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Abstract

Data diversity is crucial for the instruction tun-
ing of large language models. Existing stud-
ies have explored various diversity-aware data
selection methods to construct high-quality
datasets and enhance model performance. How-
ever, the fundamental problem of precisely
defining and measuring data diversity remains
underexplored, limiting clear guidance for data
engineering. To address this, we systemati-
cally analyze 11 existing diversity measure-
ment methods by evaluating their correlation
with model performance through extensive fine-
tuning experiments. Our results indicate that a
reliable diversity measure should properly ac-
count for both inter-sample differences and the
information density in the sample space. Build-
ing on this, we propose NovelSum, a new di-
versity metric based on sample-level "novelty."
Experiments on both simulated and real-world
data show that NovelSum accurately captures
diversity variations and achieves a 0.97 correla-
tion with instruction-tuned model performance,
highlighting its value in guiding data engineer-
ing practices. With NovelSum as an optimiza-
tion objective, we further develop a greedy,
diversity-oriented data selection strategy that
outperforms existing approaches, validating
both the effectiveness and practical significance
of our metric. The code is available at https:
//github.com/UmeanNever/NovelSum.

1 Introduction

Instruction tuning (IT) fine-tunes pretrained large
language models (LLMs) with annotated instruc-
tion data, enabling them to follow human instruc-
tions and perform various tasks effectively (Sanh
et al., 2022; Zhang et al., 2023). Recent studies
indicate that small-scale, high-quality datasets can
outperform larger ones in IT performance (Chen
et al., 2023a; Zhou et al., 2024), with data diver-
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Figure 1: Our diversity metric, NovelSum, exhibits su-
perior correlation with model performance compared
to existing metrics across IT datasets constructed with
various data selection strategies.

sity playing a crucial role in achieving optimal re-
sults (Liu et al., 2023; Bukharin et al., 2024; Zhang
et al., 2024a; Yang et al., 2025). Consequently, var-
ious diversity-aware data selection methods have
emerged (Qin et al., 2024; Wang et al., 2024a),
driven by different interpretations of data diversity.

However, the fundamental problem of precisely
defining and measuring data diversity remains un-
derexplored. This ambiguity has turned data en-
gineering for diversity into a black-box process,
leading to data selection methods that often fail
to generalize and, at times, perform worse than
random selection (Xia et al., 2024; Diddee and Ip-
polito, 2024). While some diversity metrics have
been introduced in IT research (Bukharin et al.,
2024; Wang et al., 2024b), a comprehensive evalu-
ation and comparative analysis are still needed to
identify a reliable metric that strongly correlates
with fine-tuning performance in practice.

To this end, we systematically analyze and eval-
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uate the reliability of 11 existing diversity met-
rics through extensive experiments. Using various
mainstream diversity-oriented data selection meth-
ods, we construct 53 IT datasets and fine-tune mod-
els accordingly. We then measure dataset diversity
using existing metrics and assess their correlation
with model performance. By analyzing the limited
correlation of existing metrics, we find that: (1)
A reliable diversity metric must capture differ-
ences between samples to reflect each sample’s
information uniqueness. Moreover, differences be-
tween neighboring samples are more critical for
overall diversity but can be overshadowed by vari-
ations in distant samples. (2) Measuring differ-
ences between samples should account for both
semantic similarity and the uneven distribution
of information in space. In high-density domains
like math and code, semantically similar samples
can still contain substantial unique information and
should therefore be considered more diverse.

Building on these insights, we propose Novel-
Sum, a diversity metric that jointly considers inter-
sample differences and uneven information den-
sity. Specifically, we define dataset diversity as
the sum of each sample’s unique contribution to
overall information, termed "novelty". Just as a
research paper’s novelty is judged by its distinction
from related work based on field-specific standards,
we compute a sample’s novelty as the proximity-
weighted sum of its differences from other samples
in the dataset. These differences are measured us-
ing density-aware distances, which capture both
semantics and local information density.

To validate the effectiveness of NovelSum, we
conduct both a visualized simulation study and real-
world correlation experiments using two different
LLMs. The results show that NovelSum accurately
captures diversity variations and strongly correlates
with instruction-tuned model performance, achiev-
ing Pearson’s 7 = 0.98 and Spearman’s » = 0.95,
outperforming other metrics. This demonstrates
NovelSum’s potential to effectively guide data engi-
neering practices. Furthermore, we develop Novel-
Select, a greedy, diversity-oriented data selection
strategy that uses NovelSum as the optimization
objective. Experimental results confirm its superior
performance compared to other approaches.

Our main contributions are three-fold:
* We systematically analyze and evaluate the

reliability of existing diversity metrics for in-
struction tuning by computing their correla-

tion with model performance, thereby unveil-
ing pathways to a more reliable metric.

* We propose NovelSum, a diversity metric that
captures both inter-sample differences and in-
formation density, achieving a strong correla-
tion with instruction-tuning performance, sub-
stantially exceeding previous metrics.

* We develop NovelSelect, a diversity-oriented
data selection strategy based on NovelSum,
which outperforms existing methods and fur-
ther validates NovelSum’s effectiveness and
practical value in instruction tuning.

2 Evaluating Existing Diveristy Metrics

We begin by evaluating the correlation between ex-
isting diversity metrics and instruction-tuned model
performance, identifying limitations to inform the
design of a more reliable metric.

Our evaluation follows four steps: (1) Construct
multiple IT datasets, each denoted as X'(%), using
different data selection strategies from the full data
source X!, (2) Measure dataset diversity using ex-
isting metrics, denoted as M (X (3)). (3) Fine-tune
LLMs on each dataset and evaluate their perfor-
mance, 73(5), using IT benchmarks. (4) Analyze
the correlation between each diversity metric and
model performance, denoted as 74, p.

2.1 Existing Diversity Metrics

We use 11 existing diveristy metrics for the analy-
sis, categoried into three main types:

Lexical Diversity A classical way to measure
textual diversity is by analyzing vocabulary usage,
where a higher proportion of unique words indi-
cates greater diversity. Two widely used metrics
are the Type-Token Ratio (TTR) (Richards, 1987)
and vocd-D (Malvern et al., 2004), with details in
the Appendix A.2.

Distance-based Semantic Diversity Recent
studies primarily measure dataset diversity based
on the semantics of individual samples, often repre-
sented as embeddings emb(-) from language mod-
els like BERT. A common approach quantifies di-
versity by computing distances between samples
using their embeddings, encouraging heterogene-
ity. For example, a straightforward metric sums the
pairwise distances among all samples in a dataset:

> Alwizg), (1)
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MDistSum(X) =
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where A(-, -) denotes the distances between two
samples. Specifically, DistSum_,;,. uses cosine
distance and DistSum , uses Euclidean distance.
Beyond simple summation, more refined metrics
are proposed. The KNN distance (Stasaski et al.,
2020; Stasaski and Hearst, 2022) measures the aver-
age distance of each sample to its k-nearest neigh-
bor, ensuring sample uniqueness:

|X]
1
Mgnn(X) = 5] ZA(iﬁi,Nk(xi)), (2
i1

where Ni(z;) denotes the k-th closest neighbor of
x;, typically with k = 1. We also compute Clus-
ter Inertia (Du and Black, 2019), Vendi Score
(Pasarkar and Dieng, 2023), Radius (Lai et al.,
2020) and Log Determinant Distance (LDD)
(Wang et al., 2024b); see Appendix A.2 for details.

Distribution-based Semantic Diversity An-
other notable class of metrics measures diversity
from a distributional perspective, assessing how
well a selected dataset X' represents the overall
sample (semantic) space of X% One example
is the Facility Location (FL) function (Farahani
and Hekmatfar, 2009), which defines a dataset as
diverse if each sample in X* has a close represen-
tative in X', ensuring thorough coverage of space:

Mpr(X)= > min Az, z;) ()

:BjEXa”

Another feasible metric, Partition Entropy, cap-
tures how evenly the selected dataset spans the
sample space. It partitions X% into K clusters
using K-means and calculates the entropy of the
cluster membership distribution of X’

K
MEntropy(X) = - Zpk 10gpk7 (4)
k=1

where py, is the proportion of selected samples in
cluster k. Higher entropy indicates greater distribu-
tional uncertainty and a more balanced dataset.

2.2 IT Dataset Construction and Benchmark

Focusing on general IT, we follow Liu et al., 2023
to construct our IT data source by combining Wiz-
ardLM (Xu et al., 2024), ShareGPT (Chiang et al.,
2023), and UltraChat (Ding et al., 2023), denoted
as X! We extract embeddings for each sample in
X See Appendix A.1 for preprocessing details.

We then apply several representative diversity-
aware data selection strategies to curate IT datasets,

yielding subsets X(*) ¢ X% To minimize the
influence of factors beyond diversity, we control
for sample quality differences across datasets by
removing anomalous source samples and excluding
any data quality filters during selection. We also fix
the dataset size at 10,000 samples. The strategies
used are: K-Center-Greedy (Sener and Savarese,
2017; Du et al., 2023; Wu et al., 2023), which iter-
atively selects the sample farthest from the current
coreset; Repr Filter (Liu et al., 2023), which im-
proves M gy by applying a minimum distance
threshold when adding samples into the coreset;
QDIT (Bukharin et al., 2024), which optimizes
diversity by serially selecting the data point that
maximizes My ; K-means (Song et al., 2024; Ge
et al., 2024), which partitions samples into clusters
and evenly select samples from each; and baselines,
including Random selection and Farthest, which
ranks samples by their total distances to others and
selects the most distant ones. Additionally, we con-
struct datasets with varying amounts of Duplicate
samples to simulate low-diversity datasets. Each
strategy is run at least three times to ensure robust-
ness, yielding 53 IT datasets. Details on dataset
construction are provided in Appendix A.3.

We fine-tune LLaMA-3-8B (Dubey et al., 2024)
on these datasets and evaluate model performance
using two popular IT benchmarks: MT-bench
(Zheng et al., 2023) and AlpacaEval (Li et al.,
2023). See Appendix A.4 for details and ratio-
nale of the benchmarks. To jointly consider both
benchmarks, we normalize the results into Z-scores
and compute the aggregated performance as

P(S) = Z](\f[)T—bench + ZSZLGCGEUGZ )

2.3 Correlation Analysis

Finally, we compute the correlation between each
diversity metric M, and model performance P by
averaging their Pearson and Spearman coefficients:

e, P = (P 4+ SRR 2 (6)
Since our experiments minimize confounding fac-
tors, variations in model performance can be more
directly attributed to differences in IT dataset di-
versity. Thus, the correlation 74, p indicates how
reliably each metric captures "IT-aligned Diver-
sity"!—the type of data diversity beneficial for in-
struction tuning LLMs.

'Unless otherwise specified, the term "diversity" in this
paper generally refers to "IT-aligned Diversity."
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Figure 2: Evaluating existing diversity metrics based on their correlation (Eq. 6) with IT performance (Eq. 5). The
X-axis represents diversity measurements. Each point corresponds to a 10k IT dataset constructed using different
strategies. Abnormal points highlight the limitations of current metrics and inspire the development of new ones.

The results are shown in Figure 2, with sup-
plementary plots in Appendix E.4. Overall, we
observe that each metric tends to favor datasets
aligned with its own selection criterion, but may
not correlate strongly with performance due to over-
looking other aspects of diversity:

Findings 1 Lexical diversity metrics fail to dis-
tinguish between different samples and datasets,
showing weak correlation with model performance.
As shown in Figure 2(a, b), high- and low-
performance datasets exhibit similar lexical diver-
sity. This likely results from the widespread use of
diverse vocabulary in IT samples, making lexical
diversity an ineffective measure for I'T datasets.

Findings 2  Since distribution-based semantic di-
versity metrics neglect sample uniqueness, they of-
ten underestimate the diversity of datasets with
large inter-sample distances.

From Figure 2(c, d), we observe that datasets
selected by Farthest and K-Center-Greedy (purple
and blue points) achieve high IT performance but
often receive relatively lower diversity scores from
distribution-based diversity metrics, thus weaken-
ing their correlation with model performance. This
likely occurs because these strategies all priori-
tize sample uniqueness by selecting samples that
are distant from others, a factor not captured by
distribution-based metrics. This suggests that over-

looking sample uniqueness diminishes the reliabil-
ity of diversity metrics.

Findings 3 As distance-based semantic diversity
metrics neglect information density in semantic
space, they often underestimates datasets that are
close to the overall sample distribution and overes-
timates datasets with large inter-sample distances.

From Figure 2(e, f, g, h), we observe common
outliers in the fitting line for datasets selected by
QDIT and K-means (orange and green points),
which receive low diversity scores despite strong
performance according to distance-based diversity
metrics. In contrast, K-Center-Greedy and Repr
Filter (blue and red points) show the opposite trend,
weakening the metrics’ correlation with the model
performance. This is likely because the former two
strategies select more samples from dense seman-
tic regions, which better cover the overall sample
distribution but conflicts with distance-based di-
versity calculations. This suggests that ignoring
information density in semantic space reduces the
reliability of diversity metrics.

Findings 4 Distance-based metrics often fail to
accurately measure diversity in datasets containing
redundant samples.

As shown by the duplicated datasets (gray
points) in Figure 2(e, f, g, h), DistSum fails to cap-
ture redundancy effectively, as total distances are
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dominated by variations in distant samples. Mean-
while, other metrics, such as KNN Distance, overly
penalize redundant samples by nullifying their con-
tribution to overall diversity.

3 Proposed Metric: NovelSum

Extending previous findings, we derive some in-
sights on how to design a more reliable metric: (1)
The uniqueness of individual samples should be
a key factor in measuring dataset diversity. This
uniqueness stems from sufficient inter-sample dis-
tances, providing diverse information that helps the
model learn more generalized patterns. (2) When
quantifying a sample’s uniqueness, its distance
to nearby and distant samples should be bal-
anced. Differences with nearby samples define
uniqueness and should hold greater importance,
with weights assigned smoothly. (3) When calcu-
lating inter-sample distances, both semantic dif-
ferences and local information density should be
considered. In practical applications of instruction
fine-tuning, semantic space varies in information
density, with scenarios like math and code having
denser data and information. Focusing only on
semantics overlooks valuable fine-grained informa-
tion for the model.

Following these principles, we introduce Nov-
elSum, a diversity metric that jointly considers
distance and distribution. Specifically, we de-
fine dataset diversity as the sum of each sample’s
uniqueness—its unique contribution to overall in-
formation, which we later term "novelty":

MNovelSum(X) = Z ’U(.’El) (7)

T, EX

Figure 3 and the following paragraphs illustrate
how each sample’s novelty is computed.

Proximity-Weighted Sum In contrast to Dist-
Sum (Eq. 1), which calculates a sample’s unique-
ness as a simple sum of distances to other points,
we propose a proximity-weighted sum that assigns
higher weights to closer points, giving them a larger
influence on the uniqueness score:

v(x;) = Z

T, €EX, xi#x;

w(x, ;)" - Alxg, z5), (8)

where the proximity weight is defined as:
w(wi, z;) = ¢(mi(5))

Here, 7;(j) is the rank of z; in the sorted list of
distances from x; to all other points in X, with

Proximity-Weighted Sum Density-Aware Distance
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Figure 3: NovelSum computes each sample’s novelty as
a proximity-weighted sum of its density-aware distances
to other samples, where closer points have greater influ-
ence and high-density regions produce larger distances.

7i(j) = 1 indicating that x; is the nearest neigh-
bor of ;. The function ¢(-) is monotonically de-
creasing, smoothing the weights according to the
proximity, for example, we set ¢(m;(j)) = #(j)
The hyperparameter o controls the degree to which
proximity impacts the uniqueness score.

Density-Aware Distance To account for the lo-
cal information density when calculating A(z;, ;),
we introduce a density-aware distance that multi-
plies the original semantic distance by a density
factor o (z;):

Az, x4) = o(x;)? - d(xy, 25) )

Since the probabilistic density of the overall sam-
ple distribution is intractable, we approximate the
density factor by the inverse of the average distance

to the K -nearest neighbors of z; in X all,

1
SR d(xj, Ne(a))

Here, d(-,-) represents the distance between the
embeddings of samples (e.g., cosine distance), and
N (z) denotes the k-th nearest neighbor of x. The
hyperparameter (3 controls the extent to which den-
sity influences the distance. The reference dataset
X can be replaced to estimate information den-
sity under different sample distributions.

This approach mirrors how novelty is assessed in
academic papers: a paper’s novelty lies in its differ-
ence from closely related work, measured within
the context of its field for greater accuracy. Accord-
ingly, we treat each sample’s quantified uniqueness
as its "novelty" and name our method "NovelSum."
Appendix E.3 provides a theoretical interpretation,
while Appendix C analyzes the computational com-
plexity and underscores NovelSum’s efficiency.

o(x;)
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Figure 4: Simulating different data selection scenarios in a 2D sample space: Selection A represents datasets with
redundancy, Selection B optimizes inter-sample distances, and Selection C accounts for both distances and density,
which prior analysis suggests yields the highest diversity for instruction tuning.
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Figure 5: Measuring the diversity of simulated selection
A/B/C with various metrics. NovelSum accurately cap-
tures dataset diversity, exhibiting expected behaviors.

4 Simulation Study

To validate whether the proposed metric aligns
with our design principles and accurately captures
dataset diversity, we create a visualizable simula-
tion environment. We generate 150 points in 2D
space as the data source and select 20 samples to
form a dataset, simulating the data selection pro-
cess for instruction tuning. As shown in Figure 4,
we analyze three data selection scenarios to exam-
ine the behavior of our diversity metric. "Selection
A" contains samples from two clusters, with most
points close to each other, simulating datasets with
redundancy. "Selection B", constructed using K-
Center-Greedy, consists of samples far apart, simu-
lating datasets optimized for inter-sample seman-
tic distances. "Selection C" considers both inter-
sample distances and information density, simulat-
ing datasets that best represent the sample space
with unique points. Based on prior analysis, the
dataset diversity of the three selections should fol-
low A < B < C order under the IT scenario.
Figure 5 presents the diversity measurement re-
sults using DistSum, a proximity-weighted ver-
sion of DistSum, and NovelSum. From left to

right, we see that DistSum counterintuitively con-
siders M(A) ~ M(C), failing to reflect sample
uniqueness. Incorporating the proximity-weighted
sum improves uniqueness capture but still exhibits
M(B) > M(C), overlooking information den-
sity. NovelSum resolves these issues, accurately
capturing diversity variations in alignment with
design principles, yielding M(A4) < M(B) <
M(C). This study further validates the necessity
of the proximity-weighted sum and density-aware
distance for precise diversity measurement.

S Experiments

Following the settings in Section 2, we evaluate
NovelSum’s correlation with the fine-tuned model
performance across 53 IT datasets and compare it
with previous diversity metrics. Additionally, we
conduct a correlation analysis using Qwen-2.5-7B
(Yang et al., 2024) as the backbone model, along-
side previous LLaMA-3-8B experiments, to further
demonstrate the metric’s effectiveness across dif-
ferent scenarios. Due to resource constraints, we
run each strategy on Qwen for at least two rounds,
yielding 25 datasets.

5.1 Main Results

NovelSum consistently achieves state-of-the-art
correlation with model performance across var-
ious data selection strategies, backbone LLMs,
and correlation measures. Table 1 presents di-
versity measurement results on datasets constructed
by mainstream data selection methods (based on
X%y random selection from various sources, and
duplicated samples (with only m = 100 unique
samples). Results from multiple runs are averaged
for each strategy. Although these strategies yield
varying performance rankings across base models,
NovelSum consistently tracks changes in model
performance by accurately measuring dataset diver-
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Data Selection Strategies

Metrics

K-means GCenter oy Repr Random Duplicate
y Filter  yall  ShareGPT WizardLM Alpaca  Dolly
LLaMA-3-8B
Model Performance 1.32 1.31 1.25 1.05 1.20 0.83 0.72 0.07 -0.14 -1.35
NovelSum (Ours) 0.693 0.687 0.673 0.671 0.675 0.628 0.591 0.572  0.50 0.461
Vendi Score 197 1.70 2.53 1.59 2.23 1.61 1.70 1.44 1.32 1.44 0.05
DistSumcosine 0.648 0.746 0.629 | 0.703 0.634 0.656 0.578 0.605  0.603 0.634
Facility Loc. g5 2.99 2.73 2.99 2.86 2.99 2.83 2.88 2.83 2.59 2.52
QOwen-2.5-7B
Model Performance 1.06 1.45 1.23 1.35 0.87 0.07 -0.08 -0.38  -0.49 -0.43
NovelSum (Ours) 0.440 0.505 0.403 = 0.495 0.408 0.392 0.349 0336  0.320 0.309
Vendi Score 16 1.60 3.09 2.60 | 7.15 1.41 3.36 2.65 1.89 3.04 0.20
DistSumcosine 0.260 0.440 0.223 | 0421 0.230 0.285 0.211 0.189 0.221 0.243
Facility Loc. g5 3.54 3.42 3.54 3.46 3.54 3.51 3.50 3.50 3.46 3.48

Table 1: Comparison of fine-tuned model performance (Eq. 5) and diversity measurement results across datasets
selected by different strategies. Each row visualizes the relative ranking of metric scores across datasets using
color intensity: darker 'blue’ indicates higher values per row, and darker orange indicates lower values. NovelSum
consistently shows a stronger correlation with model performance than other metrics, even as data selection strategies
vary in performance between LLaMA-3-8B and Qwen-2.5-7B. More results are provided in Appendix E.4.

Diversity Metrics LLaMA Qwen Variants Pearson Spearman Avg.
Pearson Spearman Avg. Avg. NovelSum 0.98 0.95 0.97

TTR -0.38 -0.16 -0.27  -0.30 - Use L2 distance 0.97 0.83 0.90; .08

vocd-D 043 0.17  -030 -031 -K =20 0.98 096 097,000
. - a = 0 (w/o proximity) 0.79 0.31 0.55 0.42

Facility Loc. 0.86 0.69 0.77  0.08 - B = 0 (o density) 0.92 0.89 0.91, 0,07

Entropy 0.93 0.80 0.86 0.63

LDD 0.61 0.75 0.68  0.60 Table 3: Ablation Study for NovelSum.

KNN Distance 0.59 0.80 0.70  0.67

B‘Stjugnwm g'gg g'gz 8'32 8'2 (l) example, Table 1 shows that the combined data

end1 dcore . . . B . . . .

DistSum, 0.86 0.76 081 051 source X% is a better choice for sampling diverse

Cluster Inertia 0.81 0.85 0.83 0.76 IT data than other sources. Moreover, NovelSum

Radius 0.87 081 084 048 can offer insights through comparative analyses,

NovelSum 0.98 0.95 0.97  0.90 such as: (1) ShareGPT, which collects data from

Table 2: Correlations between different metrics and
model performance on LLaMA-3-8B and Qwen-2.5-7B.
“Avg.” denotes the average correlation (Eq. 6).

sity. For instance, K-means achieves the best per-
formance on LLaMA with the highest NovelSum
score, while K-Center-Greedy excels on Qwen,
also correlating with the highest NovelSum. Table
2 shows the correlation coefficients between vari-
ous metrics and fine-tuned model performance for
both LLaMA and Qwen experiments, where Nov-
elSum achieves state-of-the-art correlation across
different models and measures.

NovelSum can provide valuable guidance for
data engineering practices. As a reliable indica-
tor of data diversity, NovelSum can assess diversity
at both the dataset and sample levels, directly guid-
ing data selection and construction decisions. For

real internet users, exhibits greater diversity than
Dolly, which relies on company employees, sug-
gesting that IT samples from diverse sources en-
hance dataset diversity (Wang et al., 2024b); (2)
In LLaMA experiments, random selection can out-
perform some mainstream strategies, aligning with
prior work (Xia et al., 2024; Diddee and Ippolito,
2024), highlighting gaps in current data selection
methods for optimizing diversity.

5.2 Ablation Study

NovelSum comprises several tunable components.
In our main experiments, we use cosine distance
to compute d(z;, z;) in Eq. 9, with hyperparame-
ters settoa = 1, 8 = 0.5, and K = 10 nearest
neighbors in Eq. 8 and Eq. 9. Here, we conduct
an ablation study to investigate the impact of these
settings based on LLaMA-3-8B.

In Table 3, « = 0 removes the proximity
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AlgOl‘ithl’n 1 NovelSelect Strategies MT-bench AlpacaEval | Aggregated P

. Input: Data pool X% data budget n Random 6.13 7547 1.20
.p. X p ’ g Repr Filter 6.17 72.57 1.05

. Initialize an empty dataset, X’ < () QDIT 6.21 75.91 1.25

: while |X| < ndo K-Center-Greedy ~ 6.33 7530 1.31
K-means 6.33 75.46 132

" 4— arg max, you v(x) means

NovelSelect 6.47 78.07 1.55

Xall . Xzzll \ {xnew}
: end while

1

2

3

4:

5: X «— XU {a"v}
6

7

8: return X’

weights, and 8 = 0 eliminates the density multi-
plier. We observe that both « = 0 and 5 = 0 signif-
icantly weaken the correlation, validating the ben-
efits of the proximity-weighted sum and density-
aware distance. Replacing cosine distance with
Euclidean distance and using more neighbors for
density approximation have minimal impact, partic-
ularly on Pearson’s correlation, highlighting Nov-
elSum’s robustness to different distance measures.
Additionally, Appendix E.1 presents an in-depth
analysis of the hyperparameters, demonstrating the
reliability of our current configurations and provid-
ing guidance for broader application.

6 Data Selection Strategy

Introducing NovelSelect Given NovelSum’s ac-
curate diversity measurement and strong correla-
tion with model performance, we investigate its
potential as an optimization objective for selecting
samples and generating a diverse dataset:

X = arg maX”MNovelSum(X)7 (10)

XCxa

where M yoversum (X)) is defined in Eq. 7. Since
directly solving Eq. 10 is NP-hard (Cook et al.,
1994), we propose a greedy approach that itera-
tively selects the most "novel" sample to maximize
the NovelSum of the final dataset. The "novelty"
of a new sample z relative to an existing set & is
defined as:

v(z) = Z w(z, ;) - o(x;)? - d(zx,z;), (11)

ijX

where w(x, ;) and o (x;) are the proximity weight
and density factor from Eq. 8 and 9. At each step,
the sample with the highest novelty is selected:
" = argmaxg v(z), X < 2" U X. This
process is repeated from X = () until the data
budget is reached, resulting in the selected dataset.
We refer to this approach as NovelSelect.

Table 4: Comparisons of different diversity-oriented
data selection strategies on IT performance. P aggre-
gates the performance based on Z-scores (Eq. 5).

Algorithm 1 outlines the overall process. No-
tably, NovelSelect is as computationally efficient
as existing approaches, with a detailed analysis
provided in Appendix C. Furthermore, by incor-
porating quality scores into v(x), NovelSelect can
seamlessly integrate with quality-based data selec-
tion methods, highlighting its extensibility.

Data Selection Experiments We conduct addi-
tional data selection experiments on LLaMA-3-8B
to evaluate NovelSelect’s performance. Following
prior settings, we use NovelSelect to select 10k sam-
ples from X! and assess the fine-tuned model’s
performance on MT-bench and AlpacaEval. Re-
sults are averaged over three runs.

From Table 4, NovelSelect outperforms exist-
ing diversity-oriented data selection strategies on
both benchmarks, demonstrating superior IT per-
formance. This aligns with the higher NovelSum
scores achieved by NovelSelect (Figure 1), further
validating NovelSum’s effectiveness and practical
value in IT data engineering.

7 Discussion

From General IT to Downstream Tasks Our
study focuses on general instruction tuning, with
training and evaluation covering a wide range of
downstream tasks, thereby offering insights ap-
plicable to broader real-world scenarios. At the
same time, extending performance-aligned diver-
sity measurement to specific domains—such as
math or code—is also valuable and may warrant
dedicated investigation. A promising approach is
to adapt NovelSum by simply replacing the gen-
eral dataset X! used in density estimation with
domain-specific data sources. We hope our work
lays a solid foundation for future research in this
direction.

Impact of Embedding Extractor Different em-
bedding extractors may yield different sample dis-
tributions in the semantic space, potentially affect-
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ing diversity computations. In our study, we use
LLaMA-3-8B to compute embeddings for experi-
ments based on LLaMA-3-8B, and Qwen-2.5-7B
for those based on Qwen-2.5-7B (see Appendix A.1
for embedding details). This setup is motivated by
an interesting observation: extracting embeddings
using the same model as the fine-tuning backbone
yields metrics with the highest correlation to in-
struction tuning performance. The corresponding
experiment is described in detail in Appendix E.2.

8 Related Work

Measuring Dataset Diversity Dataset diversity
is essential for training generalizable machine
learning models, drawing significant research in-
terest (Yu et al., 2022; Sun et al., 2024; Zhang
et al., 2024b; Zhao et al., 2024a; Qin et al., 2024).
In NLP, numerous lexical diversity metrics have
been proposed to measure text diversity through
vocabulary usage (Richards, 1987; Malvern et al.,
2004). Recently, semantic embeddings have en-
abled more flexible diversity measurement from
distance (Stasaski and Hearst, 2022; Du and Black,
2019; Dang and Verma, 2024) or distribution per-
spectives (Shao et al., 2024). Focusing on instruc-
tion tuning, while some studies have explored the
assessment of IT data diversity (Wang et al., 2024b;
Bukharin et al., 2024), the proposed metrics lack
sufficient validation of their correlation with IT per-
formance; thus, reliable metrics for guiding data
engineering remain underexplored.

Data Selection for Instruction Tuning Instruc-
tion tuning trains LL.Ms to follow human instruc-
tions using instruction-response pairs (Zhang et al.,
2023). While earlier work focused on large-scale
IT datasets (Longpre et al., 2023; Chiang et al.,
2023), recent studies show that small, high-quality
data sets can reduce costs and improve performance
(Chen et al., 2023a,b; Zhou et al., 2024; Dou et al.,
2024; Ye et al., 2024). This has led to the develop-
ment of data selection strategies to identify subsets
that boost IT performance (Liu et al., 2023; Du
et al., 2023; Wu et al., 2023; Song et al., 2024;
Ge et al., 2024; Kung et al., 2023; Yang et al.,
2025). However, the lack of clear definitions and
reliable diversity metrics for IT datasets hinders
effective optimization. Consequently, some selec-
tion methods fail to generalize or perform worse
than random selection (Xia et al., 2024; Diddee and
Ippolito, 2024). Our work seeks to provide a more
reliable diversity metric, based on comprehensive

analysis, that accurately reflects the diversity of IT
datasets and their instruction tuning performance.

9 Conclusion

In this paper, we investigate the fundamental prob-
lem of precisely measuring dataset diversity for in-
struction tuning and propose NovelSum, a reliable
diversity metric that correlates well with model per-
formance. Inspired by our systematic analysis of
existing diversity metrics, NovelSum jointly consid-
ers inter-sample distances and information density
to effectively capture dataset diversity, achieving
superior correlations with model performance com-
pared to previous metrics. Based on NovelSum, We
further develop a data selection strategy, NovelSe-
lect, whose remarkable performance validates the
practical significance of NovelSum.

Limitations

Although our work systematically analyzes both
existing and proposed metrics through extensive
fine-tuning experiments, we focus on Qwen-2.5-7B
and LLaMA-3-8B as the backbone LLMs, exclud-
ing larger models and other series due to resource
constraints. Moreover, while we strive to employ
comprehensive benchmarks to evaluate instruction
tuning performance, the test data may still fall short
of fully capturing the diversity of real-world use
cases. As a result, the beneficial effects of data
diversity on model capabilities may be underrepre-
sented in benchmark results. Finally, as previously
noted, diversity measurements on downstream IT
tasks may differ from our analysis in the general
setting, suggesting the need for further study.
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A Details of Correlation Evaluation

A.1 Data Processing and Semantic
Embeddings

We apply basic preprocessing to remove anomalous
samples from the data sources, ensuring more sta-
ble results while preserving generality. In the early
stage of our work, we observe that short samples of-
ten exhibit low quality and tend to be outliers in the
semantic space, potentially distorting experimen-
tal results. To address this, we filter out samples
shorter than 256 tokens using the BERT (Devlin
et al., 2019) tokenizer, ensuring consistency for ex-
periments across different LLMs. Furthermore, to
ensure the dataset’s relevance for English-language
tasks and math problems, we exclude samples with
a non-English-or-number ratio exceeding 0.8.

When computing sample embeddings, we set
the maximum sequence length to 256 to mitigate
bias from varying text lengths. This applies only to
embedding computation; fine-tuning uses a much
larger maximum length. We extract the last hid-
den layer of the language model and apply mean
pooling, excluding padding tokens, to generate ro-
bust sample-level embeddings. We analyze and
discuss the choice of embedding extractors in Ap-
pendix E.2. Based on this analysis, we use LLaMA-
3-8B to compute embeddings in experiments using
LLaMA-3-8B as the fine-tuning backbone. Sim-
ilarly, for experiments using Qwen-2.5-7B as the
fine-tuning backbone, we use Qwen-2.5-7B to com-
pute embeddings.

A.2 Details of Existing Diversity Metrics

For lexical diversity, the Type-Token Ratio (TTR)
quantifies the lexical diversity of a text sequence
x; as the ratio of distinct tokens to the total number
of tokens. The overall lexical diversity of a dataset
X = {x1,x9,...,xN} is computed as the average
TTR across all samples:

Mrrr(X (12)
To mitigate the 1nﬂuence of text length on TTR, we
randomly sample 30 tokens from each data point
to compute the TTR.

To address the sensitivity of TTR to text length,
vocd-D extends this measure by computing TTRi-C

over sampled sub-sequences of varying lengths &
and fitting the following curve:
1) ,  (13)

-~k D k
TTR, = 142
r=7 (a+2p)

=

where D is the estimated parameter representing
lexical diversity. The vocd-D metric is defined as
Mocd—D = Drest it, With larger values indicat-
ing greater lexical diversity. In our experiments,
we compute TTRf’ for k£ = 10, 20, 30, 40, 50 and
take the average of the resulting values as the final
lexical diversity score.

For distance-based semantic diversity, Cluster
Inertia (Du and Black, 2019) quantifies diversity
by partitioning the dataset into K clusters using K-
means and summing the squared distances between
each sample and its cluster centroid:

K
)= > llemb(x) — il

7j=1 .Z’iECj
(14)

where 115 is the centroid of cluster Cj. A higher
inertia value suggests a greater spread of samples.
Additionally, Vendi Score (VS) (Pasarkar and Di-
eng, 2023) measures diversity based on the eigen-
values of the similarity kernel matrix. The general-
ized VS metric is defined as:

M Inertia (X

¥

10g2 Z /\1‘9

where 5\,-| o represents the normalized eigenvalues.
We set a = 0.5 to enhance measurement under
severe class imbalance. Radius (Lai et al., 2020)
characterizes the dispersion of the sample space by
approximating embeddings as a multi-variate Gaus-
sian distribution. It computes the geometric mean
of the standard deviations along each dimension:

Myg(X) = exp ; (15)

(16)

where H is the embedding dimension, and o; de-
notes the radius of the ellipsoid along the j-th axis.
Larger values indicate a greater spread of samples
in the embedding space. Log Determinant Dis-
tance (Wang et al., 2024b) utilizes the determinant
of the similarity matrix as a measure of dataset
diversity. In our work, we employ the cosine simi-
larity function to compute the similarity matrix.

Note that for DistSum,.,;,,., we use cosine dis-
tance A(z;, z;) = 1 — cos(emb(x;), emb(x;)).
For DistSum;;, we use Euclidean distance
Alas, ;) = lemb(a;) — emb(ay) 3.

For Partition Entropy, we cluster X% into
1,000 clusters, while for Cluster Inertia (Du and
Black, 2019), we cluster X'® into 200 clusters for
subsequent computations.
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A.3 Details of Data Selection Strategies

Al IT datasets in our experiments are selected from
X9 and sampled over three rounds (two for Qwen)
per strategy variant, unless stated otherwise. We
assume these datasets have similar average sample
quality, as they come from the same source without
any quality filters. Additionally, the dataset size is
standardized to 10,000 samples. Thus, our experi-
ments can more accurately reflect the correlation
between dataset diversity and model performance,
without introducing significant confounders.

K-Center-Greedy (Sener and Savarese, 2017;
Chen et al., 2023a; Du et al., 2023; Wu et al., 2023)
This strategy begins by randomly selecting a data
point from the dataset X'/ as the initial point of the
subset X'(5). Subsequently, it iteratively computes
the closest distance between the remaining points
in X\ x (*) and selected samples in X'(*). The
point with the maximum minimum distance (i.e.,
the farthest point) is added to X (s). This process
continues until the desired subset size is achieved.

Repr Filter (Liu et al., 2023) Unlike the K-
Center-Greedy strategy, which selects the farthest
point from the remaining data pool, the Repr Fil-
ter randomly selects a data point whose similarity
with all embeddings in X'(¥) is below a predefined
threshold. Due to the unique distribution of em-
beddings across different models, it is necessary
to set distinct thresholds for each similarity func-
tion and model embedding. To ensure diversity
across different experimental rounds, we employ
cosine similarity and set the threshold to 0.3 for
LLaMA-3-8B and 0.1 for Qwen-2.5-7B.

QDIT (Bukharin et al., 2024) QDIT sampling
combines diversity and quality scores for data selec-
tion; however, in our work, we focus exclusively on
its diversity score. This method computes the sum
of similarities between each sample in X%\ X (s)
and its closest data point in X(*). For each candi-
date data point, we calculate the similarity sum as
if it were added to X'(®), defining its Facility Lo-
cation (FL) score. The algorithm then iteratively
selects the data point with the highest FL score. For
the initial selection, it chooses the data point that
exhibits the highest overall similarity to all other
embeddings. In our experiments, we employ co-
sine similarity for computing these scores. Since
the Facility Location function yields a fixed subset
X for a given X*!_ and to maintain consistency
with other strategies, we utilize the same subset

of data but vary the training random seeds across
three rounds of experiments.

K-means Clustering (Song et al., 2024; Ge et al.,
2024) For this strategy, we apply the K-means clus-
tering algorithm (MacQueen, 1967) to partition all
sample embeddings in X% into K clusters. Subse-
quently, given a target data budget n, we randomly
sample = data points from each cluster. For our
experiments, we use both 1000 and 100 clusters for
LLaMA-3-8B, and 100 clusters for Qwen-2.5-7B.

Random Selection In this baseline strategy, we
randomly sample 10,000 data points from X*. To
explore the impact of data sources, we also sample
from individual datasets, including Alpaca (Taori
et al., 2023), Dolly (Conover et al., 2023), Wiz-
ardLM, UltraChat, and ShareGPT, with similar pre-
processing. Although we assume that the average
sample quality of these sources does not signifi-
cantly differ from that of X*!, we use only a single
round of results from each source in the overall
correlation analysis as supplementary data to avoid
potential quality differences affecting the outcome.

Duplicate Selection To address the challenge of
defining low-diversity datasets, which is crucial for
our study, we construct datasets with redundant
samples. Given a target data budget n, the dataset
is constructed by selecting m unique data points,
each duplicated ;> times. We set m to 1, 10, 50,
100, 500, 1000, 2000, and 5000. This approach
allows us to systematically control and analyze the
impact of diversity on model performance.

A.4 Details of Performance Evaluation

We follow prior work in adopting LL.M-based
judges—MT-Bench and AlpacaEval—as they
demonstrate strong alignment with human pref-
erences and offer broad coverage of downstream
tasks (Zhou et al., 2024; Zhao et al., 2024b). Al-
pacaEval evaluates single-turn dialogue ability
through pairwise preference comparisons between
model responses and those of a strong baseline,
judged by GPT-4 (Achiam et al., 2023). MT-Bench,
by contrast, assesses multi-turn conversational abil-
ity via GPT-4-based evaluations. Together, these
benchmarks cover a wide range of diverse user
queries and representative IT tasks, including math-
ematics and code generation. In our evaluation, we
use GPT-4-0613 as the judge for both MT-Bench
and AlpacaEval. For AlpacaEval, we follow the
original setup to adopt text-davinci-003 responses
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as the baseline.

To account for the length bias inherent in LLM-
based evaluation, we adopt the Length-Controlled
Win Rates metric (Dubois et al., 2024) for Alpaca-
Eval, which has demonstrated stronger alignment
with human judgments. We also verify that the
average response lengths across the evaluated
instruction-tuned (IT) models show minimal varia-
tion. This consistency is achieved by controlling for
length when sampling from each model’s IT train-
ing dataset—for example, by using a fixed context
length when computing embeddings and remov-
ing quality filters that might favor longer samples.
Based on these measures, we believe our evaluation
methodology offers a more reliable assessment of
model performance.

Conversely, we didn’t incorporate additional
evaluation methods, such as multiple-choice QA
benchmarks, because they may introduce biases to-
ward specific domains and may not align well with
human preferences. Thus, while we acknowledge
the inherent limitations of LLM-based evaluation,
it appears to remain the most accepted method for
fairly evaluating open-ended responses in the ab-
sence of better alternatives.

A.5 Details of Correlation Measures

We compute the correlation between each diversity
metric and model performance using both Pearson
(Cohen et al., 2009) and Spearman (Zar, 2005)
correlation measures. For example, Pearson’s r
for a metric My is computed as:

>, (M) — M) (P — P)
OM 0P

Pearson __
M, P —

A7)

A.6 Details of Model Fine-Tuning

In our experiments, we leverage four or eight
NVIDIA H800 GPUs for training the LLaMA-3-
8B and Qwen-2.5-7B models. To enable efficient
parallel training, we implement DeepSpeed Zero-
Stage 2. Across all experiments conducted in this
study, the training parameters are configured as
follows: a maximum input length of 4096 tokens,
a batch size of 128, 3 training epochs, a learning
rate of 2e-5, and a warm-up ratio of 0.1 utilizing
cosine warm-up. We use the official chat templates
of LLaMA-3 and Qwen-2.5, respectively, to fine-
tune each model. All models are trained with BF16
precision to optimize computational efficiency and
memory usage. A single run of fine-tuning on a
10k dataset typically takes about one hour.

B Implementation Details

B.1 Implementation Details of NovelSum

As described in Section 3, our approach to com-
puting data diversity incorporates both proximity-
weighted and density-aware considerations. In
practice, we begin by embedding the samples in
the given dataset X’ () as vectors and computing a
similarity matrix that captures pairwise distances.
We then apply proximity and density weights to
achieve the desired outcomes.

To estimate sample density, we utilize FAISS
(Johnson et al., 2019), which efficiently leverages
GPU capabilities for vector similarity searches.
Specifically, for each sample in X'(¥), we identify
its k = 10 nearest neighbors within the overall sam-
ple space X! to compute its density factor, which
we then broadcast to match the dimensions of the
similarity matrix. Next, we perform element-wise
multiplication between the density matrix and the
similarity matrix to obtain density-aware distances
in the embedding space.

Subsequently, we sort each row of the result-
ing matrix to determine the proximity ranks of
all samples relative to the corresponding sample
in that row. Finally, we compute the proximity-
weighted sum for each row to derive each sam-
ple’s "novelty" score and sum these scores to obtain
MNovelSum(X)‘

As noted earlier, we set the hyperparameters to
a =1, =0.5,and K = 10 for experiments with
both LLaMA-3-8B and Qwen-2.5-7B.

B.2 Implementation Details of NovelSelect

Since selecting a subset from X*! that maximizes
NovelSum is an NP-Hard problem, similar to select-
ing a subset with maximum Euclidean distance, we
implement a greedy strategy (Section 6).

In our implementation, we iteratively compute
the sample-level "novelty" v(x) (Eq. 11) for each
unselected candidate point with respect to the cur-
rently selected set, following the same computation
process as NovelSum. At each step, the candidate
with the highest v(x) is added to the subset. No-
tably, the density factor used for distance compu-
tation is o (x;)—that of the selected point—rather
than the candidate’s own o(x), to remain consis-
tent with NovelSum’s definition. That said, as an
alternative greedy strategy, replacing o (z;) with
o(z;) + o(x) to jointly account for both samples’
densities may also be reasonable, and we leave this
for future exploration.
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C Computational Complexity

In practice, both NovelSum and NovelSelect incur
acceptable computational costs—approximately 10
seconds and under one hour, respectively—relative
to the overall fine-tuning process, and are compara-
ble to or more efficient than many existing methods.
Crucially, our approaches avoid pairwise computa-
tions over the entire large-scale source dataset of
size N, operating instead on the selected subset,
which is typically small (e.g., n = 10,000 in our ex-
periments). And for density estimation, which con-
siders the distribution of source samples, we lever-
age modern vector search libraries such as FAISS
(Appendix B). FAISS supports near-constant-time
nearest neighbor queries independent of N, with
only a one-time O (V) cost to index all source sam-
ples—both negligible in the overall computation.

NovelSum has a time complexity of O(n?) as it
computes pairwise distances among the selected
samples. This is as efficient as most existing
embedding-based diversity measures. For density
estimation that accounts for source sample distribu-
tion, we use FAISS, which incurs an approximate
cost of O(N) for indexing all source samples and
O(n) for querying the selected samples’ density
factor—both negligible in the overall computation.
In practice, computing NovelSum (including den-
sity precomputation) on 10k samples with 4096-
dimensional embeddings takes only 10 seconds
on a single H800 GPU. Additionally, the one-time
cost of building the FAISS index for 396k source
samples is also under 10 seconds.

For our data selection strategy, NovelSelect runs
in O(N - n?) time—significantly more efficient
than QDIT’s O(N?3). This involves distance com-
putation between candidate samples (of size V)
and selected samples (of size n) across n selection
iterations. In practice, selecting 10k samples from
a 396k-sample pool takes under one hour using a
single H800 GPU, which is faster than fine-tuning
on 10k samples and negligible compared to fine-
tuning on the full 396k dataset.

Embedding extraction, a shared step across
embedding-based methods, takes under two hours
for 396k samples in X* using LLaMA-3-8B and
vLLM on 8xH800 GPUs. As a one-time cost, this
remains acceptable.

D Data Statistics

Our data sources are detailed in Table 5. After
filtering out short data and non-English data, ap-

Data Pool Dataset Source Sample Size
ShareGPT 103 K

Xall UltraChat 207 K
WizardLM 196 K

yother Alpaca 52K
Dolly 15K

Table 5: Statistics of Data Pools X* and X°t"*". The
column "Dataset Source" indicates the origin of the data
used for sampling, while "Sample Size" denotes the
number of samples in each dataset. This table provides
an overview of the data used in our experiments.

proximately 396K samples remain in X for use
in our experiments. Note that we use the latest
versions of these datasets, which may have a larger
size than the initial versions. These datasets encom-
pass samples from a wide range of domains.

E More Results and Analysis
E.1 Hyperparameter Analysis

We conduct a more fine-grained hyperparameter
analysis to study the effects of varying « and f3,
and investigate the sensitivity to hyperparameters
for potential broader application of NovelSum. The
results are shown in Table 6:

Variants LLaMA-3-8B Qwen-2.5-7B
NovelSum (a = 1, 8 = 0.5) 0.97 0.90
-a=0 0.55 0.51
-a=0.5 0.77 0.64
-a=0.8 0.91 0.85
-a=0.9 0.94 0.88
-a=1.1 0.95 0.91
y=1.2 0.93 0.89
-a=15 0.86 0.86
~a=2 0.81 0.82
-6=0 0.91 0.73
-8=0.2 0.93 0.80
-6=03 0.94 0.83
-g=04 0.94 0.86
-3=0.6 0.94 0.91
-B=0.7 0.92 0.82
-3=0.28 0.88 0.69
-g=1 0.76 0.37

Table 6: Hyperparameter analysis of NovelSum with
varying « and [ configurations on LLaMA-3-8B and
Qwen-2.5-7B.

These results show that NovelSum consistently
achieves strong correlation with model perfor-
mance across a relatively wide range of hyperpa-
rameters, without drastic fluctuations. This sug-
gests that the sensitivity issue may not be particu-
larly severe in practice.
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From a theoretical perspective, we view the prox-
imity decay coefficient « as related to the semantic
richness of the source data. For richer dataset, it’s
better to consider more neighbors in distance com-
putations, corresponding to a smaller «v. Given that
most current IT tasks and datasets are semantically
rich, the current choice of « is likely to remain
effective as long as the domain is not overly nar-
row. On the other hand, the density coefficient
5 controls the balance between distance and den-
sity components. We believe this balance is not
specific to a particular dataset, but rather general
across IT tasks. While the exact optimal value of
[ may vary slightly depending on the implemen-
tation of distance and density calculations, the use
of cosine distance and nearest-neighbor density
estimation—as adopted in our work—provides a
stable basis. Therefore, re-tuning (3 is unlikely to
be necessary in most cases.

Based on the above discussion, we believe our
current hyperparameter configuration is robust for
general instruction tuning and can exhibit a con-
siderable degree of generalizability across broader
scenarios. This helps reduce the need for costly
hyperparameter tuning. Therefore, the level of hy-
perparameter sensitivity observed here may not be
a major obstacle to the broader applicability of our
method.

E.2 Analysis of Embedding Extractors

To investigate the impact of the embedding model
choice on diversity measurements, we conduct an
additional ablation study using four different mod-
els to generate embeddings for NovelSum computa-
tion: LLaMA-3-8B, LLaMA-2-7B, Qwen-2.5-7B,
and BERT-base. We then measure the correlation
between the resulting NovelSum scores and instruc-
tion tuning (model) performance under two fine-
tuning backbones: LLaMA-3-8B and Qwen-2.5-
7B.

Fine-tuning Backbone

Embedding Model

LLaMA-3-8B Qwen-2.5-7B
LLaMA-3-8B 0.97 0.81
Qwen-2.5-7B 0.92 0.90
LLaMA-2-7B 0.94 0.87
BERT-base 0.90 0.64

Table 7: Correlation between NovelSum computed us-
ing different embedding models and instruction tuning
performance under two fine-tuning backbones.

The results, presented in Table 7, indicate that

using the same model for both embedding extrac-
tion and fine-tuning yields the strongest correlation
between diversity metrics and instruction tuning
performance, likely due to shared representation
spaces. In contrast, employing a general-purpose
encoder such as BERT-base leads to weaker corre-
lations compared to other LLMs.

Following prior work, we use pretrained base
models directly (Appendix A.1) for sample embed-
ding computation, primarily for research purposes.
For practical applications, however, one may con-
sider using state-of-the-art LLM-based embedding
models fine-tuned specifically for embedding tasks,
which may offer improved performance.

E.3 Theoretical Analysis

We begin by situating our work within broader
literatures. The problem of selecting representa-
tive objects from a given set has been extensively
studied in Operations Research (Ravi et al., 1994;
Fekete and Meijer, 2004; Cevallos et al., 2017),
often through formulations such as maximum dis-
persion and facility location. These approaches
share similar motivations with our method and help
explain the effectiveness of the density-aware dis-
tance. In parallel, prior work on sampling strategies
(Eldar et al., 1997) conceptualizes sampling as a
stochastic process for reconstruction and highlights
the effectiveness of maximizing inter-sample dis-
tances in progressive image sampling. Building
on similar insights, our diversity metric NovelSum
accounts for both inter-sample distances and infor-
mation density in the sample space.

To facilitate a deeper understanding of Novel-
Sum, we offer the following theoretical interpre-
tation as a possible perspective: The basic sum
of semantic distances among all samples (Eq. 1)
represents the semantic variance of the selected
samples. A larger variance implies significant dif-
ferences among some samples but does not nec-
essarily guarantee a diverse semantic distribution
across the entire semantic space. In contrast, the
proximity-weighted sum (Eq. 8) specifically mea-
sures semantic diversity by focusing on the gaps
between neighboring samples rather than on distant
ones. A larger proximity-weighted sum indicates
that samples are more distinct from their imme-
diate neighbors, reflecting higher overall seman-
tic diversity. Further, the density-aware distance
(Eq. 9) incorporates an additional density factor
into the distance calculation, explicitly consider-
ing information density within the semantic space.
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By extracting information from the gaps between
neighboring samples—multiplying the semantic
distance between each sample and its neighbors
by information density factors and performing a
proximity-weighted sum—we effectively quantify
each sample’s unique informational contribution.
Consequently, NovelSum measures the total unique
information of all samples, given their semantic em-
beddings and scenario-specific information density
(e.g., general instruction tuning). This aggregate
value corresponds to the "IT-aligned Diversity" we
aim to measure.

E.4 Additional Results

Additional scatter plots for the analysis in Section
2 are provided in Figure 6, Figure 7 and Figure 8,
illustrating the correlation for DistSumpo, Radius,
and Log Determinant Distance, respectively.

The full results of the correlation experiments on
LLaMA-3-8B and Qwen-2.5-7B are presented in
Table 8 and Table 9, respectively. These tables pro-
vide a comprehensive comparison of diversity met-
rics across different experimental configurations.

F Others

F.1 License for Artifacts and Data Consent

In this paper, the artifacts used are all available
for academic research work, including ShareGPT,
WizardLM, UltraChat, Alpaca and Dolly. The di-
versity metrics and data selection methods com-
pared in this paper can all be used for academic
research. All data originates from the original au-
thors’ open-source releases and can be used for
academic research and publication.

F.2 Data Statement

The training datasets may contain offensive con-
tent; however, they do not include any personal
information. Furthermore, our training approach
is designed to align the model with human prefer-
ences without producing harmful content.

F.3 Al Assistant Usage Statement

We utilized ChatGPT for writing refinement and
minor coding assistance. Al assistants were not
employed for research innovation, and all core con-
tributions were solely developed by the authors.

F.4 Budgets

We instruction-tune (train) each model for approxi-
mately one hour on a single node with eight H800-
80G GPUs, totaling around 80 hours across 80 runs.

Additionally, we spend around $1,000 on the GPT
API to evaluate our models using MT-bench and
AlpacaEval.
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Data Selection Strategy Runs | Alpaca MT - bench Aggregated | NovelSum DistSum, s, DistSum;, KNN Inertia Radius VS Entropy FL LDD TTR voed-D
1072 107 10° 10t
Random - alpaca 1 58.8 4.40 0.07 0.572 0.605 1.09 0.509  0.293 113 132 8.93 2.83 -1.70 0.853 82.3
Random - dolly 1 47.5 4.34 -0.14 0.500 0.603 1.09 0.596  0.362 1.12 1.70 7.83 259 -131 0.844 76.6
Random - sharegpt 1 74.6 6.46 0.83 0.628 0.656 1.14 0.574  0.380 .16 170 8.97 2.83 -1.23 0.850 78.3
Random - ultrachat 1 72.5 6.76 0.86 0.672 0.622 1.11 0.567  0.323 1.15 1.48 9.40 296 -1.52 0.881 110
Random - wizardlm 1 76.9 5.82 0.72 0.591 0.578 1.07 0.594  0.331 1.11 1.44 9.08 2.88 -1.52 0.858 85.7
Random - X! 3 75.5 6.18 1.20 0.675 0.634 1.12 0.606  0.353 1.15 1.61 9.80 299 -138 0.870 97.2
Farthest 3 74.0 6.30 1.22 0.687 0.789 1.25 0.407  0.350 120 156 6.52 2.14 -1.25 0.837 68.3
Duplicate m = 1 3 0.57 1.01 -6.36 0.000 0.000 0.00 0.000  0.000 0.00 1.08 0.00 125 -inf  0.887 121
Duplicate m = 10 3 312 3.54 -2.97 0.268 0.589 1.02 0.000  0.000 .03 7.16 3.27 208 -inf 0.863 90.0
Duplicate m = 50 3 51.0 4.38 -1.35 0.388 0.608 1.09 0.001  0.000 1.12 2.74 5.58 240 -inf 0873 101
Duplicate m = 100 3 63.6 542 0.05 0.461 0.634 1.12 0.001  0.000 115 495 6.50 252 -inf  0.866 92.3
Duplicate m = 500 3 65.0 5.67 0.30 0.556 0.635 1.12 0.001  0.222 1.15 1.79 8.47 275 -inf  0.869 96.7
Duplicate m = 1000 3 71.3 6.00 0.86 0.587 0.630 1.12 0.001  0.292 115 299 9.06 2.83 -inf  0.869 96.1
Duplicate m = 2000 3 59.6 531 -0.23 0.618 0.633 1.12 0.001  0.330 1.15 5.07 9.46 290 -inf 0.870 97.3
Duplicate m = 5000 3 51.5 4.85 -0.98 0.656 0.634 1.12 0.001  0.349 115 992 9.72 297 -inf 0871 97.1
K - Center - Greedy 3 75.3 6.33 1.31 0.687 0.746 1.22 0.864 0.522 1.24 2.53 9.30 273 -7.44 0.862 88.5
Kmeans Clustering;ooo 3 76.5 6.31 1.35 0.692 0.646 1.13 0.615  0.372 1.17 170 9.87 299 -1.32 0.869 96.4
Kmeans Cluster;og 3 74.4 6.36 1.28 0.693 0.650 1.13 0.610  0.362 1.16 1.69 9.78 299 -1.33 0.869 96.1
QDIT 3 759 6.21 1.25 0.673 0.629 1.12 0.602  0.348 115 1.59 9.77 299 -141 0871 98.5
Repr Filter 3 72.6 6.17 1.05 0.671 0.703 1.18 0.799  0.470 1.21 223 9.45 2.86 -9.12 0.866 92.0
NoveSelect 3 78.1 6.47 1.55 0.762 0.821 1.28 0.704  0.534 1.30 255 9.23 273 -6.27 0.862 87.9

Table 8: Comprehensive experimental results on LLaMA-3-8B. Each data selection strategy variant is evaluated
over three independent runs (except for random selection) to ensure the robustness and reliability of the findings.
The results from multiple runs are averaged. Note that NovelSelect results are only included in Section 6 and are not
part of the correlation calculations. Details of the data selection strategies are provided in Appendix A.3.

Data Selection Strategy Runs | Alpaca MT-bench Aggregated | NovelSum DistSum,,s,. DistSum;, KNN Inertia Radius VS Entropy FL LDD TTR vocd-D
107% 107 10°  10*
Random - alpaca 1 71.5 5.52 -0.38 0.336 0.189 0.596 0.223  0.066 4.06  1.89 8.66 350 -440 0853 824
Random - dolly 1 552 6.24 -0.49 0.320 0.221 0.651 0.293  0.098 452 3.04 7.92 346 -3.62 0844 766
Random - sharegpt 1 82.4 7.91 0.07 0.392 0.285 0.731 0.289  0.110 4.64 336 8.87 351 -3.34 0850 783
Random - ultrachat 1 78.0 7.66 -0.02 0.389 0.200 0.620 0252 0.074 411 209 9.30 352 -4.17 0881 110
Random - wizardlm 1 77.1 7.28 -0.08 0.349 0.211 0.631 0.296  0.093 442 265 9.03 350 -3.84 0858 857
Random /! 2 81.9 7.57 0.87 0.408 0.230 0.661 0.286  0.092 436 141 9.77 354 -381 0869 97.0
Duplicate m=50 2 69.3 7.41 -1.46 0.252 0.215 0.638 0.001  0.000 429 013 5.64 344  -inf 0871  98.1
Duplicate m=100 2 75.1 7.46 -0.43 0.309 0.243 0.664 0.001  0.000 432 020 6.54 348 -inf 0870 977
Duplicate m=500 2 729 7.51 -0.69 0.357 0.240 0.672 0.001  0.057 441 051 8.50 354 -inf 0868 949
Duplicate m=1000 2 78.6 7.59 0.37 0.364 0.229 0.658 0.001  0.076 436 0.74 9.05 356 -inf 0869  97.0
Duplicate m=5000 2 82.0 7.53 0.81 0.399 0.230 0.661 0.001  0.091 436 127 9.68 3,57 -inf 0870 97.8
K-Center-Greedy 2 81.6 7.90 1.45 0.505 0.440 0.923 0.501  0.214 6.13  3.09 8.50 342 229 0837 68.6
K-means Clustering 2 79.8 7.84 1.06 0.440 0.260 0.698 0.301  0.106 454 1.60 9.86 354 -3.63 0868 949
QDIT 2 80.0 7.81 1.00 0.403 0.223 0.650 0.283  0.091 433 2.60 9.74 354 -387 0871  99.1
Repr Filter 2 81.8 7.83 135 0.495 0.421 0.901 0.476  0.199 594 715 8.59 346 -242 0839 69.8

Table 9: Comprehensive experimental results on Qwen-2.5-7B. Each data selection strategy variant is evaluated

over two independent runs (except for random selection).
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