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Abstract

Semi-structured tables, with their varied lay-
outs and formatting artifacts, remain a major
obstacle for automated data processing and an-
alytics. To address these challenges, we pro-
pose RELATIONALCODER, which uniformly
converts semi-structured tables into relational
data, enabling smooth integration with the rich
ecosystem of data processing and analytics
tools. By leveraging SQL code, RELATIONAL-
CODER prevents schema errors and markedly
improves normalization quality across multiple
relational tables.

To address the challenge of large tables, we
propose a new technique called Loop Refer-
ence Decoding (LRD): it identifies expand-
able groups—repeating regions of similar struc-
ture and semantics—and replicates each group
using a concise loop over its repetitive re-
gion by referencing cell addresses rather than
regenerating each individual cell. This de-
sign substantially reduces output length from
O(N ×M)—proportional to the table’s height
(N ) and width (M )—to approximately O(K),
where K denotes the total number of unique
cell values within the repetitive regions of all
detected expandable groups. As a result, LRD
is highly scalable: the larger the input table, the
greater the compression ratio. It scales seam-
lessly to extremely large tables, achieving out-
put reductions of up to 100,000×.

We construct a human-labeled corpus for table
transformation, created with a cost-efficient,
actively supervision pipeline. Extensive ex-
periments on HiTab and MULTIHIERTT show
that RELATIONALCODER not only enables pro-
grammatic symbolic reasoning but also boosts
QA accuracy—raising Llama-2 and Mistral
models by more than 20%, and GPT-4o by
over 4%. Project page: https://github.
com/haoyudong/RelationalCoder.

* Corresponding author

1 Introduction

Recently, the rapid development of Language Mod-
els (LMs) has opened new frontiers for data pro-
cessing and analytics by leveraging various tools
such as SQL and Python (Li et al., 2023b; Cheng
et al., 2022c). However, their capabilities are
largely contingent on the data being in a relational
format. This limitation leaves a substantial gap in
dealing with documents (such as Wikipedia pages,
statistical reports, and spreadsheets) that contain a
significant number of semi-structured tables, which
are intuitive for human reading but challenging for
machine processing. As illustrated by Figure 1,
this complexity arises from various formatting op-
tions, including merged cells, cell alignments, bold
fonts, blank rows, and multi-table layouts (Dong
et al., 2019b; Gol et al., 2019; Chen and Cafarella,
2014), as well as diverse table structures with func-
tional, hierarchical, and computational dependen-
cies (Li et al., 2024; Deng et al., 2022; Cheng et al.,
2022a,b). Consequently, processing and analyzing
semi-structured data beyond relational structures
remains largely unexplored.

While significant prior works have explored fine-
tuning LMs to better understand complex table and
spreadsheet structures (Dong et al., 2024; Zhang
et al., 2023a; Li et al., 2023a; Wang et al., 2021;
Cheng et al., 2022b; Zhao et al., 2022), these efforts
have not unlocked the rich ecosystem of relational
data tools for complex tables, as they remain un-
transformed into a relational format. To address
this limitation, we introduce RELATIONALCODER,
which unlocks the extensive ecosystem of relational
data tools for semi-structured tables by uniformly
converting them into relational data, as illustrated
by Figure 1. Notably, this approach provides a one-
time solution: once the offline process is executed
in a single pass, the resulting relational data can
serve numerous QA requests.

RELATIONALCODER leverages SQL code to

1771

https://github.com/haoyudong/RelationalCoder
https://github.com/haoyudong/RelationalCoder


transform semi-structured data into a relational
form, offering two key advantages: (1) avoiding
schema errors such as inconsistent numbers of
columns across rows and duplicate headers; (2)
improving the relational normalization of multi-
ple tables—for example, by defining joinable pri-
mary keys. To address the challenge of generat-
ing large tables while preventing cell-level hallu-
cinations, we propose Loop Reference Decoding
(LRD). LRD detects expandable groups (Dou et al.,
2018) in the input table and emits FOR statements
that copy entire expandable groups by referenc-
ing their cell addresses. An expandable group is
a contiguous block that follows a uniform schema
and semantics—e.g., the range “A7:H16” in Fig-
ure 1. Within this block, a unit pattern such as
“A7:H7” repeats across successive rows, so the en-
tire group can be encoded succinctly with loop-
based expressions. This approach bypasses the
exhaustive, hallucination-prone token-by-token de-
coding process and allows the model to construct
tables of arbitrary length with concise code. Be-
cause LRD relies on the generative flexibility of
LLMs—rather than a fixed set of hard-coded oper-
ators such as TRANSPOSE in (Li et al., 2024; Nahid
and Rafiei, 2024) that is challenged by indentation
and merged cells—it readily handles diverse table
structures and formatting artifacts. Regarding large
inputs, we employ SPREADSHEETLLM (Dong
et al., 2024) to compress large inputs by augment-
ing individual cells with explicit addresses. To
optimize accuracy with minimal human labeling
costs, we employ Supervised Fine-Tuning with Ac-
tive Participation (SFT-AP), identifying potentially
erroneous samples for human labeling and model
fine-tuning.

To validate the effectiveness of RELATIONAL-
CODER, we evaluate both normalization qual-
ity and symbolic reasoning performance on QA
datasets such as HiTab and MULTIHIERTT.

Our contributions are summarized as follows:

• To enable the seamless integration with stan-
dard data processing tools and promote high
normalization quality, we propose RELATION-
ALCODER, which generates relational tables
using SQL. This approach avoids schema er-
rors and improves the normalization quality
across multiple relational tables.

• To handle large tables, we introduce Loop
Reference Decoding (LRD), a highly scalable
approach that recursively copies cells within

regions exhibiting repetitive patterns by refer-
encing their addresses. This strategy reduces
the number of output tokens by an average of
68.4%, achieving a 3.16× compression rate.
The longer the input table, the greater the com-
pression ratio; in extreme cases, the method
achieves a reduction of up to 160,000×.

• We provide a dataset of 850 table transforma-
tion samples. To minimize labeling costs, we
propose SFT-AP, which uses LLM-measured
normalization quality and reasoning accuracy
metrics to automatically select error-prone
samples for human labeling.

• RELATIONALCODER achieves significant ac-
curacy improvements on HiTab and MUL-
TIHIERTT. Notably, it particularly benefits
smaller LMs (with gains over 20%) that strug-
gle with comprehending complex structures.

2 Dataset

2.1 Statistical Report and Wikipedia Page
HiTab comprises 3,597 tables collected from
HTML government reports and Wikipedia pages,
including 10,672 QA pairs. These tables feature
complex structures with multi-level headers and
implicit relationships among data entries, making
them challenging for existing language models.

2.2 Financial Document
MULTIHIERTT consists of 10,440 question-answer
pairs derived from 2,513 documents sourced from
PDF financial reports. The dataset presents com-
plex questions that require multi-step numerical
reasoning across multiple tables and paragraphs.

3 Relational Data Transformation

To the best of our knowledge, relational data is the
optimal choice due to its generality and compati-
bility with common data management and analyt-
ics tools such as SQL and Pandas. We propose a
T → R task to transform one or more tables T into
a relational data representation R, ensuring both
normalization quality and reasoning accuracy.

3.1 Normalization Quality
While many earlier approaches rely on data-driven
techniques (Cafarella et al., 2008; Wang et al.,
2021) or stem from classical database theory (Codd,
1970; Kimball and Ross, 2013; Chen, 1976), we
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Enrollment Data TableA Real Document with Complex Structure in HiTab 

RELATIONALCODER

What is the most enrolled field in science for 
doctoral students?

SELECT fields as max_enrollment_field
FROM enrollment_data
WHERE type_of_fields = 'Science' AND degree = 'Doctoral'
ORDER BY all DESC
LIMIT 1;

=A8

Question

Formula

SQL

…

Figure 1: Illustration of relational data transformation. The left side displays a real table from HiTab, and the right
side shows the transformed data in relational form, eliminating totals and differences. At the bottom right, a QA
example demonstrates how SQL facilitates step-by-step reasoning and aligns well with popular methods for table
QA (Cheng et al., 2022c; Ye et al., 2023b; Chen, 2022; Wang et al.; Ji et al., 2024; Li et al., 2023b; Zha et al., 2023;
Mao et al., 2024). A spreadsheet example with multiple tables is illustrated in Figure 2 in Appendix A.

employ both LLMs and human annotators as evalu-
ators. Specifically, we prompt GPT-4o, assuming it
is well-versed in relational normalization and sym-
bolic reasoning, to judge whether the generated
tables adhere to a relational structure suitable for
symbolic reasoning and analytical tasks, support-
ing queries drawn from existing QA datasets. A
representative prompt is shown below:

You are a professional data systems analyst. Assess

whether the table(s) below are well -formed

relational tables capable of supporting SQL -based

reasoning and analytical querying. The following

lists several example queries:

<Query 1>, <Query 2>, ...

A column may be derived from other columns
via computations, as illustrated with the B, D, and
H columns in Figure 1. Similarly, rows can be de-
rived from other rows, such as rows 4, 5, 6, 17. For
example, the following Excel formula illustrates
how row 6 (Science total) is derived:

B6 = SUM(B7:B16)

Program 1: A formula for aggregation.

The following Python (Pandas) code illustrates how
column H (Doctoral Percent) is computed:

df['Doctoral Percent '] = round(df['
Doctoral '] / df['Total '] * 100).
astype(int)

Program 2: Python code for percentage calculation.

To reduce the redundancy of the relational out-
put, we allow for discarding statistical cells that
can be straightforwardly derived from others, such
as totals and differences. However, we propose to
preserve computations that have domain-specific
meanings, such as the aggregated enrollment num-
ber for “Tertiary” or the mass per volume for den-
sity.

3.2 Reasoning Accuracy

The accurate reconstruction of semi-structured ta-
bles into relational data is critical for downstream
tasks. However, there are often multiple reason-
able ways to construct relational tables, making
simple F1 score comparisons against labeled rela-
tional tables insufficient for evaluating reconstruc-
tion accuracy—even when normalization quality is
satisfied.

Fortunately, datasets such as HiTab and MUL-
TIHIERTT provide a large number of high-quality
QA pairs. To this end, we propose using QA accu-
racy to reflect the completeness and correctness of
the reconstruction. Specifically, each QA sample
is a tuple (Q,A, T ), where T denotes the original
tables in the document. After relational transforma-
tion T → R, the tuple becomes (Q,A,R), where
R represents the generated relational data. If an
effective relational QA model (e.g., (Cheng et al.,
2022c; Wang et al.; Ye et al., 2023a)) produces
an incorrect answer over R, it may indicate inac-
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curacies in R, such as missing or misplaced cells.
Given a sufficient number of QA pairs per example
and assuming the QA model is ideally error-free,
the QA accuracy effectively corresponds to the re-
construction accuracy. In practice, we use two
state-of-the-art QA methods (Zhang et al.; Cheng
et al., 2022c) with GPT-4o; if both fail to produce
the correct answer given R, we consider relabeling
T → R during the SFT-AP phase.

4 RELATIONALCODER

Transforming complex tables into relational tables
presents challenges for cutting-edge LMs due to:
(1) the need to understand large and complex two-
dimensional table structures and format codes, (2)
the requirement to generate normalized relational
data via significant table reorganization, and (3) a
lack of labeled data for supervised training for a
novel task.

Our method covers three challenges. (1) How
to encode tables, which are often complex and
sometimes large. Inspired by SPREADSHEETLLM,
RELATIONALCODER encodes cell values together
with cell addresses, and it reduces length through
inverted-index translation and number-format ag-
gregation. (2) Which format to use to generate re-
lational data. We propose using SQL for relational
data generation. SQL provides a robust framework
for table creation, ensuring that data is structured
and easy to query. This is crucial for LMs that
can produce corrupted tables with row or column
misalignment. (3) We introduce a new method that
generates FOR statements to replicate entire rows,
columns, or rectangular regions that exhibit inter-
nal repetitive patterns, efficiently transferring them
from the input table to the output table.

4.1 Table Encoding & Compression
There are different table encoding methods, such
as HTML and Markdown. However, Markdown
and HTML lack explicit cell addresses, making it
challenging to locate and reference cells, as summa-
rized in Appendix B. To address these challenges,
we use the encoding of SPREADSHEETLLM (Dong
et al., 2024):

• We incorporate explicit cell addresses, en-
abling efficient referencing when generating
relational data, as described in Section 4.2.

• To compress empty or repetitive cells, we em-
ploy the inverted-index translation in JSON.

• We cluster adjacent non-header cells with the
same numeric types into rectangular regions.

• For exceptionally large tables, we apply the
Table Split Algorithm by splitting the table
into segments with propagated headers.

Appendix C illustrates an example of the table
encoding. The compression effect becomes more
significant when the input table is larger.

4.2 SQL-Based Data Transformation
LMs have shown great success in unstructured text
generation. However, they can still produce cor-
rupted tables with basic errors, such as inconsistent
numbers of columns per row. They can also create
format errors like missing separators and improp-
erly closed structures that prevent table parsing.

We propose using SQL for relational data gener-
ation. SQL provides a robust framework for table
creation, ensuring that data is structured and easy
to query. Additionally, the common practice of
using SQL to create databases with complex multi-
table dependencies, combined with the abundance
of public resources available, enables LMs to excel
in generating multiple relational tables. First, RE-
LATIONALCODER generates CREATE statements to
construct tables with column headers. Second, it
extracts table content through INSERT and UPDATE
statements. Unlike Markdown and HTML, which
generate output tables row by row, INSERT and
UPDATE statements allow constructing table con-
tents in arbitrary order. This flexibility enables
scalable processing of large input texts by dividing
them into segments and transforming them sequen-
tially. The following code illustrates inserting years
and enrollment numbers into the Field Enrollment
table from “A2:H16” in Figure 1:
-- Create the table
CREATE TABLE FieldEnrollment (

Fields VARCHAR(100),
Type_of_fields VARCHAR(50),
Degree VARCHAR(20),
All INT

);
-- Insert 20 tuples into the table
INSERT INTO FieldEnrollment (Fields,

Type_of_fields, Degree, All) VALUES
('Agricultural sciences ', 'Science ', '

Master ''s', 5603),
('Biological and biomedical sciences ', '

Science ', 'Master ''s', 33926),
...
('Social sciences ', 'Science ', 'Doctoral

', 35078),;

Program 3: An example of SQL-based transformation
for “A2:H16” in Figure 1.
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4.3 Loop Reference Decoding

SPREADSHEETLLM is effective for encoding large
input tables, but the even more challenging task
of decoding large tables has not been addressed.
The output table needs to be precisely decoded,
so the compression methods such as data-format-
aware aggregation in SPREADSHEETLLM are not
applicable. Fortunately, we observe that large ta-
bles often contain global or local repetitive pat-
terns—also known as expandable groups (Dou
et al., 2018)—which can be leveraged for batch
decoding. For example, in the region “A2:H16” of
Figure 1, rows 7 to 16 present enrollment numbers
for different fields. To this end, we propose a novel
Loop Reference Decoding (LRD) method to iter-
atively copy cells from repetitive input regions to
the output:

1. Copying cells via address reference rather
than generating cell values from scratch;

2. Using loops to copy cells recurrently from
expandable groups.

Rather than relying on traditional methods (Dou
et al., 2018) for explicitly detecting expandable
groups, we leverage the capabilities of LLMs to
interpret complex inputs and implement the trans-
formation using FOR loops in Oracle Database or
WHILE loops in SQL Server. Instead of generating
every cell individually, LRD compactly addresses
one expandable group using one loop, e.g., Pro-
gram 4 populates the Field Enrollment table from
the expandable group “A7:H16” in Figure 1.

-- Insert data via Loop Reference
BEGIN

FOR row_id IN 7 .. 16 LOOP
FOR col_id IN ('C', 'G') LOOP

INSERT INTO FieldEnrollment (
Fields, Type_of_fields, Degree
, All)

VALUES (
'A' || row_id, -- Fields
'A6', -- Type_of_fields
CASE col_id -- Degree

WHEN 'C' THEN 'Master '
ELSE 'Doctoral '

END,
col_id || row_id -- All

);
END LOOP;

END LOOP;
COMMIT;

END;

Program 4: An example of LRD-based transformation
for “A2:H16” in Figure 1.

This design substantially reduces the output
length from O(N ×M)—which corresponds to
enumerating each of the N rows and M columns in
the original table—to approximately O(K), where
K is the total number of unique cell values within
the repetitive regions. Compared with Program 3,
the number of tokens in Program 4 has been re-
duced by 71.1% (371 to 107) with a compression
rate of 3.47x. The column IDs and row IDs are
simplified in FOR statements because cell addresses
can be robustly post-processed using regular ex-
pressions.

Importantly, LRD is highly scalable: the longer
the input table, the greater the compression ra-
tio. For example, consider Table 1 of trading vol-
umes (in millions of dollars) for 5,000 stocks across
trading days in 2024:

Table 1: Sample Trading Volumes Table for 5,000
Stocks Across 252 Trading Days in 2024.

A B C . . . IQ IR IS

1 Stock Code 01-02 01-03 . . . 12-27 12-30 12-31
2 AAPL 150 160 . . . 165 170 175
3 GOOG 200 210 . . . 215 220 225
4 MSFT 180 185 . . . 190 195 200
...

...
...

...
...

...
...

...
5001 NVIDIA 95 100 . . . 105 110 115

-- Create the table
CREATE TABLE StockTradingVolumes (

stock_code VARCHAR(10),
trade_date DATE,
trading_volume NUMERIC(10, 2)

);

-- Insert data using Loop Reference
Decoding

BEGIN
FOR row_id IN 2..5001 LOOP

FOR column_id IN 'B'..'IS' LOOP
INSERT INTO StockTradingVolumes (

stock_code, trade_date,
trading_volume)

VALUES (
'A' || row_id,
column_id || 1,
column_id || row_id

);
END LOOP;

END LOOP;
COMMIT;

END;

Program 5: An example of LRD-based transformation
for Table 1.

Converting this table using vanilla SQL results
in 1.26 million rows—approximately 18.6 million
tokens. In contrast, SQL-LRD performs the same
transformation using only 115 tokens, as shown in
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Program 5, achieving an impressive compression
ratio of 160,000×.

For complex tables with multiple repetitive re-
gions, several loops may be required to iterate dif-
ferent repetitive regions. Appendix A presents a
multi-table spreadsheet example.

4.4 Supervised Fine-tuning with Active
Human Participation

To address the diversity of formatting options and
table structures, we employ SFT-AP to iteratively
select tables for human labeling and fine-tune RE-
LATIONALCODER. The core principle is strategi-
cally selecting samples; we propose selecting rela-
tional tables that cause normalization issues or rea-
soning errors. They are selected to encourage the
learner to address new normalization or reasoning
challenges, thereby leading to more performance
gains than random sampling.

Algorithm 1 details the process. We sampled a
subset containing 200 randomly selected samples
and assigned another annotator to validate the trans-
formed relational tables. The Fleiss Kappa (Landis
and Koch, 1977) is 0.946, which is regarded as
“almost perfect agreement”.

Algorithm 1: SFT-AP
Input: Complex semi-structured tables

T = {t}, labeled dataset D = {},
metrics for normalization and
reasoning θ

Output: Model M(D)
1 Build a data selector S based on M(D) and

θ;
2 repeat
3 S selects subset {tL} from T − D based

on normalization quality and reasoning
accuracy;
Label {tL} with relational tables {rL};

4 Update D ← D ∪ {(tL, rL)};
5 Fine-tune model M(D) on D;
6 until pre-defined stop criteria is met;
7 return model M(D);

Specifically, we sample training data with four
types (no-violation&error, normalization violation,
computational dependency violation, QA error)
using proportions (prnd, pnorm, pcalc, pqa), respec-
tively. The SFT-AP algorithm continues iterating
until the number of iterations exceeds l or the ac-
curacy improves by less than a threshold q over

the validation sets. To address the issue of large
tables with numerous cells, we ask annotators to
select at most m rows and n columns for each in-
put table by discarding canonical data rows and
columns that are repetitive for model training. The
output relational tables, titles of relational tables,
and repetitive regions for LRD are labeled after a
detailed training session for human annotators.

5 Experiments

5.1 Experiment Setup

Evaluation Metrics We follow the train, valida-
tion, and test splits of HiTab and MULTIHIERTT.
We use table-only samples from this dataset to
study complex data transformation. HiTab con-
tains 1,584 test samples. MULTIHIERTT includes
338 table-only samples from the validation set be-
cause the test set has not been made public. We use
execution accuracy to evaluate the QA task (Cheng
et al., 2022b).

Active Human Participation of Data Labeling
for Fine-tuning In the labeling phase, m and
n are set to 32 and 8, respectively. This set-
ting largely preserves the main skeleton of ta-
bles such as headers, sections, and aggregations.
(prnd, pnorm, pcalc, pqa) are set to (0.4, 0.15, 0.15,
0.3). The full dataset for labeling is the union of
training datasets from HiTab and MULTIHIERTT.
q was set to 0.1 and l was set to 5. We obtained 150
samples for each iteration and a total of 750 sam-
ples while fine-tuning LMs, and 100 samples with
random sampling for testing. GPT-4o-based Re-
AcTable (Zhang et al., 2023b) and Binder (Cheng
et al., 2022c) are employed to generate QA results
for evaluating reasoning accuracy during SFT-AP.

Baselines For QA over one or more complex ta-
bles in HiTab and MULTIHIERTT (MulHi), we se-
lect EEDP (Srivastava et al., 2024), a recent prompt-
ing strategy that elicits domain knowledge, extracts
supporting evidence, decomposes tasks into atomic
operations, and predicts the final answer. EEDP of-
fers insights into how LLMs handle complex tables
and perform numerical reasoning. For large in-
puts, SPREADSHEETLLM with SHEETCOMPRES-
SOR and the Table Split Algorithm (Dong et al.,
2024) are employed. For transformed relational
tables by RELATIONALCODER, we use Chain-of-
table (Wang et al., 2024), a reasoning framework
that chains relational sub-queries over normalized
table representations to answer complex multi-hop

1776



questions.
We conduct experiments using both closed-

source models (GPT-3.5 and GPT-4o) and open-
source models (Llama-2-13B and Mistral-7B), fol-
lowing (Srivastava et al., 2024). Detailed configu-
rations are provided in Appendix D.

5.2 Experiment results
5.2.1 Main Results
Table 3 illustrates the performance of LMs for table
QA before and after relational transformation.
(1) Effectiveness of RELATIONALCODER on
Normalization Quality: For human evaluation,
two independent annotators assessed each sample.
Their task was to judge whether the generated ta-
bles conformed to a relational structure suitable for
SQL-based reasoning, supporting queries drawn
from the QA datasets. In cases of disagreement, is-
sues were resolved by a senior annotator. As Table
2 shows, although LLMs may cause false positive
judgments, they align well with human judgments
in differentiating model effectiveness.

Table 2: Human and LLM-based Evaluation on normal-
ization quality of transformed relational tables.

RCoder
HiTab MULTIHIERTT

Human Auto Human Auto

Llama-2 68.2 70.4 63.0 65.6
Mistral 64.5 67.5 58.8 61.9
GPT-3.5 79.4 82.3 73.1 76.2

(2) Enhanced Performance with RELATIONAL-
CODER on Reasoning Accuracy: As Table 3
shows, across all datasets, models benefit signifi-
cantly from automated relational transformation.
Notably, GPT-4o achieves large improvements
leveraging transformed relational tables, with accu-
racy up to 84.8% and 73.6% on HiTab and MULTI-
HIERTT, respectively.
(3) Significant Benefits for Small LMs: Smaller
LMs like Llama-2 and Mistral show notable im-
provements, with Llama-2 improving from 30.3%
to 55.9% on HiTab. This demonstrates that rela-
tional tables are easier to comprehend, especially
for small language models that lack the capacity to
handle complex structures.

5.2.2 Ablation Experiment Results
(4) Fine-tuning Boosts the Performance of LMs
on Table Transformation: Table 4 shows that
RELATIONALCODER, using the GPT-3.5 model,
achieved the highest scores in all QA datasets via

Table 3: The performance of methods on the QA task
based on input tables before and after relational data
transformation (T andRRELATIONALCODER, respectively)
for QA. Here, RELATIONALCODER refers to the GPT-
3.5 version after fine-tuning via SFT-AP.

LM for QA Input Type HiTab MulHi

EEDP
Llama-2 T 30.3 25.3
Mistral T 25.1 20.2
GPT-3.5 T 43.3 35.0
GPT-4o T 80.7 68.1

Chain-of-table
Llama-2 RRELATIONALCODER 55.9 47.6
Mistral RRELATIONALCODER 52.9 46.7
GPT-3.5 RRELATIONALCODER 66.7 57.0
GPT-4o RRELATIONALCODER 84.8 73.6

Table 4: Performance comparison of RELATIONAL-
CODER using different LLMs on the QA task. Chain-
of-table with Llama-2 is used to answer questions about
transformed relational data using different methods.

LM for QA Input Type LM forRCoder HiTab MulHi

Llama-2 T - 30.3 25.3

Llama-2 RRELATIONALCODER GPT-3.5-zero-shot 35.7 28.0
Llama-2 RRELATIONALCODER GPT-4o-zero-shot 46.7 41.1
Llama-2 RRELATIONALCODER GPT-3.5-SFT 51.8 42.8
Llama-2 RRELATIONALCODER Llama-2-SFT 44.8 35.1
Llama-2 RRELATIONALCODER Mistral-SFT 42.2 33.5
Llama-2 RRELATIONALCODER Llama-2-SFT-AP 49.4 39.7
Llama-2 RRELATIONALCODER Mistral-SFT-AP 45.8 39.1
Llama-2 RRELATIONALCODER GPT-3.5-SFT-AP 55.9 47.6

SFT-AP and outperformed zero-shot GPT-4o. Fine-
tuned Llama-2 and Mistral even achieved compara-
ble results to GPT-4o-zero-shot.
(5) Significant Benefits of Loop Reference Decod-
ing: Table 5 highlights the strengths of LRD: it
improves QA accuracy over Markdown by roughly
2% while shrinking output length by 68.4% on
average. These gains make LRD especially at-
tractive for large spreadsheets and data-lake tables
that have not been covered by HiTab and MUL-
TIHIERTT. Applied to the large table in Table 1,
SQL-LRD achieves an extraordinary compression
ratio of 160,000×.

Table 5: Performance of code-generation-based rela-
tional table generation on the QA task. RELATIONAL-
CODER refers to the GPT-3.5 version fine-tuned via
SFT-AP. Chain-of-table with GPT-4o is used to answer
questions about transformed relational data using differ-
ent encoding methods.

Output encoding for table transformation HiTab MulHi

Markdown 83.0 71.2
SQL-Loop-Reference-Decoding (LRD) 84.8 73.6
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5.3 Error Analysis

(6) Common Sources of Error During Relational
Table Transformation:

• Additional ID Columns and Over-Splitting:
Complex tables sometimes need to be split
into multiple relational tables, requiring ad-
ditional ID columns for joins to preserve all
information. However, excessive splitting, in-
tended to minimize data redundancy, can com-
plicate downstream reasoning and analysis,
resulting in QA failures. Therefore, our anno-
tation protocol discourages unnecessary split-
ting in favor of analytical tractability.

• Mixed Aggregations and Raw Values:
Some columns contain both aggregated
and raw values, or mix aggregated data
with non-aggregated entries. Handling such
columns—either by separating them into
different tables or eliminating aggregated
values—can complicate references and make
it more challenging for models to retrieve or
reason over the correct information.

• Inaccurate Table Titles: The titles of trans-
formed relational tables must be updated to
reflect their semantics. Inaccurate or ambigu-
ous titles can lead to QA errors due to mis-
matches between table content and descrip-
tion. To address this, we provided explicit
title annotations in our dataset, which signifi-
cantly reduced errors related to table titles.

6 Related Work

Table transformation Automatically transform-
ing tables with complex structures into a relational
form is a longstanding yet extremely challenging
task due to the diverse formatting options and
table structures found in real-world documents.
Early approaches focused on mimicking transfor-
mations based on user examples (Harris and Gul-
wani, 2011). More recently, classification-based
methods (Chen and Cafarella, 2014; Dong et al.,
2019a; Wang et al., 2021) have been proposed to
recognize table hierarchies and extract relational
tuples from spreadsheets. The most recent work
involves synthesizing table transformation data by
converting relational tables into complex tables us-
ing predefined operators (Li et al., 2024). How-
ever, these efforts rely on classification methods to

recognize structural characteristics, which are chal-
lenged by diverse structures and formats of semi-
structured tables in the wild. NormTab (Nahid
and Rafiei, 2024) targets structural normalization;
however, because it relies on a single transposition
operator, its flexibility for diverse layouts is limited
and inter-table relationships are left unmodeled.
RELATIONALCODER incorporates actual complex
tables from real-world documents and explores the
conversion of multiple tables into multiple rela-
tional tables, and RELATIONALCODER proposes
a scalable end-to-end method to transform tables
into relational forms.

7 Conclusion

We have presented RELATIONALCODER, an end-
to-end framework that bridges the gap between
semi-structured tables and the rich ecosystem of re-
lational data tools. By marrying SpreadsheetLLM’s
value-address encoding and SQL-based Loop Ref-
erence Decoding, our system delivers three key
advantages: (i) it normalizes diverse, artifact-laden
tables into a clean relational schema, (ii) it scales
gracefully to inputs that far exceed the context
length of contemporary LMs, and (iii) it unlocks
downstream symbolic reasoning and analytics with
substantial accuracy gains. Extensive experiments
on the HiTab and MULTIHIERTT benchmarks con-
firm these benefits: GPT-4o establishes new SOTA
results, while smaller open-source models such as
Llama-2 and Mistral obtain over 20% performance
jumps once their inputs are relationalized.

Beyond empirical improvements, augmenting
LMs with programmatic abstractions can yield
both efficiency and reliability. Treating code as
an output medium—instead of emitting raw ta-
bles—guards against structural errors, improves re-
lational normalization, and provides natural hooks
for external executors. The dramatic compression
ratios achieved by LRD further hint that the judi-
cious reuse of input structure is a powerful antidote
to sequence-length bottlenecks.

Limitations

While data transformation significantly enhances
reasoning and analysis tasks, our approach has
some limitations. Specifically, certain tasks re-
quire access to the original input, such as document
manipulation that involves preserving the original
content and formatting. In these cases, our method
may not be applicable. A promising direction to im-

1778



prove the current work is to better combine original
complex inputs with transformed relational data to
jointly serve various tasks: the original data provide
critical information about formats and structures,
while the transformed relational data offer canon-
ical data applicable to mainstream data reasoning
and analytics tools.

Additionally, our current work focuses on nor-
malizing complex semi-structured inputs in docu-
ments, such as tables. However, our method does
not address valuable information embedded in un-
structured text, presenting an avenue for future
work. Addressing this aspect could further refine
and extend our approach in future research by in-
corporating existing text-to-table works to extract
relational information from text (Wu et al., 2022).

Importantly, this work requires a stronger model
for table transformation than for reasoning. This
is highly useful for offline preprocessing of large
amounts of complex tables before user queries,
but our future work may investigate developing a
single model through a transformation-processing-
reasoning pipeline.

Finally, due to the lack of high-quality labeled
data on table transformation, Reinforcement Learn-
ing (RL) shows advantage to train the model from
weak supervision such as QA annotations, with-
out relying on human annotations on table trans-
formation (Dong et al., 2025). RL encourages
autonomous exploration beyond manually crafted
transformation examples and promotes the use of
general-purpose programming languages.
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A An Example of Spreadsheet
Normalization

An example of spreadsheet normalization is illus-
trated in Figure 2. Note that several loops are re-
quired to iterate different repetitive regions. The
following code illustrates inserting years and en-
rollment numbers into the Enrollment Data table
from region “A3:E15” without LRD:

-- Create the table
CREATE TABLE EnrollmentData (

SN VARCHAR(20),
Population INT,
Year INT,
Enrollment INT

);
-- Insert 33 tuples with SNs from 1 to

11 and years from 2017 to 2019
INSERT INTO EnrollmentData (SN, Year,

Population, Enrollment) VALUES
('1', 2017, NULL, 5234),
...
('11', 2019, NULL, 123607)

Program 6: An example of SQL-based transformation.

The following code populates the Enrollment
Data table from region “A3:E15” in Figure 2 with
LRD:

-- Insert data via Loop Reference
BEGIN

FOR row_id IN 5..15 LOOP
FOR col_id IN ('C', 'D', 'E') LOOP

INSERT INTO EnrollmentData (SN,
Year, Population, Enrollment)

VALUES ('A'|| row_id, col_id ||4,
NULL, col_id || row_id);

END LOOP;
END LOOP;
COMMIT;

END;

Program 7: An example of LRD-based transformation.

Compared with Program 6, the number of tokens
in Program 7 was reduced by 84.2% (480 to 76)
with a compression rate of 6.32x.

B Table Encoding

Widely used markup languages for table encod-
ing include XML, Markdown, HTML, and LATEX.
Compared with natural-language (NL) prompts,
these markup languages capture hierarchical struc-
ture explicitly, enabling language models to reason
over layout and schema more effectively. As a re-
sult, encoding tables with XML or Markdown has
attracted renewed attention in recent years.

XML. XML (Extensible Markup Language) was
derived from SGML to retain its flexibility while

reducing complexity; version 1.0 was released in
1998 (Consortium). Its hierarchical syntax accom-
modates rich metadata and arbitrarily nested struc-
tures. However, XML is verbose, difficult to read,
and expensive to parse (Henze et al., 2022). Al-
though XML can describe data, it does not compile
it into tables directly. Microsoft’s OpenXML (2006)
links XML with Excel worksheets, allowing ex-
plicit cell references that sidestep spreadsheet-table
detection (Dong et al., 2019b). Yet the verbosity of
XML quickly exceeds the context-length budget of
modern LMs.

Markdown. Created by John Gruber and Aaron
Swartz, Markdown offers a plain-text syntax that is
both human-readable and easy to write; Common-
Mark formalized the language in 2012 (Atwood).
While its concise syntax is ideal for simple tables,
Markdown cannot express merged cells or detailed
styling. One may embed raw HTML to achieve
complex effects, but this is uncommon in practice.
Crucially, a Markdown table has a single canonical
representation, which simplifies evaluation.

LATEX. LATEX, introduced by Lamport in the
early 1980s as a higher-level interface to TEX (La-
TeX), supports sophisticated table layouts and fine-
grained styling. Its expressive power comes at the
cost of a steep learning curve and many equivalent
ways to produce the same visual result, compli-
cating both authoring and model comprehension
(Kayal et al., 2023). Moreover, LATEX source must
be compiled, adding an extra processing step.

HTML. HTML, the standard language for the
web since 1993 (Consortium, 1997), defines tables
through a rigid tag hierarchy and can represent
complex layouts when combined with CSS. The
fixed grammar facilitates automatic quality checks,
yet the abundance of tags and attributes makes data
extraction non-trivial (Roldán et al., 2020).

We summarize representative table encoding
methods and their characteristics in Figure 3. There
are other encodings such as SQL, Python, and
JSON (see (Dong and Wang, 2024)) 1.

C An Example of Table Encoding

The regular and compressed encoding of the
“A25:F35” region in Figure 2 are illustrated in Pro-
gram 8 and Program 9, respectively.

1https://drive.google.com/file/d/
1oso3tz-uoOEWqqG163GluHIDIyCRQ58I/view
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What’s the total number of enrolled students 
aged 19-23 from 2017 to 2019?

Enrollment Data (ED) TableSN Categories (SC) Table

SELECT SUM(ED.Enrollment) AS TotalEnrollment
FROM EnrollmentData AS ED
JOIN SN_Categories AS SC ON ED.SN = SC.SN
WHERE SC.Age = '19-23 years’ 
 AND ED.Year BETWEEN 2017 AND 2019;

=SUM(C22:E22)

Real Spreadsheet Document with Complex Structure

RELATIONALCODER

Question 1

Formula 1

SQL 1

What is the population for categories with SN 
from 5 to 9 in 2019?

SELECT SUM(Population) AS TotalPopulation
FROM EnrollmentData
WHERE Year = 2019 AND SN IN ('5+6+7', '8+9’);

=C30+C31

Question 2

Formula 2

SQL 2

Reasoning and Analytics

Figure 2: An example of spreadsheet table transformation that takes multiple input tables and produces multiple
output tables.

Figure 3: Common table encoding methods and their characteristics.

| A25: Category | B25: Official age range| C25: Population | D25: Enrollment | E25: | F25: Difference |
|----------------------|------------------------|-----------------|-----------------|-----------------|-----------------|
| A26: Pre -nursery | B26: 1-3 years | C26: 1,350,751 | D26: 6,690 | E26: | F26: 1,344,061 |
| A27: Nursery | B27: 4-6 years | C27: 947,252 | D27: 282,428 | E27: | F27: 664,824 |
| A28: Primary | B28: 7-12 years | C28: 1,810,665 | D28: 2,512,465 | E28: | F28: -701,800 |
| A29: Lower secondary | B29: 13-15 years | C29: 908,132 | D29: 481,138 | E29: | F29: 426,994 |
| A30: Upper secondary | B30: 16-18 years | C30: 812,637 | D30: 250,966 | E30: | F30: 561,671 |
| A31: Tertiary | B31: 19-23 years | C31: 1,168,850 | D31: 86,206 | E31: | F31: 1,082,644 |
| A32: TVET NEP | B32: | C32: | D32: 9,932 | E32: | F32: |
| A33: Adult literacy | B33: | C33: | D33: 123,607 | E33: | F33: |
| A34: Total | B34: | C34: 6,998,287 | D34: 3,753,366 | E34: | F34: |

Program 8: The regular Markdown encoding of SpreadsheetLLM for “A25:F34” region in Figure 2.
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{
"Category": A25,
"Official age range": B25,
"Population": C25,
"Enrollment": D25,
"Difference": F25,
"Pre -nursery": A26,
"Nursery": A27,
"Primary": A28,
"Lower secondary": A29,
"Upper secondary": A30,
"Tertiary": A31,
"TVET NEP": A32,
"Adult literacy": A33,
"Total": A34,
"1-3 years": B26,
"4-6 years": B27,
"7-12 years": B28,
"13-15 years": B29,
"16-18 years": B30,
"19-23 years": B31,
"IntNum": C26:D34,F26:F34,

}

Program 9: The compressed JSON encoding of
SpreadsheetLLM for “A25:F35” region in Figure 2.

D Experiment Setup

We conducted experiments using both open- and
closed-source models for research purposes, includ-
ing fine-tuning and inference.

Open-source language models were fine-tuned
using DeepSpeed for distributed training on a com-
pute node equipped with 8 A100 GPUs, following
the LoRA method (Hu et al., 2021). The models
include:
LLaMA-2 (meta-llama/Llama-2-13b-chat-hf), li-
censed under the Meta LLaMA 2 License2.
Mistral (mistralai/Mistral-7B-Instruct-v0.1), dis-
tributed under the Apache License 2.03.

Fine-tuning parameters for open-source models:

• Learning rate: 5e-5

• Number of training epochs: 40

• Training batch size: 4

• Gradient accumulation steps: 8

• Learning rate scheduler: cosine

• Max gradient norm: 1.0

• Warmup steps: 0
2https://ai.meta.com/resources/

meta-llama-license/
3https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.1/blob/main/LICENSE

• Optimizer: AdamW

• Precision: fp16

• LoRA rank: 32, alpha: 64, dropout: 0.01

Fine-tuning parameters for GPT-3.5 (text-
davinci-003):

• LoRA dimension: 32

• Number of epochs: -1

• Batch size: -1

• Learning rate multiplier: 1

• All other parameters use default settings

We did not fine-tune GPT-4o (version 20240513)
due to limitations in our available resources.

Inference parameters (all models):

• Temperature: 0

• Top-p: 0

• Frequency penalty: 0

• Stop condition: None

• All other parameters follow default values

These deterministic decoding settings (temper-
ature and top-p set to 0) were chosen to eliminate
randomness during evaluation.
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