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Abstract

This paper introduces DNCASR, a novel end-
to-end trainable system designed for joint neu-
ral speaker clustering and automatic speech
recognition (ASR), enabling speaker-attributed
transcription of long multi-party meetings.
DNCASR uses two separate encoders to
independently encode global speaker char-
acteristics and local waveform information,
along with two linked decoders to generate
speaker-attributed transcriptions. The use of
linked decoders allows the entire system to
be jointly trained under a unified loss func-
tion. By employing a serialised training ap-
proach, DNCASR effectively addresses over-
lapping speech in real-world meetings, where
the link improves the prediction of speaker in-
dices in overlapping segments. Experiments on
the AMI-MDM meeting corpus demonstrate
that the jointly trained DNCASR outperforms
a parallel system that does not have links be-
tween the speaker and ASR decoders. Using
cpWER to measure the speaker-attributed word
error rate, DNCASR achieves a 9.0% relative
reduction on the AMI-MDM Eval set.

1 Introduction

To transcribe multi-speaker conversations, such as
meetings and social gatherings, it is essential to
not only recognise the spoken words but also at-
tribute them to the correct speakers. Systems for
the task “who spoke what” often include two sub-
systems: one is a diarisation sub-system (Tranter
and Reynolds, 2006; Sell et al., 2018; Park et al.,
2021), the other is an automatic speech recognition
(ASR) sub-system (Watanabe et al., 2017; Prab-
havalkar et al., 2024). The diarisation task aims
to identify “who spoke when”, involving finding
speaker indices, which are unique identifiers of
speakers within each meeting e.g. 0, 1, rather than
absolute speaker identities. Traditional speaker
diarisation systems often consist of three main
components: voice activity detection (VAD) (Sohn

et al.,, 1999; Wang et al., 2016), speaker embed-
ding extraction (Dehak et al., 2011; Snyder et al.,
2018; Dawalatabad et al., 2021; Koluguri et al.,
2022), and speaker clustering (Chen and Gopalakr-
ishnan, 1998; Ning et al., 2006). The VAD module
removes non-speech regions from the audio, leav-
ing only the speech regions, referred to as VAD
segments. The embedding extraction module gen-
erates speaker embeddings from VAD segments,
and the clustering module assigns speaker indices
to each embedding, forming speaker-homogeneous
segments. In cascaded speaker-attributed ASR sys-
tems (Raj et al., 2021; Zheng et al., 2022; Cor-
nell et al., 2023), speaker-homogeneous segments
from the diarisation sub-system are sent to an ASR
sub-system to decode, producing speaker-attributed
transcriptions. In cascaded systems, diarisation and
ASR sub-systems are trained independently with
no consideration of their interactions.

Several studies have investigated using neural
network-based integrated systems for multi-talker
ASR, moving away from cascaded approaches.
One approach involves employing multiple output
heads in an ASR model, where each head outputs
words spoken by different speakers from a multi-
speaker speech segment. These models can be
trained using a single ASR loss function (Chang
et al., 2020; Lu et al., 2021a; Sklyar et al., 2021,
2022), or with an additional loss to guide the model
to separate clean speech before recognising them
(Seki et al., 2018; Raj et al., 2023). Although these
systems can separately decode speech from mul-
tiple speakers within a segment, even when there
is overlapping speech, they cannot assign speaker
indices across an entire meeting. Within a seg-
ment, there’s also no guarantee that multiple turns
from the same speaker will be output from the
same output head. One possible method to extend
multi-talker ASR to speaker-attributed ASR is to
use a speaker inventory (Kanda et al., 2020a; Lu
et al., 2021b). However, this approach requires pre-

18369

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 18369-18383

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



existing speaker profiles to be known in advance.

For speaker-attributed ASR without a speaker
inventory, a key challenge arises with long meet-
ings: neural network-based systems often struggle
to process the entire meeting at once, especially
when the input is the full meeting waveform. How-
ever, in order to assign speaker indices, the system
must consider the entire meeting. To address this
issue, Kanda et al. (2022) proposed to jointly train
ASR with speaker embeddings. The ASR mod-
ule uses serialised output training (SOT) (Kanda
et al., 2020b), which generates transcriptions for all
speakers within a VAD segment sequentially. For
each speaker turn, a jointly trained speaker decoder
decodes a speaker embedding, then embeddings
of all speaker turns across an entire meeting are
clustered using a non-neural clustering algorithm
to assign speaker indices.

To enable end-to-end trainable speaker-
attributed ASR, a neural clustering module is
essential for generating speaker indices across
the entire meeting. Several studies have proposed
end-to-end neural diarisation systems that take
full conversation waveforms or high-resolution
filterbank features as input and directly output
speaker indices (Fujita et al., 2019; Landini et al.,
2024; Horiguchi et al., 2022). EEND (Fujita et al.,
2019) is a system that can perform diarisation in
an end-to-end manner, integrating VAD, speaker
embedding extraction, and clustering into a single
model. EEND takes an input of the high-resolution
filterbank features of an entire conversation, and
outputs a sequence of frame-level speaker activity
probabilities. Cornell et al. (2024) combines
EEND with an SOT ASR to perform speaker-
attributed transcription. However, EEND cannot
process the waveform of the entire conversation
when the duration is long. For long meetings
such as those in the AMI dataset (Carletta et al.,
2006), the EEND and the speaker-attributed
ASR system based on EEND have to split the
meeting into short segments, and use a non-neural
clustering algorithm to assign speaker indices
across segments (Kinoshita et al., 2021). To handle
entire meetings and generate speaker indices, some
neural network-based diarisation systems use
speaker embeddings as input instead of waveforms
(Zhang et al., 2019; Li et al., 2021; Zheng et al.,
2024). Each embedding either represents an
entire utterance or a fixed-size window spanning
several seconds of waveform. This method is more
scalable for long meetings than processing the full

waveform. However, speaker embeddings cannot
directly produce speaker-attributed transcriptions
because they discard word-level information,
which requires high time-resolution input.

In this paper, we propose an end-to-end train-
able speaker-attributed ASR approach, which pro-
duces words with speaker indices for the entire
meeting, without relying on non-neural clustering
algorithms. The system, referred to as DNCASR,
jointly trains a neural clustering module for gen-
erating speaker indices, and an ASR module for
transcribing the spoken words. During training,
both the clustering and ASR modules can be opti-
mised using a single loss function. The system in-
corporates ASR features when generating speaker
indices, increasing the likelihood of accurately as-
signing words to the correct speaker. The output
is a serialised transcription, including both the spo-
ken words and the corresponding speaker indices.
DNCASR is compared with the parallel system
proposed by Zheng et al. (2024), where the par-
allel system trains the neural clustering and ASR
modules separately. Experimental results on a real
meeting corpus show that DNCASR gives better
speaker prediction than the parallel system.

The paper is organised as follows: Sec. 2 reviews
related work, Sec. 3 presents the joint clustering
and ASR system, DNCASR, together with the train-
ing and decoding pipelines, Sec. 4 describes the
experimental setup, and Sec. 5 provides the results,
followed by the conclusions.

2 Related Work

To avoid using non-neural algorithms in a speaker-
attributed ASR system, some studies extend the
ASR output vocabulary to include speaker tokens.
For instance, a single neural network was pro-
posed for transcribing doctor-patient conversations
(Shafey et al., 2019). The model first outputs a
speaker role and then the words spoken by that
speaker. However, this approach is limited to only
two speaker roles, doctor and patient, making it
unsuitable for general multi-speaker conversations.
Other studies can handle more than two speakers
but require speaker profiles to be known in advance
(Kanda et al., 2020a; Lu et al., 2021b).

A parallel system proposed by Zheng et al.
(2024) performs speaker-attributed transcription
without relying on non-neural clustering. It uses
a neural clustering module to generate speaker in-
dices and an SOT ASR to transcribe spoken words,
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with both components trained independently. The
neural clustering module in the parallel system is re-
ferred to as the segment-level discriminative neural
clustering (segment-level DNC), based on the orig-
inal DNC proposed in Li et al. (2021). The original
DNC uses the Transformer encoder-decoder archi-
tecture (Vaswani et al., 2017), taking utterance-
level speaker embeddings and requires known ut-
terance boundaries. The model outputs one speaker
index for each utterance.
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Figure 1: Model architecture for segment-level DNC,
colours represent different VAD segments.

2 speakers
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Segment-level DNC does not require utterance
boundaries information since it uses window-level
speaker embeddings. Fig. 1 shows the architecture
of segment-level DNC, which also follows a stan-
dard Transformer encoder-decoder design. Here,
X represents a sequence of window-level speaker
embeddings. The encoder output, F, has the same
length as X, but the number of output speaker
indices from the decoder for each segment corre-
sponds to the number of speakers in that segment.
In Fig. 1, the first segment (in blue) contains one
speaker, resulting in a single index, s1, from the
decoder for that segment. For the second segment
(in green), external information indicates that there
are two speakers, so the decoder produces indices
s9 and s3. The first speaker in a meeting is as-
signed index 0, the second assigned index 1, and
so on. When the decoder outputs speaker indices
for the current segment, its cross-attention mech-
anism focuses solely on the encoder features of
that segment. To use the parallel system, a long
meeting is divided into many segments, usually
done by using a VAD system. Speaker turns within
a VAD segment are merged during training to en-
sure they come from unique speakers. Each VAD
segment is processed by the SOT ASR to generate
word tokens, including speaker change tokens. By
counting these special tokens, segment-level DNC
determines the number of speaker indices needed
for each segment and generates indices for the en-
tire meeting. The final step involves combining
the speaker indices with their corresponding word
tokens from the SOT ASR.

3 DNCASR Methodology

The parallel system (Zheng et al., 2024) consists of
two modules: segment-level DNC and SOT ASR
(referred to as DNC and ASR). It is challenging to
jointly train these two modules since their inputs
differ significantly. Each training input to DNC
module is window-level speaker embeddings of an
entire meeting, while the ASR module operates on
waveforms of individual VAD segments. Using the
waveform of an entire meeting as input to the ASR
module is impractical due to memory constraints.
During inference, the ASR module only provides
the number of speakers in each VAD segment to
the DNC module. Since the ASR module does not
share any further information about the order of the
speakers, the speaker indices generated by DNC
may not align with the serialised output from ASR.
For instance, DNC might assign the speaker index
of the second turn in the serialised output to the
first turn. This misalignment can result in incorrect
speaker-attributed transcriptions.

DNC Module ASR module
DNC Decoder +——{ ASR Decoder
E, E.
Spk Encoder Wav Encoder
(low resolution) (high resolution)

Spk embeddings Waveform

Figure 2: Model architecture of DNCASR, FE,, is the
output of the Wav encoder, E; is the output of the
speaker encoder.

This paper introduces two-stage joint fine-tuning
of the DNC and ASR modules with an added link
component in the DNC module, where the entire
system is called DNCASR. The link component
uses cross-attention to align DNC features with the
hidden features from the ASR module. As shown
in Fig. 2, the ASR module sends high-resolution
information to the DNC module, enabling it to
generate speaker indices that match the speaker
turns identified by ASR. Unlike the parallel system,
DNCASR does not merge speaker turns from the
same speaker within a VAD segment during train-
ing, allowing non-adjacent turns to belong to the
same speaker.

3.1 Joint Fine-tuning — Stage 1

In DNCASR, the DNC and ASR modules are ini-
tially pre-trained separately before entering the first
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joint training stage. During this joint-training stage,
the DNC module is trained to generate the speaker
indices from the first segment to the current seg-
ment, while the ASR module is trained to produce
the word sequence for the current segment. The
loss function for joint training is the sum of the loss
functions for the DNC and ASR modules, consist-
ing of two cross-entropy losses.

Fig. 3 shows the architecture of the decoder
blocks in DNCASR for this stage, where NN is the
number of blocks in the decoder. The output of the
final DNC decoder block is projected to generate
target speaker indices from the first segment to the
current segment. The output of the final ASR de-
coder block is projected to generate word tokens of
the current segment, including speaker change to-
kens (<sc>) and an end-of-sequence token (<eos>).

The ASR decoder block is a standard Trans-
former decoder (Vaswani et al., 2017), which has
one self-attention module (Self Attn) and one cross-
attention module (Wav Cross Attn). The output of
the Wav Cross Attn module in each block is re-
ferred to as Wca. In joint fine-tuning stage 1,
Wea of the n-th block is used in the Link Cross
Attn module in the n-th block of the DNC decoder.

To link the DNC and ASR decoder blocks, a
modified Transformer decoder block is proposed
for the DNC decoder. Each DNC decoder block
now has two cross-attention modules: the first
cross-attention module (Spk Cross Attn) attends
to the speaker encoder outputs Eg:

Scalil = CA(Q, K, V) = CA(Q. K)
= CA(Ssali], Es ® maskg][i]) (1)

where Sca[i] is the output of the Spk Cross Attn
module for the i-th target speaker index of the en-
tire meeting, CA represent cross attention function
with query (Q), key (K) and value (V') matrices.
Since K and V are identical in Eq. (1), we omit
V in the equations. Sga[?] is the output of the
self-attention module for the ¢-th target speaker in-
dex. ® represents element-wise multiplication, and
mask,[i] is a mask matrix that is used to ignore the
Spk encoder outputs E; of all segments except the
one corresponding to the ¢-th target speaker index.

The second cross-attention module (Link Cross
Attn) in the n-th DNC decoder block attends to the
output W from the Wav Cross Attn module in
the n-th ASR decoder block:

LCA[i] = CA(SCA [Z], Weoa © mask; [Z]) 2)

DNC Decoder Block ASR Decoder Block

Feed Forward Feed Forward
4 t
Add % Norm Add & Norm)
f
Link Cross Attn )« Wav Cross Attn xN
N t !
x Add & Norm Add & Norm
+ 4
Spk Cross Attn Self Attn
+ +
Add & Norm
?
Self ?Attn E,,
Input: <bos>word1 <sc>word2 word3

Target: word1 <sc> word2 word3 <eos>

200000000

Input: <sbos> S1 S2 S
Target: S1 So S3

Figure 3: Detailed architecture of the decoder blocks in
DNCASR during joint fine-tuning stage 1. <bos> and
<sbos> indicate start of sequence tokens.

where L [i] is the output of the Link Cross Attn
module for the i-th target speaker index of the
entire meeting, Sca[i] is the output of the Spk
Cross Attn module for the same target speaker in-
dex. Each target output word token, including <sc>
and <eos>, has its own W4 in each ASR decoder
block. W © mask;[i] serves as the K and V
for the Link Cross Attn module, where mask;|i]
masks out the W features of all word tokens ex-
cept those corresponding to the i-th target speaker
index. To further explain Eq. (2), the information

S1 S92 83

<pad> word1l <sc> word2 word3 <eos>

Figure 4: Information flow from W4 to Scp features
between each pairs of decoder block in stage 1.

flow between the corresponding ASR and DNC
decoder blocks is shown in Fig. 4. s; to s3 are
the speaker indices of the past segments, while sy
and s5 are the speaker indices in the current seg-
ment. Since the ASR module processes only the
current segment, only the speaker indices in that
segment are aligned with the word token features.
Therefore, for Sca features corresponding to past
segments, they attend to a learnable embedding,
denoted as <pad>, while the Scp features in the
current segment attend to the W5 features of the
word tokens in the corresponding speaker turn. For
example, s, attends to W features correspond-
ing to the ASR output tokens word1 and <sc>, s5
attends to W4 features corresponding to word?2,
word3 and <eos>. Here we align the W4 features
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corresponding to the <sc> and <eos> tokens to the
speaker turn on the left. In this stage, the training
targets are the speaker indices from the first seg-
ment up to the current segment, together with the
word tokens of the current segment.

3.2 Joint Fine-tuning — Stage 2

In the second stage of joint training, only the DNC
decoder is fine-tuned, using pre-computed Wga
features for all speaker turns throughout the entire
meeting. Each DNC decoder block receives the
corresponding W features for all word tokens
across all segments. The architecture of DNCASR
remain the same as in Fig. 3, but the ASR module
is frozen in this stage.

81 82 83 84 S5 Sg
gaaassannnonIng
Figure 5: Information flow in stage 2. Colours indicate

different speaker turns, with each coloured rectangle
representing a Wy feature.

As shown in Fig. 5, after computing all Wca
features for the entire meeting in advance, each
speaker index now attends to its own Wy features
in each DNC decoder block, rather than attending
to a learnable <pad> embedding as in stage 1. In
stage 2, the training target is the speaker indices of
the entire meeting.

3.3 Inference

The inference procedure for DNCASR is similar to
the parallel system, where the ASR module first de-
codes all VAD segments, and then the DNC module
decodes speaker labels for the entire meeting. The
difference is that in DNCASR, the W a features
of all VAD segments are stored, allowing the DNC
module to attend to them during decoding. The
inference procedures differ between stage 1 and
stage 2: stage 1 requires running DNC separately
for each segment, whereas stage 2 allows DNC to
be applied to all segments in a single pass. More
detail is given in Appendix B.

3.4 Constrained Diaconis Augmentation

Training the DNC module requires a large amount
of meeting data. However, publicly available real
meeting datasets, such as AMI, are limited in size.
To ensure sufficient training data and avoid over-
fitting, Diaconis Augmentation is used (Li et al.,
2021) to apply random rotations (Stewart, 1980; Di-
aconis and Shahshahani, 1987) to the speaker em-

beddings, thereby increasing the amount of training
data. However, excessive rotation of the speaker
embeddings may lead to a decrease in performance.
In this paper, we propose a Constrained Diaconis
Augmentation (CDA) method to control the rota-
tion angle of the speaker embeddings. More detail
of the formulation is given in Appendix D.

4 Experimental Setup

This section describes two datasets used for train-
ing and evaluating DNCASR, along with the model
configuration, pre-training data and evaluation met-
rics.

4.1 Synthetic Data

To test the proposed DNCASR in a controlled set-
ting, synthetic meeting data was generated from
LibriSpeech (Panayotov et al., 2015). For training,
6,000 simulated meetings were created, each with 8
speakers, and each simulated meeting was approx-
imately 10 minutes long. Each segment consists
of a random selection of 1 to 5 utterances from
the LibriSpeech train_960h set, where adjacent
utterances always come from different speakers.
Adjacent utterances can have up to a 25% over-
lap ratio, while the total overlap ratio of the entire
meeting is around 5%. For evaluation, 20 simu-
lated meetings were created in the same manner
as the training set, but using utterances from the
LibriSpeech dev_clean set. The training data is
used to train the SOT ASR system, fine-tune the
SDNC in the parallel system, and perform joint
fine-tuning for DNCASR.

42 AMI

AMI (Carletta et al., 2006) is a real meeting dataset
that contains 100 hours of meeting recordings with
3 to 5 speakers in each meeting. In this paper, only
the multi-distant microphone (MDM) audio, beam-
formed using Beamformlt (Anguera et al., 2007),
is used for the AMI experiments. There are 135
meetings for the training set, 18 for the Dev set
and 16 for the Eval set. The manual segmentation
has been found to label a lot of non-speech silence
regions as speech (Sun et al., 2021), the same pro-
cedure in Sun et al. (2021) was used to remove non-
speech regions with a pre-existing HMM-based
ASR system (Young et al., 2015) to do force align-
ment. Compared to the original speech regions, the
silence-stripped data reduces the total duration by
9.9% for Dev and by 11.7% for Eval.
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Since the AMI dataset is limited in size, data
augmentation methods in Zheng et al. (2024) were
applied to expand the training data. This includes
Diaconis augmentation, VAD segment permutation,
and gradually increasing the length of the meetings
used during training.

4.3 Model Configuration

The Spk encoder, DNC decoder, and ASR decoder
in DNCASR were trained from scratch, which all
used 6-layer Transformer-based decoder with 4 at-
tention heads. The hidden size is set to 256, and the
feed-forward size is set to 2048. The Wav encoder
uses WavLM (Chen et al., 2022), a foundation
model pre-trained using a self-supervised learning
(SSL) approach. The WavLLM used in this paper is
the wavlm-base-plus model from Wolf et al. (2020).
The window level speaker embeddings are ex-
tracted with a frozen ECAPA-TDNN (Dawalatabad
etal., 2021) model, which was trained on VoxCeleb
(Nagrani et al., 2020) and VoxCeleb2 (Chung et al.,
2018) datasets. The window size is 1.5s with stride
of 0.5s. More details can be found in Appendix A.

For experiments on the simulated data, the su-
pervised data is derived from synthetic mixtures
generated using the LibriSpeech dataset. For AMI
experiments, the supervised data comes exclusively
from the AMI-MDM data.

4.4 Pre-training DNC and ASR Modules

The data described in Secs. 4.1 and 4.2 are referred
to as VAD segment data. When pre-training the
DNC and ASR modules separately, the ASR mod-
ule uses VAD segment data, while the DNC module
needs to be pre-trained on segments that contain
only one speaker (Zheng et al., 2024). More detail
for DNC pre-training is given in Appendix C.

4.4.1 Synthetic Data

To pre-train the DNC module, a separate dataset
is used to generate 22.5k simulated meetings from
Librispeech train_960h, where each segment con-
tains only one speaker. The other settings are the
same as those in the synthetic data training set.

44.2 AMI

To pre-train the DNC module without generating
synthetic meeting data, we ensure one segment per
meeting by applying the First Speaker Segmen-
tation (FSS) method from Zheng et al. (2024) to
the AMI-MDM VAD segment data. This method
splits overlapping speech segments into multiple

segments, each assigned to a single speaker. FSS as-
signs the overlap region to the speaker who speaks
first, then splits the segment at the end of the over-
lap region, as shown in Figure 6.

Seg 1 Seg 2

Figure 6: A single overlapping VAD segment split into
two segments using the FSS method.

4.5 Evaluation Metrics

Three metrics are used for evaluation: diarisation
error rate (DER), word error rate (WER), and con-
catenated minimum-permutation word error rate
(cpWER). DER is a time-based metric, while cp-
WER and WER are word-based metrics. When
scoring DER, a 0.25s collar is used, and scoring
includes overlap regions. Since we use VAD seg-
ments with oracle boundaries, the DER is the same
as the speaker error rate. MeetEval (von Neumann
et al., 2023) is used to calculate cpWER, where
cpWER concatenates transcriptions from the same
speaker and finds the minimum WER across all
possible speaker mappings between the predicted
speaker indices and reference speaker IDs.

S Experimental Results

The section first shows the results on the synthetic
data, then the results on the AMI-MDM dataset.

5.1 Synthetic Data Experiments

Model WER c¢pWER
Parallel 35 13.4

DNCASR (S1) 3.5 9.5
DNCASR (S2) 3.5 8.7

Table 1: %WER and %cpWER on the synthetic data.
S1 and S2 refer to the first and second joint fine-tuning
stages of the DNCASR system.

The DNC and ASR modules were separately
pre-trained: DNC was pre-trained on synthetic
meetings without overlapping speech (Sec. 4.4.1),
while ASR was pre-trained on VAD segment data
(Sec. 4.1). The pre-trained modules are used to ini-
tialise the parallel and DNCASR systems. The par-
allel system was re-implemented following Zheng
et al. (2024), where the DNC module is fine-tuned
on VAD segment data after pre-training. The DNC
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module in DNCASR was fine-tuned on VAD seg-
ment data together with the ASR module. Table 1
shows the results of the parallel and DNCASR sys-
tems on the synthetic data when the ASR module is
frozen after pre-training. Unlike the DNC module
in the parallel system, which does not use hidden
features from the ASR module, the DNC module
in DNCASR (stages 1 and 2) uses these hidden
features. The results demonstrate that using the
hidden features of word tokens can improve DNC
performance when the ASR modules are the same
across the three different setups. Both stages 1 and
2 fine-tuning of DNCASR outperform the paral-
lel system, reducing cpWER by 29.1% (stage 1)
and 35.1% (stage 2). Extra results using the same
checkpoint to evaluate on test sets with variable
number of speakers can be found in Appendix E.1,
and the LibriCSS (Chen et al., 2020) OV 10 results
can be found in Appendix E.2.

Model DER c¢pWER
Parallel 3.9 6.8

DNCASR (S1) 2.7 4.2
DNCASR (S2) 1.6 3.6

Table 2: %DER and %cpWER on the synthetic data
with oracle word sequence and speaker turns.

Table 2 shows the results of the DNCASR sys-
tem on the synthetic data when using oracle word
sequence. In both the parallel and DNCASR sys-
tems, the DNC module is provided with the oracle
speaker turns for each segment. In the DNCASR
system, the ASR module uses the oracle word se-
quence to provide the hidden features of word to-
kens to the DNC module. The DERs in Table 2
show the performance of the DNC module when
the number of speaker turns is known. The results
indicate that the DNCASR system outperforms the
parallel system, reducing the DER by 30.8% in
stage 1 and 59.0% in stage 2. The cpWER in Ta-
ble 2 shows the cpWER when the errors are solely
due to speaker assignment. The cpWER is reduced
by 38.2% in stage 1 and 47.1% in stage 2 compared
to the parallel system.

5.2 AMI Experiments

For the AMI experiments, the ASR module was
pre-trained on the AMI MDM VAD segment data,
while the DNC module was pre-trained on the FSS
segment data, as described in Sec. 4.4.2. With
FSS segments, although neither the parallel nor the

Model DER (FSS) WER
Cascaded 5.4/4.0 22.4/24.7
Parallel (Pretrain)
Zheng et al. (2024) 5.6/4.4 25.8/26.6
DNCASR (Pretrain) 5.3/4.1 25.1/27.1
DNCASR (S1) - 24.9/26.6

Table 3: %DER (score overlap regions with 0.25 collar)
and %WER on Dev/Eval set of AMI-MDM. %WER
for the cascaded system is computed per utterance; for
other systems, it is per VAD segment.

DNCASR system outputs time information, both
can use the boundaries of the FSS segments to
calculate the DER. The DNCASR system is com-
pared to the parallel system pre-training results
from Zheng et al. (2024), which also uses the FSS
segments for pre-training the DNC. Another base-
line is the cascaded system, which uses the same
window-level embeddings as DNCASR. This ap-
proach begins by applying spectral clustering to
produce speaker-homogeneous segments, which
are then decoded using an ASR model trained on in-
dividual utterances. Unlike the SOT ASR, which is
trained using oracle VAD segmentations, the ASR
model in the cascaded system is trained on single ut-
terances. The DER results show that the DNCASR
pre-training results are comparable to those of the
cascaded and parallel systems. Although the WER
performance on the Eval set is slightly worse than
the parallel system during pre-training, it matches
the parallel system’s performance after joint fine-
tuning. After fine-tuning without FSS segments,
the DNCASR system lacks accurate start and end
times for each predicted speaker turn within a VAD
segment, making it unsuitable for calculating DER.

Model cpWER C(K/I\ZIE‘[: 11){
Cascaded 35.2/33.0  46.0/46.1
Zhengpztrfll.ezzoz gy 4BBAE 498492
DNCASR (S1)  33.2/34.7 47.3/49.5
DNCASR (S2)  31.3/32.1 43.4/44.8
+CDA 30.7/31.5  42.5/44.1

Table 4: %9cpWER on AMI Dev/Eval set. %cpWER-
Multi is the %cpWER of multi-talker segments.
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Table 4 shows the cpWER results on the AMI-
MDM dataset after fine-tuning the DNC module
on the training set. Stage 1 fine-tuning of the
DNCASR system (S1) yields better cpWER per-
formance than both the cascaded and parallel sys-
tems on the Dev set, with relative reductions of
5.7% and 4.6% respectively. However, it performs
slightly worse than the two baselines on the Eval
set. For cpWER-Multi, which is the cpWER on
the multi-talker VAD segments in the reference,
both the parallel and DNCASR (S1) are worse than
the cascaded system. Since the AMI dataset has
more segments and a longer total duration than the
synthetic data, omitting or restricting hidden fea-
tures for word tokens to the current segment may
be insufficient for improving speaker assignment.
After stage 2 fine-tuning, the DNCASR system out-
performs both the cascaded and parallel systems
on the Dev and Eval sets, achieving relative cp-
WER reductions of 11.1% and 2.7% compared to
the cascaded system, and 10.1% and 7.2% com-
pared to the parallel system. When CDA is applied,
the scale is set randomly between O and 10 for
each training example. After further fine-tuning the
DNCASR (S2) system with CDA, cpWER is fur-
ther reduced, with relative improvements of 12.8%
and 4.5% over the cascaded system, and 11.8%
and 9.0% over the parallel system on the Dev and
Eval sets, respectively. The cpWER-Multi is re-
duced by 14.7% and 10.4% on the Dev and Eval
sets compared to the parallel system, indicating
that the majority of the improvement comes from
the multi-talker segments. Some DNCASR outputs
are shown in Appendix F. Appendix H presents
results comparing the best DNCASR setups using
wavlm-base-plus and wavlm-large, which leads to
more than 10% relative cpWER reductions in both
AMI Dev/Eval by using the larger SSL model.

cpWER
Model DER Al Single Multi
DNCASR (SI) 67 193 56 333
DNCASR (S2) 6.5 178 65  28.5
+ CDA 63 174 63 283

Table 5: %DER and %cpWER on the AMI Eval set with
oracle words. ‘all’ refers to all segments, Single and
multi refer to single- and multi-talker segments.

Table 5 shows the results of the DNCASR sys-
tem on the AMI-MDM Eval set when using the
oracle word sequence. Given the oracle speaker

turns in each segment, the DER was computed us-
ing the oracle timestamps for each turn. There
is a consistent improvement in DER from S1 to
S2+CDA, with a relative reduction of 6.0%, and
cpWER shows an overall 9.8% relative reduction.
However, the cpWER on the single-talker segments
is worse in stage 2 than in stage 1, indicating that
the improvement in cpWER primarily comes from
the multi-talker segments, where a relative reduc-
tion of 15.0% is observed.

Model p-value #meetings improved
DNCASR (S2) 1.1E-6 30
+ CDA 5.1E-9 31

Table 6: cpWER Wilcoxon signed-rank test results on
the AMI Dev and Eval compared against DNCASR (S1).
In total there are 34 meetings.

Table 6 shows the single sided Wilcoxon signed-
rank test (Wilcoxon, 1945) results for the cpWER
on the AMI-MDM set between stage 1 and stage 2
of the DNCASR system. The cpWER of individual
meeting pairs is compared, and the p-value is cal-
culated to determine whether the cpWER of stage
2 is significantly lower than that of stage 1. The
cpWERs of all 34 meetings in the combined AMI
Dev and Eval set are shown in Appendix G. Table 6
shows that DNCASR (S2) has 30 meetings with a
lower cpWER than DNCASR (S1), and DNCASR
(S2+CDA) has 31 meetings with a lower cpWER
than DNCASR (S1). The p-values show that the
improvements in cpWER from stage 1 to stage 2
are highly statistically significant.

6 Conclusions

This paper proposes a joint neural clustering and
ASR system that allows end-to-end joint training.
By incorporating the ASR hidden features into the
neural clustering module, the system is able to pre-
dict more accurate speaker indices in overlapping
segments. We also introduce the Constrained Di-
aconis Augmentation method to maintain the ro-
tated speaker embeddings close to their original
values, further enhancing the accuracy of predicted
speaker indices. The best DNCASR system outper-
forms the parallel system on both the AMI Dev and
Eval sets, achieving a relative cpWER reduction of
11.8% and 9.0% respectively, as well as a 14.7%
and 10.4% relative reduction on multi-talker seg-
ments, highlighting the effectiveness of DNCASR
in handling complex conversational scenarios.
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7 Limitations

DNCASR jointly fine-tunes a speaker clustering
module (DNC) and an ASR module, but it still re-
lies on a separate speaker embedding extraction
module and a separate VAD. Our current setup has
not investigated the possibility of jointly training
the DNCASR with the speaker embedding extrac-
tion module and VAD. For experiments on the real
meeting corpus AMI, we use the AMI-MDM train-
ing data as the sole source of supervised training
for the entire system. This makes it challenging to
compare our system with others that rely on sig-
nificantly more supervised data, much of which is
not publicly available. We have not yet tested the
method on other multi-taker datasets. Our experi-
ments show that using an oracle ASR word tokens
can significantly improve results. However, only
a relatively small pre-trained WavLM model was
used as the Wav encoder in the main experiments.
With a larger Wav encoder pre-trained on more data,
the ASR performance could be further enhanced,
which would lead to improved speaker-attributed
ASR results as shown in Appendix H even with the
same amount of supervised training data.

8 Ethics

In general, an improved long form multi-speaker
ASR in general could lead to decreased privacy
in speech based communications (electronic and
face-to-face), unless certain legal frameworks are
developed and enforced. However, our model uses
speaker data from publicly available sources, fo-
cusing solely on generating speaker indices within
meetings. It does not attempt to associate any data
with specific speaker identities. This approach en-
sures privacy by preventing the identification of
individual speakers. All data is anonymised, main-
taining compliance with ethical standards while
utilising publicly accessible data for model train-
ing and evaluation. A positive impact would be
better efficiency, transparency and traceability of
speech based communications via easier access to
information in consensually made recordings.
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A Model Details

The DNCASR model consists of four main compo-
nents: the Wav encoder, the Spk encoder, the DNC
decoder, and the ASR decoder. In total the num-
ber of parameters in the entire DNCASR system
is 117M, where most of the parameters are in the
Wav encoder, which is 94M. The Wav encoder is a
pre-trained WavLM model (wavlm-base-plus) from
Wolf et al. (2020). All experiments were conducted
on a single A100 GPU with 80GB of memory. For
the real-world AMI data experiments, the ASR
module pre-training took approximately 25 min-
utes per epoch, with a total of 60 epochs completed
in around 25 GPU hours. The DNC module was
pre-trained on FSS segments for 250 epochs, with
each epoch taking 5 minutes, amounting to a total
of 21 GPU hours. Fine-tuning the DNCASR model
was carried out in two stages. Stage 1 took 2 hours
per epoch for 10 epochs, requiring about 20 GPU
hours in total. Stage 2 took 1.5 hours per epoch
for 5 epochs, followed by 3 additional epochs with
Constrained Diaconis Augmentation, resulting in
a total of 12 GPU hours. The learning rate was set
to SE-4 with Adam optimizer with linear warm-up
for the first 20% of the training steps.

B Inference Details

The inference procedure for DNCASR fine-tuning
stage 1, illustrated in Fig. 7, involves executing
both the DNC and ASR modules once for each
segment. Inference begins with the ASR module,
which uses beam search to generate serialised out-
put word tokens, including the special tokens <sc>
and <eos>, for each segment. The top-1 (1-best)
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Figure 7: Tllustration of DNCASR’s stage 1 decoding.

word tokens from the current segment are then used
to produce the corresponding 1-best W features
for each ASR decoder block.

Subsequently, the DNC module decodes the
speaker labels for the current segment. The 1-best
speaker label sequence from previous segments is
provided as context to the DNC decoder to decode
the speaker labels of the current segment. There-
fore, beam search is applied only to the current
segment, and the 1-best speaker labels from this
segment are appended to update the 1 best sequence
of past speaker labels. During inference, outputs
associated with past speaker labels (context) attend
to the <pad> embeddings, whereas outputs corre-
sponding to the current segment’s speaker labels
attend to this segment’s 1-best W5 features.

Speaker Attributed Results of All Segs
DNC

[ 1-best W feature  1-best Wi feature ]
mD &

seg 1 !

Figure 8: Decoding illustration of DNCASR.

seg 2

The inference procedure for DNCASR fine-
tuning stage 2 is shown in Fig. 8. The ASR module
first decodes each VAD segment using beam search
to generate word tokens, saving the 1-best word to-
kens along with the corresponding W features.
The DNC module then decodes the speaker labels
for the entire meeting, attending to the W, fea-
tures of the corresponding speaker turn.

C Pre-training DNC

During pre-training of the DNC, the Link Cross
Attention module is absent and will be added
and trained from scratch during the fine-tuning
stages. Length scheduling plays a crucial role in
pre-training the DNC module, starting with shorter
meeting segments and gradually increasing the seg-
ment length until the full meeting is covered. Since

DNC and ASR pre-training can be performed si-
multaneously and takes roughly the same amount
of time, it is more efficient to pre-train both mod-
ules before proceeding to jointly fine-tune. We
have tested that during fine-tuning stage 1, with the
same stage 1 fine-tuning procedure, if the DNC is
not pre-trained, it is unable to learn how to provide
speaker indices at all.

D Constrained Diaconis Augmentation
(CDA) Formula

The transformation formula in Stewart (1980)
states that the transformation H € R"™ can be con-
structed as follows:

H=DH H, - --H, 3)

where the term H; is defined as

(0 5 )

and D is a diagonal sign matrix s.t. diag(D)[j —
1] = sign(diag(H;)[0]). Each H; is a House-
holder transformation matrix in R?~7+1:

_ ’Uj’U]T
Hj=1;-2 7% 4)
77

where v; € R”=J+1 is a random vector. To control
the transformation angle, we only need to control
the first element of the random vector v:

3 = [0;(0] — scale,o;[1], -] (5)

where scale is a constant value that controls the
rotation angle. When the scale is set to oo, H j
becomes an identity matrix, except for the first
element, which is -1. In this case, D H;lz_ll H; =
I. Setting scale to be 0 is equivalent to the original
unconstrained Diaconis Augmentation.

Applying rotations to 100 32-d random vectors,
each with a different H, produces the averaged

absolute rotation angles shown in Table 7.

| C=0 C=1 C=10 C=100
Angle | 90.0 832 29.6 32

Table 7: Averaged absolute rotation angles with differ-
ent constrained scales C'.
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E Addition Results

E.1 Variable Number of Speakers

To evaluate the ability of DNCASR to handle
varying numbers of speakers, we use the same
DNCASR (S2) checkpoint from Table 1 to test
on datasets with different speaker counts. Specif-
ically, we follow the same procedure to generate
two additional test sets containing 7 and 6 speakers,
respectively. Surprisingly, despite being trained

# speaker cpWER
8 8.7
7 7.2
6 10.2

Table 8: Using DNCASR (S2) in Table 1 on synthetic
meetings with different number of speakers per meeting.

solely on 8-speaker data, our model performed well
in 7-speaker scenarios. In 20 simulated 7-speaker
meetings, the model correctly identified the correct
number of speakers in 10 of the meetings. For the
remaining 10 meetings, while the model slightly
overestimated the number of speakers (assigning 8),
the 8th speaker index only received a small num-
ber of speaker turns, which had minimal impact
on the overall results. In the 6-speaker scenario,
the cpWER increases noticeably, indicating that
the model indeed needs to be trained with varying
numbers of speakers to effectively handle situations
with a more diverse number of speakers.

E.2 LibriCSS OV10

LibriCSS (Chen et al., 2020) is a synthetic data
created by mixing utterances from LibriSpeech
(Panayotov et al., 2015) test_clean set to create
conversations. Each conversation has 8 speakers
lasting for around 10 minutes. The conversations
are divided into sessions based on different overlap
ratios. The anechoic (rather than replayed) OV10
session of LibriCSS most closely matches the setup
of our synthetic data experiments, although conver-
sations in OV 10 have an approximate 10% overlap
ratio compared to 5% in our experiments. The
same DNCASR checkpoints from Table 1 are then
used to evaluate the 10 conversations in this ane-
choic LibriCSS session. Similar to our synthetic
experiments, the results on OV10 also show con-
sistent improvement from stage 1 to stage 2 of the
fine-tuning process.

JocpWER  %cpWER

Model (Ours)  (OV10)
DNCASR (S1) 95 11.9
DNCASR (S2) 8.7 76

Table 9: Comparing the %cpWER in Table 1 (ours)
and in anechoic LibriCSS OV 10 session using the same
DNCASR checkpoints.

F Example Outputs of DNCASR

The following examples show the inference results
of some VAD segments with multiple speaker
turns within long meetings.

Example 1: This example shows that DNCASR
S1 predicts the same speaker indices for two turns,
while DNCASR S2+CDA predicts correct speaker
indices.

Reference:

<spkl> THE SLIDE PAD <spk0> WE ALSO
DON’T KNOW HOW MANY BUTTONS ARE
REQUIRED OR

DNCASR S1:

<spk0> THE SPICE YEAH <spk0> WE ALSO
DON’T KNOW HOW MANY BUTTONS ARE
REQUIRED OR

DNCASR S2+CDA:

<spk1> THE SPICE YEAH <spk0> WE ALSO
DON’T KNOW HOW MANY BUTTONS ARE
REQUIRED OR

Example 2: This example shows that DNCASR
S1 predicts the second speaker index incorrectly,
while DNCASR S2+CDA predicts the correct
speaker indices.

Reference:
<spk0> WE HAVE ONE FOR THE ZERO AND
ONE FOR THE <spk3> UH YEAH

DNCASR S1:
<spk0> WE HAVE ONE FOR THE ZERO AND
ONE FOR THE <spk1> YEAH

DNCASR S2+CDA:
<spk0> WE HAVE ONE FOR THE ZERO AND
ONE FOR THE <spk3> YEAH
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Example 3: This example shows that DNCASR
S1 predicts the last two speaker turns incorrectly,
while DNCASR S2+CDA predicts the correct
speaker indices.

Reference:

<spk0> INTRO YEAH <spk2> TO DO IT
BECAUSE IT’S ONLY TWELVE AND A
HALF EUROS YOU HAVE TO SPEND ON
EVERY REMOTE CONTROL <spk0> YEAH
THAT’S THE PROBLEM THAT’S THE MAIN
PROBLEM <spkl1> WELL I GOT F ALSO AN
EMAIL FROM

DNCASR S1:

<spk0> THAT’S TRUE <spk2> TO DO IT
BECAUSE IT’S ONLY TWELVE AND A
HALF EUROS YOU HAVE TO SPEND A
REMOTE CONTROL <spkl> YEAH WELL
THE PROGRAMME JUST <spk3> I GOT ALSO
AN EMAIL FROM

DNCASR S2+CDA:

<spk0> THAT’S TRUE <spk2> TO DO IT
BECAUSE IT°S ONLY TWELVE AND A
HALF EUROS YOU HAVE TO SPEND A
REMOTE CONTROL <spk0> YEAH WELL
THE PROGRAMME JUST <spk1> I GOT ALSO
AN EMAIL FROM

Example 4: This example shows that ASR
predicts one less speaker turn than the reference,
DNCASR S1 predicts the first speaker index
correctly but the second speaker index incorrectly,
while DNCASR S2+CDA predicts the correct
speaker indices.

Reference:

<spkl> YEAH BUT IT YOU CAN’T POSSIBLY
DO THAT IN SUCH A SHORT TIME I THINK
<spk2> DON’T HAVE TO DO THAT <spk0>
THAT’S FOR

DNCASR S1:

<spkl> YEAH BUT YOU CAN POSSIBLY DO
THAT IN SUCH A SHORT TIME I THINK
<spk0> DON’T HAVE TO DO THAT

DNCASR S2+CDA:

<spkl> YEAH BUT YOU CAN POSSIBLY DO
THAT IN SUCH A SHORT TIME I THINK
<spk2> DON’T HAVE TO DO THAT

Example 5: This example shows that ASR
predicts all words and speaker turns correctly.
DNCASR S1 predicts the correct speaker indices
but in the wrong order, while DNCASR S2+CDA
predicts the correct speaker indices in the correct
order.

Reference:

<spk2> IT’S COMING AT THE END <spkl>
IT’S HERE FORTY EIGHT <spk2> FORTY
EIGHT <spk3> AH FORTY EIGHT <spk2> BUT
QUITE A LOT OF PEOPLE HAVE SEEN IT
ACTUALLY <spk3> YEAH

DNCASR SI:

<spk2> IT’S COMING AT THE END <spkl>
IT’S HERE FORTY EIGHT <spk3> FORTY
EIGHT <spk2> AH FORTY EIGHT <spk3> BUT
QUITE A LOT OF PEOPLE HAVE SEEN IT
ACTUALLY <spkl> YEAH

DNCASR S2+CDA:
<spk2> IT’S COMING AT THE END <spkl>
IT’S HERE FORTY EIGHT <spk2> FORTY
EIGHT <spk3> AH FORTY EIGHT <spk2> BUT
QUITE A LOT OF PEOPLE HAVE SEEN IT
ACTUALLY <spk3> YEAH
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G Individual meeting cpWER
(speaker-attributed WER) Results

Table 10 lists the cpWERs for all of the meetings in
the AMI Dev and Eval sets for the DNCASR (S1),
DNCASR (S2), and DNCASR (S2+CDA) from
Table 4.

Meeting ID  S1 S2  S2+CDA
1B4004 342 325 31.5
1B4002 477 45.0 45.3

TS3004d 41.1 38.8 39.2
1B4001 359 329 32.7
TS3004a  36.1 33.1 33.6
IS1008c  26.1 24.7 24.7
1B4011 33.0 309 304
IS1008d  26.0 242 24.2
ES2011b 299 29.5 28.9
ES2011a  40.2 46.6 40.1
IS1008a 169 16.7 17.1
IS1008b 185 17.0 17.1
TS3004b  33.1 31.6 29.1
1B4003 27.0 251 25.3
TS3004c 37.8 344 33.0
1B4010 36.7 35.1 34.7
ES2011d  33.6 325 31.8
ES2011c 319 264 26.6
ES2004c  28.6 25.1 23.9
ES2004b  24.1 22.0 22.4
EN2002a 47.0 46.6 42.8
ES2004a 442 359 37.2
ES2004d 37.6 34.0 34.1
TS3003d 340 31.3 31.3
TS3003a 353 33.0 33.2
EN2002b 444 42.1 414
EN2002c  38.2 349 34.5
TS3003¢ 184 19.6 19.5
EN2002d 50.1 453 45.5
IS1009b 274 27.7 27.2
IS1009d  39.0 322 30.2
IS1009c 224 21.2 21.4
IS1009a  38.1 343 34.3
TS3003b 160 164 16.4

Table 10: Individual cpWER results on the AMI Dev
and Eval sets for DNCASR (S1), DNCASR (S§2), and
DNCASR (S2+CDA)

cpWER

Model cpWER (Multi)
DNCASR (base) 30.7/31.5 42.5/44.1
+ oracle words 14.8/17.4 24.4/28.3
DNCASR (large) 27.6/28.0 38.0/39.1
+ oracle words 14.6/16.4 23.8/25.3

Table 11: %cpWER and %cpWER-Multi on AMI,
where %cpWER-Multi is the %cpWER on multi-talker
segments. Comparison of the best DNCASR setup
(S2+CDA) from Table 4 using either the wavlm-base-
plus (base) or wavlm-large (large) model as the Wav
encoder. ‘+ oracle words’ indicates using the oracle
words sequence instead of decoded word sequence.

H Replacing wavim-base-plus with
wavlm-large as the ASR module
encoder

Table 11 presents the results comparing the best
DNCASR setup from Table 4 with a modified ver-
sion that uses wavlm-large instead of wavlm-base-
plus as the Wav encoder in the ASR module. Re-
sults show that the cpWER can be reduced by over
10% after using the larger SSL encoder. The rela-
tive cpWER reductions using decoded words are
10.1% and 11.1% on the AMI Dev and Eval sets,
respectively. On multi-talker segments, the reduc-
tions are quite similar, giving 10.6% and 11.3% on
Dev and Eval sets respectively.

When using oracle words to generate ASR hid-
den features, the relative cpWER reductions with
wavlm-large are more modest—1.4% on Dev and
5.7% on Eval—both under 10%, suggesting that
the model’s ability to recognise speakers given cor-
rect words has not significantly improved. The
reductions in cpWER-Multi using oracle words are
more substantial, decreases by 2.5% and 10.6%,
respectively.

Overall, the results show that improvements are
more significant in cpWER-Multi compared to cp-
WER. This suggests that wavlm-large offers better
speaker-related representations in segments with
multiple speaker turns, enabling the model to as-
sign relative speaker indices more accurately.
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