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Abstract
Recently, o1-like models have drawn signifi-
cant attention, where these models produce the
long Chain-of-Thought (CoT) reasoning steps
to improve the reasoning abilities of existing
Large Language Models (LLMs). In this pa-
per, to understand the qualities of these long
CoTs and measure the critique abilities of ex-
isting LLMs on these long CoTs, we introduce
the DeltaBench1 including the generated long
CoTs from different o1-like models (e.g., QwQ,
DeepSeek-R1) for different reasoning tasks
(e.g., Math, Code, General Reasoning), to mea-
sure the ability to Detect Errors in Long CoT
ReAsoning. Based on DeltaBench, we first
perform fine-grained analysis of the generated
long CoTs to discover the effectiveness and ef-
ficiency of different o1-like models. Then, we
conduct extensive evaluations of existing pro-
cess reward models (PRMs) and critic models
to detect the errors of each annotated process,
which aims to investigate the boundaries and
limitations of existing PRMs and critic models.
Finally, we hope that DeltaBench could guide
developers to better understand the long CoT
reasoning abilities of their models.

1 Introduction

Large Language Models (LLMs) have witnessed
remarkable progress in recent years (Liu et al.,
2025a; Li et al., 2024a; Liu et al., 2024; Zhang
et al., 2024a; Li et al., 2024b; He et al., 2024b; Liu
et al., 2025b). Among these advancements, o1-like
LLMs have emerged to greatly improve reasoning
capabilities by generating long Chain-of-Thought
(CoT) reasoning steps (OpenAI, 2024; Guo et al.,
2025).

However, despite the growing popularity of o1-
like models and their long CoT reasoning ap-
proaches, systematic evaluation of the quality and

∗ First four authors contributed equally.
† Corresponding Author.

1The dataset is available at https://github.com/
OpenStellarTeam/DeltaBench.

effectiveness of the generated reasoning chains is
not well investigated, which poses a significant
challenge in understanding the capabilities and lim-
itations of these models (Chen et al., 2024b; Yeo
et al., 2025; Zhang et al., 2025). Besides, as LLMs
continue to evolve, further improving their perfor-
mance has become increasingly challenging. One
of the key areas of focus in this regard is the de-
velopment of critique ability, which measures the
capability to provide detailed analysis, constructive
suggestions, and refinement feedback suggestions
for solutions generated by other models or even
themselves (Lan et al., 2024; Lin et al., 2024; Tan
et al., 2024; Song et al., 2025; Zheng et al., 2024a).
However, evaluating the critique abilities of exist-
ing LLMs (e.g., critic models or process reward
models) on the long CoT reasoning steps has not
been explored.

Therefore, to address the aforementioned chal-
lenges, we introduce DeltaBench, the first dataset
to analyze the qualities of the long CoTs generated
by o1-like models and evaluate the critique abilities
to Detect Error in Long CoT ReAsoning of existing
critic models and PRMs in Figure 1. Specifically,
in DeltaBench, we first collect a diverse collection
of long CoTs generated by various o1-like models
(i.e., QwQ, DeepSeek-R1, and Gemini-2.0 Flash
Thinking) across different reasoning tasks such as
Math, Programming, PCB (physics, chemistry
and biology), and General Reasoning. Then, we
divide each long COT into different sections, where
each section denotes an independent subtask. After
that, each section is annotated with corresponding
labels (e.g., reasoning usefulness, reasoning cor-
rectness, and reflection).

Based on DeltaBench, we first conduct a fine-
grained analysis on efficiency of the generated long
CoTs from different o1-like models, and have the
following interesting findings:

• Fundamental errors (e.g.,calculation errors,
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Create a numeric array from a list “l” and move the first 3 elements to the end of the
array. You should write self-contained code starting with:

import numpy as np 
from numpy.ndarray import ndarray
# Constants
ELEMENTS = ['A‘, 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J’]
def task_func(l=None)-> ndarray:

Step 1. I need to create a numeric array from a list "l" and move the first three elements to 
the end.

Step 2. First, I should import numpy as np.
Step 3. I have a list "l" which, if not provided, should use the ELEMENTS list.
Step 4. ELEMENTS is a list of strings from 'A' to ‘J’. 
......

Section 1: Problem Definition

Step 46. This function is self-contained and fulfills the requirements specified in the 
problem. Section 8: Summarization

Section 2: Solution Planning

Question

LongCOT Response

PRMs

Your task is to
identify the
incorrect
sections from...

Critic Models

Section 1: 0.95

Section 2: 0.43

Section 8: 0.83

The incorrect
sections include: 
Section 2,
because it
assumes all input
characters are
letters between
'A' and 'J'. 
......

DeltaBench

Figure 1: Illustration of the evaluation process for critic models and PRMs for DeltaBench.

syntax errors and format errors) are usually
existed in existing o1-like models. For exam-
ple, such errors account for approximately 25%
and 23% in QwQ-32B-Preview and Gemini 2.0
Flash Thinking, respectively.

• The proportion of effective reflection is still
very low. Note that the “effective reflection” de-
notes this reflection leads to the right answer.
For example, on average, approximately 67.8%
of the reflections in the collected long CoT re-
sponses are useless.

• The long CoT reasoning process is very redun-
dant for existing o1-like models. For example,
on average, 27% of the reasoning sections in the
collected long CoT response are redundant.

After that, we evaluate the critique abilities on
LLMs prompted as critic models and PRMs and
draw the following insightful observations:

• For existing LLMs and PRMs, the ability to
effectively identify errors in long CoT rea-
soning is very limited. For example, the top-
performing model in DeltaBench, GPT-4-turbo-
128k, achieves an F1-score of only 40.8%.

• o1-like models (e.g., o1-mini, o1-preview) do
not show any advantage over non-o1-like
models on the critique abilities. For exam-
ple, the results of o1-preview are lower than the
results of GPT-4o-mini.

• The self-critique abilities of existing o1-like
models are generally weaker than their cri-
tique abilities on other o1-like models. For

example, DeepSeek-R1 exhibits a 36% reduc-
tion in self-critique performance compared to the
critique performance of other o1-like models.

2 Related Works

LLM Critic. As many works have begun to ex-
plore the test-time scaling (OpenAI, 2024; Snell
et al., 2024), the critique capabilities of LLMs have
drawn great interests. For example, CriticBench
(Luo et al., 2023; Zheng et al., 2024b) uses LLMs
to generate critiques and binary verdicts for in-
put solutions, measuring accuracy by comparing
these verdicts to ground truth labels. CriticEval
(Lan et al., 2024) evaluates both feedback and cor-
rection qualities. Additionally, many works have
explored the LLMs’ self-critique for improving
reasoning (Tyen et al., 2023; Stechly et al., 2024).
For example, Huang et al. (2023) have highlighted
the challenges in self-correction without external
feedback. ProCo (Wu et al., 2024) facilitates self-
correction and iterative verification processes.

3 DeltaBench

In this section, we detail the construction of the
DeltaBench dataset, developed to assess a model’s
capacity to identify and locate errors in long CoT
reasoning processes. DeltaBench comprises 1,236
samples across diverse domains, including Math,
Programming, PCB (physics, chemistry and bi-
ology), and General Reasoning. Each sample en-
compasses a problem, its corresponding long CoT
solution, and comprehensive human annotations.
Specifically, the long CoT is divided into sections,
and each section includes the following tags:
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Figure 2: Left: Overview of DeltaBench with pie charts showing the distribution of questions in Math, General
Reasoning, PCB (Physics, Chemistry and Biology), and Programming. Right: Statistics of DeltaBench.

• Strategy Shift: whether this section introduces
a new method or strategy attempt. If a new strat-
egy is introduced, the specific step is annotated.

• Reasoning Usefulness: whether the reasoning
in this section is useful. If the process of section
can help to lead to the right answer, it considered
as useful.

• Reasoning Correctness: whether this section
contains any errors. If an error is present, addi-
tional error-related fields are annotated, includ-
ing the first step number at which the error oc-
curs, explanation and correction.

• Reflection Efficiency: whether this section con-
tains reflection and whether the reflection is cor-
rect. If reflection is present, the step at which
the reflection begins is annotated.

3.1 Dataset Construction

Query collection. We extract queries from di-
verse open-source datasets. Detailed data sources
are listed in Appendix B.1. The domains include
math, programming, physics, chemistry, biology,
and general reasoning, which comprise 48 subcat-
egories. To ensure the dataset’s diversity and bal-
ance, we employ a multi-step process:

• Clustering and Deduplication: Queries are first
converted into vector representations using the
NV-Embed-v22 embedding model. Then, sim-
ilarity scores are computed between each pair
of queries to identify and eliminate duplicates
using a predefined threshold. The non-duplicate
queries are clustered using DBSCAN (Ester
et al., 1996), resulting in 17,510 unique queries.

• Difficulty Filtering: For each query, multiple
models3 were employed to generate solutions,
and difficulty labels were assigned based on the
accuracy of the answers produced by these mod-
els. Following this, uniform sampling was car-
ried out according to these difficulty labels to
ensure a balanced distribution of difficulties.

• Subcategory Sampling: For each query, GPT-
4o is used to classify it into a subcategory. The
queries are then uniformly sampled based on
these subcategories to ensure diversity.

Data Preprocessing. We observe low-quality
queries exist in open-source datasets. To address

2https://huggingface.co/nvidia/NV-Embed-v2
3GPT-4o (OpenAI, 2023), Meta-Llama-3-70B-

Instruct (Dubey et al., 2024), Meta-Llama-3-8B-
Instruct (Dubey et al., 2024), Qwen2.5-72B-Instruct (Team,
2024), Qwen2.5-32B-Instruct (Team, 2024), and DeepSeek-
67B-chat (DeepSeek-AI, 2024).
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this issue, we employed GPT-4 and rule-based fil-
tering strategies to identify and remove these low-
quality queries. We have recorded encountered
issues. Specific details are shown in Appendix B.4.

Long CoT Generation. We generate long CoT
solutions using several open-source o1-like mod-
els, such as QwQ-32B-Preview, DeepSeek-R1, and
Gemini 2.0 Flash Thinking, with random sampling
to enhance diversity. This method ensures a wide
range of reasoning processes and captures potential
errors models may produce in real-world scenar-
ios, enabling a robust evaluation of error detection
capabilities in long CoT reasoning.

Section Split. Previous approaches typically di-
vide solutions into steps. However, long CoT re-
sponses often contain numerous steps, which signif-
icantly increases the difficulty of human annotation,
and many of which are either overly granular or
lack meaningful contribution to the overall reason-
ing process. To address this issue, we segment each
long CoT response into multiple sections, each rep-
resenting an independent sub-task, aligning more
closely with human cognitive patterns. Specifically,
we use the delimiter "\n\n" to partition the model’s
response into steps first. Then, we employ GPT-4
to identify the start and end steps of each section
and generate a brief summary of the content within
each section. This approach not only facilitates
manual annotation but also enhances the accuracy
of the model’s segmentation process. The details
are provided in Appendix B.5.

In addition, we visualize the changing distribu-
tion of section types in the model’s reasoning pro-
cess. See Appendix D.1 for detailed analysis.

3.2 Correctness Assessment

Before manual annotation, we employ automated
methods to assess the correctness of the long
CoT results. Domain-specific techniques are used
to identify potentially erroneous outputs in Ap-
pendix B.3 and the evaluation accuracy of each
domain and the details are shown in Appendix B.6.
This process ensures that the data provided for man-
ual annotation are likely to contain errors, which
enhances the annotation efficiency.

3.3 Human Annotation

The data annotation process aims to evaluate the
reasoning process of each long CoT response sys-
tematically. Each section is assessed for strategy

Step1: So I've got this probability problem here. It says that two numbers, x and y, are selected 
at random from the interval (0,3), and I need to find the probability that a triangle with sides of 
length 1, x, and y exists. Okay, let's break this down.

Section 1 Annotation List Label
Strategy Shift: Whether it include new strategy to try? yes
Reasoning Usefulness: Whether the reasoning usefulness? yes
Reasoning Correctness: Whether it contain any errors? no
Reflection Efficiency: Whether it include self-reflection? no

Section 4 Annotation List Label

Strategy Shift: Whether it include new strategy to try? no

Reasoning Usefulness: Whether the reasoning usefulness? yes

Reasoning Correctness: Whether it contain any errors? yes

    A1: the steps where the errors begins： [21]

    A2: explanation for each error: ...

    A3: the revised correct steps: ...

Reflection Efficiency: Whether it include self-reflection? no

Question: Two numbers, $x$ and $y$ are selected at random from the interval $(0,3)$. What is the 
probability that a triangle with sides of length 1, $x$, and $y$ exists?

Step2: First, I need to recall the triangle inequality theorem. It states that for any triangle with 
sides a, b, and c, the following must be true:
    1. a + b > c
    2. a + c > b
    3. b + c > a
Step3: So, in this case, the sides are 1, x, and y. That means I need to satisfy all three inequalities:
    1. 1 + x > y
    2. 1 + y > x
    3. x + y > 1
Step4: Since x and y are both selected from (0,3), they can be any real numbers between 0 and 3, 
excluding 0 and 3 themselves.

Step18: First inequality: 1 + x > y. This given inequality can thus be equivalently rewritten as y < 1 
+ x.
Step19: Second inequality: 1 + y > x. This particular inequality can be rewritten more clearly as y 
> x - 1.
Step20: Third inequality: x + y > 1. This specific inequality can also be rewritten for clarity as y > 
1 - x.
Step21: Now, since x and y are both positive (from (0,3)), 1 - x could be negative if x > 1. But 
since y is positive, y > 1 - x will always hold true when x < 1, and when x >=1, y > 1 - x is always 
true because y > 0 and 1 - x <=0. So, this inequality is always satisfied in the given range. 
Therefore, I don't need to worry about this inequality separately.

Section 1

Section 2

...
Section 4

Section 2 Annotation List Label

Strategy Shift: Whether it include new strategy to try? yes

Reasoning Usefulness: Whether the reasoning usefulness? yes

Reasoning Correctness: Whether it contain any errors? no

Reflection Efficiency: Whether it include self-reflection? no

...

Human Annotation
label each section one by one:

Figure 3: Illustration of the annotation workflow and an
example of human annotation.

Benchmark Source Long COT Granularity

JudgeBench MMLU-Pro, LiveBench, LiveCodeBench × Sample-Level
CriticBench GSM8K, CSQA, BIGBench,HumanEval,etc × Sample-Level
CriticEval GSM8K,HumanEval,ChatArena, etc. × Sample-Level
ProcessBench GSM8K,MATH, OlympiadBench, Omni-MATH × Step-Level

DeltaBench AIME, BigCodeBench, KOR-bench, GPQA, etc ✓ Section-Level

Table 1: Comparisons between different benchmarks.

shift, reasoning usefulness, reasoning correct-
ness, and reflection efficiency. The annotation of
whether strategy shift and reflection occurred is to
help analyze o1’s thinking pattern. The annotation
of Reasoning usefulness and error identification is
to better analyze and evaluate the performance of
system II thinking and further evaluate the critique
ability of other models for these problems.

To ensure high-quality annotations, we recruit
Master’s and Ph.D. graduates from various disci-
plines and collaborate with specialized suppliers
(See Appendix B.2 for more details on the annota-
tion and quality control processes).

3.4 Dataset Statistics

DeltaBench contains 1,236 carefully curated sam-
ples. These samples are distributed across five ma-
jor domains and 48 subcategories. The dataset en-
sures a balance of question types and difficulty lev-
els, incorporating a rich set of long CoT responses.

Figure 4 shows the distribution of both the length
and the number of sections of long CoTs. The dis-
tribution is relatively balanced overall, enabling a
comprehensive evaluation of the performance of
PRMs or critic models across a range of different
lengths. Additionally, detailed statistics on the cat-
egory distribution are provided in Appendix B.7.

3.5 Comparison to other benchmarks

In Table 1, DeltaBench has the following features:
(1) We focus on difficult questions, providing a
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Figure 4: Distribution of long CoT characteristics.

more challenging critical evaluation; (2) We utilize
long CoT responses, enabling the assessment of a
model’s ability to identify errors within complex
reasoning processes; (3) We evaluate the model’s
capability to identify all errors in the reasoning
process, rather than just the first error or a binary
classification of correctness on sample level, which
can provide a fine-grained analysis of long CoTs.

4 Analysis

4.1 Error Analysis of o1-like Models.

Error Type Lists We classify the errors that oc-
cur during the system II thinking process into 8
major aspects and 23 specific error types based on
the manual annotations, including understanding
errors, reasoning errors, reflection errors, summary
errors, etc. For detailed information about the error
categories, see Appendix C.

What Are the Most Common Errors Across Do-
mains? To analyze the characteristics of error
distribution in different domains, we performed a
uniform sampling of the data based on the model,
the domain, and the query difficulty. Figure 5
shows the error distribution across different do-
mains, where a detailed analysis is provided in
Appendix ??, here are some key findings:

• Math: The most frequent error type is Rea-
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Reasoning Error
Understanding Error
Calculation Error
Strategy Error

Formal Error
Premise Error
Knowledge Error
Programming Error

Consistency Error
Reflection Error
Summary Error

Figure 5: Distribution of Error Types Across Domains.

soning Error(25.3%), followed by Understand-
ing Error(15.7%) and Calculation Error(15.4%).
This indicates that while the models often strug-
gle with logical reasoning and problem under-
standing, low-level computational mistakes also
remain a significant issue.

• Programming: Reasoning Error (21.5%) is
the most common, followed by Formal Error
(16.7%) and Understanding Error (12.6%). The
high frequency of Formal Error and Program-
ming Error (11.8%) underscores the models’
struggles with code-specific details and imple-
mentation.

• PCB: The dominant error types are Under-
standing Error (20.4%) and Knowledge Error
(17.3%), closely followed by Reasoning Error
(17.3%). This suggests that the main challenge
for current models in the fields of physics, chem-
istry and biology is to understand field-specific
concepts and accurately apply relevant knowl-
edge.

• General Reasoning: Reasoning Error is the
most prevalent, accounting for 43%, followed
by comprehension errors, accounting for 19%,
showing that logical reasoning is the primary
bottleneck.

What Are the Model-Specific Error Patterns?
We also analyzed errors specific to individual mod-
els, providing further insights into model weak-
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Figure 7: Distribution of Effective Reflection Times by
Model and Task on a sample level. The segments within
each pie chart represent how many times effective reflec-
tion occurs in one sample, with segment ’0’ indicating
there is no effective reflection.

nesses, as illustrated in Figure 6. The error dis-
tributions reveal distinct patterns for each model,
highlighting their unique strengths and areas for
improvement. Due to space constraints, we focus
here on the key findings from the most commonly
used models, with a comprehensive analysis of all
models provided in Appendix ??.

• DeepSeek-R1 exhibits its most pronounced
weakness in Reasoning Errors (22.7%), indi-
cating challenges in constructing coherent and
accurate logical reasoning paths. However, it
demonstrates relative strength in handling funda-
mental tasks, with minimal Calculation Errors
(3.1%) and Programming Errors (4.4%).

• QwQ-32B-Preview excels at identifying correct
problem-solving approaches. However, its effec-
tiveness is significantly hindered by deficiencies
in handling finer details, particularly in Calcula-
tion Errors (17.9%).

4.2 Reflection Analysis of o1-like Models.

Statistics. We also conduct a analysis of the total
number of reflections and the proportion of effec-
tive reflections in the long CoT output of all ques-
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Figure 8: Distribution of Effective Reasoning Ratios.

tions (including questions answered correctly and
incorrectly by the model).

How Effective Are Model Reflections Across Dif-
ferent Models and Domains? We classify sam-
ples with reflections based on the number of valid
reflections to evaluate the ability to produce valid
reflections. Specifically, we label samples as 0 if no
valid reflections occur, and 1, 2, or >=3 for samples
with one, two, or three and more valid reflections,
respectively(all statistical analyses were performed
under strictly controlled conditions, ensuring uni-
form sampling and balanced tasks for a fair com-
parison). In Figure 7, DeepSeek-R1 exhibits the
highest proportion of effective reflections, and the
models show a notably higher rate of effective re-
flections in the math domain.

4.3 Effective Reasoning of o1-like Models.

Statistics. Human annotators evaluate the use-
fulness of the reasoning in each section, enabling
us to calculate the proportion of valid reasoning
in each response. As illustrated in Figure 8, each
graph shows the distribution of effective reason-
ing ratios for a particular model. The red dashed
line in each graph indicates the average effective
reasoning ratio.

What Proportion of Reasoning in Long COT Re-
sponses is Effective? On average, only 73% of
the reasoning in the collected long COT responses
is useful, highlighting significant redundancy is-
sues. Among the models analyzed, QwQ-32B-
Preview exhibited the lowest proportion of effective
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reasoning at 70%, while DeepSeek-R1 achieved a
notably higher proportion compared to the others,
demonstrating superior reasoning efficiency.

4.4 Results on DeltaBench

Evaluation Metrics. We employ recall, preci-
sion, and macro-F1 score for error sections as
evaluation metrics. For the PRMs, we utilize an
outlier detection technique based on the Z-Score
to make predictions. This method was chosen
because threshold-based prediction methods de-
termined from other step-level datasets, such as
those used in ProcessBench (Zheng et al., 2024a),
may not be reliable due to significant differences in
dataset distributions, particularly as DeltaBench fo-
cuses on long CoT. Outlier detection helps to avoid
this bias. The threshold t for determining the cor-
rectness of a section is defined as: t = µ−σ, where
µ is the mean of the rewards distribution across the
dataset, and σ is the standard deviation. Sections
falling below t are predicted as error sections. For
critic models, all erroneous sections within a long
CoT are prompted to be identified. Given that error
sections constitute a smaller proportion than cor-
rect sections across the dataset, we use macro-F1
to mitigate the potential impact of the imbalance
between positive and negative sections. Macro-F1
independently calculates the F1 score for each sam-
ple and then takes the average, providing a more
balanced evaluation metric when dealing with class
imbalance.
Baseline Models. For the PRMs, we select
the following models: Qwen2.5-Math-PRM-7B4,
Qwen2.5-Math-PRM-72B5, Llama3.1-8B-PRM-
Deepseek-Data6, Llama3.1 -8B-PRM-Mistral-
Data7, Skywork-o1-Open-PRM- Qwen-2.5-1.5B8,
and Skywork-o1-Open-PRM-Qwen-2.5-7B9. We
select a group of the most advanced open-source
and closed-source LLMs to serve as critic models
for evaluation, which includes various GPT-4 (Ope-
nAI, 2023) variants (such as GPT-4-turbo-128K,
GPT-4o-mini, GPT-4o), the Gemini model (Reid
et al., 2024)(Gemini-1.5-pro), several Qwen mod-
els (Team, 2024) (such as Qwen2.5-32B-Instruct
and Qwen2.5-14B-Instruct), and o1 models (Ope-
nAI, 2024) (o1-preview-0912, o1-mini-0912).

4Qwen/Qwen2.5-Math-PRM-7B
5Qwen/Qwen2.5-Math-PRM-72B
6RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
7RLHFlow/Llama3.1-8B-PRM-Mistral-Data
8Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
9Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
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Figure 9: Results of different LLMs on top-5 errors.

4.4.1 Main Results

In Table 2, we provide the results of different
LLMs on DeltaBench. For PRMs, we have the
following observations: (1). Existing PRMs usu-
ally achieve low performance, which indicates that
existing PRMs cannot identify the errors in long
CoTs effectively and it is necessary to improve
the performance of PRMs. (2). Larger PRMs do
not lead to better performance. For example, the
Qwen2.5-Math-PRM-72B is inferior to wen2.5-
Math-PRM-7B. For critic models, we have the fol-
lowing findings: (1) GPT-4-turbo-128k archives
the best critique results, which is better than other
models (e.g., GPT-4o) a lot in DeltaBench. (2)
For o1-like models (e.g., DeepSeek-R1, o1-mini,
o1-preview), we observe that the results of these
models are not superior to non-o1-like models, with
the performance of o1-preview is even lower than
Qwen2.5-32B-Instruct. A detailed analysis of un-
derperforming models is provided in Appendix E.

4.4.2 Further Analysis

Performance Analysis Across Different Error
Types. Figure 9 shows the performance of dif-
ferent models on the five most common error types.
In terms of error types, most models demonstrate
the highest accuracy in recognizing calculation er-
rors. Conversely, the recognition of strategy er-
rors is generally the weakest. In terms of models,
there is significant variation in the ability of indi-
vidual models to recognize different error types.
For instance, DeepSeek-V3 achieves an F1 of 36%
on calculation errors but only 23% on strategy er-
rors. Meanwhile, Llama3.1-8B-PRM-Deepseek
performs poorly, with an F1 score of 22% on cal-
culation errors, and shows a significant decline in
performance across the other four error types. This
highlights the limited generalization capabilities of
most models when recognizing various error types.
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Model Overall Math Code PCB General

Recall Precision F1 F1 F1 F1 F1

Process Reward Models (PRMs)

Qwen2.5-Math-PRM-7B 30.30 34.96 29.22 29.64 23.76 31.09 34.19
Qwen2.5-Math-PRM-72B 28.16 29.37 26.38 24.16 22.02 31.14 35.83

Llama3.1-8B-PRM-Deepseek-Data 11.7 15.59 12.02 12.28 10.95 16.76 12.59
Llama3.1-8B-PRM-Mistral-Data 9.64 11.21 9.45 9.40 10.72 13.43 12.40

Skywork-o1-Qwen-2.5-1.5B 3.32 3.84 3.07 1.30 6.66 5.43 7.87
Skywork-o1-Qwen-2.5-7B 2.49 2.22 2.17 0.78 6.28 6.02 3.11

LLM as Critic Models

GPT-4-turbo-128k 57.19 37.35 40.76 37.56 43.06 45.54 42.17
GPT-4o-mini 49.88 35.37 37.82 33.26 37.95 45.98 46.39

GPT-4o 36.52 32.48 30.85 28.61 28.53 39.25 36.50
Gemini-1.5-pro 35.51 30.32 29.59 26.56 28.20 40.13 33.66
DeepSeek-V3 32.33 28.13 27.33 27.04 27.73 27.35 27.45

Llama-3.1-70B-Instruct 32.22 28.85 27.67 21.49 32.13 28.45 39.18
Qwen2.5-32B-Instruct 30.12 28.63 26.73 22.34 31.37 33.78 24.37

DeepSeek-R1 29.20 32.66 28.43 24.17 29.28 34.78 35.87
o1-preview 27.92 30.59 26.97 22.19 28.09 33.11 35.94

Qwen2.5-14B-Instruct 26.64 27.27 24.73 21.51 29.05 29.98 20.59
Llama-3.1-8B-Instruct 25.71 28.01 24.91 18.12 32.17 27.30 29.93

o1-mini 22.90 22.90 19.89 16.71 21.70 20.37 26.94
Qwen2.5-7B-Instruct 21.99 19.61 18.63 11.61 25.92 29.85 15.18

DeepSeek-R1-Distill-Qwen-32B 17.19 18.65 16.28 13.02 23.55 15.05 11.56
DeepSeek-R1-Distill-Qwen-14B 12.81 14.54 12.55 9.40 18.36 10.44 12.01

Table 2: Experimental results of PRMs and critic models on DeltaBench. Bold indicates the best results within the
same group of models, while the underline indicates the second best.

Model HitRate@k - Avg(%)
k = 1 k = 3 k = 5

Qwen2.5-Math-PRM-7B 49.15 69.14 83.14
Qwen2.5-Math-PRM-72B 41.13 62.70 75.73

Llama3.1-8B-PRM-Deepseek-Data 12.63 48.62 69.78
Llama3.1-8B-PRM-Mistral-Data 8.99 42.97 65.33

Skywork-o1-Open-PRM-Qwen-2.5-1.5B 31.90 53.82 69.23
Skywork-o1-Open-PRM-Qwen-2.5-7B 31.58 52.59 69.16

Table 3: Results of HitRate@k. Bold and underlined
results indicate the best and the second best.

Analysis on HitRate evaluation for PRMs. To
better measure the ability of PRMs to identify er-
roneous sections in long CoTs, we use HitRate@k
to evaluate PRMs. Specifically, within a sample,
we rank the sections in ascending order based on
the rewards given by the PRM, select the smallest
k sections, and calculate the recall rate for the erro-
neous sections among them. Specifically, we define
the sorted sections as S = {s1, s2, . . . , sn}, with
E being the set of erroneous sections. We select the
top k sections, denoted as Sk = {s1, s2, . . . , sk}.
The HitRate@k is calculated as:

HitRate@k =
|Sk ∩ E|

min(k, |E|) (1)

In this formula, |Sk ∩ E| indicates the number of
erroneous sections identified among the top k sec-
tions. This metric reflects the ability of PRMs to
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Figure 10: Ranking of rewards for the first incorrect
section for different PRMs.

effectively identify erroneous sections within the
top k candidate sections. In Table 3, the relative
performance rankings among different PRMs are
quite similar to the results in Table 2. Addition-
ally, we observe that for k = 3 and k = 5, the
performance differences between various PRMs
are not particularly significant. However, when
k = 1, the Qwen2.5-Math-PRM-7B shows a clear
performance advantage. Figure 10 illustrates the
ranking ability of different PRMs for the first incor-
rect section within the sample, which is generally
consistent with the performance evaluation results
of HitRate@k.
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Figure 11: F1 Score Comparison of Self-Critique and
Cross-Model Critique Abilities for Different Models.

Self-Critique Capabilities Lag Behind Cross-
Model Critique Abilities. We randomly sample
queries based on domains and models that gen-
erate the long CoT output, followed by a statisti-
cal analysis of the model’s performance in eval-
uating its own outputs as well as those of other
models. In Figure 11, Gemini-2.0-flash-thinking,
DeepSeek-R1, and QwQ-32B-Preview show lower
self-critique scores compared to their cross-model
critique scores, indicating a prevalent deficiency
in self-critic abilities. Notably, DeepSeek-R1 ex-
hibits the largest discrepancy, with a 36% decrease
in self-evaluation compared to evaluations of other
models. This suggests models’ self-critic abilities
remain underdeveloped.

Model Overall Math Code PCB General

Qwen2.5-32B-Instruct 26.73 22.34 31.37 33.78 24.37
Qwen2.5-14B-Instruct 24.73 21.51 29.05 29.98 20.59
Qwen2.5-7B-Instruct 18.63 11.61 25.92 29.85 15.18
Qwen2.5-3B-Instruct 16.29 13.81 18.23 25.39 11.31

Qwen2.5-1.5B-Instruct 7.49 5.24 9.51 11.80 6.49
Qwen2.5-0.5B-Instruct 3.79 2.30 5.25 5.24 4.31

Table 4: Experimental results for different Qwen models
across various domians.

Scaling effects on error detection capabilities.
To further investigate the impact of model size on
error detection performance, we conduct a com-
prehensive evaluation across six model variants
(ranging from Qwen2.5-0.5B-Instruct to Qwen2.5-
32B-Instruct). This systematic examination of how
model size influences error detection capabilities.
The detailed results, measured by Macro-F1 scores,
are presented in Table 4. Our analysis reveals two
key findings: (1) Performance Scaling: Error detec-
tion capability demonstrates substantial improve-
ment (+22.94 points, from 3.79 to 26.73) with in-
creasing model size, indicating that larger models
exhibit significantly stronger overall error detection
performance; (2) Capability Leaps: We observe

notable performance leaps between the 3B-to-7B
and 7B-to-14B model size transitions, representing
critical points where model capabilities undergo
significant enhancement.

5 Conclusion

In this paper, we have provided a comprehensive
evaluation benchmark called DeltaBench to inves-
tigate the limitations of existing o1-like models
based on the generated long COTs and measure
the critique qualities of existing LLMs. Based on
DeltaBench, we discuss the specific error analysis
of o1-like models and provide a detailed analysis
on critic models and PRMs, where many interest-
ing findings are provided. Finally, we hope our
DeltaBench can not only find the limitations of o1-
like models, but also provide guidance to further
improve these reasoning models.
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7 Limitations

While DeltaBench offers a comprehensive evalua-
tion for long CoT reasoning and critique abilities,
it has some limitations. First, the construction and
annotation of the dataset involve high costs, mak-
ing it challenging to scale to a larger volume of
data. Second, although we established a rigorous
human annotation mechanism, the process may
still introduce subjective biases. Third, as a static
benchmark, DeltaBench may not fully capture real-
time advancements. Addressing these limitations
will be a key focus of our future work.
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and Victor Cărbune. 2023. Llms cannot find rea-
soning errors, but can correct them! arXiv preprint
arXiv:2311.08516.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan
Tan, Chao Shen, and Meng Jiang. 2024. Large lan-
guage models can self-correct with minimal effort.
arXiv preprint arXiv:2405.14092.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig,
and Xiang Yue. 2025. Demystifying long chain-of-
thought reasoning in llms.

Alexander Zhang, Marcus Dong, Jiaheng Liu, Wei
Zhang, Yejie Wang, Jian Yang, Ge Zhang, Tianyu
Liu, Zhongyuan Peng, Yingshui Tan, et al. 2025.
Codecriticbench: A holistic code critique bench-
mark for large language models. arXiv preprint
arXiv:2502.16614.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang,
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es-
ther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney
Zheng, Wei Pang, Xinrun Du, Yiming Liang, Ying-
hao Ma, Yizhi Li, Ziyang Ma, Bill Lin, Emmanouil
Benetos, Huan Yang, Junting Zhou, Kaijing Ma,
Minghao Liu, Morry Niu, Noah Wang, Quehry
Que, Ruibo Liu, Sine Liu, Shawn Guo, Soren Gao,
Wangchunshu Zhou, Xinyue Zhang, Yizhi Zhou,
Yubo Wang, Yuelin Bai, Yuhan Zhang, Yuxiang
Zhang, Zenith Wang, Zhenzhu Yang, Zijian Zhao,
Jiajun Zhang, Wanli Ouyang, Wenhao Huang, and
Wenhu Chen. 2024a. Map-neo: Highly capable and
transparent bilingual large language model series.
arXiv preprint arXiv: 2405.19327.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng,
Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao Dong,
and Jie Tang. 2024b. Naturalcodebench: Examining
coding performance mismatch on humaneval and
natural user prompts. ArXiv, abs/2405.04520.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024a. Processbench:
Identifying process errors in mathematical reasoning.
ArXiv, abs/2412.06559.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji,
Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang,
and Le Sun. 2024b. Critic-cot: Boosting the reason-
ing abilities of large language model via chain-of-
thoughts critic. arXiv preprint arXiv:2408.16326.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied Sanosi Saied,
Weizhu Chen, and Nan Duan. 2023. Agieval: A
human-centric benchmark for evaluating foundation
models. ArXiv, abs/2304.06364.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

18481

https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:269187896
https://api.semanticscholar.org/CorpusID:269187896
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://api.semanticscholar.org/CorpusID:276116814
https://api.semanticscholar.org/CorpusID:276116814
https://api.semanticscholar.org/CorpusID:269613953
https://api.semanticscholar.org/CorpusID:269613953
https://api.semanticscholar.org/CorpusID:269613953
https://api.semanticscholar.org/CorpusID:274598010
https://api.semanticscholar.org/CorpusID:274598010
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259
https://api.semanticscholar.org/CorpusID:258108259


0 2000 4000 6000 8000 10000
Token Number

0.0

0.2

0.4

0.6

F1
-S

co
re

Performance Trend of Critic Models

Deepseek_R1
GPT-4o
Gemini-1.5-Pro

O1-preview
Qwen2.5-32B-Instruct

0 2000 4000 6000 8000 10000
Token Number

0.0

0.1

0.2

0.3

Performance Trend of PRMs

Qwen2.5-Math-PRM-7B
Llama3.1-8B-PRM-Deepseek
Llama3.1-8B-PRM-Mistral

Skywork-PRM-1.5B
Skywork-PRM-7B

Figure 12: The effect of long CoT length.

A Effect of Long CoT Length.

In Figure 12, we compare the average F1-Score performance of critic models and PRMs across varying
LongCOT token lengths. For critic models, the performance notably declines as token length increases.
Initially, models like Deepseek-R1 and GPT-4o exhibit strong performance with shorter sequences (1-3k
tokens). However, as token length increases to mid-ranges (4-7k tokens), there is a marked decrease in
performance across all models. This trend highlights the growing difficulty for critic models to maintain
precision and recall as LongCOT sequences become longer and more complex, likely due to the challenge
of evaluating lengthy model outputs. In contrast, PRMs demonstrate greater stability across token lengths,
as they evaluate sections sequentially rather than processing the entire output at once. Despite this
advantage, PRMs achieve lower overall scores compared to critic models on our evaluation set.

B Details of Dataset Construction

B.1 Data Sources

Domain Source

Math
MATH-500 (Lightman et al., 2023), OlympiadBench (He et al., 2024a),
Omni-MATH (Gao et al., 2024), AIME, AMC23, CollegeMath

Programming
CodeForce, BigCodeBench (Zhuo et al., 2024), LiveCodeBench (Jain et al., 2024),
FullStackBench (Cheng et al., 2024), NaturalCodeBench (Zhang et al., 2024b),
USACO (Shi et al., 2024)

PCB
GPQA (Rein et al., 2023), OlympiadBench (He et al., 2024a),
AGIEval (Zhong et al., 2023)

General Reason
ZebraLogicBench (Lin et al., 2025), KOR-Bench (Ma et al., 2024),
Geeksforgeeks Puzzles, CS Interview Questions, China Civil Service Exam Questions

Table 5: Query-related data source statistics. Parts without citations come from open internet resources.

Table 5 shows the original data sources from which we extracted high-quality queries and their
corresponding solutions, along with additional information (for code data, test cases were extracted).

B.2 Details on Dataset Annotation
The average cost for annotating each data unit was approximately $15. The annotation process is organized
into three phases, each with specific goals and criteria:

Initial Assessment. Annotators initially verify the quality of the question and subsequently evaluate the
correctness of the model’s final response.
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<<0>> Alright, so i'm trying to figure out what the Gutenberg surface inside the Earth is the interface between.  

<<1>> I remember Earth's layers: crust, mantle, and core. The Moho boundary is between the crust and mantle.  

<<2>> The crust, mantle, inner and outer core make up Earth's layers. The outer core is liquid, the inner core is solid.  

<<3>> The Gutenberg discontinuity might be the boundary between the mantle and the core.  

<<4>> Gutenberg is related to seismology, so it's likely identified through seismic waves.  

<<5>> The Gutenberg surface is probably between the mantle and the outer core.  

<<6>> The core-mantle boundary might be what the Gutenberg discontinuity refers to.  

<<7>> I don't know of any other Gutenberg surfaces, so it's likely the mantle-core boundary.

<<8>> There are Moho, Gutenberg, and Lehmann discontinuities: Moho is crust-mantle; Gutenberg is mantle-core; 

Lehmann is within the core.  

<<9>> So, the Gutenberg surface is the boundary between the mantle and the core.

<<10>> At this boundary, seismic wave velocities change, indicating different materials.  

<<11>> The mantle is solid silicate rock; the outer core is liquid metal, which creates a distinct boundary.

<<12>> The Gutenberg surface is the boundary between the mantle and the core.  

<<13>> Seismic wave behavior helps map the Earth's interior and shows these boundaries.  

<<14>> The Gutenberg discontinuity is about 2,900 kilometers deep, marking the mantle-core boundary.  

<<15>> The Gutenberg surface is the interface between the mantle and the core.  

<<16>> The Gutenberg surface is between the mantle and core, identified by seismic changes, marking the change 

from solid mantle to liquid outer core, about 2,900 kilometers deep.

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

You are an intelligent assistant. You 

need to read the problem-solving 

process below, which is divided into 

multiple steps using line breaks, with 

each step labeled by a tag. Then, 

combine them into multiple logically 

independent sections.

Specific requirements:

1. Each section should be a complete 

atomic problem-solving process or an 

attempt.

2. When aggregating sections, you 

need to output the start and end step 

tags (they can be the same) and 

provide a brief summary or title.

3. Please output in the following 

format:

<<start tag>> - <<end tag>> Brief 

description

The end tag should be greater than or 

equal to the start tag and the start tag 

of a section should be the end tag of 

the previous section plus one.

Introduction to the problem and recalling knowledge about Earth's layers

Initial hypothesis about the Gutenberg discontinuity and seismology connectionsa

Explore and verify the possible location of the Gutenberg surface

Analysis of seismic discontinuities to confirm the hypothesis

Discussing properties and material composition at the Gutenberg discontinuity

Conclusion that the Gutenberg surface is the mantle-core boundary

Relating findings to real-world applications and geophysical understanding

Final summary and detailed description of the Gutenberg discontinuity

Figure 13: An example of dividing sections.

Section-Level Evaluation. The Long COT is divided into sections, each corresponding to a specific
sub-task, such as problem analysis, verification of calculation results, and summarization. This phase
requires the annotator to check and annotate each section individually. The annotation process and
examples are shown in Figure 3.

Label Fleiss’ Kappa Score (Three Annotators) Cohen’s Kappa (Two Reviewers) Pass Rate (Spot Check) Consistency Acc. (Cross-Validation)

Strategy Shift 0.767 0.709 96.60% 96.67%
Reasoning Usefulness 0.670 0.608 92.55% 93.33%
Reasoning Correctness 0.744 0.843 97.41% 95.00%
Reflection Efficiency 0.705 0.765 93.60% 91.67%

Table 6: Fleiss’ Kappa scores for various annotation domains, indicating the level of agreement among annotators.

Quality Assurance and Validation. We have established a strict quality control process to ensure the
high quality and consistency of annotations. Each data is assigned three initial annotators, two junior
reviewers, and an additional five people who are responsible for overall spot checks. Outsourced personnel
and external contractors responsible for annotations receive unified training. We regularly check the
consistency and quality between annotators and repeatedly discuss and improve annotation protocols
during the annotation process to make the standards more perfect. This process ensures the generation of
high-quality annotations and minimizes subjective bias.

We acknowledge the inherent subjectivity in manual annotations. To mitigate this bias, detailed,
objective standards and rigorous quality control processes were developed. Meanwhile, to quantify
the consistency of our annotations, we employed Fleiss’ Kappa, an inter-annotator agreement metric
measuring the agreement among multiple annotators. We computed Fleiss’ Kappa for each label, assessing
the level of agreement among three annotators using binary labels (0/1) for each annotation task. Fleiss’
Kappa ranges from -1 to 1, with scores closer to 1 indicating stronger agreement. Scores above 0.60 are
regarded as substantial. As shown in Table 6, our annotation process effectively minimizes bias through a
voting mechanism and strict cross-validation, while subjectivity cannot be entirely eliminated.

Profile of Annotation Persons. In this dataset annotation project, we engaged a diverse group of
annotators through three distinct sources. We employed a set of external contractors directly recruited by
us and collaborated with two additional suppliers to provide annotation services. The dataset was divided
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into three parts, with certain sections deliberately overlapping to facilitate cross-validation. This overlap
allows us to compute the annotation consistency rate, and if the results do not meet the required standards,
revisions are necessitated.

Our annotator pool is composed of highly qualified individuals: 23 Master’s degree holders and 6 Ph.D.
holders in Mathematics, 18 Master’s graduates in Computer Science, 7 Master’s and 2 Ph.D. graduates in
Physics, 7 Master’s and 3 Ph.D. graduates in Chemistry, and 6 Master’s and 2 Ph.D. degree holders in
Biology. We employ a rotational system to randomly assign two individuals from each academic field to
serve as reviewers. Additionally, 5 algorithm specialists are tasked with conducting spot checks on the
annotations. This meticulous selection and review process ensures superior data quality and reliability for
subsequent analyses.

B.3 Details on Assessment

Math For mathematical queries, we employ a combination of rules and LLMs to evaluate the correctness
of the provided solutions. Rule-based systems verify the validity of numerical calculations, while LLMs
ensure that reasoning steps adhere to established mathematical principles. This dual approach guarantees
high accuracy in error detection within the solutions.

Programming For programming tasks, we utilize sandbox testing environments alongside LLM-based
evaluations. Specifically, we utilize SandboxFusion (Cheng et al., 2024) as our testing environment.
The solution is initially executed in the sandbox environment. Subsequently, the test case, the sandbox
environment’s feedback output, and the code are provided to the LLM to determine the correctness of the
answer.

PCB Due to the straightforward nature of answers in these domains, we exclusively rely on LLM
judgments, which offer high accuracy in assessing correctness.

General Reasoning Similarly, for general reasoning questions, LLM judgments are employed to
effectively and accurately assess solution validity.

B.4 Findings in Data Preprocessing

During the data preprocessing stage, we identified several issues with the data collected from open-source
datasets. These issues included incomplete queries, incorrect solutions, and excessively high query
similarity. To address these problems, we applied a combination of manual review and LLM (Large
Language Model) validation to filter out low-quality data. Additionally, for code data specifically, we
observed that different sources and types of data sometimes included test cases, while others did not, and
the formats of these test cases were inconsistent. To tackle these inconsistencies, we used GPT-4 to filter
the data for quality and to extract test cases, standardizing them into executable code for SandboxFusion.
This allowed us to conduct uniform sandbox verification to ensure data accuracy.

B.5 Sections Division
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Figure 14: Statistical distribution of steps in long CoT.
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Figure 13 illustrates the prompt for dividing sections along with examples of the resulting divisions.
Several steps involved in addressing an atomic problem or exploring an idea are grouped into the same
section. The specific outcome of the division is influenced by various factors, such as the task domain.
However, compared to a purely long CoT, this approach is more user-friendly for human annotation.

Furthermore, to prevent sections from becoming overloaded with too many steps, which would increase
the complexity of the annotation process, we iteratively divide sections that exceed 50 steps. Figure 14
displays the distribution of steps in the original long CoT (subfigure 14a) and the distribution of steps in
each divided section (subfigure 14b). Before sectioning, annotators are required to review each individual
step, which can be exceedingly challenging for long CoTs with numerous steps. By dividing the sections,
annotators can proceed on a section-by-section basis, making the process more comprehensible and
significantly reducing the difficulty of annotation.

B.6 Validation of Long CoT Correctness

Domain Filtered Total Num Correct Num Accuracy(%)
Math 7534 5413 71.84

Programming 2103 1276 60.67
PCB 4517 2626 58.13

General Reasoning 1981 1160 58.56

Table 7: Accuracy statistics for generated Long CoT responses for filtered high-quality queries.

For the filtered high-quality queries, we use a mix of various o1-like models, including QwQ-32B-
Preview, DeepSeek-R1, and Gemini 2.0 Flash, to generate the corresponding long CoT. We then use
LLM-as-a-judge and a sandbox testing environment to validate the accuracy of the long CoT generated by
these o1-like models, obtaining the native erroneous long CoT for subsequent human annotation.

Table 7 shows the accuracy of the generated long CoT. It can be seen that o1-like models enhanced with
reinforcement learning in math and programming perform slightly better in these two areas compared to
general reasoning and PCB.

B.7 Statistics on Category Distribution
Table 8 shows the subcategories and corresponding data volumes of DeltaBench across various domains.
In obtaining queries and annotations, we strive to ensure balance across categories while also balancing
annotation difficulty and accuracy.

B.8 Analysis of Other Evaluation Metrics
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Domain Subcategory Num

Math

Discrete Mathematics 144
Number Theory 104
Geometry 101
Others 74
Calculus and Analysis 58
Statistics and Other Decision Science 45
Algebra 36

Programming

Basic Programming 133
Mathematics 86
Advanced Programming 48
Data Analysis 41
Desktop and Web Development 27
Others 24
Software Engineering 14

PCB
Chemistry 64
Physics 63
Biology 27

General Reasoning

Logical Reasoning 56
Symbolic Reasoning 28
Quantitative Reasoning 24
Strategic Reasoning 12
Common Sense Reasoning 9
Spatio-temporal Reasoning 9
Others 9
Total 1236

Table 8: Detailed categories of DeltaBench and corresponding data volume statistics.

model F1-Score First Error Acc. Any Error Acc.

GPT-4-turbo-128k 40.76 57.04 69.17
GPT-4o 30.85 36.89 50.89

DeepSeek-V3 27.33 31.72 42.39
Qwen2.5-32B-Instruct 26.73 30.58 42.23

DeepSeek-R1 28.43 29.94 40.78
Qwen2.5-7B-Instruct 18.63 22.25 30.74

GPT-3.5 7.98 6.15 11.65

Table 9: The table compares different accuracy metrics for each model. ’First Error Acc.’ is the accuracy in
identifying the first error, and ’Any Error Acc.’ is the accuracy in detecting any error.

In Table 9, we present the performance of several models across different accuracy metrics: F1-Score,
First Error Accuracy, and Any Error Accuracy. These metrics evaluate the models’ ability to identify the
first error and detect any error within a given sequence. A key observation is that the relative rankings
of the models across the First Error Accuracy and Any Error Accuracy metrics closely align with their
F1-Score. This consistency across different evaluation measures highlights the robustness of the F1-
Score as a comprehensive indicator of model performance and suggests a strong correlation between
the ability to detect the first error and the ability to identify any error in the sequence. Additionally,
GPT-4-turbo consistently outperforms the other models, regardless of the evaluation metric used. Its Any
Error Accuracy reaches 69%, significantly higher than the other models in the comparison. This finding
underscores the model’s superior performance in error recognition, yet it also points to the limitations that
remain in current LLMs.

For PRMs, aside from outlier detection, we also experimented with evaluating using a fixed threshold
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Model Quantile Threshold prec recall F1
Qwen/Qwen2.5-Math-PRM-7B 5% 0.2168 39.81 73.86 46.48

Qwen/Qwen2.5-Math-PRM-72B 5% 0.2119 33.51 65.11 40.44
RLHFlow/Llama3.1-8B-PRM-Deepseek-Data 5% 0.2021 24.19 56.1 30.88
RLHFlow/Llama3.1-8B-PRM-Mistral-Data 5% 0.2949 23.18 51.46 29.68

Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B 5% 0.0303 19.48 46.76 24.45
Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B 5% 0.0278 18.68 46.14 23.46

Table 10: Performance of PRMs using the overall reward quantile as the threshold.

based on quantiles. Specifically, we used the ascending 5% quantile of all rewards on DeltaBench as the
threshold, considering sections below this value as incorrect. The evaluation results are shown in table
10. However, compared to outlier detection, we found that this approach overestimates the performance
of PRMs. This is because using a quantile as a threshold effectively forces PRMs to consider a fixed
proportion of sections as incorrect.

B.9 More Related Works
Test-time Scaling. Recently, many works have begun to explore the test-time scaling techniques (OpenAI,
2024; Snell et al., 2024), can greatly enhance performance by increasing the number of generated tokens.
Several methods (Hao et al., 2023; Chen et al., 2024a; Yao et al., 2023) have developed the tree search
methods to improve reasoning capabilities. In addition, o1-like models (e.g., o1, R1) (OpenAI, 2024; Guo
et al., 2025) have investigated the reinforcement learning methods to generate long Chains of Thought
(CoT) and enhance the model performance.

C Error Classification

In Figure 15, we conclude a detailed error classification based on human annotations of the errors
contained in the model’s answers.

D Analysis of o1-like Models

D.1 Distribution of Action Role
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Primary Category Subcategory Description

Understanding Error

Problem 
Misunderstanding

Incorrect interpretation of the problem requirements or 
context at the initial comprehension stage

Conceptual 
Misunderstanding

Misunderstanding of basic principles or theoretical 
foundations

Knowledge Errors

Factual Error Incorrect recall or statement of established facts or 
constants

Theorem Error Incorrect recall or application of mathematical theorems or 
scientific laws

Definition Error Incorrect understanding or application of standard 
definitions or terminology

Logical Errors

Strategy Error Inappropriate selection of problem-solving approaches or 
methodologies

Reasoning Error Flaws in the logical flow of problem-solving steps

Premise Error Invalid or incorrect assumptions in the reasoning process

Consistency Error Contradictions or inconsistencies in the logical framework

Calculation Errors

Numerical Error Inaccuracies in arithmetic operations or numerical 
computations

Formula Error Incorrect application or manipulation of mathematical 
formulas

Parameter Error Mistakes in handling variables or parameters

Unit Error Incorrect use or conversion of measurement units

Programming Errors

Syntax Error
Violations of programming language rules and conventions. 

Including incorrect code structure, missing delimiters, or 
improper statement construction

Function Error
Deficiencies in function implementation, usage, or behavior. 
Including improper function definitions, incorrect function 

calls, or unexpected function behaviors

Data Type Error
Incorrect handling of data types and type conversions. 

Including type mismatches, improper type conversions, or 
inappropriate data structure usage

Formal Errors
Symbol Error Incorrect use of mathematical or scientific symbols

Formatting Error Improper presentation or organization of solution structure

Completeness Errors Boundary Omission Failure to consider edge cases or limiting conditions

Special Cases

Reflection Error Insufficient analysis of solution validity or limitations

Summary Error Inadequate synthesis or conclusion of findings

Hallucination Generation of false or unsupported information

Redundancy Unnecessary repetition or superfluous information in 
solutions

Figure 15: Categories of Errors in o1-like Models.

18488



0.0 0.2 0.4 0.6 0.8 1.0
Solution Progress

0.0

0.2

0.4

0.6

0.8

1.0
A

ct
io

n 
D

is
tri

bu
tio

n

problem analysis
computation or derivation
conclusion
validation
exploration of edge cases
strategizing
shifting approach
error correction
reasoning
knowledge recall
code implementation
summarization
others
visualization and representation

(a) Distribution of Action Roles in Long CoT Process.

0 200 400 600 800 1000 1200
Errors Numbers

GPT-4o  

o1-preview  

Gemini-2.0-flash-thinking  

DeepSeek-R1  

DeepSeek-R1-Distill-Qwen-32B  

DeepSeek-R1-Distill-Qwen-14B  

1.1%

1.8%

2.9%

9.9%

33.1%

8.8%

34.9%

53.2%

18.1%

43.8%

33.0%

91.2%

64.1%

45.0%

79.0%

46.4%

33.8%

Instruction Non-Following
Overconfidence in Correctness

Others
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Figure 16a shows the distribution of action roles in the system 2 thinking process of the o1-like model.
Initially, problem analysis dominates, indicating that the model initially focuses on understanding the
requirements and constraints of the problem. As the solution progresses, cognitive activities diversify
significantly. Verification and error correction gradually increase, indicating that the model begins to think
and reflect frequently. In the later stages, verification, conclusion, and summary become more important,
reflecting the model’s efforts in verifying the accuracy of the solution and synthesizing the results. In
addition, the discrete sections of strategy formulation, knowledge recall, and error correction indicate a
continuous adaptation and iteration process. As the model progresses from problem analysis, solution
implementation and conclusion, it demonstrates the common reasoning template of slow-thinking models.

E Analysis of Underperforming Model

We classify the errors produced by underperforming models into three categories: (1) Not following
instructions, where models fail to follow the critique instructions; (2) Overconfidence in Correctness,
where models incorrectly assume the sample contains no errors; (3) Other errors, such as false negatives,
where models incorrectly flag accurate reasoning as erroneous, and error misidentification, where models
inaccurately determine the type or location of errors.

As illustrated in Figure 16b, the following observations can be made: (1) DeepSeek-R1-Distill series
exhibit significant instruction-following deficiencies. These models tend to directly answer questions
rather than critically evaluate the correctness of responses, indicating a potential overfitting problem. (2)
o1-like models like DeepSeek-R1 and o1-preview-0912 also demonstrate notable instruction-following
challenges, albeit to a lesser extent than GPT-4o. (3) A notable trend among the o1-preview and Gemini-
2.0-flash-thinking-exp models was their tendency to assume that samples were correct without thorough
evaluation. This overconfidence in correctness was a significant contributor to their error rates. In contrast,
GPT-4o demonstrates superior performance, with no instances of "Instructions not followed" errors and a
relatively low number of "Overconfidence in Correctness" errors.
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