
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 18164–18188
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RUBY: An Effective Framework for Multi-Constraint Multi-Hop Question
Generation

Wenzhuo Zhao
School of Computer Science

South China Normal University
Guangzhou, China

wenzhuozhao@m.scnu.edu.cn

Shuangyin Li *

School of Computer Science
South China Normal University

Guangzhou, China
shuangyinli@scnu.edu.cn

Abstract

Inspired by theories in language psychology,
it is natural to consider more constraints, such
as intentions, logic, knowledge, etc., when a
complex or multi-hop question is generated. As
the subtask of Multi-Hop Question Generation
(MHQG), the task of Multi-Constraint Multi-
Hop Question Generation (MCHQG) is more
aligned with human question theories. How-
ever, it is hard to determine how to bring vari-
ous high-dimensional semantic constraints, and
how to integrate each constraint across all hops
when a multi-hop question is being generat-
ing. To address these challenges, we introduce
an effective framework which includes con-
straint dimensionality reduction and divide-and-
conquer-based dynamic projection; we call it
RUBY. The proposed RUBY contains a module
of high-dimensional semantic constraint dimen-
sion reduction and a module of sub-question an-
swer pairs-based multi-hop question generation.
Meanwhile, a Reasoning Dynamic Projection
strategy is tailored to effectively incorporate
the constraints into every hop of the multi-hop
question. The experimental results demonstrate
that RUBY consistently outperforms baseline
models, which suggest that RUBY is able to
effectively capture and integrate semantic con-
straints, leading to more accurate and human-
like multi-hop question generation. We release
the code and data to public1.

1 Introduction

Question Generation (QG) embodies an aspect
of Artificial General Intelligence (AGI). AGI re-
quires that artificial intelligence not only answers
questions, but also possesses the capability to
ask questions. The ability to generate questions
demonstrates AI’s deep understanding of knowl-
edge, proactive exploration, and innovative think-
ing, qualities at the core of AGI. As Einstein stated,

*Corresponding author.
1https://github.com/zwz4949/MCHQG-RUBY

(A good Question (Q) should meet the information from the intent, the
entity and the multi-hop type.) Passage 1: Jacksonville station:

It serves the "Silver Meteor"
and "Silver Star" trains as well
as the Thruway Motorcoach to
Lakeland.
Passage 2: Silver Star (Amtrak
train): The Silver Star is a 1522-
mile passenger train route in the
"Silver Service" brand operated
by Amtrak, running from New
York City south to Miami, Florida
via the ... to ..., then via ...; ...; ...;
...; Jacksonville, Florida; Orlando,
Florida; and

Answer: 1522

Entity: Amtrak

Multi-hop type: #1 -> #2 -> end

Intent: Determine the total
distance traveled by a train that
passes through a specific station
and shares tracks with another
train service.

Q:

Single-Hop QG (SHQG based on the passage 2 and answer):

Input:

Jacksonville station serves the train that is how many miles long?

How many miles does the Silver Star train travel, considering its
route and the tracks it shares with the Silver Meteor?

Multi-Hop QG (MHQG based on the passage 1, 2 and answer):

Multi-Constraint Multi-Hop QG (MCHQG based on all the input):

How many miles does the Amtrak train passing through Jacksonville
station and shareing tracks with the Silver Meteor travel?

How many miles does the train, which passes through the Amtrak
Jacksonville station and shares the track with the Silver Meteor,
run?

Output for Different QG Tasks:

What is the total distance of the Silver Star train route?

Hop-Acc ICEC MTC

Hop-Acc ICEC MTC

Hop-Acc ICEC MTC

Hop-Acc ICEC MTC

Golden Q:

Q:

Q 2:

Q 1:

Hop-Acc: No Hop Error EC: Entity Consistency MTC: Multi-hop Type Consistency IC: Intent Consistency

Figure 1: SHQG generates direct questions, while
MHQG tends to produce more variable ones, increasing
the chance of hop errors. MCHQG reduces randomness
with added constraints, leading to more focused ques-
tions and fewer hop errors, as proven in the App. F.

“The formulation of a problem is often more essen-
tial than its solution.” Thus, in an era of rapid
AI advancement, teaching AI to ask questions will
further propel the progress of AI science.

In the past, most of the research on Question
Generation (QG) has focused on the generation of
single-hop questions, which can be answered based
on a single sentence or document (Sun et al., 2018;
Kim et al., 2019; Wang et al., 2020; Fei et al., 2021).
However, in recent years, as the demand for AI sys-
tems with more robust reasoning capabilities has in-
creased, there has been growing interest in the task
of multi-hop question generation (MHQG). MHQG
requires aggregating the dispersed evidence from
multiple paragraphs and generating answerable and
factually coherent questions through reasoning (Su
et al., 2020; Fei et al., 2022; Su et al., 2022; Xia
et al., 2023; Hwang et al., 2024). These questions
involve longer chains of reasoning compared to
single-hop questions.

Theoretically, MHQG has primarily involved
generating a question based on a single answer

18164

across multiple passages. However, this way typ-
ically resulted in questions being generated ran-
domly, lacking directionality. Drawing on theories
from psycholinguistics, Kormos (2006) noted that
humans start with a conceptualization stage to ob-
tain a preverbal plan BEFORE language produc-
tion. Take human questioning as an example. In
the conceptualization stage, the entities, intentions,
logic, concepts, etc., can be treated as the multiple
constraints to guide the question generation process.
This suggests that humans plan the messages of
questions rather than posing them randomly. There-
fore, starting with multiple constraints can make
multi-hop question generation more aligned with
human questioning theory by providing direction-
ality. It also sets a preliminary logical framework
for the multi-hop logic chain of the questions to
be generated, potentially reducing the likelihood of
errors in multi-hop reasoning.

The task of multi-hop question generation
that begins with the process of conceptualiza-
tion is called Multi-Constraint Multi-Hop Question
Generation (MCHQG), which requires not only the
answer and the passages, but also high-dimensional
and low-dimensional semantic constraints to guide
the planning of messages when generating a multi-
hop question.

However, although MCHQG enables directional
questioning, it still faces two major challenges.
Firstly, how can high-dimensional semantic con-
straints be effectively brought in? For example,
as shown in Figure 1, the given intent serves as
a high-dimensional semantic constraint. In order
to meet this intent, the generated question must
inquire about the “distance traveled by a train”,
incorporating specific information from the pas-
sages about “a specific station” and “another train”,
with a logical connection between these elements.
Secondly, how can multiple constraints be effec-
tively integrated into each hop of a multi-hop
question? It is natural that not every hop necessar-
ily needs to incorporate all the constraints, which
means that it is adaptive to integrate the constraints
into each hop. Although there are some existing
studies on constrained question generation (Cheng
et al., 2021; Uto et al., 2023; Liu et al., 2023; Li
and Zhang, 2024), these works either focus on gen-
erating single-hop questions or apply only a single
constraint. Thus, they are difficult to apply effec-
tively to scenarios that require both multi-constraint
and multi-hop question generation.

Therefore, how to adaptively incorporate multi-

ple types of high-dimensional semantic constraints
into hops is essential and challenging when gener-
ating questions with complex logical chains.

To address these challenges, we propose an
effective framework named RUBY, which in-
corporates constraint Reduction and divide-and-
conqUer-Based dYnamic Projection. Specifically,
we introduce a high-dimensional constraint reduc-
tion module, which includes passage sorting and
multi-hop skeleton construction, simplifying high-
dimensional constraints into low-dimensional ones
and streamlining the reasoning process. To lever-
age these constraints more effectively, we adopt
a divide-and-conquer approach, breaking down
multi-hop question generation into sub-QA pairs
(SQAG), which are then integrated into a coher-
ent multi-hop question (MHQG). Additionally, we
propose Reasoning Dynamic Projection, a strategy
that dynamically incorporates various constraints
into reasoning and question generation. This is
achieved by calculating weights for all constraints
at each decoding step in both SQAG and MHQG.

Our main contributions are as follows:

• We propose RUBY, a framework for the
MCHQG task, which utilizes LLMs and a
divide-and-conquer strategy to generate high-
quality multi-hop questions.

• We propose a high-dimensional semantic con-
straint dimension reduction module to effec-
tively utilize high-dimensional semantic con-
straints.

• We introduce a strategy, Reasoning Dynamic
Projection, to reasonably incorporate the con-
straints into the multi-hop reasoning and ques-
tion generation process.

2 Related Work

Question Generation (QG) is vital for educational
systems (Jia et al., 2021; Zhao et al., 2022) and
enhances QA tasks by improving reasoning capa-
bilities (Duan et al., 2017; Tang et al., 2017). Early
QG models were rule-based (Mostow and Chen,
2009; Heilman, 2011; Chali and Hasan, 2012), lim-
iting their scalability and diversity. The seq2seq
QG models (Zhao et al., 2018) overcame these
limitations, enabling more diverse question gener-
ation. However, these models, trained on single-
hop datasets like SQuAD (Rajpurkar et al., 2016)
and NewsQA (Trischler et al., 2017), generate sim-
ple, single-hop questions. Recently, there has been

18165

SQAG
Passage 1: ...the United Nations
Headquarters remains under the
jurisdiction and laws of the United
States...

Passage 2: ...the United States
Public Health Service (PHS),
founded in 1798...

Passage 3: The United Nations
recognises the sovereignty of the
Republic of Cyprus over the entire
island of Cyprus.

1798

Determine the date when a public
health event occurred in the
country where a specific
organization is headquartered.

Republic of Cyprus

#1 -> #2 -> #3 -> end

Input HDR SQA-based MHQG

String concatenationBlock-wise State
Enhancer

①

②

②

③

④

④

④

①

SPLIT

④

⑤⑤⑤

Output

When did public health
start in the country

where the organization
that recognizes the
sovereignty of the

Republic of Cyprus is
headquartered?

MHQG

⑧

⑦

sub-Q sub-A<sq> <sa>

sub-Q sub-A<sq> <sa>

sub-Q sub-A<sq> <sa>

⑥ ⑥

Input (MQG)

X

Y

H

Encoder

RD-
Projection

sub-QA

Ⅰ

Ⅰ

Ⅱ
Decoder

Passages Sorting

Skeleton Construction

④

⑥

skeleton

Enhanced
Transformer

Figure 2: The Overview of the proposed RUBY. 1⃝ to 8⃝ shows the steps of the RUBY pipeline. HDR including
the process of passage sorting and the construction of multi-hop skeleton conducts a dimension reduction for
high-dimensional semantic constraints. SQA-based MHQG generates and fuses the sub-QA pairs into a multi-hop
question using an enhanced transformer with RD-Projection.

increasing interest in tackling multi-hop question
generation tasks.

Multi-Hop Question Generation (MHQG).
Previous work on MHQG has focused on gener-
ating questions from multiple paragraphs with a
single answer. Su et al. (2020), Pan et al. (2020),
and Fei et al. (2022) employed GNN-based (Li
et al., 2025) methods over semantic, entity, and at-
tention graphs, respectively, while Su et al. (2022)
incorporated question-answering techniques. Xia
et al. (2023) used multi-level content planning
to enhance decoding; Hwang et al. (2024) in-
creased complexity via sequential rewriting; and
Lin et al. (2024) introduced chain-of-thought rea-
soning. However, these methods are tailored to
MHQG, and their effectiveness in MCHQG re-
mains unexplored. In this work, we assess their
applicability in the MCHQG setting.

Constrained Question Generation. Constrain-
ing specific aspects of question generation has im-
portant applications, such as in intelligent tutoring
systems (Guo et al., 2024). Cao and Wang (2021)
defined question type ontologies for type-aware
generation, while Cheng et al. (2021) proposed a
graph-based framework to control question diffi-
culty by reasoning steps. Bi et al. (2021); Srivas-
tava and Goodman (2021) generate questions based
on various features, and Liu et al. (2023) focus on
entity-centered generation. Li and Zhang (2024)
use LLMs for planning questions, enhancing con-
trol over content and difficulty. However, these
studies mainly focus on single-hop questions or

a single constraint, limiting their applicability to
MCHQG.

3 Problem Definition
The goal of multi-constraint multi-hop question
generation (MCHQG) is to generate multi-hop
questions based on several constraints2. Given con-
straints such as an answer a, an entity e, a multi-
hop type M, an intent it, and a set of passages
P = {pi}ℓi=1, the task is to generate a multi-hop
question ŷ. Here, ℓ denotes the number of passages.
The question is generated by the model fG, which
takes the constraints as input:

ŷ = fG(a, e,M, it,P). (1)

The multi-hop type M = (V, E) represents
the logical structure of a question. It consists
of nodes V = Vℓ ∪ {vend} and edges E =
{(vc, vd) | vc, vd ∈ Vℓ and vc ̸= vd}∪{(vℓ, vend)}.
Each node v ∈ Vℓ corresponds to a passage
p ∈ P , and the final node vend corresponds to
the answer a. For example, in Figure 3, nodes
v1, v2, v3, vend correspond to passages p3, p1, p2,
and the answer a. The relationships are represented
as (p3, p1), (p1, p2), (p2, a).

4 Methodology

4.1 Overview

The proposed framework RUBY consists of two
primary modules: High-dimensional semantic con-

2The detailed explanations of the terminology are pre-
sented in Table 16.

18166

LLM

#1 → #2→#3→end

LLM#2→ →

LLM#1→ → →

LLM (CoT)

Passage Sorting

Multi-Hop Skeleton Construction

#3→

 → → →

Figure 3: The module of High-Dimensional Constraint
Dimension Reduction, with an example illustrating the
iterative passage sorting process and the construction of
the multi-hop skeleton.

straint Dimension Reduction (HDR) and Sub-
Question Answer pair-based Multi-Hop Question
Generation (SQA-based MHQG), as illustrated in
Figure 2.

The HDR module has two stages: Passage
Sorting and Multi-hop Skeleton Construction. In
passage sorting, a sorted sequence of passages,
seqP = [p′1, p

′
2, . . . , p

′
ℓ, a], is generated through

an iterative sorting process, considering the multi-
hop type M, the intent it, and the passages P .
Here, p′i denotes the passage corresponding to the
node #i in M, and a is treated as a passage, and the
sorted sequence of passages excluding a can be rep-
resented as seqP\a = seqP \ [a] = [p′1, p

′
2, . . . , p

′
ℓ].

In the multi-hop skeleton construction module, the
sequence seqP generated from passage sorting is
further refined. Using the intent it, the entity e, the
answer a, and a Chain-of-Thought approach (CoT),
essential information is captured from the passages
to create a multi-hop skeleton S . This skeleton can
be split into ℓ parts based on M and seqP , and
expressed as:
S = [sp′1→p′2

, sp′2→p′3
, . . . , sp′

ℓ
→a] = [s1, s2, . . . , sℓ]. (2)

The SQA-based MHQG module consists of two

stages: SQAG for sub-question-answer pair gen-
eration, followed by MHQG for multi-hop ques-
tion generation. Both stages utilize Reasoning Dy-
namic Projection (RD-Projection). In SQAG, sub-
question-answer pairs Z = [z1, z2, . . . , zℓ] are gen-
erated from S and seqP\a. These pairs are then
combined with inputs including S , it, e, a, M, and
P to form the input for MHQG, where a multi-hop
question y is generated.

4.2 High-Dimensional Semantic Constraint
Dimension Reduction

High-dimensional semantic constraint dimension
reduction (HDR) takes P , it, M, a, and e as input
and outputs the multi-hop skeletons S. Given the
powerful reasoning ability of LLMs, we first use
LLM to sort the passages and then construct the
multi-hop skeletons based on the designed prompts.

Passage Sorting. In this stage, we mainly per-
form dimension reduction for the multi-hop type.
Since multi-hop relationships are typically sequen-
tial, we first sort the passages P . To guide the LLM
in passage sorting, we use a specifically designed
prompt, as detailed in Table 18. The algorithm of
passage sorting is shown in App. I.

Due to the intricate interactions between P and
other available information, we perform passage
sorting iteratively rather than in a single round.
Initially, a is set as the first passage in the sorted
sequence of passages seq0, and then we iterate over
the remaining passages for ℓ rounds.

At the i-th iteration (1 ≤ i ≤ ℓ), we define P ′ =
P ∪ {a} and divide it into two subsets: candidate
passages Pc

i and selected passages Ps
i . To generate

the sorted sequence at iteration i, we first generate
the sequence seqi−1 using the function fig, which
replaces the corresponding nodes in M with the
previously selected passages Ps

i−1. Then, based
on it and seqi−1, we select one passage p∗i from
Pc
i−1 using the LLM with the prompt template T sort.

Afterward, we update Ps
i = Ps

i−1∪{p∗i } and Pc
i =

P ′ \ Ps
i , ensuring that Pc

i ∩ Ps
i = ∅. Formally,

the selected passage p∗i at the i-th iteration can be
generated as:

p∗i = LLM(T sort(it, fig(M,Ps
i−1),Pc

i−1)). (3)

The passage corresponding to #i in M can be ex-
pressed as p′i = p∗ℓ+1−i. Finally, the sorted se-
quence of passages and the sequence excluding the
answer are obtained respectively as:

seqP = seqℓ = fig(M,Ps
ℓ), seq

P
\a = seqP \ [a]. (4)

Multi-Hop Skeleton Construction. After ob-

18167

taining the sorted sequence of passages from pas-
sage sorting, we perform dimension reduction on
the intent, while further reducing the dimension-
ality of the multi-hop type. Using it, a, seqP , e,
and the prompt template T skeleton, we construct
the LLM input as T skeleton(it, a, seqP , e), where
seqP is the result of the initial dimension reduc-
tion for the multi-hop type. A CoT approach is
applied to analyze the inputs and extract key in-
formation for constructing the multi-hop skeleton
S. This process refines M and the abstract intent
it into precise, passage-derived information, form-
ing a multi-hop skeleton aligned with the intent
and multi-hop type. The construction of S can be
expressed as:

S = LLM(T skeleton(it, a, seqP , e)). (5)

4.3 SQA-based MHQG

Given e, a, it, seqP\a, and S , the goal of SQA-based
MHQG is to generate a multi-hop question y. As
shown in Figure 2, we decompose the multi-hop
question generation process into sub-processes for
generating sub-QA pairs Z . Each sub-QA pair zi
is generated from an individual sub-process. Then,
Z is used to generate the multi-hop question y, as
expressed below:
p(y|e, a, it, seqP\a,S) =

EZ
[
p(y|Z,M, e, a, it,S, seqP\a)
︸ ︷︷ ︸

MHQG

·
ℓ∏

i=1

p(zi|e, it, si, p′i)
︸ ︷︷ ︸

SQAG

]
,

(6)

where each sub-QA pair zi is generated based on
p′i from seqP\a, si from S, and e and it.

The primary model for both SQAG and MHQG
is a Transformer enhanced with the Reasoning Dy-
namic Projection (RD-Projection) strategy. For
SQAG, the input is fc(e, it, si, p

′
i), where fc

denotes the string concatenation function, and
the output is zi. For MHQG, the input is
fc(Z, e, a, it,S, seqP\a), where Z = [z1, . . . , zℓ]
represents the sub-QA pairs obtained from SQAG,
and the output is the multi-hop question y. Notably,
the Transformer used for SQAG does not share
weights with the one used for MHQG.

Formally, given the input sequence x, we divide
it into several blocks [b1, . . . , bj , . . . , bL], where L
denotes the number of blocks. For SQAG, bj in
x is equal to one of e, it, si, or p′i. For MHQG,
bj is equal to one of zi, e, it, si, p′i, or a. Here, j
represents the index of a block. A special token
stj is placed before each block bj to separate the

Encoder

Masked Multi-Head Self-Attention

Masked Multi-Head Cross-Attention & FFN

Weight
Calculator

Weight
Broadcaster

Enhance

Training
Objective

BSE

× N layers

RD-Projection

①

②

③

④③

④

⑤ ⑤
⑤

③

⑥

Loss

⑤

Figure 4: The enhanced Transformer with Reasoning
Dynamic Projection (RD-Projection), which conducts
block-wise projection for the constraints. 1⃝ to 6⃝
shows the steps. BSE indicates the block-wise state
enhancer.

blocks and integrate their semantic information.
Consequently, the input sequence x is reconstituted
as [st1, b1, . . . , stj , bj , . . . , stL, bL].

Encoder. We first use a pretrained Transformer
encoder to encode the input sequence x, generating
the representations:
H = Encoder(x) = [hst1 ,hb1 ,hst2 ,hb2 , . . . ,hstL ,hbL],

(7)

where H ∈ R|x|×d, |x| is the length of x, and d is
the dimension of the representations.

Reasoning Dynamic Projection. Reasoning
Dynamic Projection (RD-Projection) is an en-
hanced Transformer decoder that integrates a
Block-wise State Enhancer. As illustrated in Figure
4, RD-Projection generates the next token yt by uti-
lizing the previously generated tokens y1...t−1. The
self-attention mechanism is applied to integrate the
features of y1...t−1:

Hyt = gs(y1...t−1) ∈ R1×d, (8)

where gs denotes the self-attention layer. To incor-
porate the block representations from the encoder,
we introduce the Block-wise State Enhancer mod-
ule, which precedes the cross-attention layer. This
module enhances the representations H∗

yt , allowing
the cross-attention mechanism to more effectively
interact with the block features.

Block-wise State Enhancer. The block-wise

18168

state enhancer consists of two components: Weight
Calculator and Weight Broadcaster. The weight
calculator computes the block-wise weights based
on H and Hyt . For each block bj in x, the block-
wise weight wstj is calculated by:

wstj = fw([Hyt ;hstj]), (9)

where [;] denotes concatenation along the represen-
tation dimension, and fw is a two-layer head for
weight computation. The block-wise weights for
all blocks are denoted as Wst = {wstj}Lj=1.

To project the block-specific weight onto each
token within its corresponding block bj , we assign
wstj to all tokens in the block and set weights for
tokens outside these blocks to −∞. The initial
weight projection sequence is described as follows:
Winit,p = [−∞, wst1 , wst1 , . . . , wst1 , . . . ,

−∞, wstL , wstL , . . . , wstL , . . . ,−∞].
(10)

Next, the weight projection sequence is refined as
follows:
Wp = fs(Winit,p) = [0, w′

st1 , w
′
st1 , . . . , w

′
st1 , . . . ,

0, w′
stL , w

′
stL , . . . , w

′
stL , . . . , 0],

(11)

where fs denotes the softmax function. The en-
hanced block-wise representations W ∗ are then
computed as:

W∗ = WpH ∈ R1×d. (12)

Finally, the output of RD-Projection is obtained by:
ŷt = gc,f (Q̃,K,V), Q̃ = (Q+W∗)Θ, (13)

where Θ ∈ Rd×d is an MLP layer, gc,f represents
the cross-attention layer and feed-forward network,
and Q, K, V correspond to Hyt , H, H.

4.4 Training
The training process consists of two stages: first,
training SQAG, and second, training MHQG. Each
stage has distinct input-output pairs and model pa-
rameters. The algorithm for the training process is
shown in App. J.

For SQAG, let Ds =
{
(x(ks), y(ks))

}|Ds|
ks=1

,
where the input x(ks) = (e, it, sks , pks) and the
output y(ks) is a sub-QA pair. The model parame-
ters are ξs, and the loss function is:

Ls = −
|Ds|∑

ks=1

|y(ks)|∑

ls=1

logPs

(
y
(ks)
ls

∣∣∣x(ks), y
(ks)
<ls

; ξs
)
, (14)

where Ps is the conditional log-likelihood for gen-
erating y

(ks)
ls

given x(ks) and preceding tokens.

For MHQG, let Dm =
{
(x(km), y(km))

}|Dm|
km=1

,
where x(km) = (Z,M, e, a, it,S, seqP\a), and the

output y(km) is a multi-hop question. The model

parameters are ξm, and the loss function is:

Lm = −
|Dm|∑

km=1

|y(km)|∑

lm=1

logPm

(
y
(km)
lm

∣∣∣x(km), y
(km)
<lm

; ξm
)
,

(15)

where Pm is the conditional log-likelihood for gen-
erating y

(km)
lm

given x(km) and preceding tokens.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on two chal-
lenging multi-hop QA datasets: MuSiQue (Trivedi
et al., 2022) and HotpotQA3 (Yang et al., 2018),
which contain 2- to 4-hop questions and 2-hop
questions, respectively. Since the test sets for the
datasets are not publicly available, we use part of
the original training sets as the validation sets and
the original validation sets as the test sets. Due to
the multi-hop nature and the introduction of addi-
tional constraints in the MCHQG task, we conduct
a data-processing workflow. The detailed process
is provided in App. K.

Metrics. We mainly measured BLEU (B) (Pa-
pineni et al., 2002), METEOR (MTR) (Banerjee
and Lavie, 2005), ROUGE-L (R-L) (Lin, 2004),
and BERTScore (BSc) (Zhang* et al., 2020) scores
following previous studies.

Baselines. For general pretrained-language mod-
els based methods, we evaluate our proposed frame-
work RUBY against several strong baselines de-
signed for MHQG, including MulQG (Su et al.,
2020), CQG (Fei et al., 2022), E2EQR (Hwang
et al., 2024), and MultiFactor (Xia et al., 2023).
Additionally, we compare RUBY with several gen-
eral pretrained language models, such as T5-base
(Raffel et al., 2020), FLAN-T5-base (Longpre
et al., 2023), BART-base (Lewis et al., 2019), and
MixQG-base (Murakhovs’ka et al., 2022). To ex-
plore the capabilities of large language models
(LLMs) in MCHQG, we finetune two LLMs as
baselines: Llama-3.1-8B-Instruct (Dubey et al.,
2024) and Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023), using QLora (Dettmers et al., 2024) with
4-bit quantization.

5.2 Main Results

The performance of the baselines and RUBY on
MuSiQue is shown in Table 1 with the following
main insights. RUBY significantly outperforms
other pre-trained seq2seq baselines and LLMs. No-

3All results on HotpotQA are in App. B.

18169

Model B-1 B-2 B-3 B-4 R-L MTR BSc
Llama-3.1-8B† 55.31 41.41 32.45 26.05 48.75 29.27 56.11
Mistral-7B-v0.3† 54.77 41.20 32.51 26.26 48.18 28.92 55.84
BART-base† 54.71 41.93 33.43 27.14 50.90 31.39 57.93
T5-base† 55.75 42.73 34.00 27.59 50.86 30.87 57.50
FLAN-T5-base† 56.98 43.60 34.75 28.32 50.81 29.75 57.17
MixQG-base† 55.05 42.26 33.77 27.50 51.57 31.07 58.03
MulQG 35.46 21.52 14.37 10.04 31.32 17.65 24.97
CQG 35.16 23.06 16.20 11.62 38.00 23.21 34.44
E2EQR 50.84 37.96 30.00 24.40 44.49 29.20 55.33
MultiFactor 54.89 41.82 33.24 27.02 49.97 30.46 56.65
RUBY 58.64 45.45 36.59 30.04 52.89 31.50 59.40

Table 1: Automatic evaluation on MuSiQue. The Bold and underline mark the best and second-best results. The
models with † are fine-tuned foundational models.

tably, RUBY’s use of the divide-and-conquer ap-
proach can also be considered a multi-level con-
tent planning-enhanced process, further strength-
ened by high-dimensional semantic constraint di-
mension reduction. This enables RUBY to sur-
pass the performance of another multi-level content
planning-enhanced baseline, MultiFactor, demon-
strating that HDR is an effective module. Addition-
ally, although common pre-trained models have
fewer parameters, they can outperform LLMs in
terms of performance. Furthermore, the perfor-
mance of E2EQR and MultiFactor is inferior to that
of their backbone models, BART-base and MixQG-
base, respectively. This suggests that the enhance-
ment modules used in MHQG do not generalize
well to MCHQG. Overall, these findings validate
that RUBY is more effective in MCHQG than other
baselines.

5.3 Constraints Consistency Evaluation
We evaluate how effectively the model-generated
questions satisfy the additional constraints intro-
duced by MCHQG, focusing on entity consistency
(EC), intent consistency (IC), and multi-hop type
consistency (MTC) on MuSiQue. The results are
shown in Table 2. For detailed evaluation metrics,
refer to App. E.

The experimental results show that RUBY
achieves leading performance in intent consistency
and multi-hop type consistency, along with strong
results in entity consistency. Furthermore, while
LLMs perform worse than general pre-trained base-
lines on conventional automatic metrics, they sur-
pass these baselines in IC and MTC. This highlights
the ability of LLMs to process high-dimensional
semantic constraints and construct a logical multi-

Model EC IC MTC
Llama-3.1-8B 0.8413 4.1032 3.8903
Mistral-7B-v0.3 0.8654 3.9889 3.7982
BART-base 0.9373 3.5931 3.4422
T5-base 0.8948 3.6584 3.4082
FLAN-T5-base 0.8824 3.7080 3.5408
MixQG-base 0.8759 3.7897 3.5996
MulQG 0.3429 1.6241 1.6432
CQG 0.3011 1.9306 1.8986
E2EQR 0.8700 3.5963 3.3867
MultiFactor 0.9019 3.7289 3.5572
RUBY 0.9033 4.1130 3.8955

Table 2: Comparison of models based on the constraint
consistency.

hop skeleton for reasoning.
Overall, RUBY excels in maintaining con-

straint consistency by effectively bringing in high-
dimensional semantics and integrating multiple
constraints into the question generation process.

5.4 Ablation Studies

To evaluate the effectiveness of RUBY, we create
three variants by removing key components: HDR,
RD-Projection, and SQAG on MuSiQue, as shown
in Table 3 on the MuSiQue dataset.

RUBY w/o HDR. This variant removes the high-
dimensional semantic constraint reduction module
and does not utilize multi-hop skeletons or sorted
sequences of passages for SQAG and MHQG.

RUBY w/o SQAG. Eliminates the divide-and-
conquer approach by removing the SQAG stage. In
this variant, MHQG directly uses the intent, entity,
answer, multi-hop type, and passages.

RUBY w/o RD-Projection (RD-P). Replaces

18170

Model B-4 R-L BSc EC IC MTC
RUBY 30.04 52.89 59.40 0.9033 4.1130 3.8955
w/o RD-P 29.14 (↓ 3.00%) 52.45 (↓ 0.83%) 59.06 (↓ 0.57%) 0.8890 (↓ 1.58%) 3.9765 (↓ 3.32%) 3.8478 (↓ 1.23%)
w/o SQA 27.79 (↓ 7.49%) 51.25 (↓ 3.10%) 58.18 (↓ 2.06%) 0.8792 (↓ 2.67%) 3.9504 (↓ 3.95%) 3.7577 (↓ 3.54%)
w/o HDR 28.22 (↓ 6.06%) 51.67 (↓ 2.31%) 58.15 (↓ 2.13%) 0.8916 (↓ 1.31%) 3.8909 (↓ 5.41%) 3.6741 (↓ 5.69%)

Table 3: Ablation studies on MuSiQue dataset, including conventional automatic metrics (B-4, R-L, BSc) and
constraint consistency metrics (EC, IC, MTC).

Model B-4 R-L BSc
2-hop

MixQG 36.84 58.21 66.38
RUBY 38.61 (↑ 4.81%) 59.10 (↑ 1.54%) 67.52 (↑ 1.73%)

3-hop
MixQG 23.77 47.27 52.52
RUBY 27.03 (↑ 13.72%) 49.17 (↑ 4.02%) 54.42 (↑ 3.61%)

4-hop
MixQG 18.65 40.68 44.46
RUBY 21.20 (↑ 13.67%) 42.09 (↑ 3.47%) 45.52 (↑ 2.38%)

Table 4: Performance comparison of RUBY and
MixQG-base across different hops.

the reasoning dynamic projection with a standard
transformer decoder. The cross-attention layer’s
query (Q) is no longer enhanced during SQAG and
MHQG.

Removing HDR results in a significant drop in
IC and MTC, underscoring the importance of di-
mensionality reduction for high-dimensional se-
mantic constraints.

Removing SQAG reduces performance across
all metrics, demonstrating the value of the divide-
and-conquer approach. The SQAG stage generates
sub-QA pairs that enhance control and precision in
question generation.

Finally, removing RD-Projection leads to con-
sistent performance drops, underscoring the impor-
tance of dynamically projecting weights to con-
straints during decoding. This strategy is essential
for precise token selection and seamless hop con-
nections within a question.

5.5 Performance of Different-Hop QG

We evaluated the performance of models on 2-
hop, 3-hop, and 4-hop question generation using
MuSiQue. As shown in Table 4, RUBY consis-
tently outperforms its backbone model, MixQG-
base, across all hop levels.

For 2-hop questions, RUBY achieves improve-
ments of 4.81%, 1.54%, and 1.73% in BLEU-4,
ROUGE-L, and BERTScore, respectively. The
performance gap widens for 3-hop questions,
with RUBY demonstrating increases of 13.72%
in BLEU-4, 4.02% in ROUGE-L, and 3.61% in
BERTScore. This trend continues for 4-hop ques-

B-4 R-L MTR BSc EC IC MTC
Metrics

0.0

0.2

0.4

0.6

0.8

Sc
or

es

GenCONE
CQG
RUBY

Figure 5: The performance comparison of single-hop
single-constraint QG models, multi-hop QG models,
and multi-constraint multi-hop QG models. For clarity,
IC and MTC scores are scaled down by dividing by 5,
and B-4, R-L, MTR, and BSc scores are divided by 100.

tions, where RUBY delivers substantial gains of
13.67% in BLEU-4, 3.47% in ROUGE-L, and
2.38% in BERTScore. These results highlight
RUBY’s ability to generate high-quality questions,
particularly for more complex multi-hop questions,
with its performance advantage growing as ques-
tion complexity increases. The performance of
other baselines on different-hop question genera-
tion is further detailed in App. C.

5.6 Performance of the Single-Constraint
Single-Hop QG Model on MCHQG

We select the open-source model GenCONE (Liu
et al., 2023), which is capable of generalizing
to MCHQG and is designed for single-constraint
(entity-centric), single-hop question generation, to
conduct experiments using MuSiQue. As shown
in Figure 5, while GenCONE performs compara-
bly to CQG on conventional automatic evaluation
metrics, it surpasses CQG by up to 113.5% in en-
tity consistency (EC). This result underscores the
effectiveness of GenCONE’s design for generating
entity-constrained questions.

However, GenCONE falls significantly behind
CQG in intent consistency (IC) and multi-hop type
consistency (MTC). This is largely because Gen-
CONE is tailored for single-hop question genera-
tion based on only one passage, limiting its ability
to process and integrate broader contextual informa-

18171

tion. Furthermore, while GenCONE is optimized
for entity-centric tasks, it underperforms compared
to RUBY across all metrics, including EC. This
shortfall arises from GenCONE’s inability to in-
corporate and reconcile multiple constraints effec-
tively in multi-hop question generation tasks. This
highlights the inherent challenges of adapting tra-
ditional single-constraint single-hop QG models to
scenarios that demand both multi-constraint and
multi-hop question generation.

6 Conclusion

We present the task of Multi-Constraint Multi-
Hop Question Generation (MCHQG), drawing
inspiration from theories in language psychol-
ogy. To tackle the challenges of bringing in high-
dimensional semantic constraints and effectively
integrating multiple constraints into multiple hops,
we propose RUBY, a robust and effective frame-
work. Experimental results, evaluated through both
conventional automatic metrics and constraint con-
sistency metrics, demonstrate that RUBY surpasses
baseline models, delivering superior performance
in both metrics.

Limitations

Our work has some limitations. Firstly, RUBY
does not specifically enhance entity consistency.
We believe that future work on MCHQG should fo-
cus on ensuring consistency across all constraints,
which could further enhance performance. Sec-
ondly, RUBY has been tested on English multi-hop
question-answer datasets but has not been evalu-
ated on datasets in other languages.

Ethics Statement

RUBY aims to improve the performance in the
MCHQG task. Our question generation is within
the scope of the dataset. In our work, we strictly
adhered to the ethical guidelines established by
the academic and open-source communities. All
datasets and models used in this study are publicly
available. We did not collect new datasets but in-
stead conducted experiments and constructed addi-
tional constraints based on these existing works.
There is minimal bias introduced in the experi-
ments because the seed is fixed throughout the en-
tire experiment. There are no conflicts of interest
among the authors. Thus, there is no ethical issue
in our work.

Acknowledgments

This work was supported by National Key
Research and Development Program of China
(2020YFA0712500), Major Program of Na-
tional Language Committee (WT145-39) and Na-
tional Natural Science Foundation of China (No.
62006083).

References
Gaurav Arora, Shreya Jain, and Srujana Merugu. 2024.

Intent detection in the age of LLMs. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing: Industry Track,
pages 1559–1570, Miami, Florida, US. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu,
Zach Brannelly, and Mohamed Abdelrazek. 2024.
Seven failure points when engineering a retrieval
augmented generation system. In Proceedings of
the IEEE/ACM 3rd International Conference on AI
Engineering - Software Engineering for AI, CAIN
’24, page 194–199, New York, NY, USA. Association
for Computing Machinery.

Sheng Bi, Xiya Cheng, Yuan-Fang Li, Lizhen Qu, Shi-
rong Shen, Guilin Qi, Lu Pan, and Yinlin Jiang. 2021.
Simple or complex? complexity-controllable ques-
tion generation with soft templates and deep mixture
of experts model. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
4645–4654, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Shuyang Cao and Lu Wang. 2021. Controllable open-
ended question generation with a new question type
ontology. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6424–6439, Online. Association for Computa-
tional Linguistics.

Yllias Chali and Sadid A. Hasan. 2012. Towards auto-
matic topical question generation. In Proceedings of
COLING 2012, pages 475–492, Mumbai, India. The
COLING 2012 Organizing Committee.

Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li,
Chenghua Lin, and Yefeng Zheng. 2021. Guiding
the growth: Difficulty-controllable question genera-
tion through step-by-step rewriting. In Proceedings

18172

https://doi.org/10.18653/v1/2024.emnlp-industry.114
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.1145/3644815.3644945
https://doi.org/10.1145/3644815.3644945
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://doi.org/10.18653/v1/2021.findings-emnlp.397
https://doi.org/10.18653/v1/2021.acl-long.502
https://doi.org/10.18653/v1/2021.acl-long.502
https://doi.org/10.18653/v1/2021.acl-long.502
https://aclanthology.org/C12-1030/
https://aclanthology.org/C12-1030/
https://doi.org/10.18653/v1/2021.acl-long.465
https://doi.org/10.18653/v1/2021.acl-long.465
https://doi.org/10.18653/v1/2021.acl-long.465

of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5968–5978, Online.
Association for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
866–874, Copenhagen, Denmark. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zichu Fei, Qi Zhang, Tao Gui, Di Liang, Sirui Wang,
Wei Wu, and Xuanjing Huang. 2022. CQG: A sim-
ple and effective controlled generation framework
for multi-hop question generation. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6896–6906, Dublin, Ireland. Association for
Computational Linguistics.

Zichu Fei, Qi Zhang, and Yaqian Zhou. 2021. Iter-
ative GNN-based decoder for question generation.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2573–2582, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Shasha Guo, Lizi Liao, Cuiping Li, and Tat-Seng Chua.
2024. A survey on neural question generation: Meth-
ods, applications, and prospects. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI-24, pages 8038–8047.
International Joint Conferences on Artificial Intelli-
gence Organization. Survey Track.

Michael Heilman. 2011. Automatic factual question
generation from text. Carnegie Mellon University.

Seonjeong Hwang, Yunsu Kim, and Gary Geunbae Lee.
2024. Explainable multi-hop question generation:
An end-to-end approach without intermediate ques-
tion labeling. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 6855–6866, Torino, Italia.
ELRA and ICCL.

Xin Jia, Wenjie Zhou, Xu Sun, and Yunfang Wu. 2021.
Eqg-race: Examination-type question generation. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 35, pages 13143–13151.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Ky-
omin Jung. 2019. Improving neural question genera-
tion using answer separation. In Proceedings of the
AAAI conference on artificial intelligence, volume 33,
pages 6602–6609.

J. Kormos. 2006. Speech Production and Second Lan-
guage Acquisition. Cognitive sciences and second
language acquisition. Lawrence Erlbaum Associates.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Kunze Li and Yu Zhang. 2024. Planning first, ques-
tion second: An LLM-guided method for control-
lable question generation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 4715–4729, Bangkok, Thailand. Association
for Computational Linguistics.

Ziming Li, Youhuan Li, Yuyu Luo, Guoliang Li,
and Chuxu Zhang. 2025. Graph neural net-
works for databases: A survey. arXiv preprint
arXiv:2502.12908.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Zefeng Lin, Weidong Chen, Yan Song, and Yongdong
Zhang. 2024. Prompting few-shot multi-hop ques-
tion generation via comprehending type-aware se-
mantics. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 3730–3740,
Mexico City, Mexico. Association for Computational
Linguistics.

Yuxiang Liu, Jie Huang, and Kevin Chang. 2023. Ask to
the point: Open-domain entity-centric question gen-
eration. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 2703–2716,
Singapore. Association for Computational Linguis-
tics.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 22631–22648. PMLR.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

18173

https://doi.org/10.18653/v1/D17-1090
https://doi.org/10.18653/v1/2022.acl-long.475
https://doi.org/10.18653/v1/2022.acl-long.475
https://doi.org/10.18653/v1/2022.acl-long.475
https://doi.org/10.18653/v1/2021.emnlp-main.201
https://doi.org/10.18653/v1/2021.emnlp-main.201
https://doi.org/10.24963/ijcai.2024/889
https://doi.org/10.24963/ijcai.2024/889
https://aclanthology.org/2024.lrec-main.599
https://aclanthology.org/2024.lrec-main.599
https://aclanthology.org/2024.lrec-main.599
https://books.google.com.sg/books?id=uzPYU1H9NY0C
https://books.google.com.sg/books?id=uzPYU1H9NY0C
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2023.findings-emnlp.178
https://doi.org/10.18653/v1/2023.findings-emnlp.178
https://doi.org/10.18653/v1/2023.findings-emnlp.178
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning
for pretraining llms at scale. arXiv preprint
arXiv:2309.04564.

Jack Mostow and Wei Chen. 2009. Generating instruc-
tion automatically for the reading strategy of self-
questioning. In Artificial Intelligence in Education,
pages 465–472. IOS Press.

Lidiya Murakhovs’ka, Chien-Sheng Wu, Philippe La-
ban, Tong Niu, Wenhao Liu, and Caiming Xiong.
2022. Mixqg: Neural question generation with mixed
answer types. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 1486–
1497.

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1463–1475, Online. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Megha Srivastava and Noah Goodman. 2021. Question
generation for adaptive education. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 692–701, Online.
Association for Computational Linguistics.

Dan Su, Peng Xu, and Pascale Fung. 2022. Qa4qg: us-
ing question answering to constrain multi-hop ques-
tion generation. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 8232–8236. IEEE.

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng
Yu, and Pascale Fung. 2020. Multi-hop question
generation with graph convolutional network. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4636–4647, Online.
Association for Computational Linguistics.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma,
and Shi Wang. 2018. Answer-focused and position-
aware neural question generation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3930–3939, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming
Zhou. 2017. Question answering and question gener-
ation as dual tasks. arXiv preprint arXiv:1706.02027.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 191–200,
Vancouver, Canada. Association for Computational
Linguistics.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Masaki Uto, Yuto Tomikawa, and Ayaka Suzuki. 2023.
Difficulty-controllable neural question generation for
reading comprehension using item response theory.
In Proceedings of the 18th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2023), pages 119–129, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Bingning Wang, Xiaochuan Wang, Ting Tao, Qi Zhang,
and Jingfang Xu. 2020. Neural question generation
with answer pivot. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(05):9138–9145.

Pei Wang, Keqing He, Yejie Wang, Xiaoshuai Song,
Yutao Mou, Jingang Wang, Yunsen Xian, Xunliang
Cai, and Weiran Xu. 2024. Beyond the known: In-
vestigating LLMs performance on out-of-domain in-
tent detection. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 2354–2364, Torino, Italia.
ELRA and ICCL.

Zehua Xia, Qi Gou, Bowen Yu, Haiyang Yu, Fei Huang,
Yongbin Li, and Nguyen Cam-Tu. 2023. Improving
question generation with multi-level content planning.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 800–814, Singapore.
Association for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

18174

https://doi.org/10.18653/v1/2020.acl-main.135
https://doi.org/10.18653/v1/2020.acl-main.135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.18653/v1/2023.bea-1.10
https://doi.org/10.18653/v1/2023.bea-1.10
https://doi.org/10.1609/aaai.v34i05.6449
https://doi.org/10.1609/aaai.v34i05.6449
https://aclanthology.org/2024.lrec-main.210/
https://aclanthology.org/2024.lrec-main.210/
https://aclanthology.org/2024.lrec-main.210/
https://doi.org/10.18653/v1/2023.findings-emnlp.57
https://doi.org/10.18653/v1/2023.findings-emnlp.57
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

Fuda Ye, Shuangyin Li, Yongqi Zhang, and Lei Chen.
2024. R2AG: Incorporating retrieval information into
retrieval augmented generation. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 11584–11596, Miami, Florida, USA.
Association for Computational Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910, Brussels, Belgium. Association
for Computational Linguistics.

Zhenjie Zhao, Yufang Hou, Dakuo Wang, Mo Yu,
Chengzhong Liu, and Xiaojuan Ma. 2022. Educa-
tional question generation of children storybooks via
question type distribution learning and event-centric
summarization. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5073–5085,
Dublin, Ireland. Association for Computational Lin-
guistics.

Tianqi Zhong, Zhaoyi Li, Quan Wang, Linqi Song, Ying
Wei, Defu Lian, and Zhendong Mao. 2024. Bench-
marking and improving compositional generalization
of multi-aspect controllable text generation. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6486–6517, Bangkok, Thailand. As-
sociation for Computational Linguistics.

A Implementation Details

We utilize GPT-4o-mini-2024-07-184 from the
OpenAI API for passage sorting and multi-hop
skeleton construction. Additionally, we em-
ploy GPT-4o-2024-08-065 to decompose multi-hop
questions from the original dataset to obtain pseudo
(gold) sub-question-answer (QA) pairs for SQAG.
To prevent overfitting during MHQG training, we
apply simple noise injection to the sub-QA pairs in
the MHQG training set. Specifically, we adopt a
random sampling and rewriting approach to intro-
duce noise into the data.

We use MixQG-base6, a pretrained model specif-
ically designed for question generation, with a to-
tal of 440M parameters, as our primary backbone
model. Additionally, we report the performance of
our framework on alternative backbone models, T5-
base7 and FLAN-T5-base8 on MuSiQue, in App.
D. FLAN-T5-base is a fine-tuned version of the T5
model, optimized for instruction-following tasks.

Seed 42 is used throughout the experiment. We
adopt AdamW (Loshchilov, 2017) as the optimizer.
All models are trained on a single NVIDIA A800-
80G GPU with bf16 = True for RUBY and all
foundational models, while other models use bf16
= False. Moreover, we set the batch size to 8,
learning rate to 5e-5, warmup ratio to 0.1, epoch
to 10, maximum source length to 512, and maxi-
mum target length to 128. For generation, we adopt
greedy decoding across all models. Other parame-
ters follow the default settings in the Huggingface
Trainer and Generator configuration files.

B Experiments and Results on HotpotQA

We conduct comparative experiments against base-
lines as well as ablation studies on the proposed
framework RUBY using HotpotQA. For the anno-
tated sub-question-answer pairs used in SQAG, we
leverage the high-quality sub-QA pairs available
in MuSiQue to train a multi-hop question decom-
position model based on T5-Large. This model is
used to generate annotated sub-QA pairs for Hot-
potQA. Specifically, the input to this model is a
multi-hop question along with a corresponding pas-
sage, and the output is the sub-question-answer
pairs corresponding to that passage. The results of

4https://platform.openai.com/docs/models/gpt-4o-mini
5https://platform.openai.com/docs/models/gpt-4o
6https://huggingface.co/Salesforce/mixqg-base
7https://huggingface.co/google-t5/t5-base
8https://huggingface.co/google/flan-t5-base

18175

https://doi.org/10.18653/v1/2024.findings-emnlp.678
https://doi.org/10.18653/v1/2024.findings-emnlp.678
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/2022.acl-long.348
https://doi.org/10.18653/v1/2022.acl-long.348
https://doi.org/10.18653/v1/2022.acl-long.348
https://doi.org/10.18653/v1/2022.acl-long.348
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351

Model B-1 B-2 B-3 B-4 R-L MTR BSc
Llama-3-1-8B 60.50 46.62 37.86 31.55 50.02 32.27 60.46
Mistral-7B-v0.3 58.83 46.20 37.84 31.67 50.13 32.11 60.37
BART-base 58.47 46.85 39.04 33.28 50.33 32.90 60.15
T5-base 60.66 47.91 39.45 33.35 50.60 33.23 61.18
FLAN-T5-base 61.43 48.12 39.64 33.50 50.97 33.53 61.21
MixQG-base 59.78 47.45 39.53 33.73 51.20 31.72 60.77
CQG 23.12 10.58 5.20 2.80 21.25 11.58 11.36
E2EQR 59.25 45.42 36.63 30.38 47.80 31.16 57.92
MultiFactor 60.83 48.03 39.81 33.84 50.34 32.71 60.62
RUBY 63.31 51.04 42.93 36.75 53.26 33.90 63.74

Table 5: Automatic evaluation on HotpotQA. The Bold and underline mark the best and second-best results.

Model B-1 B-2 B-3 B-4 R-L BSc
RUBY 63.31 51.04 42.93 36.75 53.26 63.74
w/o RD-P 60.71 (↓ 4.11%) 48.55 (↓ 4.88%) 40.46 (↓ 5.75%) 34.40 (↓ 6.39%) 53.26 (↓ 0.00%) 62.03 (↓ 2.68%)
w/o SQA 62.18 (↓ 1.78%) 50.26 (↓ 1.53%) 42.18 (↓ 1.75%) 36.14 (↓ 1.66%) 52.06 (↓ 2.25%) 61.66 (↓ 3.26%)
w/o HDR 60.90 (↓ 3.81%) 48.08 (↓ 5.80%) 39.90 (↓ 7.06%) 33.85 (↓ 7.89%) 51.77 (↓ 2.80%) 60.86 (↓ 4.52%)

Table 6: Ablation studies on HotpotQA showing BLEU, ROUGE-L, and BERTScore for RUBY.

comparative experiments against baselines are pre-
sented in Table 5, and the results of ablation studies
on RUBY are presented in Table 6. From the re-
sults, it is evident that RUBY achieves the best
performance on the HotpotQA dataset, demonstrat-
ing that RUBY is effective across multiple datasets.
This highlights RUBY’s strong generalization ca-
pability across different datasets.

C Complete Evaluation Results of
Different-Hop Question Generation

We report the complete evaluation results of RUBY
and various baseline models for multi-hop question
generation on MuSiQue in Table 14.

RUBY consistently outperforms all baseline
models across 2-hop, 3-hop, and 4-hop question
generation tasks, demonstrating its strong reason-
ing and question formulation capabilities in multi-
hop question generation. Notably, RUBY achieves
superior performance compared to models such as
T5-base and MultiFactor on key evaluation met-
rics, including BLEU, ROUGE-L, METEOR, and
BERTScore, which assess the fluency, relevance,
and overall quality of generated questions.

Furthermore, RUBY excels in maintaining logi-
cal coherence and adherence to constraints, as ev-
idenced by its high scores in entity consistency,
intent consistency, and multi-hop type consistency.
These results highlight RUBY’s ability to gener-
ate accurate and contextually consistent multi-hop
questions across a variety of scenarios.

Model C-1 C-2 C-3 Hop-Acc
Llama-3.1-8B 0.7100 0.9935 0.6094 2.3129
Mistral-7B-v0.3 0.6950 0.9771 0.5689 2.2410
BART-base 0.6061 0.9967 0.4912 2.0941
T5-base 0.6192 0.9967 0.5036 2.1195
FLAN-T5-base 0.6342 0.9980 0.5147 2.1470
MixQG-base 0.6695 0.9993 0.5526 2.2214
MulQG 0.1652 1.0000 0.1106 1.2758
CQG 0.2148 1.0000 0.1208 1.3356
E2EQR 0.6166 1.0000 0.4853 2.1019
MultiFactor 0.6558 0.9980 0.5402 2.1940
RUBY 0.7172 0.9980 0.6218 2.3370

Table 7: Comparison of models based on different cri-
teria and Hop-Accuracy on MuSiQue. C-1, C-2, and
C-3 represent Criterion-1, Criterion-2, and Criterion-3,
respectively. Hop-Accuracy is the sum of all the scores
of the criteria.

D RUBY’s Generalization across
Different Transformer Models

We conducted extensive experiments on MuSiQue
to evaluate the performance of the RUBY frame-
work across various Transformer architectures. As
shown in Figure 6, RUBY consistently outper-
forms both T5-base and FLAN-T5-base across
all evaluation metrics, highlighting its robust gen-
eralization ability. Specifically, RUBY-T5-base
achieves higher scores in metrics including BLEU-
4, ROUGE-L, METEOR, and BERTScore com-
pared to T5-base. Similarly, RUBY-FLAN-T5-base
outperforms FLAN-T5-base in these areas, while
also showing superior performance in consistency
metrics, including entity consistency, intent con-
sistency, and multi-hop type consistency. The re-

18176

B-4

R-L

MTR

BSc

EC

IC

MTC

26.50 27.82 29.15

49.50

50.83

52.15

28.50

29.82

31.15

56.20

57.26

58.32

0.86

0.89

0.92
3.61

3.80

3.98

3.41

3.60

3.78

RUBY-FLAN-T5-base
FLAN-T5-base

B-4

R-L

MTR

BSc

EC

IC

MTC

26.50 27.82 29.15

49.50

50.83

52.15

28.50

29.82

31.15

56.20

57.26

58.32

0.86

0.89

0.92
3.61

3.80

3.98

3.41

3.60

3.78

RUBY-T5-base
T5-base

Figure 6: The results of RUBY on the backbone models
T5-base and FLAN-T5-base on MuSiQue.

sults indicate that RUBY’s architecture not only
enhances the quality of generated questions but
also improves the alignment with key semantic
constraints, making it a highly effective approach
across different Transformer backbone models.

E Evaluation of Constraint Consistency

For the entity constraint, since it involves compari-
son and judgment at the token level, we follow the
following criteria to assess whether a given entity
is contained in the generated question:

Score(e, q) =

{
1 if e ⊆ q,

0 if e ̸⊆ q,
(16)

where e represents the given entity and q repre-
sents the generated question. For evaluating the
intent consistency and multi-hop type consistency
constraints, we employ Llama-3.1-70B-Instruct9

in combination with a specially designed prompt.
Specifically, for intent consistency, when using the

9https://huggingface.co/meta-llama/Llama-3.1-70B-
Instruct

template, we replace the tokens [CONTEXT], [IN-
TENT], [R_Q] and [Q] with the given context, in-
tent, reference question, and generated question,
respectively, and then input the entire prompt into
Llama-3.1. Similarly, for multi-hop type consis-
tency, when using the template, we replace the
tokens [CONTEXT], [MT], [R_Q] and [Q] with
the given context, multi-hop type, reference ques-
tion, and generated question, respectively, and then
input the entire prompt into Llama.

0.0

0.5

1.0

1.5

2.0

2.5

Ho
p-

Ac
c

MCHQG MHQG
MixQG-base

MCHQG MHQG
T5-base

MCHQG MHQG
BART-base

Criterion-1
Criterion-2
Criterion-3

Figure 7: Hop-Accuracy (Hop-Acc) of MixQG-base,
T5-base and BART-base on MCHQG task and MHQG
task.

F Evaluation of Hop Error

We conducted an experiment on MixQG-base, T5-
base, and BART-base for MHQG and MCHQG to
evaluate the effectiveness of the multi-constraint
setting in reducing multi-hop errors on MuSiQue.
Based on the definition of multi-hop errors from
Xia et al. (2023), we primarily evaluated the follow-
ing three criteria: 1) whether the question content
is fully derived from the passages, 2) whether the
answer is present in the question, and 3) whether
a reasoning chain leading to the answer can be in-
ferred from the question content. For Criteria 1
and 3, we used the designed prompt shown in Ta-
ble 17 with Llama-3.1-70B-Instruct to perform the
evaluation. For Criterion 2, we used a rule-based
approach: a score of 1 was assigned if the answer
was not included in the question, and a score of 0 if
it was present. Additionally, if Criterion 2 received
a score of 0, Criterion 3 was automatically assigned
a score of 0.

As shown in Figure 7, MixQG, T5, and BART
achieve higher hop accuracy on MCHQG than on
MHQG. This indicates that the multi-constraint
setting in MCHQG reduces hop errors compared

18177

Model B-1 B-2 B-3 B-4 R-L MTR BSc
RUBY (full-input) 58.64 45.45 36.59 30.04 52.89 31.50 59.40

Simplified-Input (w/o entity)
RUBY 56.79 43.29 34.46 28.07 50.88 29.80 56.78
FLAN-T5-base 55.14 41.20 32.32 25.93 48.13 26.97 53.21
MixQG-base 53.07 39.79 31.15 24.92 48.29 28.43 54.00

Simplified-Input (concise intent)
RUBY 56.17 43.04 34.30 27.93 51.19 30.94 57.88
FLAN-T5-base 55.24 41.29 32.32 25.86 48.72 28.94 55.65
MixQG-base 52.31 39.69 31.29 25.16 49.80 30.61 56.68

Table 8: Performance of models with simplified input. The results marked with a gray background indicate that
they are not directly comparable. “Full-input” refers to the input without any simplification. “w/o entity” refers to
inputs that do not contain the specified entity. “Concise intent” refers to using more concise intents instead of the
original ones.

to the answer-only constraint setting in MHQG.
Furthermore, as shown in Table 7, RUBY out-

performs other models in Criterion-1, Criterion-
3, and hop accuracy, demonstrating its effective-
ness in reducing multi-hop errors. While its per-
formance in Criterion-2 is very close to the best
(1.0000), RUBY maintains a strong overall per-
formance across all metrics, making it the most
balanced model in the evaluation.

G Performance with Simplified Inputs

We explore the performance of RUBY when using
simplified inputs during the inference phase. We
set up two approaches for simplifying the inputs:
using more concise intents instead of the original
ones (concise intent) and omitting the specified
entity (w/o entity). We conduct experiments on the
MuSiQue dataset based on these two approaches
for simplifying the inputs. For the first approach,
we use GPT-4o-mini to concisely rewrite the intents
in MuSiQue’s test set, resulting in an average intent
length of 8.21, a 41.61% reduction compared to the
original length of 14.06.

The experimental results, as shown in Table
8, demonstrate that even with simplified inputs,
RUBY achieves commendable performance and
surpasses most of the baselines using full inputs
(without simplification), as presented in Table 1,
except for FLAN-T5-base and MixQG-base. We
further conduct experiments where FLAN-T5-base
and MixQG-base also used the simplified-input
setup. The results, also presented in Table 8, show
that, under the same input settings, RUBY still out-
performs both FLAN-T5-base and MixQG-base.

H Generalization Performance of RUBY
without Annotated Sub-QA Pairs

The training and inference phases are separate.
Since MuSiQue provides high-quality sub-QA
pairs, a model trained on MuSiQue can generalize
effectively to other datasets. Specifically, the mod-
els used for SQAG and MHQG on other datasets
are pre-trained on MuSiQue, meaning that no sub-
QA pair annotations are required for these datasets.

Table 9 presents the performance of the models
pre-trained on MuSiQue when applied to the Hot-
potQA test set. As shown, RUBY demonstrates su-
perior generalization capability compared to other
models. The results indicate that RUBY, despite
not relying on annotated sub-QA pairs in the target
dataset, achieves the highest performance across
several metrics. This highlights RUBY’s strong
ability to generalize across datasets while maintain-
ing competitive performance without the need for
dataset-specific annotations.

I Passage Sorting Algorithm

Algorithm 1 describes the full implementation of
the process of passage sorting.

J Training Algorithm

Algorithm 2 describes the full implementation of
the process of the training for SQAG and MHQG.

K Data Processing Workflow

To impose additional constraints for the MCHQG
task, we extract intent, entity, and multi-hop type
information.

18178

Model B-1 B-2 B-3 B-4 R-L MTR BSc
Llama-3.1-8B 48.65 33.18 23.91 17.83 35.31 26.63 49.18
Mistral-7B-v0.3 46.86 32.19 23.45 17.59 35.50 24.66 46.95
FLAN-T5-base 47.94 32.46 23.26 17.11 34.37 25.18 45.91
MixQG-base 48.07 33.16 24.07 18.05 35.75 27.25 48.49
MultiFactor 43.21 28.42 19.96 14.54 31.20 22.99 41.89
RUBY 49.94 34.46 24.90 18.54 35.66 27.60 48.89

Table 9: Performance comparison of models pre-trained on MuSiQue and applied to the HotpotQA test set.

Algorithm 1: Passage Sorting
Input :Passages P , answer a, multi-hop

type M, intent it, the number of
passages ℓ.

Output :Sorted sequence of passages seqP ,
sequence excluding the answer
seqP\a.

1 Initialize the initial selected passages
Ps
0 = {a}, initial candidate passages

Pc
0 = P .

for i = 1 to ℓ do
2 P ′ = P ∪ {a};
3 Divide P ′ into Pc

i and Ps
i ;

4 seqi−1 = fig(M,Ps
i−1);

5 p∗i = LLM(T sort(it, seqi−1,Pc
i−1));

6 Ps
i = Ps

i−1 ∪ {p∗i };
7 Pc

i = P ′ \ Ps
i ;

8 Ensure Pc
i ∩ Ps

i = ∅.
end

9 seqP = seqℓ = fig(M,Ps
ℓ).

10 seqP\a = seqP \ [a].
11 return seqP , seqP\a

For MuSiQue, we use GPT-4o-2024-08-06 via
the OpenAI API to extract both the intent and en-
tities. Then, we randomly select one entity that
includes an uppercase letter as the final choice, en-
suring reproducibility using a seed value of 42. To
construct the multi-hop type, we utilize the “ques-
tion_decomposition” field from MuSiQue, with the
resulting multi-hop types summarized in Table 15.
Supporting paragraphs from the dataset are selected
as passages. We filter out examples that lack an
entity with an uppercase letter. After filtering, the
final dataset consists of 13,459/823/1,531 examples
for training, validation, and testing on MuSiQue.
The dataset statistics are shown in Table 11.

For HotpotQA, we use seed 42 to randomly se-
lect 1,000 examples from the training set, 200 from
the validation set, and another 200 from the original

validation set to create new training, validation, and
test sets. We utilize GPT-4o to assign a multi-hop
type to each example according to the reasoning
type definitions outlined in the original HotpotQA
paper. Since the multi-hop type represents the logi-
cal structure of a question, we subsequently recruit
10 professional volunteers to manually correct any
incorrect multi-hop type annotations. The results
of the multi-hop type annotations are summarized
in Table 15. For intents and entities, we adopt
the same construction methodology as used for the
MuSiQue dataset. We select the supporting para-
graphs as the passages (not supporting facts). The
dataset statistics are shown in Table 12.

To demonstrate that the quality of intents and
entities generated using LLMs is reliable, we con-
ducted experiments to evaluate the quality of the
generated intents. We employ Perplexity (PPL),
a commonly used quantitative metric for assess-
ing data quality (Marion et al., 2023; Zhong et al.,
2024). Since intents are primarily generated based
on the questions in the original dataset, we com-
pared the PPL of the intents with that of the corre-
sponding questions.

Here, PPL is computed using GPT-2. As shown
in Table 10, the PPL of intents is significantly lower
than that of the questions across all datasets, indi-
cating that the quality of the intents generated by
GPT-4o is reasonably ensured.

Furthermore, existing studies have demonstrated
that LLMs perform remarkably well on intent de-
tection tasks in zero-shot/few-shot settings (Arora
et al., 2024; Wang et al., 2024), further ensuring
the quality of the generated intents. As for the enti-
ties, we only retained those extracted by the LLMs
that also appear in the original question, thereby
guaranteeing their reliability.

18179

Algorithm 2: Training
Input :Training datasets Ds and Dm.
Output :Trained model parameters ξs and

ξm.
Stage 1: Training SQAG

1 Initialize the model parameters ξs.
for ks = 1 to |Ds| do

2 Get input x(ks) and output y(ks);
3 Compute the loss:

Ls = −
|y(ks)|∑

ls=1

logPs

(
y
(ks)
ls

∣∣∣x(ks); ξs
)
;

4 Update ξs via gradient descent on Ls.
end
Stage 2: Training MHQG

5 Initialize the model parameters ξm.
for km = 1 to |Dm| do

6 Get input x(km) and output y(km);
7 Compute the loss:

Lm = −
|y(km)|∑

lm=1

logPm

(
y
(km)
lm

∣∣∣x(km); ξm

)
;

8 Update ξm via gradient descent on Lm.
end

9 return: ξs and ξm

L Effectiveness of Questions in Question
Answering Task

To evaluate the effectiveness of different models,
we apply the generated multi-hop questions to
downstream QA tasks. Following the evaluation
protocols of Barnett, Barnett et al. (2024), and Ye
et al. (2024), we measure the performance of QA
systems on the MuSiQue and HotpotQA datasets
using accuracy (Acc) and F1 score. We employ
Llama 3.1-70B as the QA model to answer ques-
tions generated by FLAN-T5-base, MultiFactor,
Llama3.1-8B-Instruct, and RUBY. As shown in Ta-
ble 13, questions generated by RUBY yield higher

Dataset Type Intent PPL (↓) Question PPL (↓)

MuSiQue
Training 78.31 218.09

Validation 79.15 214.16
Test 78.63 217.54

HotpotQA
Training 73.38 293.67

Validation 81.25 324.66
Test 76.76 268.17

Table 10: Evaluation of the quality of the generated
intents using Perplexity (PPL).

Metric Training Validation Test
Passages Mean 198.48 239.65 243.14
Passages Min 46 47 45
Passages Max 805 645 683
Question Mean 15.93 17.84 18.40
Question Min 4 6 5
Question Max 46 46 43
Answer Mean 2.37 2.40 2.88
Answer Min 1 1 1
Answer Max 14 14 14
Intent Mean 13.72 16.05 14.06
Intent Min 6 7 6
Intent Max 34 28 29
Entity Mean 2.01 1.93 2.19
Entity Min 1 1 1
Entity Max 11 8 12
2-hop type 9845 410 764
3-hop-1 type 2310 199 371
3-hop-2 type 496 69 128
4-hop-1 type 440 72 133
4-hop-2 type 71 28 51
4-hop-3 type 297 45 84

Table 11: The statistic of MuSiQue. The mean, min,
max lengths of passages, questions, answers, intents,
and entities are reported. The number of each multi-hop
type is also reported.

answerability and are more semantically aligned
with the golden questions than those generated by
other representative baselines.

M Terminology and Explanation

Table 16 shows the key terminologies and their
explanations.

N A Case Study of RUBY

Figure 8 presents a case study of RUBY, illustrat-
ing the detailed process of its high-dimensional
semantic constraint dimension reduction module
and sub-QA-based multi-hop question generation
module.

O Prompt Templates used in HDR

Table 18 shows the prompt template used in
the process of passage sorting. In each it-
eration, we select one passage from the can-
didate passages based on the other given in-
formation to correspond to #[NUM] in the
multi-hop type. Specifically, we replace
the tokens [SELECTED_PASSAGES], [CANDI-
DATE_PASSAGES], [NUM], [ANSWER], and
[INTENT] with the corresponding information.

Table 19 shows the prompt template used in the
construction of the multi-hop skeleton. Specifically,
we replace the tokens [ENTITY], [ANSWER], [IN-
TENT], and [SEQ] with the given entity, answer,

18180

Metric Training Validation Test
Passages Mean 145.66 137.93 141.24
Passages Min 31 45 35
Passages Max 345 314 295
Question Mean 15.17 15.30 15.27
Question Min 6 7 6
Question Max 38 38 30
Answer Mean 2.10 2.00 2.16
Answer Min 1 1 1
Answer Max 14 9 8
Intent Mean 14.81 14.61 14.69
Intent Min 7 7 7
Intent Max 27 24 25
Entity Mean 2.52 2.45 2.37
Entity Min 1 1 1
Entity Max 14 7 7
2-hop type 352 60 76
2-hop-bridge type 369 74 67
2-hop-comparison type 279 66 57

Table 12: The statistic of HotpotQA. The mean, min,
max lengths of passages, questions, answers, intents,
and entities are reported. The number of each multi-hop
type is also reported.

Model MuSiQue HotpotQA
F1 Acc F1 Acc

FLAN-T5-base 0.3859 0.4206 0.7329 0.7450
MultiFactor 0.3752 0.4115 0.7549 0.7600
Llama3.1-8B 0.4126 0.4448 0.7197 0.7350
RUBY 0.4323 0.4513 0.7945 0.8100
Golden Labels 0.4655 0.4827 0.8001 0.8250

Table 13: The effectiveness of questions generated by
different methods in question answering tasks on the
MuSiQue and HotpotQA datasets. Numbers in Bold
indicate the best model performance, excluding those
obtained using golden labels. The results marked with
a gray background indicate that they are not directly
comparable.

intent, and the sorted sequence of passages. Addi-
tionally, we replace the token [EXAMPLE] with an
example that includes a Chain-of-Thought consist-
ing of information analysis, extraction, and multi-
hop skeleton construction.

18181

Model B-1 B-2 B-3 B-4 R-L MTR BSc
2-hop

Llama-3.1-8B 63.37 50.19 41.43 34.70 55.55 33.85 64.93
Mistral-7B-v0.3 61.82 48.82 40.21 33.74 54.29 32.98 64.31
BART-base 62.91 50.53 42.22 35.82 57.37 35.54 66.06
T5-base 64.32 51.87 43.40 36.79 57.93 35.07 66.16
FLAN-T5-base 64.12 51.66 43.03 36.42 57.56 34.69 65.89
MulQG 49.11 33.66 24.92 18.90 40.44 23.63 37.83
GenCONE 41.79 27.32 18.99 13.60 34.72 19.47 44.64
CQG 43.13 29.59 21.81 16.41 42.89 26.09 40.37
E2EQR 60.34 47.73 39.39 33.03 55.39 34.18 63.92
MultiFactor 63.54 50.84 42.19 35.49 55.80 34.29 64.74
MixQG-base 64.35 51.95 43.46 36.84 58.21 35.41 66.38
RUBY 66.50 54.00 45.36 38.61 59.10 35.82 67.52

3-hop
Llama-3.1-8B 52.16 37.91 28.74 22.43 44.41 27.87 50.23
Mistral-7B-v0.3 51.57 37.59 28.82 22.74 43.75 27.48 50.07
BART-base 51.85 38.98 30.35 24.09 47.24 30.20 52.64
T5-base 51.45 38.37 29.50 23.07 46.09 29.44 51.74
FLAN-T5-base 54.76 40.67 31.57 25.17 46.14 28.08 51.25
MulQG 27.69 14.14 7.49 4.07 22.47 13.11 12.17
GenCONE 34.62 22.69 15.79 11.40 31.44 20.25 37.67
CQG 32.21 20.76 14.09 9.74 34.89 22.35 30.96
E2EQR 52.81 40.32 32.01 25.94 48.71 31.06 53.98
MultiFactor 50.98 37.67 29.00 22.91 45.39 29.03 51.13
MixQG-base 51.41 38.64 29.97 23.77 47.27 29.88 52.52
RUBY 55.99 42.60 33.54 27.03 49.17 30.76 54.42

4-hop
Llama-3.1-8B 47.41 32.94 24.05 18.14 37.45 24.16 41.90
Mistral-7B-v0.3 46.27 33.00 24.66 18.79 38.99 24.40 42.44
BART-base 46.10 32.96 24.43 18.33 39.27 26.45 44.59
T5-base 44.95 32.16 23.91 18.23 40.21 26.01 43.57
FLAN-T5-base 49.30 35.57 26.87 20.78 40.24 24.76 43.33
MulQG 25.08 12.83 7.09 3.88 21.55 13.44 11.75
GenCONE 26.67 17.20 12.03 8.89 29.88 20.79 34.42
CQG 27.20 16.56 10.93 7.34 29.89 19.55 24.00
E2EQR 43.80 31.22 23.55 18.13 40.01 24.58 42.70
MultiFactor 46.91 33.42 25.12 19.49 39.99 26.19 43.72
MixQG-base 45.72 32.42 24.31 18.65 40.68 25.70 44.46
RUBY 49.97 36.15 27.34 21.20 42.09 25.78 45.52

Table 14: Comparison of RUBY and baseline models for 2-hop, 3-hop, and 4-hop configurations on MuSiQue. The
best results in each category are highlighted in bold. The suboptimal results in each category are underlined.

18182

Graph Representation Example Description

#1 #2 end
Q: When was the institute that owned The
Collegian founded?
A: 1960

This multi-hop type is #1 -> #2 -> end,
which means a 2-hop type. This type ex-
ists in both MuSiQue and HotpotQA. The
description in HotpotQA is “inferring the
bridge entity to complete the second-hop
question or inferring the property of an
entity in question through a bridge entity.”

#1 #2end
bridge bridge

Q: Which former member of the Pitts-
burgh Pirates was nicknamed ”The Co-
bra”?
A: Dave Parker

This multi-hop type is #1 -> end <- #2,
which means a 2-hop-bridge type. The
description in HotpotQA is “locating the
answer entity by checking multiple prop-
erties.”

#1 #2end
compare compare Q: Did LostAlone and Guster have the

same number of members?
A: yes

This multi-hop type is #1 => end <= #2,
which means a 2-hop-comparison type.
The description in HotpotQA is “compar-
ing two entities.”

#1 #2

#3end

Q: When did public health start in the
country where the organization that recog-
nizes the sovereignty of the Republic of
Cyprus is headquartered?
A: 1798

This multi-hop type is #1 -> #2 -> #3 ->
end, which means a 3-hop-1 type.

#1

#2

#3 end

Q: Who started the Bethel branch of the
religion founded by the black community
in the city that used to be the US capitol?
A: Bishop Francis Asbury

This multi-hop type is #1 -> #3 and #2 ->
#3 and #3 -> end, which means a 3-hop-2
type.

#1 #2 #3

#4end

Q: Where is the lowest place in the coun-
try which, along with Eisenhower’s VP’s
country, recognized Gaddafi’s govern-
ment early on?
A: Holme Fen, Cambridgeshire

This multi-hop type is #1 -> #2 -> #3 ->
#4 -> end, which means a 4-hop-1 type.

#1

#2

#3 #4 end

Q: How many square miles is the source
of the most legal immigrants to the loca-
tion of Gotham’s filming from the region
where Andy from The Office sailed to?
A: 18,705

This multi-hop type is #1 -> #3 and #2 ->
#3 and #3 -> #4 -> end, which means a
4-hop-2 type.

#1

#3

#2

#4 end

Q: What nation provided the most legal
immigrants to the city that Gotham is
filmed in, in the area containing the is-
land with Philipsburg as its capital?
A:the Dominican Republic

This multi-hop type is #1 -> #2 -> #4 and
#3 -> #4 and #4 -> end, which means a
4-hop-3 type.

Table 15: The eight multi-hop types (ranging from 2-hop to 4-hop) are derived from the graph representations,
example QA pairs, and descriptions in Trivedi et al. (2022), as well as the types of multi-hop reasoning, example
QA pairs, and descriptions in Yang et al. (2018). Text colors indicate different nodes: teal for #1, blue for #2, orange
for #3, purple for #4, and red for end.

18183

South Central Coast (Vietnamese: Duyên hải Nam Trung
Bộ) is one of the regions of Vietnam. It consists of the
independent municipality of Đà Nẵng and seven other
provinces. The two southern provinces Ninh Thuận and
Bình Thuận are sometimes seen as part of the Southeast
region. The Paracel Islands (Hoàng Sa District) and Spratly
Islands (Trường Sa District) are also part of this region.

S-Fone is a mobile communication operator in Vietnam that
uses CDMA technology. Founded on 1 July 2003 in Ho Chi
Minh City, Vietnam, S-Fone became the third network of
Vietnam, breaking the duopoly of the two VNPT operators.
It is the trademark of S-Telecom (CDMA Mobile Phone
Centre) (set up as a joint venture between Saigon Postel
Corp. (SPT) and Korea SK Telecom). SK Telecom decided
to leave the partnership in 2010. SPT has since then found it
difficult to find a new partner, after a co-operation with
Saigon Tel failed.

Bon "John" Phan (born October 10, 1974, in Da Nang,
Vietnam) is a Vietnamese-American professional poker
player based in Stockton, California, who is a two-time
World Series of Poker bracelet winner and a winner and
four-time final tablist of World Poker Tour Championships.

Determine the specific region within a country based on the
location of a person's birthplace.

S-Fone

South Central Coast

#1 -> #3 and #2 -> #3 and #3 -> end

Input

Passage Sorting

Multi-hop Skeleton Construction

Sub-QA pairs Generation (SQAG)

Sub-QA pair 1:

Sub-QA pair 2:

Sub-QA pair 3:

Multi-Hop Question Generation (MHQG)

What region is the place of birth of John Phan
in the country S-Fone is from?

In what region of the country of S-Fone is the place of
birth of John Phan located?

High-dimensional Semantic Constraint Dimension Reduction

What region is the place of birth of John Phan in
the country S-Fone is from?

①

②

③

④

Output

Sub-QA-based MHQG

Figure 8: A case study of RUBY. 1⃝ to 4⃝ shows the steps.

18184

Terminology Explanation
MHQG Traditional Multi-Hop Question Generation.

MCHQG
Multi-Constraint Multi-Hop Question Generation, which is a new
task we present.

Directionality
The preverbal plan before human questioning provides direction-
ality for question generation, ensuring that the generated question
is unique and precise rather than random.

High-dimensional and
low-dimensional semantic
constraint

A semantic constraint can be any word or sentence. In the
MCHQG task, semantic constraints including entity, intent, and
multi-hop type determine the direction of question generation.

• Entity is considered a low-dimensional semantic constraint
because the only requirement is that the generated question
contains the given entity.

• Intent and multi-hop type are high-dimensional semantic
constraints because, unlike entities, they require the generated
question to semantically align with them rather than simply
include them as words.

High-dimensional Semantic
Constraint Dimension Reduction
(HDR)

A module for reducing high-dimensional semantic constraints,
consisting of two stages: Passage Sorting and Multi-hop Skeleton
Construction.

Passage Sorting An iterative passage sorting process using LLMs.
Multi-hop Skeleton Construction Generating multi-hop skeletons using LLMs.

Sub-Question Answer pair-based
Multi-Hop Question Generation
(SQA-based MHQG)

A module that decomposes multi-hop question generation into
the generation of multiple sub-question-answer pairs, which are
then synthesized into a single multi-hop question. This module
incorporates Reasoning Dynamic Projection.

Reasoning Dynamic Projection
(RD-Projection; RD-P)

An enhanced Transformer decoder that integrates a Block-wise
State Enhancer.

Block-wise State Enhancer
(BSE)

Enhancing representations in a block-wise manner. It consists of
two components: Weight Calculator and Weight Broadcaster.

Weight Calculator and Weight
Broadcaster

The Weight Calculator calculates the weight for each constraint,
while the Weight Broadcaster broadcast the calculated weights to
the corresponding representations of each constraint.

Table 16: Terminology and Explanation.

18185

Prompt Template of Hop Error Evaluation
The following are several passages, a multi-hop question generated from them and the question’s answer. Rate the
following multi-hop question following the below criteria:
Criterion_1: If the key content of the question is fully derived from the passages, give a score of 1, otherwise give 0.
Criterion_2: If there is a complete reasoning chain to answer the question from the passages, give a score of 1, otherwise
give 0.
Criterion_3: If there is a reasoning chain leading from the question to the answer that can be inferred from the question
and the passage, give a score of 1, otherwise give 0. The scores should be in JSON format, for example:

{
" C r i t e r i o n _ 1 " : y o u r _ s c o r e f o r c r i t e r i o n _ 1 (0 o r 1) ,
" C r i t e r i o n _ 2 " : y o u r _ s c o r e f o r c r i t e r i o n _ 2 (0 o r 1) ,
" C r i t e r i o n _ 3 " : y o u r _ s c o r e f o r c r i t e r i o n _ 3 (0 o r 1)

}

Passages: [CONTEXT]
Answer: [ANSWER]
Here is a reference version:
Question: [R_Q]
Scores:

{
" C r i t e r i o n _ 1 " : 1 ,
" C r i t e r i o n _ 2 " : 1 ,
" C r i t e r i o n _ 3 " : 1

}

The following question is the one you need to rate:
Question: [Q]
Scores:
<|eot_id|>

Table 17: Prompt template used for hop error evaluation. For both two criteria, a score of 1 represents the best result.
In the template, [CONTEXT], [ANSWER], [R_Q] and [Q] are special tokens and need to be substituted.

Prompt Template of the Process of Passage Sorting
Task:
Identify the paragraph that logically precedes and connects to the known sequence in a multi-hop question setup. Your
selection should be based on any relevant information that links the candidate paragraph to the already selected sequence.
Noted that this time you should replace the #[NUM] in the Existing Sequence.
Instructions:
1. Review the given answer and question intent to understand the overarching theme.
2. Assess the existing sequence.
- For example, ’A -> B’ in existing sequence means A shares some relevant key entities with B.
3. Please extract the key entities from all the paragraphs beforehand, and then, from the candidate paragraphs, choose
one that shares any relevant key entities with the existing sequence.
4. Replace #{ num } to the number of the paragraph you select, reflecting its logical placement before the current content.

Existing Sequence: [SELECTED_PASSAGES]
Candidate Passages: [CANDIDATE_PASSAGES]
Output Required:
Provide the updated sequence, replacing #[NUM] with the selected paragraph that fits logically before the existing
sequence.
For example, if you select paragraph 2, you should return:

{
" # [NUM] " : 2

}

Answer: [ANSWER]
Intent: [INTENT]
Output:

Table 18: Prompt template used for passage sorting. In the template, [SELECTED_PASSAGES], [CANDI-
DATE_PASSAGES], [NUM], [ANSWER] and [INTENT] are special tokens and need to be substituted.

18186

Prompt Template for the Construction of Multi-Hop Skeleton
Task:
Given an entity, an answer, an intent, and sequences of paragraphs, please analyze how the paragraphs are related to
each other and finally build the skeletons for the sequences. Focus on why such sequences are constructed, keeping the
relationships between them clear and relevant to the entity, intent, and answer.

Instructions:
1. Do not introduce irrelevant information or redundant statements.
2. Do not hallucinate or assume details that are not provided in the context.
3. Analyze the connections between paragraphs based on the entity, answer, and intent, paying attention to how they
logically follow from one another.
4. Provide a clear step-by-step analysis of how the paragraphs connect and why they are constructed this way, focusing
on their relevance to the question’s context.
5. When a "->" appears between two paragraphs, explain the relationship between them: This indicates that the second
paragraph expands on, clarifies, or builds upon the context presented in the first one.
6. After analyzing, build the multi-hop skeletons using the key information from the paragraphs in the following JSON
format:

{
" Sequence 1 " : " . . . " ,
" Sequence 2 " : " . . . " ,
.

}

[EXAMPLE]

Entity: [ENTITY]
Answer: [ANSWER]
Intent: [INTENT]
Sequences of paragraphs: [SEQ]
Output:

Table 19: Prompt template used for the construction of multi-hop skeleton. The special tokens [ENTITY],
[ANSWER], [INTENT], and [SEQ] need to be substituted with actual content.

Prompt Template of Intent Consistency Evaluation
The following are a passage and a multi-hop question generated from it. Rate the following multi-hop question based
on the corresponding passage and intent with respect to match degree, using a score from 1 to 5, where score 1 means
"mismatch" and score 5 means "perfect match". Note that the match degree measures how well the question matches the
intent, as well as the degree to which the nonspecific information and relationships in the intent are concretized from the
passages. Only provide the score.
The score should be in JSON format, for example:

{
" s c o r e " : y o u r _ s c o r e (i n t)

}

Passage: [CONTEXT]
Intent: [INTENT]
Here is a reference version:
Question: [R_Q]
Score:

{
" s c o r e " : 5

}

Question: [Q]
Score:
<|eot_id|>

Table 20: Prompt template used for consistency evaluation on the intent. In the template, [CONTEXT], [INTENT],
[R_Q] and [Q] are special tokens and need to be substituted.

18187

Prompt Template of Multi-hop Type Consistency Evaluation
The following are passages and a multi-hop question generated from it. Rate the following multi-hop question based on
the corresponding passages and multi-hop type with respect to match degree, using a score from 1 to 5, where score 1
means "mismatch" and score 5 means "perfect match". Note that match degree measures how well the question matches
the multi-hop type. Only provide the score.
An explanation for the multi-hop type: each #number corresponds to some key information of one passage, if there is a
-> between two #number, this means there are some relationships between the key information of two passages.
The score should be in JSON format, for example:

{
" s c o r e " : y o u r _ s c o r e (i n t)

}

Passages: [CONTEXT]
Multi-hop Type: [MT]
Here is a reference version:
Question: [R_Q]
Score:

{
" s c o r e " : 5

}

Question: [Q]
Score:
<|eot_id|>

Table 21: Prompt template used for consistency evaluation on the multi-hop type. In the template, [CONTEXT],
[MT], [R_Q] and [Q] are special tokens and need to be substituted.

18188

