same number of
switch points within the sentence pair, as this keeps
sentence complexity constant.

2.1 Data Collection
For the language pair German–English, we start
from the most recent 27.5 million raw tweets used
in our earlier corpus (Sterner and Teufel, 2023).
We also treat other languages code-switched with
English, using the raw Twitter data collected by
DeLucia et al. (2022). The languages we treat must
be written in Latin script and there must exist at
least 100K raw tweets. This results in data for Dan-
ish, Spanish, French, Indonesian, Italian, Dutch,
Swedish and Turkish. Geographically, these lan-
guages are all European (except 1) and genetically
they are all Indo-European (except 1). We include
up to 10 million tweets for each language.

Token-level language identification (LID) is pro-
vided by our AnE system (Sterner, 2024), which
represents the SoTA for this task on CS text. This
step labels every word with a label expressing its
CS status: ‘Lang1’ (the respective non-English lan-
guage), ‘English’, ‘Mixed’, ‘Named Entity’, and
‘Other’; the final three are collated in the ‘Other’
category. We now identify borrowed words using
lists from Wiktionary (Ylonen, 2022)3, and remove
tweets containing obscene words using fixed lists.
We also perform some normalisation to the tweets,
including converting one or more consecutive Twit-
ter mentions to a single ‘@USER’. Emojis are kept,
as are hashtags.

We then apply a second, more refined, LID step.
This became necessary as we found that many of
the resulting tweets did not match the language as-
signed to them by Twitter’s LID algorithm. We
process the string of all ‘Lang1’ words in a sen-
tence (with other words removed) with Lingua4, the
SoTA for identifying the language of monolingual
short sequences of words. Tweets where Lingua’s
language prediction differs from Twitter’s original
prediction are removed. We then sentence-segment

2Switch points in the examples therefore correspond to the
change between normal and bold font.

3See Appendix Table 3 for statistics.
4https://github.com/pemistahl/lingua-py
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@USER Und ich sagte vielleicht etwas leiser singen , sonst ruf ich die Polizei
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@USER And I said maybe etwas leiser singen , sonst ruf ich die Polizei

@USER And I said maybe sing a little quieter , or I ’ll call the police
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Figure 1: An example CS sentence during automatic processing. In this case we generate minimal pair 1.

the tweets using our existing neural sentence seg-
mentation model (Frohmann et al., 2024), specif-
ically, the sat-12-sm model. This segmentation
model is the first that has been shown to work sat-
isfactorily on CS text. Frohmann et al. evaluated
the model on four CS corpora, with all input text
lowercased and punctuation removed. It achieved a
macro average F1 score (on sentence-ending tokens)
of 54.4%, as compared to prompting Llama-3.1
8B which achieved 43.4% or using Spacy’s depen-
dency parsing-based approach which achieved only
12.2%. Resulting sentences that are greater than
200 characters or less than 6 tokens are removed.

Our choice of languages was due to the fact that
the AnE tool only operates on language pairs where
one language is English, and where the other lan-
guage is also in Latin script. To represent more lan-
guages, we complement our corpus with two further
language pairs, Turkish–German (data and gold-
standard CS status labels from Çetinoğlu (2016))
and Chinese–English (data from Lyu et al. (2010)
and Lovenia et al. (2022)). Both originate from
transcriptions of spoken language. The domain of
spoken CS language has both similarities with and
differences from the domain of written CS (Gardner-
Chloros and Weston, 2015); including these two
corpora will enable us to later investigate this fur-
ther.

We chose Turkish–German because we are
already treating German–English and Turkish–
English CS, and so it will be interesting to com-
pare these three language pairs. Chinese–English
is relevant because this pair concerns languages
that are typologically far-removed from each other.
For the Chinese–English sentences, we determine
word-level language and CS status with a regular

expression by marking all Chinese characters as
Lang1. More details of the data collection can be
found in Appendix A.

2.2 Generating Minimal Pairs
As a first step, the CS sentences are translated into
monolingual sentences of each of the contributing
languages. Most translation systems require the
specification of a single input language. With CS
input, this is not possible. The madlad-3B ma-
chine translation (MT) system from Kudugunta
et al. (2023) does not take any language specifi-
cation as input and is near-SoTA in open-source
MT, so we use this model. We also require word-
to-word alignments between the CS sentence and
the monolingual sentences. This is accomplished
by the awesome-align model (Dou and Neubig,
2021).

We next perform named-entity recognition
(NER) and dependency parsing on the monolingual
sentences with Qi et al.’s tools (2020). If a token
in the CS sentence is aligned to a named entity in
either of the monolingual sentences, we change its
CS status to ‘Other’, unless AnE already marked it
as ‘Other’. Multi-word expressions are tagged using
a list from the Urban Dictionary. Figure 1 shows
sentence 1a (p. 2) during this stage of processing.

On the basis of the dependency parse, we remove
non-integrative CS sentences, i.e., those where
there is no syntactic link between the less frequent
material and the rest of the sentence. For the re-
mainder, we use the alignment to create minimal
pairs.

The alignment can be one-to-many or many-to-
one. For instance, due to different compounding
morphologies across languages, a situation can
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arise where a single compound word in one lan-
guage is translated into many words in the other
language. Furthermore, alignment errors can some-
times result in unaligned words in a translation. In
the rare cases when such unaligned material hap-
pens to appear next to a word that we have decided
to move the switch point over, we move the switch
point over the unaligned material and its neighbour
(i.e. include the unaligned material), but only if
there is a syntactic dependency between this word
and the neighbour. This results in syntactically
more plausible minimal pairs.

In the example in Figure 1, the switch point oc-
curs between the English adverb ‘maybe’ and the
German adverb ‘etwas’. The German adverb is
aligned with its translation ‘little’, and its neigh-
bour ‘a’ is not aligned. The syntactic dependency
between ‘a’ and ‘little’ licences us to move the
switch point over both, yielding the sentence in
Example 1b.

We also decided to disallow switches where there
is a noun on either side of the switch point. This
is because such cases often lead to problems with
keeping CS complexity comparable. While this is
not ideal, we feel it is better than the alternative,
which would be to sample minimal pairs uniformly
across POS. There is a diverse range of observed
CS phenomena which we try to capture with our
benchmark (see examples in Appendix C). As this
range is not naturally uniform over POS, we decided
against POS-based sampling but excluded nouns.

With our approach, there may be more than one
possible minimal pair for each input CS sentence.
Furthermore, of all possible minimal pairs, certain
replacements will be more frequent than others. To
mitigate the effect of this, we enforce that each indi-
vidual lexical difference occurs only once for each
language pair.

For evaluation, we sample up to 1,000 minimal
pairs each for the 11 language pairs, and call the
result the ACS (Acceptability of Code-Switching)
benchmark. Corpus statistics and examples for each
language pair are given in Appendix C.

We aimed for the highest quality of minimal pairs
in each language pair. However, the available tools
necessary for creating minimal pairs do not per-
form equally across all language pairs. The tools
are validated to perform best in German–English
and Spanish–English. This is because of the avail-
ability of CS training data for these language pairs,
and the general high-resource status of all three
contributing languages.

We take steps with the aim of removing poorly
processed data. One case concerns sentences in-
correctly identified to contain any CS. We remove
cases where one of the monolingual translations has
a Levenshtein distance of fewer than 5 characters
with the source CS sentence. This also removes
some cases where there is CS remaining after the
translation. Based on the POS-analysis of the mono-
lingual translations, we also remove cases with at
least one word with the ‘X’ tag. Such a tag indi-
cates the presence of unintelligible, fragmented or
untranslated material.

We performed an error analysis on the automatic
tools used. For this, the second author of this paper
analysed 100 German–English minimal pairs and
the output of the tools.5

The analysis assessed for each minimal pair if
there was an error in the processing that would
make it obvious which sentence in the pair was the
manipulated sentence. If this was not the case, the
pair was labelled as “fair”. If there was an error, the
annotator determined the first tool in the pipeline
that caused the error (order: sentence segmentation,
tokenization, language identification, translation,
alignment, minimal pair creation algorithm).

Out of 100 sentences, 84 were genuine CS sen-
tences where the meaning was clear; in 9 cases, the
sentence was monolingual, and in 7, the meaning
of the sentence was unrecoverably unclear, mostly
due to typos in the input. In 76% of genuine CS
sentences, the pair was determined to be fair; in
70%, all tools in the pipeline worked error-free. Er-
rors from the tools were most frequent with the
automatic translations (10) and alignment (5). Seg-
mentation (2), tokenization (1) and language iden-
tification (1) were less of a problem. In 6 cases, the
data generation procedure was the problem, as it did
not correctly handle complex German or English
morphology or subcategorisation.

2.3 Human Data Validation

The definition of truth in our benchmark comes
from the fact that one of the sentences has natu-
rally occurred in a CS discourse. We now measure
agreement of one human participant per language
pair with this gold standard. As a secondary mea-
surement, for German–English, we also provide the
agreement of 3 human participants amongst each
other. Since collecting judgments from many par-
ticipants is expensive, we measure inter-annotator

5A visualisation similar to Figure 1 was provided.
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1 2 3 4 5

κ 0.58 0.69 0.58 0.52 0.53
Acc (%) 80.6 84.6 79.1 76.1 76.6

Table 1: Human agreement with the gold standard for
German–English

da-en es-en fr-en id-en it-en

κ 0.66 0.70 0.50 0.72 0.73
Acc (%) 83.1 85.1 75.1 86.1 86.6

nl-en sv-en tr-en tr-de zh-en

κ 0.62 0.64 0.71 0.75 0.59
Acc (%) 81.1 82.1 85.6 87.6 79.6

Table 2: Human agreements with the gold standard for
the 10 other language pairs

agreement only for this language pair.
We needed bilingual or near-bilingual partici-

pants who were likely to employ CS in their own
daily lives. We therefore recruited individuals
whose mother tongue is not English and who have
lived in the US or UK for at least one year at one
point in their lives. All were university students at
master’s or PhD level; twelve were between 18 and
25, three between 26 and 35 years old.

For each language pair, a sample of the respective
ACS benchmark was used; the place inside the min-
imal pair where the original sentence appeared was
randomised. In the languages other than German–
English, where single annotation took place, each
participant worked on 201 (67*3) minimal pairs.
For German–English, minimal pairs are drawn uni-
formly from a pool of 5 participants, such that
each of 335 pairs is annotated by three unique
participants. Each participant thus also worked
on 201 (67*3) minimal pairs. The difference be-
tween the two sentences in a minimal pair was bold-
faced in order to facilitate the decision. Annotators
worked in batches of 67 minimal pairs in their own
time. The acceptability judgment task was opera-
tionalised as follows: We told annotators to select
from a sentence pair the one that had been produced
by another bilingual. We also told them that the
other sentence had been altered.

We use accuracy to compare human annotation
against the gold standard. Accuracy is the pro-
portion of minimal pairs for which the participant
selected the observed CS sentence. We also use
Fleiss’s kappa (1971).

For German–English, inter-annotator agreement
was measured at κ = 0.57 (N=335, n=2, k=3). This

is well within the range of what is typical in the field
(Kuwanto et al.: Krippendorff’s α=0.32 (Tamil-
English), α=0.41 (Malayalam-English), α=0.65
(Hindi-English)). The judgments were drawn from
a pool of 5 participants who each annotated 201
minimal pairs. Table 1 gives individual results. Ac-
curacy ranges between 76.1-84.6% and κ between
0.52-0.69. In 205 out of the 335 cases, all three an-
notators agreed with the gold standard. For 22, all
3 annotators chose the manipulated sentence (listed
in Appx. C.13). At least one annotator agreed with
our gold standard 93.4% of the time.

Table 2 shows results of the human experiments
between the gold standard and the human partici-
pants on the other language pairs. We find reason-
able agreement, with κ > 0.6 for 8/10 language
pairs and κ > 0.5 for the remaining two.

The results confirm our expectations that bilin-
guals across many language pairs have shared
knowledge of what CS other bilinguals would pro-
duce. Their intuitions also often align with the gold
standard. Our method of generating minimal pairs
had the goal of being cross-lingually applicable,
and our human judgments bring supporting evi-
dence for this claim. Although Turkish belongs to a
different language family than English or German,
we observe κ > 0.7 and accuracies of 85.6% and
87.6% for Turkish–English and Turkish–German.

3 Experiments on Automatic Evaluation

We demonstrate our evaluation methodology with
a comparison of several open-weight LLMs.

3.1 Setup
We selected five families of multilingual and open-
weight autoregressive LLMs for our investigation:
BLOOM (BigScience, 2023), Llama-3 (MetaAI,
2024), Qwen2.5 (Qwen, 2025), OLMo (AI2, 2024)
and EuroLLM (Martins et al., 2024). Given its high
performance in monolingual benchmarks and Ko-
dali et al. (2024) finding it works best for CS, we
also compare against XLM-RoBERTa multilingual
masked language models (Conneau et al., 2020).
For each family, we evaluate base models with full
precision6 for all the model sizes available.

Our metric is accuracy, which is the proportion of
pairs, (consisting an observed CS sentence so and a
manipulated variant sm, from the challenge set of a

6Except the 405B version of Llama-3.1, for which we use
a version with all weights stored as normalized 4-bit floats
(Dettmers et al., 2023). All runs were performed on one node
with up to 4 A100-80GB GPUs.
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language pair, S), for which the LLM, M, assigns
higher probability to the observed CS sentence:

Acc(M;S) = 1

|S|
∑

so,m∈S
1 [PM (so) > PM (sm)]

Autoregressive LLMs model sentence probabil-
ity directly. For the masked language models, we
used the pseudo-log-likelihood formulation from
Kauf and Ivanova (2023).7 We also define the mar-
gin of an LLM prediction on a minimal pair as the

7There may be a difference in the number of tokens in the
sentences in a minimal pair. It is possible that this problem is
especially pronounced in our setup, as current LLM tokenizers
tend to tokenize non-English text into more tokens (Petrov
et al., 2023). Nevertheless, we do not normalise by number of
tokens, as this has been shown to be an ineffective intervention
(Ueda et al., 2024).

difference in log probability between the sentences
in the minimal pair:

Margin(M; so,m) = logPM (so)− logPM (sm)

We test differences in system accuracy for sig-
nificance using the paired two-tailed Monte-Carlo
permutation test with R = 10, 000 and α = 0.05.
We will test differences between groups of LLM
margins and differences between human and sys-
tem judgments for significance using an unpaired
version of the same permutation test.

3.2 Results
LLM Accuracy Figure 2 gives results for
German–English. The largest Llama model, 3.1
405B, is significantly better than all its smaller
counterparts (A=74.8%, compared to A=62.9%,
A=66.6%, A=68.3% and A=73.2%, all with
p<0.05); it is also better than all other tested LLMs
(all with p<0.001). However, performance of this
model is still significantly lower than the human
ceiling (p=0.004). This shows that without task-
specific training, but currently only with enormous
model scale, acceptable LLM performance on our
task is possible.

Comparing BLOOM and Qwen2.5 models of a
comparable size, we see that the more recent fam-
ily, Qwen, achieves significantly better results in
all cases, but only by a small margin (+4.2%,
+6.1%, +5.1%, +4.9%, all with p<0.05). This result
holds even though BLOOM was designed to have
good performance on European languages. XLM-
RoBERTa (large) is smaller by parameter count,
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but in Kodali et al.’s (2024) experiment, it performs
best on their related CS task. Here, it performs
better than others (performance significantly bet-
ter or indistinguishable from all systems except the
largest two Llama-3 models), but it is inferior to
Llama-3.1 70B and 405B.

We perform an analysis of the extent to which
the margin of the overall best LLM (Llama-3.1
405B) is correlated with human agreement on the
task. Figure 3 shows our German–English samples
separated into four categories, based on how many
of the human participants agreed with the gold stan-
dard. Median LLM margin is significantly different
between all pairs of categories (the same is true for
mean margin, except between 0/3 and 1/3). Of those
minimal pairs for which 3/3 bilinguals judged the
observed CS sentence to be more acceptable, LLM
probabilities between the first and third quartiles
are all also higher for the observed CS sentence.
Meanwhile, of those 22 minimal pairs for which
all the bilinguals judged the manipulated variant
as more acceptable, the LLM sided with the bilin-
guals (LLM probabilities between the first and third
quartiles are higher for the variant). This is the first
time that such similarity between LLMs and bilin-
gual human CS preferences has been shown. We
suspect that this is because previous experiments
were either performed at much smaller scales, or
not directly with LLM probabilities.

German and English are in the same lan-
guage family and both are high-resource languages.
Hence our results for this language pair may be
less surprising than other possible language pairs.
Results for Spanish–English, Turkish–German and
Chinese–English are provided for the Llama mod-

els in Figure 4. The Spanish–English minimal pairs
are derived from tweets. The numbers are near-
identical to those from the German–English tweets,
with consistent improvements for larger model size
and the largest 405B model significantly outper-
forming all of its smaller counterparts.

The Turkish–German and Chinese–English data
is derived from transcriptions of spoken CS. Fig-
ure 4 shows that Turkish–German trends are similar
to before. This result is surprising, because prior
work led us to expect that constraints in spoken
CS follow different constraints to those in written
CS (Gardner-Chloros and Weston, 2015) and all
tested LLMs are stated to be trained on text only.
Meanwhile, for Chinese–English, there is no im-
provement with model size (all comparisons have
p>0.05). Poor performance for this language pair
also holds for other LLMs, including the Qwen2.5
LLM family (cf. Appx. Tab. 6). A contributing
factor may be that these two languages are not writ-
ten in the same script, because unlike in the case
of other language pairs there are no tokens shared
between the languages.

A similar Figure showing Llama-3 model per-
formance for all language pairs is provided in Ap-
pendix D. The Llama-3.1 405B model performs
significantly better than all its smaller counter-
parts, except Danish–English (where it is statisti-
cally indistinguishable from the 3/8/70B models),
Indonesian–English, Dutch–English, Swedish–
English and Turkish–English (where it is indistin-
guishable from the 70B model).8

POS-based analysis We will now perform a more
fine-grained analysis of the acceptability differential
in the minimal pairs. We test the long-standing the-
oretical claim that words of particular grammatical
functions tend to be more switchable (Joshi, 1982),
in particular the extent to which the POS (which
can represent a closed or open class of words) of the
manipulated word in our minimal pairs affects the
absolute LLM margin.9 We now have the tools at
hand to test this. We assume that larger LLM mar-
gin equates to a larger difference in acceptability in
a minimal pair. This is supported by our results so
far, which show that probabilities from this LLM

8Numerical results for all models and language pairs are
provided in Appendix E.

9In this analysis, we include POS for which we have at least
10 minimal pairs. We obtain the POS of the changed word
from its aligned word in the monolingual translation; we only
include minimal pairs in this analysis where the changed word
is aligned to a single identical word in the translation.
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Figure 5: Absolute LLM margin vs. part of speech of the
manipulated word (de-en). Blue represents closed-class
items, yellow represents open-class items.

align well with the gold standard and are correlated
with human judgments. We now test, using our
best LLM, whether larger absolute LLM margins
are correlated with certain POS.

Results for German–English are given in Fig-
ure 5, colour-coded by closed and open-class
items.10 (Results of the same analysis for each of
the other language pairs is shown in Appendix B.)
Open class words effect an average LLM margin of
3.8 for adjectives (ADJ), 4.0 for adverbs (ADV) and
5.5 for verbs (VERB). Closed class words effect
an LLM margin of 4.3 for determiners (DET), 5.3
for adpositions (ADP), 6.5 for pronouns (PRON)
and 7.9 for auxiliaries (AUX). For this language
pair we do not find a statistically significant overall
difference (p=0.077). But overall we find consistent
trends that changing closed-class words leads to a
larger effect size than changing open-class words
(significant for all language pairs except German–
English and Italian–English). This is the first time
that such direct and empirical testing of linguistic
hypotheses about CS is possible. The methodology
used in prior studies was able to show the signifi-
cance of POS in CS corpora (Soto et al., 2018; Chi
and Bell, 2024), but it cannot be used to directly
test the claim above, because without manipula-
tion of the CS and formation of a minimal pair,
the switched variant would never be observed. Our
benchmark allows for many kinds of hypothesis test-
ing. In our companion paper (Sterner and Teufel,

10It is worth noting that our sets of minimal pairs are not bal-
anced across open vs. closed classes; there are fewer minimal
pairs with changes to closed-class words (147 vs. 573 in this
experiment). This is likely a result of our decision to enforce
that every minimal pair we create for a particular language pair
contains a lexical change not present in any other minimal pair.

2025), we test a more involved linguistic hypothe-
sis concerning the connection between syntax and
switch points in CS.

In sum, our results show that judging the ac-
ceptability differential in our minimal pairs is a
hard task. The patterns that determine what CS
bilinguals generally judge as acceptable are almost
certainly complex; this is in part demonstrated by
the lack of one widely accepted theory of the phe-
nomenon. That being said, we are the first to mea-
sure the degree to which LLMs can model CS ac-
ceptability.

4 Conclusion

Acceptability judgments and minimal pairs are two
fundamental ideas in linguistic analysis. In this
work, we have integrated these ideas in an auto-
matic evaluation methodology for CS. The task is
to determine which sentence in a minimal pair is the
naturally occurring CS sentence. We present here
the ACS benchmark, which contains up to 1,000
minimal pairs of CS each in 11 language pairs. Us-
ing human judgments, we demonstrated that there
is an acceptability differential in the minimal pairs
and that this is true across a diverse range of lan-
guage pairs. The novelty of this approach is that
any automatic system can now be tested on these
minimal pairs; we no longer require ad-hoc human
judgments of any particular system’s output as was
necessary in previous work. Experiments with mul-
tilingual LLMs show that only the largest current
models are able to consistently make the distinction
between sentences in the minimal pairs. This work
makes it possible to track the progress of future
LLMs in their ability to use CS in the same way as
bilinguals.

Limitations

We collect most of our CS data from Twitter. On
the one hand, this data collection enables us to scale
the methods so that we can generate enough min-
imal pairs that comply with our conditions. On
the other hand, Twitter data is also noisy, and this
noise can contribute to the acceptability differential.
For example, we observed a German–English ex-
ample where the incorrectly spelt English ‘belive’
was automatically translated into the correctly spelt
German ‘glauben’.

Errors from the automatic processes restrict the
quality of the minimal pairs in our benchmark. We
found some minimal pairs that did not contain any
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CS at all, either because the minimal pair removed
all CS or because the observed sentence did not ex-
hibit CS (see e.g. Appx. Ex. 41). The quality of the
benchmark could be improved by further filtering
along these lines. Our processes also assume CS
occurs between only two languages, which fails to
support multilingual CS between many languages
(see e.g. the Dutch–English–German sentence in
Appx. Ex. 21a).

Also, using Twitter data does not enable us to
collect socio-demographic profiles (such as age,
location, language proficiency) of the authors of
the tweets in our benchmark. We cannot, therefore,
be certain of the linguistic variation of CS present in
our benchmark, be it location-based, register-based
or other social-demographics (Doğruöz et al., 2023).
We cannot even be sure that every CS sentence we
observe was written by a human, rather than by
an automatic system. On top of that, we also also
cannot be sure whether the human participants in
our study are representative of the authors of the
CS we use.

Our human study was, except for German–
English, limited to one participant per language
pair for a subset of our testing data. From a method-
ological viewpoint, a follow-up study with more
participants and possibly more language pairs could
be advantageous.

There is a question about whether any of the mod-
els we tested were trained on the data that makes
up the benchmark. The best performing LLMs
were from the Llama-3 (MetaAI, 2024) family, and
the pre-training data for these models is not pub-
licly known. There are reasons to believe that the
German–English test tweets were not included: the
source corpus is, to the best of our knowledge, not
part of any open-access corpus. Additionally, we
used the most recent data that was available for
every language, as this may lower the chance of
our test data having appeared in the models’ pre-
training data.

Ethics Statement

Our work involves working with and releasing a
large corpus of social media posts. This raises
privacy concerns. We do not collect any data
about the authors of the posts. The majority of
the data we release has been anonymised: for
the German–English data, we replaced mentions
with a “@USER” placeholder and URLs with
“HTTPURL”. DeLucia et al.’s corpus is already

anonymized in this same way. The text from the
two spoken corpora were left as is.

In our human experiment, we follow the ethics
guidelines of the Cambridge University Department
for Computer Science and Technology, asking for
formal consent from our participants in the exper-
iment, paying them for their time and informing
them of their rights.

Acknowledgements

The first author was supported by Cambridge Uni-
versity Press & Assessment and a Cambridge Trust
studentship supported by Pembroke College, Cam-
bridge. We thank Louis Cotgrove, Martin Dur-
rell, Markus Frohman, Luna Hawkins and Edoardo
Ponti for their comments.

References
AI2. 2024. OLMo: Accelerating the science of language

models. Preprint, arXiv:2402.00838v4.

BigScience. 2023. BLOOM: A 176b-parameter open-
access multilingual language model. Preprint,
arXiv:2211.05100v4.

Lucas Charpentier, Leshem Choshen, Ryan Cotterell,
Mustafa Omer Gul, Michael Hu, Jaap Jumelet, Tal
Linzen, Jing Liu, Aaron Mueller, Candace Ross,
Raj Sanjay Shah, Alex Warstadt, Ethan Wilcox, and
Adina Williams. 2025. BabyLM turns 3: Call for
papers for the 2025 babylm workshop. Preprint,
arXiv:2502.10645.

Jie Chi and Peter Bell. 2024. Analyzing the role of part-
of-speech in code-switching: A corpus-based study.
In Findings of the Association for Computational Lin-
guistics: EACL 2024, pages 1712–1721, St. Julian’s,
Malta. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 8440–8451,
Online. Association for Computational Linguistics.

Alexandra DeLucia, Shijie Wu, Aaron Mueller, Carlos
Aguirre, Philip Resnik, and Mark Dredze. 2022. Ber-
nice: A multilingual pre-trained encoder for Twitter.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6191–6205, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLORA: efficient finetun-
ing of quantized LLMs. In Proceedings of the 37th

18584

https://arxiv.org/abs/2402.00838v4
https://arxiv.org/abs/2402.00838v4
https://arxiv.org/abs/2211.05100v4
https://arxiv.org/abs/2211.05100v4
https://arxiv.org/abs/2502.10645
https://arxiv.org/abs/2502.10645
https://aclanthology.org/2024.findings-eacl.120/
https://aclanthology.org/2024.findings-eacl.120/
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.emnlp-main.415
https://doi.org/10.18653/v1/2022.emnlp-main.415


International Conference on Neural Information Pro-
cessing Systems (NeuIPS), NIPS ’23, Red Hook, NY,
USA. Curran Associates Inc.

A. Seza Doğruöz, Sunayana Sitaram, and Zheng Xin
Yong. 2023. Representativeness as a forgotten les-
son for multilingual and code-switched data collec-
tion and preparation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 5751–5767, Singapore. Association for Com-
putational Linguistics.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2112–2128, Online.
Association for Computational Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Markus Frohmann, Igor Sterner, Ivan Vulić, Benjamin
Minixhofer, and Markus Schedl. 2024. Segment any
Text: A universal approach for robust, efficient and
adaptable sentence segmentation. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 11908–11941, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Penelope Gardner-Chloros and Daniel Weston. 2015.
Code-switching and multilingualism in literature.
Language and Literature, 24(3):182–193.

François Grosjean. 2010. Bilingual: Life and reality.
Harvard university press.

John J. Gumperz. 1982. Discourse Strategies. Studies in
Interactional Sociolinguistics. Cambridge University
Press.

Michael Y. Hu, Aaron Mueller, Candace Ross, Ad-
ina Williams, Tal Linzen, Chengxu Zhuang, Ryan
Cotterell, Leshem Choshen, Alex Warstadt, and
Ethan Gotlieb Wilcox. 2024. Findings of the sec-
ond BabyLM challenge: Sample-efficient pretraining
on developmentally plausible corpora. In The 2nd
BabyLM Challenge at the 28th Conference on Com-
putational Natural Language Learning, pages 1–21,
Miami, FL, USA. Association for Computational Lin-
guistics.

Matias Jentoft and David Samuel. 2023. NoCoLA: The
Norwegian corpus of linguistic acceptability. In Pro-
ceedings of the 24th Nordic Conference on Computa-
tional Linguistics (NoDaLiDa), pages 610–617, Tór-
shavn, Faroe Islands. University of Tartu Library.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Coling 1982: Pro-
ceedings of the Ninth International Conference on
Computational Linguistics.

Jaap Jumelet, Leonie Weissweiler, and Arianna Bisazza.
2025. MultiBLiMP 1.0: A massively multilingual
benchmark of linguistic minimal pairs. Preprint,
arXiv:2504.02768.

Carina Kauf and Anna Ivanova. 2023. A better way
to do masked language model scoring. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 925–935, Toronto, Canada. Association
for Computational Linguistics.

Frank Keller and Ash Asudeh. 2002. Probabilistic learn-
ing algorithms and optimality theory. Linguistic In-
quiry, 33(2):225–244.

Prashant Kodali, Anmol Goel, Likhith Asapu,
Vamshi Krishna Bonagiri, Anirudh Govil, Monojit
Choudhury, Manish Shrivastava, and Ponnurangam
Kumaraguru. 2024. From human judgements to
predictive models: Unravelling acceptability in code-
mixed sentences. Preprint, arXiv:2405.05572v1.

Sneha Kudugunta, Isaac Rayburn Caswell, Biao
Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati,
Romi Stella, Ankur Bapna, and Orhan Firat. 2023.
MADLAD-400: A multilingual and document-level
large audited dataset. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Garry Kuwanto, Chaitanya Agarwal, Genta Indra
Winata, and Derry Tanti Wijaya. 2024. Linguistics
theory meets LLM: Code-switched text generation
via equivalence constrained large language models.
Preprint, arXiv:2410.22660v1.

Yikang Liu, Yeting Shen, Hongao Zhu, Lilong Xu, Zhi-
heng Qian, Siyuan Song, Kejia Zhang, Jialong Tang,
Pei Zhang, Baosong Yang, Rui Wang, and Hai Hu.
2024. ZhoBLiMP: a systematic assessment of lan-
guage models with linguistic minimal pairs in chinese.
Preprint, arXiv:2411.06096v1.

Holy Lovenia, Samuel Cahyawijaya, Genta Winata, Peng
Xu, Yan Xu, Zihan Liu, Rita Frieske, Tiezheng Yu,
Wenliang Dai, Elham J. Barezi, Qifeng Chen, Xi-
aojuan Ma, Bertram Shi, and Pascale Fung. 2022.
ASCEND: A spontaneous Chinese-English dataset
for code-switching in multi-turn conversation. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 7259–7268, Marseille,
France. European Language Resources Association.

Dau-Cheng Lyu, Tien-Ping Tan, Eng Siong Chng, and
Haizhou Li. 2010. Seame: a mandarin-english
code-switching speech corpus in south-east asia. In
Eleventh Annual Conference of the International
Speech Communication Association.

Pedro Henrique Martins, Patrick Fernandes, João Alves,
Nuno M. Guerreiro, Ricardo Rei, Duarte M. Alves,
José Pombal, Amin Farajian, Manuel Faysse, Mateusz
Klimaszewski, Pierre Colombo, Barry Haddow, José
G. C. de Souza, Alexandra Birch, and André F. T.
Martins. 2024. EuroLLM: Multilingual language
models for europe. Preprint, arXiv:2409.16235v1.

18585

https://doi.org/10.18653/v1/2023.findings-emnlp.382
https://doi.org/10.18653/v1/2023.findings-emnlp.382
https://doi.org/10.18653/v1/2023.findings-emnlp.382
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://aclanthology.org/2024.emnlp-main.665
https://aclanthology.org/2024.emnlp-main.665
https://aclanthology.org/2024.emnlp-main.665
https://doi.org/10.1177/0963947015585065
https://aclanthology.org/2024.conll-babylm.1/
https://aclanthology.org/2024.conll-babylm.1/
https://aclanthology.org/2024.conll-babylm.1/
https://aclanthology.org/2023.nodalida-1.60/
https://aclanthology.org/2023.nodalida-1.60/
https://aclanthology.org/C82-1023/
https://aclanthology.org/C82-1023/
https://arxiv.org/abs/2504.02768
https://arxiv.org/abs/2504.02768
https://doi.org/10.18653/v1/2023.acl-short.80
https://doi.org/10.18653/v1/2023.acl-short.80
https://arxiv.org/abs/2405.05572v1
https://arxiv.org/abs/2405.05572v1
https://arxiv.org/abs/2405.05572v1
https://openreview.net/forum?id=Y45ZCxslFx
https://openreview.net/forum?id=Y45ZCxslFx
https://arxiv.org/abs/2410.22660v1
https://arxiv.org/abs/2410.22660v1
https://arxiv.org/abs/2410.22660v1
https://arxiv.org/abs/2411.06096v1
https://arxiv.org/abs/2411.06096v1
https://aclanthology.org/2022.lrec-1.788
https://aclanthology.org/2022.lrec-1.788
https://arxiv.org/abs/2409.16235v1
https://arxiv.org/abs/2409.16235v1


MetaAI. 2024. The Llama 3 herd of models. Preprint,
arXiv:2407.21783v3.

Pieter Muysken. 1997. Code-switching processes: Alter-
nation, insertion, congruent lexicalization. Language
choices: Conditions, constraints, and consequences,
20:361–380.

Carol Myers-Scotton. 1993. Social motivations for
codeswitching: Evidence from Africa. Oxford Uni-
versity Press.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and
Adel Bibi. 2023. Language model tokenizers intro-
duce unfairness between languages. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Shana Poplack. 1980. Sometimes I’ll start a sentence in
spanish Y TERMINO EN ESPAÑOL: toward a typol-
ogy of code-switching. Linguistics, 18(7-8):581–618.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Qwen. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115v2.

Carson T. Schütze. 1996. The Empirical Base of Lin-
guistics: Grammaticality Judgments and Linguistic
Methodology. University of Chicago Press.

Yixiao Song, Kalpesh Krishna, Rajesh Bhatt, and Mo-
hit Iyyer. 2022. SLING: Sino linguistic evaluation
of large language models. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 4606–4634, Abu Dhabi,
United Arab Emirates. Association for Computational
Linguistics.

Victor Soto, Nishmar Cestero, and Julia Hirschberg.
2018. The role of cognate words, pos tags and en-
trainment in code-switching. In Interspeech, pages
1938–1942.

Igor Sterner. 2024. Multilingual identification of En-
glish code-switching. In Proceedings of the Eleventh
Workshop on NLP for Similar Languages, Varieties,
and Dialects (VarDial 2024), pages 163–173, Mexico
City, Mexico. Association for Computational Linguis-
tics.

Igor Sterner and Simone Teufel. 2023. TongueSwitcher:
Fine-grained identification of German-English code-
switching. In Proceedings of the 6th Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 1–13, Singapore. Association for
Computational Linguistics.

Igor Sterner and Simone Teufel. 2025. Code-switching
and syntax: A large–scale experiment. In Findings of
the Association for Computational Linguistics: ACL
2025, Vienna, Austria. Association for Computational
Linguistics.

Michelle Suijkerbuijk, Zoë Prins, Marianne de Heer
Kloots, Willem Zuidema, and Stefan L. Frank. 2025.
BLiMP-NL: A corpus of dutch minimal pairs and ac-
ceptability judgments for language model evaluation.
Computational Linguistics, pages 1–35.

Ekaterina Taktasheva, Maxim Bazhukov, Kirill Kon-
cha, Alena Fenogenova, Ekaterina Artemova, and
Vladislav Mikhailov. 2024. RuBLiMP: Russian
benchmark of linguistic minimal pairs. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 9268–9299,
Miami, Florida, USA. Association for Computational
Linguistics.

Naoya Ueda, Masato Mita, Teruaki Oka, and Mamoru
Komachi. 2024. Token-length bias in minimal-pair
paradigm datasets. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 16224–16236, Torino, Italia.
ELRA and ICCL.

Elena Volodina, Yousuf Ali Mohammed, and Julia Klezl.
2021. DaLAJ - a dataset for linguistic acceptability
judgments for Swedish: Format, baseline, sharing.
Preprint, arXiv:2105.06681v1.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguistic
minimal pairs for English. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Beilei Xiang, Changbing Yang, Yu Li, Alex Warstadt,
and Katharina Kann. 2021. CLiMP: A benchmark for
Chinese language model evaluation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2784–2790, Online. Association for
Computational Linguistics.

Tatu Ylonen. 2022. Wiktextract: Wiktionary as
machine-readable structured data. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, pages 1317–1325.

Zheng Xin Yong, Ruochen Zhang, Jessica Forde, Skyler
Wang, Arjun Subramonian, Holy Lovenia, Samuel

18586

https://arxiv.org/abs/2407.21783v3
https://doi.org/doi:10.1515/ling.1980.18.7-8.581
https://doi.org/doi:10.1515/ling.1980.18.7-8.581
https://doi.org/doi:10.1515/ling.1980.18.7-8.581
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://arxiv.org/abs/2412.15115v2
https://doi.org/10.18653/v1/2022.emnlp-main.305
https://doi.org/10.18653/v1/2022.emnlp-main.305
https://doi.org/10.18653/v1/2024.vardial-1.14
https://doi.org/10.18653/v1/2024.vardial-1.14
https://doi.org/10.18653/v1/2023.calcs-1.1
https://doi.org/10.18653/v1/2023.calcs-1.1
https://doi.org/10.18653/v1/2023.calcs-1.1
https://doi.org/10.1162/coli_a_00559
https://doi.org/10.1162/coli_a_00559
https://doi.org/10.18653/v1/2024.emnlp-main.522
https://doi.org/10.18653/v1/2024.emnlp-main.522
https://aclanthology.org/2024.lrec-main.1410/
https://aclanthology.org/2024.lrec-main.1410/
https://arxiv.org/abs/2105.06681v1
https://arxiv.org/abs/2105.06681v1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2021.eacl-main.242
https://doi.org/10.18653/v1/2021.eacl-main.242


Cahyawijaya, Genta Winata, Lintang Sutawika, Jan
Christian Blaise Cruz, Yin Lin Tan, Long Phan, Long
Phan, Rowena Garcia, Thamar Solorio, and Alham
Aji. 2023. Prompting multilingual large language
models to generate code-mixed texts: The case of
south East Asian languages. In Proceedings of the
6th Workshop on Computational Approaches to Lin-
guistic Code-Switching, pages 43–63, Singapore. As-
sociation for Computational Linguistics.

Özlem Çetinoğlu. 2016. A Turkish-German code-
switching corpus. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 23–28, Paris, France.
European Language Resources Association (ELRA).

18587

https://doi.org/10.18653/v1/2023.calcs-1.5
https://doi.org/10.18653/v1/2023.calcs-1.5
https://doi.org/10.18653/v1/2023.calcs-1.5


A Pre-Processing Details

German–English Pre-Processing Our earlier German–English token-level language identification
system (Sterner and Teufel, 2023) is inexpensive to run, because it is based on lookups in large wordlists.
Our compilation of this pre-processed data uses the official implementation, with a number of adaptations
for our purposes.

1. One of the problems in our previous corpus was Swiss German sentences, because we decided to
include Swiss and Austrian wordlists in the compilation process. For the work here, we do not include
these wordlists.

2. We also exclude tweets which contain words with an umlaut but not in the German wordlist. Such
words are almost never German/English words.

3. We found many monolingual tweets which arise due to incorrectly identified interlingual homographs
and other shared words between the languages. We search for German words in a bilingual dictionary
(dict.cc) which have identical corresponding English entries, and vice versa. We remove all such
words from their wordlists of each language. A second aspect of this problem is with interlingual
homographs. These words cause a bias in their corpus towards tweets with a small number of
incorrectly disambiguated interlingual homographs. We mark all interlingual homographs as unknown,
which is the same category as words not in any of the wordlists or caught by any of their other steps.

4. We only keep tweets with fewer than 50% unknown words.

Borrowed words Borrowed words are words of foreign origin used in one language that are fully
assimilated and hence considered part of that language. They form a grey area in language change, and for
our purposes should not be altered in a minimal pair.

We collect lists of borrowed words for each language pair, that is lists of words borrowed from each
Lang1 to Lang2 and vise versa. If AnE tags a word as Lang1, and in fact the lists reveal it is borrowed from
Lang2, we tag it as language neutral and vise versa. To gather the lists of borrowings, we use information
from Wiktionary. Table 3 shows how many we find in the language pairs of interest and a few samples for
each. In particular, we use the machine-parsed version of Wiktionary from Ylonen (2022).

Named Entities AnE identifies named entities, and we further identify named entities in our monolingual
translations, but we found many are still missed. We mark consecutive words containing over 75%
capitalized words as named entities.

Chinese–English Pre-Processing The regular expression [\u4e00-\u9fff] distinguishes Chinese
characters from all other characters. The text is tokenized by passing the Chinese and English segments to
neural Chinese/English tokenizers separately and concatenating the resulting words.

Lang # to English # from English

da 153 leverpostej, troll, skol 335 whistleblower, bodybuilder, clean
de 3891 Trautwein, schnitzel, müsli 1307 downloaden, Limerick, happy
es 3579 guacamole, piña colada, enchilada 1252 blockchain, film, bróker
fr 6254 triolet, moulinette, arpent 1013 woofing, nétiquette, ragequitter
it 3614 beccafico, DiFiore, piadine 891 George, Utah, mister
nl 762 Hoppes, Hoefs, Barten 1319 falsificationisme, nonsens, webcam
sv 355 ombudsman, smorgasbord, fika 566 shopping, coach, internet
tr 171 doner kebab, Türk, Muş 207 kok, server, sensör

Table 3: Borrowings indexed in the English Wikitionary. # refers to the total number of borrowings in that language
pair. Each borrowing is hyperlinked to its Wiktionary page.
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dict.cc
https://en.wiktionary.org/wiki/leverpostej
https://en.wiktionary.org/wiki/troll
https://en.wiktionary.org/wiki/skol
https://en.wiktionary.org/wiki/whistleblower
https://en.wiktionary.org/wiki/bodybuilder
https://en.wiktionary.org/wiki/clean
https://en.wiktionary.org/wiki/Trautwein
https://en.wiktionary.org/wiki/schnitzel
https://en.wiktionary.org/wiki/müsli
https://en.wiktionary.org/wiki/downloaden
https://en.wiktionary.org/wiki/Limerick
https://en.wiktionary.org/wiki/happy
https://en.wiktionary.org/wiki/guacamole
https://en.wiktionary.org/wiki/piña_colada
https://en.wiktionary.org/wiki/enchilada
https://en.wiktionary.org/wiki/blockchain
https://en.wiktionary.org/wiki/film
https://en.wiktionary.org/wiki/bróker
https://en.wiktionary.org/wiki/triolet
https://en.wiktionary.org/wiki/moulinette
https://en.wiktionary.org/wiki/arpent
https://en.wiktionary.org/wiki/woofing
https://en.wiktionary.org/wiki/nétiquette
https://en.wiktionary.org/wiki/ragequitter
https://en.wiktionary.org/wiki/beccafico
https://en.wiktionary.org/wiki/DiFiore
https://en.wiktionary.org/wiki/piadine
https://en.wiktionary.org/wiki/George
https://en.wiktionary.org/wiki/Utah
https://en.wiktionary.org/wiki/mister
https://en.wiktionary.org/wiki/Hoppes
https://en.wiktionary.org/wiki/Hoefs
https://en.wiktionary.org/wiki/Barten
https://en.wiktionary.org/wiki/falsificationisme
https://en.wiktionary.org/wiki/nonsens
https://en.wiktionary.org/wiki/webcam
https://en.wiktionary.org/wiki/ombudsman
https://en.wiktionary.org/wiki/smorgasbord 
https://en.wiktionary.org/wiki/fika
https://en.wiktionary.org/wiki/shopping
https://en.wiktionary.org/wiki/coach
https://en.wiktionary.org/wiki/internet
https://en.wiktionary.org/wiki/doner_kebab
https://en.wiktionary.org/wiki/Türk
https://en.wiktionary.org/wiki/Muş
https://en.wiktionary.org/wiki/kok
https://en.wiktionary.org/wiki/server
https://en.wiktionary.org/wiki/sensör


B Results of POS-Based Analysis
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Figure 6: Absolute LLM margin vs. part of speech of minimal pair change for tweet-derived minimal pairs. Blue
represents closed-class items, yellow represents open-class items.
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Figure 7: Absolute LLM margin vs. part of speech of minimal pair change for data derived from transcriptions of
spoken CS. Blue represents closed-class items, yellow represents open-class items.

C Benchmark

Table 4 gives statistics of the ACS benchmark and the data used for its construction. The reported number
of CS tweets and CS sents refers to text with at least one switch point and at least two neighbouring tokens
of each language. The number of minimal pairs (MPs) is after all the further constraints we apply for a
sentence to quality to become a minimal pair (we applied a cap of 1,000).

The minimal pairs we release are planned for testing. For German–English, our processing pipeline is
robust and we have a large corpus of tweets to start from. Hence, we also release validation and training
data for this language pair, although the evaluation framework we use here does not require it. The
German–English training data is from 04/2019–12/2021 and validation data is from 01/2022–06/2022.
The German–English testing data is more recent (from tweets in 07/2022–02/2023).

Codes Language Pair # input tweets # CS tweets # CS sents # MPs # judgments Split

de-en German-English 27,474,736 130,619 113,789 1,000 335 x 3 test
21,434,579 147,513 127,601 1,932 - validation

100,285,504 840,946 713,605 7,501 - train
es-en Spanish-English 10,000,000 149,133 81,582 860 201 x 1 test
da-en Danish-English 1,867,709 28,689 17,627 330 201 x 1 test
fr-en French-English 10,000,000 348,856 234,520 1,000 201 x 1 test
id-en Indonesian-English 10,000,000 826,865 614,049 1,000 201 x 1 test
it-en Italian-English 10,000,000 273,651 161,489 1,000 201 x 1 test
nl-en Dutch-English 10,000,000 390,189 237,692 1,000 201 x 1 test
sv-en Swedish-English 3,263,865 72,618 46,286 760 201 x 1 test
tr-en Turkish-English 10,000,000 149,526 88,672 553 201 x 1 test
tr-de Turkish–German - - - 216 201 x 1 test
zh-en Chinese–English - - - 201 201 x 1 test

Table 4: Summary of the ACS corpus and benchmark.

C.1 Glosses and Translations

(4) a. @USER And I said maybe etwas leiser singer, sonst ruf ich die Polizei
b. @USER And I said maybe a little leiser

quieter
singen,
sing,

sonst
otherwise

ruf
call

ich
I

die
the

Polizei
police

‘@USER And I said maybe sing a little quieter, or I’ll call the police’

(5) a. Would do it myself om inte make var bilmek och nördig med det.
b. Would do it själv om

if
inte
not

make
husband

var
was

bilmek
mechanic

och
and

nördig
nerdy

med
about

det.
it

‘Would do it myself if my husband was not a mechanic and into that stuff’

(6) a. 同学们 会 大概 知道 what they want to do in the future
b. 同学们

Students
会
will

大概
generally

know what they want to do in the future

‘Students generally know what they want to do in the future’
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C.2 Danish–English

(7) a. i am begging en eller anden få et crush på mig
b. i am tigger en eller anden få et crush på mig

(8) a. the way jeg var mere excited over at være på skolen hvor de filmede pagten end rent […]
b. the way jeg var more excited over at være på skolen hvor de filmede pagten end rent […]

(9) a. Men han har også a way with the ladies.
b. Men han har også en way with the ladies.

C.3 Spanish–English

(10) a. si mi prima también walk around central park
b. si mi prima también camina around central park

(11) a. I pranked myself sintiéndome culpable por ti, cuando realmente eras tu el cdv
b. I pranked myself feeling culpable por ti, cuando realmente eras tu el cdv

(12) a. @USER Amor, talk to him y establece acuerdos: ((
b. @USER Amor, talk to él y establece acuerdos: ((  

C.4 German–English

(13) a. müsste vorher noch bissl wachsen lassen wegen undercut but i wanna try it
b. müsste vorher noch bissl wachsen lassen because of undercut but i wanna try it

(14) a. wenn jmd beleidigt dann direkt no friendship, thats a obvious for me
b. wenn jmd beleidigt dann directly no friendship, thats a obvious for me

(15) a. at this point I’m convinced here gibts nur weirdos
b. at this point I’m convinced hier gibts nur weirdos

C.5 Italian–English

(16) a. e tbh I would be pissed anche se uno fosse più bravo di me in qualcosa che faccio da […]
b. e tbh I would be pissed too se uno fosse più bravo di me in qualcosa che faccio da […]

(17) a. […]sola in un fosso smatto veramente e Non Ironicamente mi do upset in the worst way
b. […]sola in un fosso smatto veramente e Non Ironicamente mi rende upset in the worst way

(18) a. […]che non ti caga proprio perché tu non vedresti l’ ora di litigarci per far show #gfvip
b. […]che non ti caga proprio perché tu non vedresti l’ ora di litigarci per farti vedere show #gfvip
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C.6 Dutch–English

(19) a. Wat mooi: een héél concreet voorbeeld van exploring the potential of nature to improve […]
b. Wat mooi: een héél concreet voorbeeld van het verkennen the potential of nature to improve […]

(20) a. lotte is shook omdat ik nog nooit divergent gezien heb lol
b. lotte is erg geschokt omdat ik nog nooit divergent gezien heb lol

(21) a. Maar echt, als dit serieus is, go see ein Herr Doctor!
b. Maar echt, als dit serieus is, go see a Herr Doctor!

C.7 Swedish–English

(22) a. att han pops up in my mind randomly skrämmer mig, sluta ockupera mina tankar tack
b. att han dyker up in my mind randomly skrämmer mig, sluta ockupera mina tankar tack

(23) a. Mindre pladder och mer implicit story hade passat mig bättre - det är inte min favoritgenre.
b. Mindre pladder och more implicit story hade passat mig bättre - det är inte min favoritgenre.

(24) a. Would do it myself om inte make var bilmek och nördig med det.
b. Would do it själv om inte make var bilmek och nördig med det.

C.8 French–English

(25) a. on my road to la deuxième dose alors que je suis déjà épuisée
b. on my road vers la deuxième dose alors que je suis déjà épuisée

(26) a. Watch us revenir comme des queens dans notre château
b. Watch us come back comme des queens dans notre château

(27) a. still accurate mais je me contrôle mieux
b. still précis mais je me contrôle mieux

C.9 Indonesian–English

(28) a. I shopping luar sbb nk compare dgn harga dlm shopee
b. I belanja luar sbb nk compare dgn harga dlm shopee

(29) a. @USER @USER Bismillah, semoga mama sponsor get fast recover dan kembali sehat, aamiin
b. @USER @USER Bismillah, semoga mama sponsor get fast sembuh dan kembali sehat, aamiin

(30) a. Sebab nya, asal aku lapor or craving something mesti notification dia pop up!
b. Sebab nya, asal aku report or craving something mesti notification dia pop up!
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C.10 Turkish–English

(31) a. ben de feel the festival getting closer ama katılamiyo olmak cigerimi yakiyo
b. ben de hissediyorum the festival getting closer ama katılamiyo olmak cigerimi yakiyo

(32) a. Her zaman derim better deserves better
b. Her zaman derim daha iyi deserves better

(33) a. […]bu kadar insanın willingly kendini kandırma sebebi feels good and keeps you sane olması da
b. […]bu kadar insanın willingly kendini kandırma sebebi feels good and keeps you akıllı olması da

C.11 Turkish–German

(34) a. Er ist gestorben iki üç ay önce öldü.
b. Er ist gestorben zwei ay önce öldü.

(35) a. İngilizce öyle fazla da konuşmadım irgendwie in dem Bachelor und ich habe eben das Gefühl
sanki böyle unuttum gibime geliyor.

b. İngilizce öyle fazla da konuşmadım bir şekilde in dem Bachelor und ich habe eben das Gefühl
sanki böyle unuttum gibime geliyor.

(36) a. In dem Winter ist eben so bir kazağı üç kere giyinebiliyorsun bevor du es waschen musst.
b. In dem Winter ist eben so bir kazağı üç kere anziehen bevor du es waschen musst.

C.12 Chinese–English

(37) a. i think 他们在当时 shouldn’t have made empty promises to 安抚我的心
b. i think 他们在当时 shouldn’t have made empty promises to reassure我的心

(38) a. 本来还以为 i was getting used to it until 我在考试期间搬回家的时候 found that my sleep […]
b. 本来还以为 i was getting used to it 直到我在考试期间搬回家的时候 found that my sleep […]

(39) a. 如果你就比如说呃做些好事啊或者说你及时的 pay in 你的你的 tax 啊或者什么的你的 credit rate
会增加

b. 如果你就比如说呃做些好事啊或者说你及时的缴纳 in 你的你的 tax 啊或者什么的你的 credit rate
会增加
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C.13 German–English Disagreement with the Gold Standard
In the following minimal pairs all three human participants selected sentence b, preferring the manipulated
sentence over the observed CS sentence.

(40) a. Nein, so einfach lasse ich die Politischen Powers that were da nicht entkommen.
b. Nein, so einfach lasse ich die Politischen Powers that were there nicht entkommen.

(41) a. Ihr linken werdet auf dem Altar der wokeness due nächsten Wahlen opfern.
b. Ihr linken werdet auf dem Altar der wokeness die nächsten Wahlen opfern.

(42) a. […]und dann suddenly is februar and i still haven’t planed anything
b. […]und dann plötzlich is februar and i still haven’t planed anything

(43) a. I mean better als alle anderen Optionen
b. I mean besser als alle anderen Optionen

(44) a. Ranking the people im Wartezimmer von 1-10 on how wahrscheinlich es wäre für me to win in a
fight.

b. Ranking the people im Wartezimmer von 1-10 on how likely es wäre für me to win in a fight.

(45) a. ‘Leider’ hat der von Mir gewuenschte Artist, der auch in der Vergangenheit Coverart fuer mich
gemacht hat, seine Commissions closed da er vom Freelancer zum Full Employment aufgestiegen
is

b. ‘Leider’ hat der von Mir gewuenschte Artist, der auch in der Vergangenheit Coverart fuer mich
gemacht hat, seine Commissions geschlossen da er vom Freelancer zum Full Employment
aufgestiegen is

(46) a. Das macht mich wütend and I dunno why
b. Das macht mich angry and I dunno why

(47) a. I be kurz vor a relationship then get an ick sodass Icj die Person nicht mehr ansehen kann
b. I bin kurz vor a relationship then get an ick sodass Icj die Person nicht mehr ansehen kann

(48) a. ist bisschen unnötig but I enjoy drama so.
b. ist bisschen unnecessary but I enjoy drama so.

(49) a. I would cheat sofort für und mit euch.
b. I would cheat immediately für und mit euch.

(50) a. I am once again asking inwiefern das Konzept FLINTA irgendeinen Sinn ergibt.
b. I am once again asking how das Konzept FLINTA irgendeinen Sinn ergibt.

(51) a. @USER @USER find das jetzt aber not so heavy und it helps a lot with Hautbild
b. @USER @USER find das jetzt aber nicht so heavy und it helps a lot with Hautbild

(52) a. I get the Innenleben und du den crunchy part
b. I get the Innenleben und du den knusprigen part
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(53) a. Daraus it’s wahrscheinlich eine große Skepsis gegenüber Normen die im westlichen Länder formuliert
würden.

b. Daraus it’s probably eine große Skepsis gegenüber Normen die im westlichen Länder formuliert
würden.

(54) a. But not because of the schwachsinnigen “menschgemachten” Klimawandel and also not because
of the bescheuerte angebliche Pandemie, but because of the really very gefährliche sogenannte
‘Impfung’!!!

b. But not because of the schwachsinnigen “menschgemachten” Klimawandel and also not because
of the bescheuerte angebliche Pandemie, but because of the really very dangerous sogenannte
‘Impfung’!!!

(55) a. i miss you just und ich hab mich gerade in den nächsten jahren in der schule […]
b. i miss you gerade und ich hab mich gerade in den nächsten jahren in der schule […]

(56) a. (und hab probably adhd/autism but thats not the point)
b. (und hab wahrscheinlich adhd/autism but thats not the point)

(57) a. […]also i believe i can fahr sozusagen #haltdiefressejudithholofernes
b. […]also i believe i can drive sozusagen #haltdiefressejudithholofernes

(58) a. because of Hallux Valgus OP and irgendwas with Schräubchen and Plättchen and Arthrose and a
little bit of komplizierte Geschichte

b. because of Hallux Valgus OP and irgendwas with Schräubchen and Plättchen and Arthrose and a
little bit of complicated Geschichte

(59) a. @USER @USER I wanna see the gekauft Zeichen
b. @USER @USER I wanna see the purchased Zeichen

(60) a. wenigstens weiß ich jetzt, dass mein eyeliner actually wasserfest ist i guess
b. wenigstens weiß ich jetzt, dass mein eyeliner tatsächlich wasserfest ist i guess

(61) a. i spoke to my dad and he said he might überweisen meine schwester sum for me so she can
gimme it

b. i spoke to my dad and he said he might transfer meine schwester sum for me so she can
gimme it
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D Llama-3 Model Performance
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Figure 8: Llama-3 model performance. Horizontal light blue lines represent the accuracy achieved by our partici-
pants.

18596



E Numerical Results

0.6M 1.1B 1.7B 3B 7.1B 176B

da-en 54.2 58.2 57.3 62.7 60.9 67.3
de-en 54.6 54.4 57.5 58.8 61.2 64.2
es-en 61.2 59.4 65.5 65.9 68.3 72.3
fr-en 65.1 65.6 67.8 68.7 71.0 72.6
id-en 63.7 64.3 64.8 66.7 69.3 75.1
it-en 56.0 55.3 57.3 60.4 61.1 64.7
nl-en 57.2 59.6 59.4 59.4 62.0 65.1
sv-en 60.3 61.7 62.5 62.4 62.8 64.6
tr-de 54.6 53.7 56.9 58.8 57.9 60.6
tr-en 50.5 53.9 54.6 55.7 56.1 58.8
zh-en 59.7 67.2 62.7 65.7 73.1 67.2

Table 5: Numerical results for the BLOOM LLM family.

0.5B 1.5B 3B 7B 14B 32B 72B

da-en 64.5 66.7 66.4 68.5 71.8 70.6 69.7
de-en 58.8 63.6 63.9 66.1 66.6 66.0 67.4
es-en 59.8 64.3 65.2 66.2 68.6 70.6 71.0
fr-en 62.0 64.3 66.9 68.6 71.1 71.2 71.9
id-en 61.2 64.2 68.1 70.4 71.7 70.4 74.6
it-en 60.0 64.5 64.8 68.3 68.6 71.4 72.0
nl-en 62.0 64.8 66.2 68.5 69.0 68.8 70.5
sv-en 63.7 64.1 65.1 66.1 69.3 68.6 71.4
tr-de 60.6 63.0 63.4 66.7 72.2 68.1 70.8
tr-en 56.2 60.2 60.9 62.4 64.0 64.6 69.1
zh-en 64.7 67.2 67.7 70.1 66.7 70.6 71.1

Table 6: Numerical results for the Qwen2.5 LLM family.

1B 3B 8B 70B 405B

da-en 66.7 69.4 71.8 74.2 74.5
de-en 62.9 66.6 68.3 73.2 74.8
es-en 64.1 66.9 69.1 73.0 75.9
fr-en 63.0 65.6 69.0 72.3 75.4
id-en 63.7 68.1 72.8 77.8 79.7
it-en 65.1 69.4 70.3 73.9 75.5
nl-en 64.1 69.4 69.5 73.9 75.6
sv-en 64.6 67.1 72.0 75.0 76.2
tr-de 61.6 61.6 68.5 75.0 77.3
tr-en 60.9 63.8 66.4 70.9 74.3
zh-en 66.2 65.7 71.1 70.6 67.7

Table 7: Numerical results for the Llama-3 LLM family.
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7B 13B

da-en 68.2 70.6
de-en 66.3 67.2
es-en 63.7 66.2
fr-en 66.3 66.6
id-en 69.5 70.1
it-en 66.2 64.9
nl-en 65.1 65.8
sv-en 67.1 66.8
tr-de 65.3 72.2
tr-en 59.7 61.3
zh-en 68.7 65.2

Table 8: Numerical results for the OLMo LLM family.

1.7B 9B

da-en 69.1 72.4
de-en 62.4 68.6
es-en 62.9 65.7
fr-en 64.5 68.1
id-en 57.7 59.4
it-en 64.6 70.4
nl-en 66.2 71.4
sv-en 66.4 69.2
tr-de 64.4 70.8
tr-en 60.4 67.6
zh-en 64.2 63.2

Table 9: Numerical results for the EuroLLM family.

base large

da-en 69.7 73.6
de-en 63.7 68.5
es-en 60.8 61.7
fr-en 60.8 64.5
id-en 71.4 75.6
it-en 61.5 67.0
nl-en 66.1 70.4
sv-en 70.1 73.6
tr-de 63.9 66.2
tr-en 60.4 64.9
zh-en 61.7 59.7

Table 10: Numerical results for the XLM-RoBERTa LLM family.
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