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Abstract

Large language models face intrinsic limita-
tions in coding with APIs that are unseen in
their training corpora. As libraries continu-
ously evolve, it becomes impractical to exhaus-
tively retrain LLMs with new API knowledge.
This limitation hampers LLMs from solving
programming problems which require newly
introduced or privately maintained libraries. In-
spired by exploratory programming paradigm
in human behavior, we propose ExploraCoder,
a training-free framework that empowers LLMs
to invoke multiple unseen APIs in code solu-
tion by (1) planning a complex problem into
several API invocation subtasks, and (2) experi-
menting with correct API usage at intermediate
steps through a novel chain-of-API-exploration.
We conduct evaluation on program synthesiz-
ing tasks involving complex API interactions.
Experimental results demonstrate that Explo-
raCoder significantly improves performance for
models lacking prior API knowledge, achiev-
ing absolute increases of up to 11.99% over
retrieval-based approaches and 17.28% over
pretraining-based methods in pass@10.

1 Introduction

Library-oriented code generation refers to the auto-
matic generation of code that utilizes specified li-
brary’s APIs to solve programming problems (Zan
et al., 2022; Liu et al., 2023). This task becomes
particularly complex when the solution requires
the integration of multiple APIs from the library,
demanding not only knowledge of individual API
functionalities but also an understanding of their in-
teractions and dependencies (Alrubaye et al., 2019;
Zan et al., 2024). Modern large language model
(LLM), such as ChatGPT (OpenAI, 2022) and
CodeLlaMA (Rozière et al., 2024), has demon-
strated remarkable capability in generating API
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invocations using prior knowledge from pretrain-
ing stage (Zan et al., 2023). However, a significant
challenge arises when the target API knowledge is
sparse, outdated, or entirely unseen in the training
data. This limitation hampers LLMs from problem
solving that requires newly introduced or privately
maintained libraries.

Prior work proposed to use continual pretraining
(Gururangan et al., 2020) to address this knowl-
edge gap (Zan et al., 2022). But this is often im-
practical due to the scarcity of training data for
new libraries and the substantial costs of retraining
LLMs. Another line of work adopts a standard
retrieval-augmented generation (RAG) framework
for unseen API invocations (Zhou et al., 2023; Zan
et al., 2023; Liu et al., 2023), where LLM acquires
API knowledge from retrieving the library docu-
mentation. While effective for simple API invo-
cation tasks, these methods struggle with complex
scenarios requiring multiple API invocations (Zan
et al., 2023, 2024; Ma et al., 2024).

More recent studies propose to address com-
plex API invocation tasks by improving document-
retrieval (Ma et al., 2024) and preactively planning
coding steps (Li et al., 2024). However, they over-
look the challenge posed by the potential ambigui-
ties in the API documentation. Some work adopts
iterative or agentic workflow (Olausson et al., 2024;
Yao et al., 2022; Zhu et al., 2024) to reactively plan
for retrieval and debugging, however, the end-to-
end code construction could still expose the limita-
tions of LLMs in coordinating multi-API interac-
tions.

When coding with an unfamiliar library, experi-
enced developers would adpot an Exploratory Pro-
gramming paradigm (Sheil, 1986; Beth Kery and
Myers, 2017). This involves first understanding
the library’s capabilities through documentation
to devise a broad plan, and then actively experi-
menting with individual API calls to gain practical
experience, ultimately leading to a correct code
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solution. Inspired by this behavior, we propose Ex-
ploraCoder, a training-free framework aiming to
facilitate LLM to invoke multiple unseen APIs. As
shown in Figure 1, given a complex programming
problem, ExploraCoder begins by planning a series
of simpler API invocation subtasks based on library
documentation. For each subtask, it recommends
a set of candidate APIs. Subsequently, a Chain of
API Exploration (CoAE) is performed, iteratively
experimenting with various subtask-wise API in-
vocations while passing valuable usage insights to
the plannings of subsequent subtasks. This process
forms an API exploration trace, which facilitates
the LLM in deriving the final solution.

Evaluating unseen-library-oriented code gener-
ation requires an unexposed library. Prior works
(Zan et al., 2023; Ma et al., 2024) have created sim-
ple benchmarks using the Torchdata library, as it
strikes a balance between minimum client code use
for researcher’s problem designing and limited ex-
posure to modern LLMs. However, benchmarking
multiple unseen-API tasks remains underexplored.
To address this gap and better reflect real-world
complex programming challenges, we constructed
a new Torchdata-based benchmark, Torchdata-
Manual, featuring complex multi-API problems.
Experimental results on our Torchdata-Manual and
an existing Torchdata-Github benchmarks demon-
strate that ExploraCoder significantly improves per-
formance for models lacking prior API knowledge,
achieving absolute gains of up to 11.99% over var-
ious retrieval-based approaches and 17.28% over
pretraining methods in pass@10. Moreover, we
find the integration of an intermediate self-debug
mechanism further boosts ExploraCoder’s perfor-
mance on more challenging tasks.

This paper makes the following contributions:

• We propose ExploraCoder, a unified framework
that incorporates unseen API knowledge from
documentation into a novel step-wise code gen-
eration method, Chain-of-API-Exploration. By
leveraging this framework, LLMs can plan based
on library documentation and actively experi-
ment with APIs in intermediate steps, mirror-
ing the Exploratory Programming paradigm em-
ployed by human developers.

• We construct Torchdata-Manual, a new library-
oriented benchmark that, to the best of our
knowledge, features the highest number of API
invocations per task among publicly reported
executable library-oriented benchmarks. The

code and data are available at https://github.
com/greenlight2000/ExploraCoder.

• Experimental results and case studies on ours
and an existing benchmark demonstrate Explo-
raCoder’s superior performance on multi-API
tasks compared to competitive baselines.

2 Related Work

Complex Code Generation with LLM. Code
generation, the process of producing code from NL
specifications, has seen remarkable advancements
with LLMs (OpenAI., 2024; Yan et al., 2024). Re-
cent research has increasingly focused on LLMs
tackling complex coding tasks, such as competition
(Li et al., 2022), library-oriented (Bogomolov et al.,
2024), and repo-level (Jimenez et al., 2024) prob-
lems. One prominent paradigm leverages chain-of-
thought (Wei et al., 2022) to plan for intermediate
steps before complex code generation, whereas its
effectiveness diminishes when high quality plans
cannot be derived (Jiang et al., 2024). Another di-
rection proposes to debug after the generation of
code (Olausson et al., 2024), but they typically re-
quire accessibility of test cases. ExploraCoder dis-
tinguishes itself by applying an intermediate code
construction that leverages executability signals to
rectify coding plans at steps in real time.

Library-Oriented Code Generation. Real-
world programming problems often involve the
use of external libraries, posing a challenge
for LLMs to invoke APIs unseen from training
data. Continued pretraining on the new API
data, though intuitive, is often impractical due
to its complexity and cost. Most prior studies
adopt a naive RAG framework as an alternative
to incorporate APIs knowledge from library
documentation (Zhou et al., 2023; Zan et al., 2023).
But they struggle with more complex problems
that require multiple API invocations (Zan et al.,
2024). Recent studies have attempted to improve
the RAG frameworks. For examples, CAPIR (Ma
et al., 2024) proposed a decomposed the retrieval
process to identify accurate API docs. EpiGen
(Li et al., 2024) makes preactive NL plans for
one-pass code generation. These works mainly
focus on preprocessing relevant API context, while
overlooking the reasoning limitation of LLMs in
multi-API interactions, and the challenge posed by
the potential ambiguity in API documentation.
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Figure 1: An Overview of ExploraCoder Framework. ExploraCoder processes the given problem through Task
Planning, API Recommendation, and Chain of API Exploration modules. The gray block in the bottom-left
corner illustrates the detailed inner process in the Chain of API Exploration. Finally, the processed results are used
by a solution generator to generate final code solutions for the programming problem.

Unseen Library Benchmarks. Constructing un-
seen library benchmarks is particularly challenging,
as libraries new enough to have limited exposure
to modern LLMs often lack the rich client code
needed for developing complex problems. Pre-
vious work has generally turned to a Torchdata
library to manually build small-scale API invoca-
tion benchmarks. Zan et al. (2023) constructed
TorchdataEval mostly involving 1-2 simple API
invocations. Ma et al. (2024) introduced 50 multi-
API programming tasks adapted from Torchdata
client code from Github, each involving 3–8 API
invocations. However, some of its tasks remain
relatively simple and real-world development often
involves more API interactions (Kula et al., 2018;
Bauer et al., 2012). This gap highlights the need
for a more complex unseen library benchmark.

3 ExploraCoder Framework

3.1 Task Definition

This work addresses the task of library-oriented
code generation (Zan et al., 2022). Formally, given
a problem ψ that specifies the user requirement
and a library API documentation A, a model θ
generates code solutions p ∼ Pθ(.|ψ,A).

Most code libraries provide basic information
about their APIs, such as API signatures, descrip-
tions, and high-level library overviews with mini-
mum example usage code. In this paper, we assume
the accessibility of this information from API doc-

uments. As shown in Figure 1, ExploraCoder will
automatically identify relevant subset of APIs Â
and accumulate useful experience of intermediate
API invocations Ê , both of which are then used as
augmenting signals to generate the final solution:

p := ExploraCoder(ψ, Â, Ê) (1)

3.2 Planning for API invocation

Real-world programming problems often involve
composite operations (Yu et al., 2024), necessitat-
ing a plan for where and how APIs can contribute to
problem-solving. Specifically, we need to outline
several API-related subtasks, upon which Explo-
raCoder will sequentially explore the correct API
calls. Ideally, we aim to set the planning granu-
larity to simple subtasks where each requires only
1–2 unseen API invocations. However, the func-
tional granularity of APIs is domain-specific, often
falling out of distribution (OOD) of LLMs when
the library is absent from their training data, posing
a challenge in aligning task planning with typical
API usage patterns.

To address this, we leverage the in-context learn-
ing capabilities of LLMs (An et al., 2023) by pro-
viding a condensed library overview and a small
number of planner examples. This enables the
LLMs to learn high-level usage patterns of the li-
brary without needing to know all its APIs. In
this work, we prompt GPT-3.5-turbo-0125 to auto-
matically summarize a piece of text s from the
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library overview and extract few-shot planners
D = {⟨ψj , {tu}wj

u=1⟩}nD
j=1 from the provided code

examples, where ψj is the requirement of the j-th
code example, and tu is the explanation of u-th
API invocation. Note that we do not leak any de-
tailed API usage or benchmark-related knowledge
to models (detailed in Appendix A.8). Now, we can
plan n API-related subtasks for a given problem ψ:

{ti}ni=1 ∼ Pθ(.|ψ,D, s) (2)

3.3 API Recommendation

The API recommendation module serves to
recommend relevant API documents Ai =
{a(1), . . . , a(k)} for each API invocation subtask
ti . We process the documents into tabular retrieval
pool, where each row consists of the API import
path, signature, and description. We first use a
dense retriever to retrieve an initial set of APIs by
computing the similarity between ti and each aj .

Ai = top-k {sim(aj , ti) | aj ∈ A} (3)

Then, we prompt LLM to re-rank and drop irrele-
vant APIs for each subtask, providing a refined sub-
set {Ãi}ni=1 for Chain of API Exploration, where
then the actually used APIs ÃCoAE will be recorded.
Meanwhile, we also conduct an inter-task rerank-
ing (Ma et al., 2024) to recommend kG APIs ÃG

from a global perspective. In the final solution
stage, we provide for the generator:

Â = ÃCoAE ∪ ÃG (4)

3.4 Chain of API Exploration

Previous work shows LLMs struggle to directly
invoke multiple unseen APIs in a single run (Zan
et al., 2024). The challenge arises from LLMs’ ten-
dency to hallucinate unfamiliar APIs usage. Hallu-
cinations in early decoding step could compromise
subsequent API calls due to the autoregressive na-
ture of LLM, further compounding the error.

In contrast, when lacking knowledge of relevant
APIs, developers could adopt an exploratory pro-
gramming paradigm, actively experimenting with
partial code in a sandbox environment to accumu-
late correct API usage experience. Inspired by
this behavior, we designed a Chain of API Explo-
ration (CoAE) to sequentially explore API usage
and solve the n subtasks {⟨Ãi, ti⟩}ni=1. We now
formalize the main steps in CoAE.

Experimental code generation. We prompt the
LLM to generate m diversified experimental code
snippets for intermediate subtask ti:

{pi,j}mpj=1
∼ Pθ(.|ti, s, Âi, E1:i−1) (5)

where s is the high-level library information from
Section 3.2, and E1:i−1 is the accumulated invo-
cation experience from prior subtasks that could
further enhance the preactive planning of ti. We de-
fine API invocation experience as the combination
of an intermediate code snippet and its execution
output, which is elaborated in the next paragraph.
Each experimental code will attempt to solve the
subtask by making different API invocations, and
print out valuable usage knowledge. Such feedback
will be observed by LLM in the next step.

Code execution and observation. At each sub-
task, LLM is encouraged to print out insightful in-
formation to expand API usage knowledge, such as
format of the current API returned object that could
be used as input in other subtasks. We capture the
output from directly executing the experimental
code in a sandbox environment. Specifically, given
ti and pi,j , the observation oi,j by the LLM con-
sists of the codes’ executability δ , error message
ε, and program output γ. We now can assemble m
candidate API invocation experience for ti as:

Ei = {⟨ti, pi,j , oi,j⟩}mj=1 (6)

Experience exploitation by intermediate self-
debugging. In our preliminary experiments, we
found experimental codes often fail to execute
due to simple mistakes (e.g., missing import state-
ments). Additionally, some challenging subtasks
require complex API interactions with prior sub-
tasks, which LLMs struggle to solve. This hinders
the acquisition of additional API usage insights,
and the intermediate failures could potentially de-
generate the performance of exploration chain. To
address this, we prompt the LLM to debug the
codes when all candidate codes for a given subtask
fail to execute, thereby enhancing its usage experi-
ence. We report the effectiveness of ExploraCoder,
both with and without debugging mechanism.

Experience selection strategy. After obtaining
m candidate exploration experience {Ei,j}mj=1 on ti
. The goal in this step is to select the most valuable
one Êi and prune the others for ti . In this work, we
adopt a simple but effective selection strategy: (1)
randomly select a candidate that has successfully
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executed, prioritizing the ones with valid outputs;
(2) if all candidates fail to execute, we randomly
select a failed one. Then, the selected experience
will be passed on to the next subtask and accumu-
lates progressively. Ultimately, we obtain an API
exploration trace of the following form to aid in
solution generation:

Ê = {Êi}ni=1 (7)

4 Benchmark Construction

Unseen library benchmarks are essential for evalu-
ating retrieval-based methods in handling unseen
APIs. Existing benchmarks typically involve sim-
ple API invocations or apply lexical-based eval-
uation metrics. To provide rigorous evaluation
of complex unseen API invocations, we aim to
construct execution-based multi-API benchmark
that remain untrained on representative LLMs.
Following prior work (Zan et al., 2024), we use
Torchdata-based evaluation, which remains unex-
posed to powerful LLMs such as GPT-3.5 and GPT-
4-0613, while allowing knowledge acquisition by
newer models. This provides a valuable reference
point for assessing approaches across LLMs with
varying levels of API prior knowledge.

Torchdata-Manual. We developed a new bench-
mark called Torchdata-Manual, comprising 100
manually crafted programming problems. Each
problem involves 8-14 distinct Torchdata APIs. To
ensure the diversity of the programming tasks, we
randomly sampled numerous API combinations
from the Torchdata documentation and selected
plausible combinations to formulate the problem.
Two programmers with more than five years of
Python coding experience are invited to review the
benchmark. More detailed construction methodol-
ogy is provided in the Appendix A.4. To the best
of our knowledge, Torchdata-Manual features the
longest API sequences among publicly reported
execution-based library-oriented benchmarks.

Torchdata-Github. We also evaluate on an ex-
isting benchmark (Ma et al., 2024), including 50
Torchdata problems adapted from client project of
Torchdata on GitHub, featuring coarse-grained user
requirements that entails 3-8 API invocations. We
curated the dataset by manualy supplementing ex-
ternal resources needed to run test cases in some
problems1 and named it as Torchdata-Github.

1Some external resources, such as local files to be loaded
in problems, are not provided by Ma et al. (2024).

MonkBeatEval. To test generalizability beyond
Torchdata-based evaluation, we also adapted an ex-
isting multi-library benchmark for unseen settings,
with results reported in Appendix A.5.

5 Experiments

5.1 Experimental setups

Benchmarks and base language models. We
evaluate ExploraCoder on Torchdata-Github and
Torchdata-Manual benchmarks. Based on the the
publicly available information on models’ training
data cutoff date, we conduct our main experiments
under two base models settings: (1) API-untrained
model, where the API knowledge is unseen by
model during training phase. We choose GPT-
3.5-turbo-0125 and GPT-4-0613 as representatives.
(2) API-pretrained model, where the API knowl-
edge is pretrained in model. We represent it by
GPT-4-1106-preview and two SOTA opensource
code LLM: CodeQwen-1.5 and DeepseekCoder-
6.7b. Due to the token budgets, we primarily ex-
periment ExploraCoder with GPT-3.5-turbo-0125,
while reporting GPT-4-0613 results where neces-
sary to further support our conclusions.

Evaluation metrics. We adopt Pass@k as our
primary evaluation metrics. For each problem, we
randomly sample n ≥ k code solutions from the
model to execute against test cases. And pass@k
is calculated as the percentage of problems solved
using k candidates. To better observe nuance dif-
ferences in harder problems, we additionally report
Success@k (Chen et al., 2024) which relaxes the
evaluation criteria by measuring whether the gen-
erated code can be executed successfully without
runtime errors within limited timeout constraints.

Implementation details. We implement Explor-
Coder by setting kD = 4 for task planning. For
API recommendation, we set k = 20 as initial re-
trieval volume, kG = 15 on Torchdata-Github fol-
lowing Ma et al. (2024) and kG = 20 on Torchdata-
Manual. For CoAE, we set m = 5. To generate
diverse candidates, we set the temperature = 0.8
and top_p = 0.95 for our CoAE and final solu-
tion generation across all baselines. More detailed
experimental settings are left in Appendix A.8

5.2 Multi-API invocations using LLMs with
varying prior API knowledge

We consider pretraining and document-retrieval as
two API knowledge integration paradigms, and
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k = 1 k = 5 k = 10 k = 20

API Knowledge Method Pass Success Pass Success Pass Success Pass Success
Torchdata-Github

Pretrained
in models

DeepSeekCoder-6.7B 5.24% 6.86% 14.43% 19.28% 18.64% 27.38% 21.80% 37.23%
CodeQwen1.5-7B 3.24% 6.10% 11.60% 19.94% 16.57% 28.56% 19.90% 37.42%
GPT-4-1106-preview 7.43% 11.52% 16.19% 28.88% 21.34% 38.74% 25.81% 45.71%

Untrained
in models

GPT-3.5-turbo-0125 1.70% 2.09% 5.54% 6.95% 7.28% 9.64% 8.00% 11.90%
+ naive RAG 6.00% 10.57% 10.55% 24.00% 14.67% 32.50% 20.83% 40.81%
+ ExploraCoder 10.19% 19.50% 18.64% 39.39% 21.67% 48.56% 25.62% 57.30%
GPT-4-0613 3.50% 5.43% 8.86% 16.35% 11.45% 23.79% 13.80% 31.52%
+ naive RAG 10.09% 29.64% 20.11% 39.04% 24.07% 45.16% 27.81% 49.33%
+ ExploraCoder 15.43% 23.10% 21.53% 45.62% 28.11% 55.25% 30.00% 61.87%

Torchdata-Manual

Pretrained
in models

DeepSeekCoder-6.7B 0% 0.48% 0% 1.57% 0% 1.95% 0% 2.00%
CodeQwen1.5-7B 0% 0.39% 0% 1.43% 0% 2.86% 0% 5.71%
GPT-4-1106-preview 0.16% 1.37% 0.71% 6.28% 1.62% 11.56% 2.79% 20.89%
+ naive RAG 3.19% 6.38% 12.15% 22.15% 18.30% 31.46% 24.11% 39.11%
+ ExploraCoder 14.62% 32.77% 31.19% 57.03% 37.56% 63.47% 42.20% 67.73%

Untrained
in models

GPT-3.5-turbo-0125 0% 0% 0% 0% 0% 0% 0% 0%
+ naive RAG 0.19% 0.615% 0.89% 2.92% 1.66% 5.475% 2.81% 9.53%
+ ExploraCoder 7.00% 14.80% 11.54% 22.89% 13.84% 25.40% 15.67% 27.56%
GPT-4-0613 0% 0.05% 0% 0.23% 0% 0.465 0% 0.93%
+ naive RAG 1.12% 2.94% 3.37% 8.66% 4.68% 11.98% 6.67% 16.36%
+ ExploraCoder 16.49% 24.16% 26.10% 36.89% 29.41% 40.68% 33.32% 44.32%

Table 1: Evaluation of LLMs with varying levels of prior API knowledge. We apply document-retrieval to augment
the API-untrained models across two datasets, and the underperforming API-pretrained GPT4 on Torchdata-Manual.

analyze their effectiveness in complex multi-API
generation task in Table 1.

Invoking APIs using API-untrained and API-
pretrained models. By analyzing the direct gen-
eration performance of the five base models, we
observe that API-pretrained models consistently
outperform API-untrained models. This highlights
the importance of prior API knowledge in library-
oriented code generation. And the lower perfor-
mance across all models on the Torchdata-Manual
further underscores the challenge posed by more
complex API invocations, making it a more effec-
tive benchmark for evaluation.

Through a naive RAG framework (Zhou et al.,
2023), the performance of API-untrained models
has been effectively improved, bridging the gap
caused by the lack of prior API knowledge. We
make an indirect comparison of retrieval and pre-
training methods by looking into two GPT4 models
(fairness dicussed in Appendix A.7). GPT-4-0613
+ naive RAG outperforms GPT-4-1106-preview by
an average of 6.13% pass/success rate increase on
Torchdata-Github, and achieves comparable perfor-
mance on more challenging Torchdata-Manual.

ExploraCoder vs naive RAG on API-untrained
models. From Table 1, we can observe that Ex-
ploraCoder brings substantial improvements over
naive RAG for both API-untrained models (GPT-

3.5-turbo-0125 and GPT-4-0613), with an average
absolute gains in pass@20 of 3.5% on Torchdata-
Github and 19.8% on Torchdata-Manual. These im-
provements could be attributed to ExploraCoder’s
potential in addressing two limitations of the naive
RAG framework when handling complex API in-
vocation subtasks:

(1) Retrieval for complex requirement: In the
naive RAG approach, we empirically find the re-
triever’s ability to recall relevant APIs for compre-
hensive requirements becomes a bottleneck. Explo-
raCoder addresses this by adopting a divide-and-
conquer strategy, identifying APIs for each explicit
subtask. Additionally, ExploraCoder alleviates the
need for manual hyperparameter tuning by fixing
retrieval counts per subtask and dynamically ad-
justing subtask numbers.

(2) Generating code with multiple unseen APIs:
The complexity of coding with multiple unseen
APIs lies in understanding the limited documen-
tation and reasoning over multi-API interactions’
behavior (We provide case study in Appendix A.9).
ExploraCoder mitigates this challenge by adopting
a human-like exploratory programming paradigm,
incrementally generating simple, reusable API in-
vocations during CoAE, and learning extra usage
knowledge from intermediate output.

ExploraCoder on API-pretrained model. We
observe the API-pretrained models underperform
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Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 0% 0% 0% 0% 0% 0% 0% 0%
DocPrompting (2023) 0.19% 0.61% 0.89% 2.92% 1.66% 5.47% 2.81% 9.53%
CAPIR (2024) 3.01% 4.79% 6.75% 10.16% 8.21% 15.09% 9.66% 21.25%
EpiGen (2024) 2.16% 5.43% 4.40% 12.33% 5.23% 15.20% 5.86% 18.46%
ExploraCoder (Ours) 7.00% 14.8% 11.54% 22.88% 13.84% 25.4% 15.67% 27.56%
ReAct (2022) 2.00% 6.38% 2.48% 10.66% 2.95% 12.45% 3.90% 13.90%
KnowAgent (2024) 6.81% 20.54% 9.82% 22.70% 11.01% 23.29% 11.76% 23.53%
CAPIR + Self-Repair (2024) 7.47% 15.35% 8.32% 19.08% 8.64% 20.46% 8.89% 21.66%
ExploraCoder* (Ours) 11.5% 21.35% 18.32% 32.76% 20.87% 36.81% 23.51% 40.16%

Table 2: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on Torchdata-Manual.

on Torchdata-Manual, with the most competi-
tive GPT-4-1106-preview achieving only 0.16% in
pass@1. Therefore, we use GPT-4-1106-preview
on Torchdata-Manual benchmark as a proxy to fur-
ther examine the effectiveness of ExploraCoder on
API-pretrained models. Results in Table 1 shows
ExploraCoder brings a substantial improvement
for GPT-4-1106-preview, with an absolute pass@1
increase of 14.46%, and it also outperforms GPT-
4-1106-preview + naive RAG by 11.43%. These
results indicate that ExploraCoder is universally
effective, improving models with varying levels of
pretraining on relevant API knowledge.

5.3 Experience exploitation for ExploraCoder
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Figure 2: Performance comparison on the Torchdata-
GitHub and Torchdata-Manual datasets across two meth-
ods (ExploraCoder and ExploraCoder*). Each bar rep-
resents the mean performance GPT-3.5-turbo-0125 and
GPT-4-0613 for pass/success rate, with the range lines
indicating the variation between the two models.

In multi-API tasks, subsequent API invocations
often depend on the outputs of earlier APIs. A fail-
ure in a dependent API could cascade into subse-
quent API invocations, regardless of whether their
usage is correct. In ExploraCoder, unresolved sub-
tasks could hinders the accuracy of the complete
solution. An advancement of CoAE’s step-wise
code generation is the API failures can be observed
in early stage. This provides the opportunity to
debug on the intermediate codes, which proves to

outperform debugging on full code in Section 5.4.
To this end, we designed an enhanced Explo-

raCoder* by integrating a self-debug mechanism
into CoAE. When all the candidate codes are non-
executable, we exploit the failed API usage experi-
ence by debugging. Figure 2 shows ExploraCoder*
significantly boosts the final solution’s quality on
two models across two benchmarks, achieving an
average relative increase of 55.8% in pass@1 and
71.3% in success@1. More quantitative analysis
of CoAE is provided in Appendix A.3.1.

5.4 Comparing with related approaches
In this section, we further compare ExploraCoder
with more advanced retrieval-based approaches.
We also include Docprompting, the previously re-
ported naive RAG framework, along with direct
generation as baselines. We compare the features
and computational costs in each baseline in Ap-
pendix A.1.

For SOTA multi-API-oriented methods, CAPIR
and EpiGen, we set a fixed number of API rec-
ommendation in accordance with our AG, and
we directly use the subtasks generated by Explo-
raCoder’s planning module as the preactive plan-
nings for EpiGen. Tables 2 and Table 3 show that
ExploraCoder surpasses these methods by enrich-
ing the API knowledge from trial executions, com-
pensating for the potential ambiguity in retrieved
docs, achieving an absolute increase of 10.87% in
pass@10 across the two benchmarks.

To compare ExploraCoder* with other debug-
enhanced methods, we first adapted a SOTA debug-
ging framework, Self-Repair2, by augmenting the
LLM with API knowledge retrieved by CAPIR
throughout its iterative 2-stage generation. We

2To ensure the fairness in debug iteration budget, for each
problem, if ExploraCoder generates n plans, enabling debug-
ging in up to n CoAE steps, we set the iteration budget for
Self-Repair in that problem to n accordingly.
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Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 1.70% 2.09% 5.54% 6.95% 7.28% 9.64% 8.00% 11.90%
DocPrompting (2023) 6.00% 10.57% 10.55% 24.00% 14.67% 32.50% 20.83% 40.81%
CAPIR (2024) 5.90% 10.47% 14.59% 27.08% 18.60% 37.19% 23.52% 47.43%
EpiGen (2024) 8.57% 18.95% 14.63% 35.61% 17.24% 41.67% 19.61% 47.62%
ExploraCoder (Ours) 10.19% 19.50% 18.64% 39.39% 21.67% 48.56% 25.62% 57.30%
ReAct (2022) 10.19% 27.90% 10.95% 33.06% 11.90% 33.88% 13.81% 34.00%
KnowAgent (2024) 14.67% 25.81% 15.99% 30.68% 16.00% 31.90% 16.00% 33.81%
CAPIR + Self-Repair (2024) 16.47% 22.10% 21.04% 29.70% 21.75% 32.20% 22.00% 33.90%
ExploraCoder* (Ours) 19.24% 38.66% 25.41% 54.93% 27.64% 59.56% 31.62% 63.71%

Table 3: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on Torchdata-Github.

Method
k = 1 k = 10

Pass Success Pass Success
ExploraCoder* 11.5% 21.35% 20.87% 36.81%
w/o Self-Debug 7.00% 14.8% 13.84% 25.4%
w/o Lib-ICL 7.64% 15.73% 14.17% 29.77%
w/o CoAE 1.22% 2.21% 7.34% 13.38%
w/o Selection 4.12% 13.33% 9.46% 26.38%

Table 4: Ablation study for ExploraCoder framework
using GPT3.5 on Torchdata-Manual.

also compare with two agentic framework, ReAct
and KnowAgent, specifically designed for reactive
knowledge retrieval during the solution generation.
We sample the candidates from their ‘Finish‘ ac-
tion, which derives final solutions based on the in-
terleaving retrieval and debugging trajectory. Table
2 and Table 3 shows that while these iterative/agen-
tic methods benefit from the debugging, the over-
all improvement, especially in bigger k, remains
limited. This could be due to the limitation of reac-
tive planning, which is bug-driven (Appendix A.1)
and lacks systematic understandings of API knowl-
edge for diverse solution implementations. Ex-
ploraCoder*, through intermediary debugging on
simpler subtasks, exhibits a significant pass@10 in-
crease over 9.06%. Even ExploraCoder achieves a
comparable performance on Torchdata-Github and
surpasses them on the more complex Torchdata-
Manual. This highlights our superior design in
uniquely enforcing a step-wise code construction
workflow and iteratively enhancing the preactive
plans with exploratory knowledge.

5.5 Ablation study
We further conducted an ablation study on our best-
performing framework ExploraCoder* in Table
4. We experiment on the challenging Torchdata-
Manual benchmark using GPT-3.5-turbo-0125.

As discussed earlier, self-debugging intermedi-
ate execution failure effectively improves Explo-

raCoder’s performance. This also suggests Explo-
raCoder may further benefit from dynamically gen-
erated testbed for intermediate code, which we will
leave as exciting future work to explore.

We ablate the in-context learning of library-level
knowledge (w/o Lib-ICL), removing the few-shot
planner D and library introduction s, and let the
model plan API invocation subtasks based soley on
its commonsense knowledge. The performance de-
cline observed could be attributed to the misalign-
ment between planned subtasks and API granular-
ity. Since overly coarse-grained subtasks introduce
complexity, while incorrect subtasks that cannot
be solved by any APIs increases the hallucination
rates (Liu et al., 2024; Tian et al., 2024).

We ablate the CoAE (w/o CoAE) by providing
all the retrieved API documentation throughout Ex-
ploraCoder’s process to the generator, and prompt
it to end-to-end generate final solution. We find
that the performance significantly drop to 1.22%
in pass@1. This suggests (1) modern generators
still lack adequate in-context reasoning ability to
handle multiple unseen API invocations, and (2)
API documentation could be insufficient, leading to
hallucinated invocations. This highlights the need
for intermediate execution or debug to gain more
usage insights.

We further ablate a critical step within CoAE
by removing the experience selection process (w/o
selection). In this variant, candidate selection is
randomized, disregarding executability signals. We
find the success rate remains reasonably well, and
the pass rate declines. A possible explanation is Ex-
ploraCoder degenerates into exploring low-quality
API invocation chains with limited usage insights
for fully accurate final solution.
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6 Conclusion

We present ExploraCoder, a novel code generation
framework for LLMs to generate multiple unseen
API invocations through planning API-related sub-
tasks and experimenting with each subtask in a
novel chain-of-API-exploration. Experiments on
our newly constructed benchmark and an existing
benchmark demonstrates ExplroaCoder’s superior
performance over competitive approaches.

7 Limitations

ExploraCoder’s effectiveness relies on the underly-
ing LLM’s capabilities in handling long contexts
and capturing API usage knowledge. Although our
experiments show strong performance with both
GPT-3.5 and GPT-4, small models with weak capa-
bility could exhibit less effectiveness on our com-
plex multi-API-generation tasks. This dependency
means that the framework’s performance is inher-
ently bounded by the LLM’s capabilities. However,
the rapid advancement in LLM development sug-
gests this limitation may become less significant
over time.

The framework assumes the availability of NL
documentation, which may limit its effectiveness
when dealing with overly incomplete, ambiguous,
or erroneous API documentation. In our experi-
ments, we simulated real-world scenarios by mask-
ing detailed parameter explanations and usage ex-
amples from the well-maintained torchdata docu-
mentation, approximating the minimal documen-
tation typically available for newly introduced or
privately maintained libraries. While this setting
demonstrates ExploraCoder’s robustness with min-
imal API descriptions, future work could explore
integrating additional knowledge sources, such as
API client code or community discussions, to sup-
plement insufficient documentation.

A promising improvement direction shared by
ExploraCoder and related approaches is an early
termination mechanism in the iterative generation
workflow. When encountering particularly chal-
lenging problems where API exploration consis-
tently fails, the system continues attempting solu-
tions, potentially consuming unnecessary compu-
tational resources. The development of intelligent
stopping criteria that can identify unsolvable prob-
lems or determine when further exploration would
be unproductive represents an important direction
for future research.
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A Appendix

A.1 Comparing ExploraCoder with related
approaches

We present a feature comparison in Table 5 and a
detailed breakdown of the computational overhead
(model call and token consumption) in Table 6.

A.1.1 Feature Comparison
ExploraCoder introduces two key innovations in
LLM-based code generation: exploratory planning
and step-wise code construction. (1) Firstly, tra-
ditional approaches generally follow either "pre-
active" planning (based on prior knowledge) or
"reactive" planning (based on environmental feed-
back). Preactive planning, such as CoT prompting,
can suffer from hallucinations when handling com-
plex or out-of-distribution tasks. Reactive planning,
common in agent-based systems, often lacks sys-
tematic consideration and controllability (Xia et al.,
2024). ExploraCoder bridges this gap by introduc-
ing exploratory planning, which enhances preac-
tive plans with step-wise environmental feedback
to mitigate hallucinations while maintaining sys-
tematic control. (2) Secondly, most existing work
conduct end-to-end code generations/modification.
We propose a step-wise code construction work-
flow to generate partial code for a simple subtask
based on the planning instructions. Le et al. (2024)
exhibits a similar idea of preactively planning a se-
ries of reusable functions for simple self-contained
code generation, while it fails to leverage the step-
wise execution signal from partial codes and it is
also not applicable to more complex programming
scenario like multi-unseen-API invocations.

ExploraCoder vs. Existing library-oriented
approaches. While existing library-oriented ap-
proaches (DocPrompting, CAPIR, EpiGen) pri-
marily focus on API-docs retrieval quality, Explo-
raCoder addresses the fundamental limitations in
LLMs’ multi-API reasoning capabilities and doc-
umentation ambiguity. Through a novel Chain of
API Exploration, ExploraCoder iteratively collects
execution information to resolve API usage ambi-
guities. For instance, in task_175, traditional pre-
active planning in EpiGen hallucinated about the
parameter types in "LineReader". ExploraCoder
resolves such issues by executing multiple candi-
date implementations for the "read the lines" sub-
task and filtering out incorrect API usage patterns,
thereby acquiring additional API knowledge that
cannot be derived from documentation alone.
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Method API Retrival Planning Step-wise Code Construction Debugging Manual Requirement
DocPrompting ✓ ✗ ✗ ✗ -
CAPIR ✓ Preactive† ✗ ✗ -
EpiGen ✓ Preactive ✗ ✗ -
ExploraCoder ✓ Exploratory ✓ ✗ -

Self-Repair ✗ Reactive ✗ ✓ -
ReAct ✓ Reactive ✗ ✓ Agentic traj. fewshot
KnowAgent ✓ Reactive ✗ ✓ Agentic traj. fewshot
CAPIR + Self-Repair ✓ Reactive† ✗ ✓ -
ExploraCoder* ✓ Exploratory ✓ ✓ -

Table 5: Features in each retrieval-based baselines. †: CAPIR focuses exclusively on planning for the retrieval
phase, without addressing the generation phase.

Model Pre-Processing Calls Code Generation Calls Overall Model Calls Tokens Pass@10

DocPrompting 0 1 1 10k 8.15%
CAPIR n+2 1 3+n 18k 11.23%
EpiGen n+2 1 3+n 18k 13.40%
ExploraCoder n+2 n+1 3+2n 56k 17.76%
CAPIR + Self-Repair n+2 1.5n+2 4+2.5n 70k 15.19%
ExploraCoder* n+2 2.6n+1 3+3.6n 95k 24.26%
ReAct - - 2N+2 112k 7.43%
KnowAgent - - 3N+3 143k 13.51%

Table 6: Computational costs and performance in each retrieval-based baselines.

ExploraCoder vs. iterative-debugging. Explo-
raCoder’s step-wise code construction offers signif-
icant advantages over existing iterative-debugging
approaches. While methods like CAPIR+Self-
Repair employ bug-driven reactive planning on
complete code solutions, ExploraCoder* debugs
simpler subtasks at earlier stages, preventing the ac-
cumulation of complex errors. We observe in case
study (Appendix A.9) that CAPIR+Self-Repair re-
peatedly attempts to fix a buggy code that deviates
substantially from the correct solution, continuing
until it exhausts its iteration budget.

ExploraCoder vs. Agent-style frameworks.
ExploraCoder differs from agent-style frameworks
in three crucial aspects:

1) Structured Workflow: Unlike agent frame-
works with undeterministic actions, ExploraCoder
implements a pinned step-wise code construction
workflow (exploratory programming) that experi-
mentally performs well with multi-API invocations.
Most code agents, eg. Swe-Agent (Yang et al.,
2024), MetaGPT (Hong et al., 2024), conduct end-
to-end code construction/modification, just like
what we discussed with Self-Repair. In our agentic
baseline implementations (Appendix A.1.3), we
borrow the idea of ExploraCoder and prompt React
and KnowAgent to generate partial code at each
step. Our empirical results show that enforcement

of step-wise code generation in agentic workflow
is often unstable and uncontrollable, which aligns
with the suggestions with Agentless (Xia et al.,
2024).

2) Systematic Planning: ExploraCoder’s ex-
ploratory planning maintains a comprehensive view
of task dependencies, preventing common pitfalls
seen in reactive planning. For example, in task_124
(CSV loading from compressed files), reactive
agents often overlook crucial steps like decom-
pression, leading to inefficient API retrieval cycles.
ExploraCoder’s exploratory planning first system-
atically breaks down such tasks into logical, depen-
dent steps. Then it also leverages the environmental
feedback to enhance the next-step plannings with
additional API knowledge.

3) Efficiency and Accessibility: Agent-based
approaches require high-quality few-shot examples
for reasoning trajectories, which are often imprac-
tical when working with new libraries. We empiri-
cally find ReAct and KnowAgent performance de-
teriorize when we remove the examplary trajectory
or provide an OOD trajectory on other libraries
(See implementation details in Appendix A.1.3).
Additionally, they tend to be token-inefficient due
to potential deterioration into recursive or meaning-
less actions when facing noisy observations.
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A.1.2 Computational Comparison
From Table 6 we can observe that ExploraCoder
is cost-efficient. When Compared to CAPIR+Self-
Repair and two agentic methods, ExploraCoder
achieves higher performance with fewer model
calls and lower token consumption. Additionally,
ExploraCoder* achieves a 59.7% performance im-
provement over CAPIR+Self-Repair with a 35.71%
increase in token consumption and a 44% increase
in model calls, demonstrating that the performance
gains significantly outweigh the proportional in-
crease in resource consumption.

Calculation details: For model calls, we pro-
vide clear analytical expressions based on n, the
number of decomposed subtasks. For token con-
sumption, we randomly sampled a task subset with
n=8 (the mean value of n in our datasets), and gen-
erated 20 candidate final solutions, then calculated
the average token consumption per task. Note that
the agent-based methods’ action is uncontrollable,
and their model calls cannot be mapped to a pre-
actively determined n, therefore we use a different
N to represent its iteration steps. We empirically
observe N>n in most tasks. For the two non-agent
approaches involving self-debug mechanisms, Self-
Repair and ExploraCoder*, debugging rounds is
not deterministic. Therefore we use the formulated
expectation based on the empirically observed de-
bug rate in our experiments. Having the probability
of the two methods conducting debug as p1 (Explo-
raCoder*) and p2 (Self-repair), their expectation of
model call can be formulated as (1 + 5p1)n + 1
and 2p2n+ 2. Notably, p2 = 0.75 is significantly
higher than p1 = 0.32 across two benchmark. This
debug rate difference arises because ExploraCoder*
focuses on debugging simple intermediate subtasks
(which are generally less error-prone), while Self-
Repair always attempts to debug a complete solu-
tions (which often fail to repair successfully, trig-
gering additional debugging iterations up to the
budget limit).

A.1.3 Implementation details of KnowAgent
and ReAct

We use the official code and prompt released to im-
plement ReAct (Yao et al., 2022) and KnowAgent
(Zhu et al., 2024):

Action Space: In our experiment, we abstract
the capability of ExploraCoder* and design the
following actions/tools for ReAct and KnowAgent:

1. Retrieve[target_functionality]: Query

Torchdata API documentation for a specific
functionality, returning top-k relevant APIs.

2. Write_and_Execute[code]: Generate/De-
bug then execute an in-progress code snippet
to test partial functionality. The execution
information will be returned.

3. Finish[code]: Write the complete code so-
lution that solves the coding task based on
reasoning trajectroy.

Trajectory example: We manually crafted one
long trajectory example of the agent-style Torch-
data task-solving process across 8 reasoning steps,
showing the interleaving trace of API retrieval and
code generation, code debug, and more API re-
trieval, etc. While this enables the agent to un-
derstand the expected reasoning flow, we note this
manual involvement is expensive in real-world de-
ployment, especially for newly-introduced libraries.
We empirically observe their performance deteri-
orize when we remove the examplary trajectory or
provide an OOD trajectory on other libraries.

Reasoning steps & model call budget: To en-
sure fair comparison given our tasks’ complexity,
we extended the reasoning step budget of React
and KnowAgent to 16 on Torchdata-Github and 21
on Torchdata-Manual (vs. original 10), enabling
them to initiate 32/42 and 48/63 model calls to
perform analysis, planning, and write/debug code
snippets. Table 6 shows that the token consumption
are significantly higher than non-agent baselines.

A.2 Comparing ExploraCoder with
repeated-sampling

Inferior baselines sometimes have simpler frame-
work designs thus costing fewer tokens. Their
performance could naturally be improved through
scaling up the inference-time computation in the
sampling phase. We investigate whether repeated-
sampling token-efficient methods like CAPIR can
achieve competitive performance comparable to
token-intensive approaches like ExploraCoder*
with equivalent token budgets. Experiments on
50 randomly sampled problems from Torchdata-
Manual in Table 7 shows that:

Method Basic Metrics Extended Metrics
Pass@10 Pass@20 Pass@50 Pass@90 Pass@100 Pass@120 Pass@130

CAPIR 8.48% 9.70% 11.84% 13.33% 13.52% 13.71% 13.72%
ExploraCoder 16.07% 17.55% not evaluated
ExploraCoder* 24.99% 27.22% not evaluated

Table 7: Pass@k performance comparison.
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Figure 3: Correlation between the quality of CoAE subtasks and final solutions

1) Efficient method like CAPIR doesn’t nec-
cessarily yield competitive results by repeated-
sampling. Under same level of token consump-
tion 3, CAPIR k=100 (pass=13.52%) underperform
than ExploraCoder k=20 (pass=17.55%). And it
even underperfrorms than ExploraCoder with k=10
(pass=16.07%).

2) The improvement in pass rate plateaus as the
sampling number k increases. CAPIR’s pass
rate barely improve when we scale the k from 100
to 130. This aligns with Brown et al. (2024)’s find-
ings that inference-time sampling typically follows
logarithmic scaling laws. This indicate inferior
methods like CAPIR should take even much larger
computational costs to possibly achieve adequate
performance with ExploraCoder.

3) Large repeated-sampling number present
fundamental fairness and practicality concerns.
While evaluating methods under equivalent com-
putational budgets provides valuable insight, we’d
like to suggest that raising large sampling num-
bers (eg. k≥100) creates practical challenges for
candidate verification, which limits its real-world
applicability. Brown et al. (2024) indicates that
despite the effectiveness of repeated sampling for
correct answer, it is often hard for users (verifiers)
to verify a candidate solution from the large vol-
umes of samples. For example, test suites are often
inaccessible during development of new functional-
ities (Siddiq et al., 2023). Furthermore, managing a

3Token calculation details: As shown in Table 7, the fixed
token difference between CAPIR and ExploraCoder is around
38k(≈ $0.038), let a marginal token consumption per sample
be 450 (empirically on Torchdata-Manual), we can equalize
the token consumption between CAPIR and ExploraCoder
when CAPIR have 84 more samples than ExploraCoder, which
means token(CAPIR, k=100) ≈ token(ExploraCoder, k=20)

large number of candidate solutions does not align
with typical development workflows.

Our experiments demonstrate that ExploraCoder
standsout in two critical aspects: (1) its ability to
generate correct solutions with a manageable
sampling budget, and (2) its superior token effi-
ciency compared to computation-scaling variants
of CAPIR (including both w/ repeated-sampling
and w/ Self-Repair workflow). These results high-
light ExploraCoder’s practical advantages in real-
world applications, where both solution quality and
computational efficiency are essential considera-
tions.

A.3 Quantitative analysis
A.3.1 The effectiveness of CoAE in

ExploraCoder
ExploraCoder leverages API invocation experience
from CoAE to enhance the quality of final solution
generation. Intuitively, the quality of exploration
subtasks within CoAE is closely related to the qual-
ity of the final solutions.

To explore the pass/success rate relationship be-
tween CoAE subtasks and final solutions in Ex-
ploraCoder, we conducted a quantitative analy-
sis, examining how the number of CoAE subtasks
and their success rates affect the pass rate and
overall success rate of the final solutions. We
illustrate their correlation using results from the
best-performing base model, GPT-4-0613, on our
Torchdata-Manual benchmark.

From Figure 3a to 3d, we observe that both the
pass rate and success rate of the final solutions pos-
itively correlate with the CoAE subtask success
rate. Subtasks with higher success rates, particu-
larly those with a success rate of 1, are more likely
to generate successful or passing final solutions. In-
terestingly, the number of subtasks doesn’t appear
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to have a significant direct impact. However, as
shown in Figures 3a and 3b, without intermediate
self-debug, problems with a higher subtask number
(ranging from 10 to 13) tend to have lower sub-
task success rate as the subtask number increase.
This may be due to the increased complexity of
inter-task API interactions. When the self-debug
mechanism is introduced in ExploraCoder*, we
observe in Figures 3c and 3d a notable improve-
ment in the overall subtask success rate, even for
cases with higher subtask numbers. This leads to
more successful and passing final solutions. The
improvement can be attributed to ExploraCoder’s
ability to correct typos and simple API interaction
errors in each subtask, thereby gaining richer API
usage experience and exploiting it to the final solu-
tion generation.

A.3.2 The effectiveness of task planning in
ExploraCoder

Although It is hard to directly quantify the quality
of decomposed tasks’ granularity, we can evaluate
it indirectly by calculating the number of APIs
included in each subtask, since our design aims to
ensure each decomposed subtask involves 1-2 API
explorations, so that it’s easy enough to be solved.

As shown in Table 8, the average number of de-
composed subtasks by GPT-3.5 is closely aligned
with the average number of API invloved across
two datasets. This indicates that the decomposition
strategy effectively achieves the desired granular-
ity. The ExploraCoder’s overall performance also
indicates the effectiveness of our task planning.

#API #decomposed subtask API per subtask
Torchdata-Github 4.26 4.06 1.04
Torchdata-Manual 9.94 8.22 1.21

Table 8: Summary of decomposed subtask statistics.

A.4 Construction details of
Torchdata-Manual

The Torchdata-Manual benchmark is designed to
provide complex programming problems that re-
quire the use of multiple Torchdata APIs. It follows
the style of prior unseen library benchamarks (Zan
et al., 2023; Ma et al., 2024) , consisting of a natural
language task description, code context, canonical
solutions, and test cases. The construction process
is outlined as follows:

Torchdata API Selection. We first curated a
subset of APIs from the complete Torchdata API
pool. For each problem, we randomly sampled 15

Benchmarks
Num.

samples
Num.
APIs

Num.
Invoc.

Volume of
doc pool

Torchdata-Github 50 3-8 3-8 228
Torchdata-Manual 100 8-14 8-21 228

Table 9: Statistical Summary of two Torchdata-based
benchmarks. Num. APIs reports the range of distinct
APIs involved in each sample. Num. Invoc. reports
the range of API invocations in the samples’ canonical
solution. Volume of the doc pool refers to the number
of API documents provided by the library, which also
represents the size of the search space during API re-
trieval.

APIs from this subset, ensuring that the selected
group of APIs differed from those used in previous
tasks. This process helped ensure a more balanced
distribution of the Torchdata APIs and maintained
the variety among problems. In total, 200 groups
of 15 unique APIs were selected.

Manual Construction of Example Program-
ming Tasks. Two long-sequence API problems
were manually written to serve as few-shot demon-
stration for the next step. Specifically, we ob-
served and analyzed the programming problems
in Torchdata-Github and manually integrated the
functional requirements of several tasks while en-
suring logical consistency. By combining relatively
simple, real-world programming tasks to construct
more complex example tasks, we believe that these
examples are meaningful and representative.

LLM based Craft Generation. We leverage
GPT-4o, which has been trained on Torchdata
knowledge, to craft some for programming prob-
lems for inspiration. Specifically, we provided the
2-shot demonstration and the documentation for
the 15 APIs in each group, and tasked the GPT-4o
with generating a programming problem that incor-
porated as many APIs as possible. This resulted in
200 initial problem drafts.

Manual Curation of Programming Problems.
We manually filter out reasonable problem require-
ments from the drafts. Based on these filtered
drafts, we then rewrote high-quality, coherent prob-
lems. In total, 50 programming problems were
constructed.

Expert Review. Finally, we invited two Python
programmers, each with four years of experience,
to review the dataset and suggest adjustments.
Specifically, we ask the experts to examine on 4
aspect of the crafted programming problems (1)
The executability of the canonical solution, (2) The
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Method
k = 1 k = 5 k = 10 k = 20

Pass Success Pass Success Pass Success Pass Success
Direct Generation 3.40% 3.89% 6.67% 8.34% 7.80% 10.56% 8.16% 12.15%
DocPrompting (2023) 8.00% 21.61% 14.01% 40.85% 18.30% 48.84% 19.70% 54.30%
EpiGen (2024) 7.77% 23.13% 14.41% 36.47% 17.86% 41.47% 20.30% 46.54%
ExploraCoder (Ours) 19.73% 59.47% 25.75% 67.36% 27.36% 68.76% 28.47% 69.39%
CAPIR + Self-Repair (2024) 13.90% 33.14% 20.78% 50.95% 23.64% 56.59% 24.49% 59.09%
ExploraCoder* (Ours) 21.33% 74.87% 26.73% 79.50% 28.87% 80.07% 30.39% 80.56%

Table 10: Comparing ExploraCoder with advanced retrieval-based approaches using GPT3.5 on MonkBeatEval.

intuitiveness of the API usage, (3) The rigor of the
test cases, (3) The meaningfulness of the task re-
quirements. If any issues were identified in these
aspects, the experts discussed them with the task
creators and revised the tasks accordingly. This
step ensured the overall quality and correctness of
the benchmark. All participants were compensated
adequately, with payment aligned to ethical stan-
dards and appropriate to their demographic and
region. And we ensure that there is no ethical issue
involved in our data construction process.

A.5 Generalizabiliy of ExploraCoder on More
Unseen Libraries Settings

While Torchdata has become an established prac-
tice for evaluating unseen library code generation
(Zan et al., 2023; Zhang et al., 2023; Ma et al.,
2024), it is important to assess ExploraCoder’s
effectiveness across a broader range of libraries.
However, as noted by Zan et al. (2023), it is par-
ticularly challenging to discover a suitable library
like TorchData in open-source communities.

To enable rigorous evaluation of ExploraCoder’s
generalizability, we introduce MonkBeatEval, a
new multi-library benchmark constructed specifi-
cally for testing performance on unseen libraries.

A.5.1 Construction of MonkBeatEval
Library Creation. We developed two
pseudo-libraries (Monkey and BeatNum) by
applying bidirectional transformation map-
pings to Pandas and NumPy APIs, using the
methodology4 from Zan et al. (2023), eg.
"pandas.iterrows"↔"monkey.traversal”. This
ensures the APIs are novel to LLMs.

Programming Problem Construction. We
adapted 50 multi-API problems from PanNumEval
(Zan et al., 2024), applying the same transforma-
tions to create semantically equivalent tasks using
Monkey and BeatNum APIs. We carefully examine

4Zan provide in their paper a set of transformations rules
between Pandas/Numpy and Monkey/BeatNum

the transformation result and extend the transfor-
mation rules where some library information was
not converted. Furthermore, we masked out the ex-
plicit API usage in task description like “. . . using
np.linspace” to prevent unintentional hints about
the original libraries.

Execution Framework. We implemented real-
time bidirectional API transformation to enable
execution-based evaluation using pseudo libraries,
while maintaining the illusion of two new libraries
for LLM’s interactions. Specifically,

1. For executing the LLM generated code snip-
pets: Pseudo API calls→Original API calls

2. For LLM obtaining the intermediate out-
put&exceptions: Original info → Pseudo info

A.5.2 Evaluation Results on MonkBeatEval
We replicated representative related work that ex-
hibited most competitive performance in Section
5.4 on MonkBeatEval using GPT-3.5. The results
are presented in Table 10.

The trends observed in the results are consis-
tent with the discussions in Section 5, with Ex-
ploraCoder achieving SOTA performance. This
consistency further demonstrates the robustness of
our evaluation, showcasing ExploraCoder’s effec-
tiveness and generalizability across different library
contexts and integration scenarios.

A.6 Evaluating prior API knowledge
retention in API-pretrained and
API-untrained base models

We methodically differentiate between API-
pretrained and API-untrained models based on pub-
licly available information regarding their training
data. However, to intuitively investigate whether
the model retains substantial knowledge of Torch-
data APIs, we directly ask the model to provide
specific API details, as shown in Listing 1. We
set temperature = 0 and top_p = 1 across the
models. Our findings reveal that API-untrained
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models (GPT-3.5-turbo-0125 and GPT-4-0613) hal-
lucinate API information, generating API names
that do not exist in the Torchdata library. In
contrast, the API-pretrained models (GPT-4-1106-
preview, CodeQwen1.5-7B-Chat, deepseek-coder-
6.7b-instruct) accurately generates correct API
names, import paths, and even provides precise
usage descriptions. These results provide evidence
supporting the validity of our experimental settings.

A.7 Disccussion of fairness comparison
between gpt-4-0613 and
gpt-4-1106-preview.

GPT-4-0613 and GPT-4-1106-preview are two
closely released version of GPT-4. According to
publicly available information, the former is trained
on data available up until September 2021, while
the latter is a more recent version trained on data
up until April 2023. In our experiment, we as-
sume that both models share a similar architecture
, and that the performance gap of direct genera-
tion between the two is primarily due to the ab-
sence of API knowledge in training corpura, i.e.
the performance gap between API-pretrianed and
API-untrained models. Appendix A.6 has shown
that while GPT-4-0613 is unaware of the Torchdata
APIs, GPT-4-1106 can effectively recite the API
details. In this context, we demonstrate in Section
5.2 that integrating our ExploraCoder framework
allows API-untrained models to surpass their API-
pretrained counterparts, whereas integrating naive
RAG does not, proving the effectiveness of Explo-
raCoder.

A.8 Additional implementation details
Torchdata is a library that facilitate multiple data
processing operations. For task planning mod-
ule, we ask GPT-3.5-turbo-0125 (API-untrained
model) to summarize Torchdata’s purpose, key con-
cepts, and API division logic based on Torchdata’s
README page5. The summarized results are pre-
sented in Listing 2. We also extracted few-shot
API invocation planners demonstrated in Listing 3
following Ma et al. (2024)’s approach. And both
information are used for invocation task planning.
Unlike the detailed functionalities for each APIs,
the summarization and planners demonstrations
give high-level insights into the library, facilitating
better planning and reasoning for LLMs (Zheng

5https://github.com/pytorch/data/blob/v0.7.1/
README.md

et al., 2024). We use such summarization to repre-
sent limited domain knowledge for task planning,
and no further detailed API usage information is
leaked for problem solving. We also demonstrate
ExploraCoder’s prompts in Listing 4 - 7.

Listing 2: Condensed introduction for Torchdata.
Torchdata is a library of common modular data loading

primitives for constructing flexible data pipelines.
It introduces composable Iterable -style and Map -style
building blocks called DataPipes , which work well with
PyTorch 's DataLoader and have functionalities for
loading , parsing , caching , transforming , and filtering
datasets.

DataPipes can be composed together into datasets and
support execution in various settings and execution
backends using DataLoader2.

The library aims to make data loading components more
flexible and reusable by providing a new DataLoader2
and modularizing features of the original DataLoader
into DataPipes.

DataPipes are a renaming and repurposing of the PyTorch
Dataset for composed usage , allowing for easy chaining
of transformations to reproduce sophisticated data
pipelines.

DataLoader2 is a light -weight DataLoader that decouples
data -manipulation functionalities from
torch.utils.data.DataLoader and offers additional
features such as checkpointing/snapshotting and
switching backend services for high -performant
operations.

Listing 3: We demonstrate 2 examples for API invoca-
tion planner.
[task]
Read the contents of a file and verify its hash value.
[subtasks]
1. Open a file using FileOpener
2. Wrap the file object using IterableWrapper
3. Check the hash value of the file using check_hash
[task]
Fetch the first line of a text file from a given URL and

print it alongside the URL.
[subtasks]
1. Instantiate an OnlineReader datapipe using an

IterableWrapper that holds the URL of the text file.
2. Read lines from the OnlineReader datapipe.
3. Iterate over the datapipe and output both the URL and

the first line of the text file

Listing 4: prompt for subtask planner.
I will give you a task that needs interactions with

external APIs. You need to break down the task into
several subtasks that can be implemented by invoking
APIs.

{library_summary}
Examples: {fewshot_examples}
Task: {Task}
Subtasks:

Listing 5: prompt for CoAE.
We have decomposed a user requirement into multiple

subtasks and tested some api -calling codes for each
subtask.

The user has prepared some external file you will need and
defines the test inputs for you:

```
{example_inputs}
{code_context }\
```\
{prior_subtasks_exploration_experience}

Now you need to learn the API usage experience from
previous subtasks and implement the subsequent subtask.

<subtask >{ subtask_cnt }. {subtask}</subtask >

Here are some Torchdata APIs maybe useful:
{library_api_info}

Requirements:
1. Write a playground code that imports neccessary API(s),

defines your own test data as input , and calls the
APIs to implement the subtask. Wrap the code in a
```python block ```.
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Listing 1: Demonstration of prior API knowledge in different LLMs.
what are some APIs in torchdata? Give me 5 specific API names(including full import path)
------------------------------------------------ Output by GPT -3.5-turbo -0125 ------------------------------------------------
1. torchdata.datasets.ImageFolderDataset

- Full import path: torchdata.datasets.ImageFolderDataset
2. torchdata.datasets.CIFAR10Dataset

- Full import path: torchdata.datasets.CIFAR10Dataset
3. torchdata.datasets.MNISTDataset

- Full import path: torchdata.datasets.MNISTDataset
4. torchdata.transforms.Compose

- Full import path: torchdata.transforms.Compose
5. torchdata.transforms.RandomHorizontalFlip

- Full import path: torchdata.transforms.RandomHorizontalFlip
---------------------------------------------------- Output by GPT -4 -0613 ----------------------------------------------------
1. torchdata.datasets.Files: This API is used to create a dataset from a list of files. It can be used to load and preprocess

data from different file formats.
2. torchdata.datasets.Dataset: This is the base class for all datasets in torchdata. It provides methods for loading and

iterating over data.
3. torchdata.datasets.Transform: This API is used to apply transformations to the data in a dataset. It can be used to

preprocess data , such as normalizing or augmenting it.
4. torchdata.datasets.Folder: This API is used to create a dataset from a directory of files. It can be used to load and

preprocess data from different file formats.
5. torchdata.datasets.ImageFolder: This API is used to create a dataset from a directory of images. It can be used to load

and preprocess image data.
----------------------------------------------- Output by GPT -4-1106- preview -----------------------------------------------
1. `torchdata.datapipes.iter.FileOpener `:

```python
from torchdata.datapipes.iter import FileOpener
```
This API is used to open files from a given source (like a list of file paths) and yield a tuple of the file name and a

file object.
2. `torchdata.datapipes.iter.HttpReader `:

```python
from torchdata.datapipes.iter import HttpReader
```
This API allows you to read data from HTTP URLs. It takes an iterable of URLs and yields the contents of the URLs.

3. `torchdata.datapipes.iter.CSVParser `:
```python
from torchdata.datapipes.iter import CSVParser
```
This API is used to parse CSV files. It takes an iterable of tuples (usually coming from `FileOpener `) and yields the

parsed CSV content.
4. `torchdata.datapipes.iter.RoutedDecoder `:

```python
from torchdata.datapipes.iter import RoutedDecoder
```
This API is a decoder datapipe that applies different decoders based on the extension of the file path or a custom

function provided by the user.
5. `torchdata.datapipes.iter.Batcher `:

```python
from torchdata.datapipes.iter import Batcher
```
This API batches data points into a specified batch size. It 's useful for creating mini -batches of data for training

machine learning models.
----------------------------------------------- Output by CodeQwen1 .5-7B-Chat -----------------------------------------------
Here are five specific API names in torchdata , along with their full import paths:
1. `torchdata.datapipes.iter.IterDataPipe `: This is the base class for all iterable data pipes in torchdata.
2. `torchdata.datapipes.iter.Mapper `: This data pipe applies a function to each element in the input data pipe.
3. `torchdata.datapipes.iter.Filter `: This data pipe filters out elements from the input data pipe based on a condition.
4. `torchdata.datapipes.iter.Shuffler `: This data pipe shuffles the elements in the input data pipe.
5. `torchdata.datapipes.iter.Batcher `: This data pipe batches elements from the input data pipe into fixed -size groups.
------------------------------------------- Output by deepseek -coder -6.7b-instruct -------------------------------------------
TorchData is a package in PyTorch that provides data utilities and primitives to create complex data pipelines. Here are five

specific APIs in torchdata:
1. `torchdata.datapipes.iter.FileLister `: This API is used to list files in a directory.
2. `torchdata.datapipes.iter.FileOpener `: This API is used to open files.
3. `torchdata.datapipes.iter.LineReader `: This API is used to read lines from a file.
4. `torchdata.datapipes.iter.CSVParser `: This API is used to parse CSV files.
5. `torchdata.datapipes.iter.MapDataPipe `: This API is used to apply a function to each element in the data pipe.
Please note that these are just a few examples. The full list of APIs in torchdata can be found in the [official

documentation ](https :// pytorch.org/data/).
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2. For each used API , read the API description to learn the
[data formats] and [semantics] of the input/output
object. Make sure the object is converted to the
correct format and semantics before passing it to an
API.

3. Direclty use the user -defined example inputs as your
playground code inputs. Make use of the explored APIs
from prior subtasks and predefined functions for this
subtask implementation.

4. You can print anywhere to check the the data or object
format. Such output will be observed after execution.

Listing 6: prompt for CoAE self-debug.
You were writing playground codes to explore external APIs

usage for a subtask. Now you encountered an error. You
need to debug the API usage and make the code
executable.

## The buggy code:
```
{buggy_code}
```
## Error message:
{error_message}

## Relevant APIs
{api_list_str}

We omit the format requirement here.

Listing 7: prompt for final solution generator.
---------------------- system prompt ----------------------
# Context #
You are a senior Python programmer. You are assigned a task

to implement an incomplete function to meet user 's
requirement. You find a new external library
`Torchdata ` in <<library_documents >> that is helpful.

To better learn the correct usage of Torchdata 's APIs ,
you 've thought of some relevant subtasks. For each
<<subtask >>, you have first crafted a
<<playground_code >> to call APIs to implement the
subtask , then had an <<observation >> of the code 's
executability , execution output , and error message.

# Objective #
Now you need to implement the user <<requirement >> by

importing neccessary APIs and completing the
<<incomplete_function >>.

# Response #
Your response should contain a complete code snippet in the

following format:
```python
[YOUR IMPORT HERE]
original incomplete code snippet
[YOUR COMPLETION HERE]
```
----------------------- user prompt ------------------------
You need to complete a function to meet requirement.
<requirement >
{requirement}
</requirement >
<incomplete_function >
{cg_task_prompt}
</incomplete_function >
You have explored some API usage on various subtasks:
<explorations_experience >
{subtask_exploration_list}
</explorations_experience >
Refer to relevant APIs information:
<library_documents >
{library_api_info}
</library_documents >
Now make use of the experience and supplemented APIs to

complete the function.
Note that the subtasks may not directly related to the user

requirement , excessive or unnecessary API calls may
exist. But they are to help you understand the
library 's APIs behavior and usage.

You have to reorganize API call sequence , add your own
implementation to help transforming the data format
between API calls.

A.9 Case study

We have conducted a series of case studies, here
we provide examples of different methods (naive
RAG, ExploraCoder, Self-Repair) solving the same
example problem from our benchmark. We also

provided a case study of ExploraCoder*, where
we demonstrate the self-debug trace at an failed
intermediate subtask in CoAE. For each example,
we provide discussion and analysis in the end of
the listing.

Listing 8: A failed example for naive RAG. We omit the
API signature and description for simplicity
"""
Please complete the following function , here are some APIs

maybe useful:
<API >
torchdata.datapipes.iter.ParagraphAggregator
torchdata.datapipes.map.Batcher
torchdata.datapipes.iter.Batcher
torchdata.datapipes.iter.OnDiskCacheHolder
torchdata.datapipes.iter.InBatchShuffler
torchdata.datapipes.iter.BucketBatcher
torchdata.datapipes.iter.JsonParser
torchdata.datapipes.iter.Shuffler
torchdata.datapipes.map.InMemoryCacheHolder
torchdata.datapipes.iter.FullSync
torchdata.datapipes.iter.CSVParser
torchdata.datapipes.iter.Prefetcher
torchdata.datapipes.iter.OnlineReader
torchdata.datapipes.iter.CSVDictParser
torchdata.datapipes.iter.ParquetDataFrameLoader
torchdata.datapipes.map.Shuffler
torchdata.datapipes.iter.RandomSplitter
torchdata.datapipes.map.Concater
torchdata.datapipes.iter.LineReader
torchdata.datapipes.iter.FileLister
</API >
"""
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch
def process_paragraphs_map_fn(paragraph: Tuple[str , str])

-> str:
file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content

def build_text_data_pipe(
root: str ="./ torchdata -programming -tasks/task_82",

# Directory containing text files
batch_size: int=16, # Batch size

):
"""
Load text data from files under a given directory ,
process the text data into paragraphs , create
mini -batches of paragraphs , and shuffle the batches.
The processed data should be cached and held in memory.

"""

Your response should contain a complete code snippet
wrapped in```python ```

------------------- GPT -3.5- turbo output -------------------
```python
# Define a function to process paragraphs
def process_paragraphs_map_fn(paragraph: Tuple[str , str])

-> str:
file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content

# Build the text data pipeline
def build_text_data_pipe(

root: str ="./ torchdata -programming -tasks/task_82",
# Directory containing text files

batch_size: int=16, # Batch size
):
# Create a DataPipe to list files
file_list_dp = FileLister(root=root , masks =["*. txt"])
# Create a DataPipe to read lines from files
line_reader_dp = LineReader(file_list_dp)
# Create a DataPipe to aggregate lines into paragraphs
paragraph_aggregator_dp =
ParagraphAggregator(line_reader_dp)

# Create a DataPipe to batch paragraphs
batcher_dp = Batcher(paragraph_aggregator_dp ,
batch_size=batch_size)

# Create a DataPipe to shuffle batches
shuffler_dp = InBatchShuffler(batcher_dp)
# Create a DataPipe to cache and hold data in memory
cached_dp = InMemoryCacheHolder(shuffler_dp)
return cached_dp

------------------------- Analysis -------------------------
In this case , GPT -3.5- turbo + naive RAG successfully

recalled relevant APIs to generator. However , it
hallucinate on the usage of `FileLister ` and
`LineReader ` APIs , since `FileLister ` outputs the
filename , while `LineReader ` expects file stream as
input to read each line from the stream. Such mistake
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hinders the successful generation of correct code
solutions for multi -API problems.

Listing 9: A successful example for ExploraCoder. We
show the formed exploration trace Ê in CoAE and a
successful final solution generated based on it.
[requirement]
Load text data from files under a given directory , process

the text data into paragraphs , create mini -batches of
paragraphs , and shuffle the batches. The processed
data should be cached and held in memory.

-------------------- Subtask 1 on CoAE --------------------
[subtask]
1. List all text files in the given directory
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister
root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
for file_path in file_lister:

print(file_path)
[observation]
Status: Executable
Output:
./torchdata -programming -tasks/task_82/file_0.txt
... omit 3 lines ...
./torchdata -programming -tasks/task_82/file_4.txt
-------------------- Subtask 2 on CoAE --------------------
[subtask]
2. Open each text file and read the text data
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

IoPathFileOpener , LineReader
root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
file_opener = IoPathFileOpener(source_datapipe=file_lister)
line_reader = LineReader(source_datapipe=file_opener)
for file_name , line in line_reader:

print(f"File: {file_name }")
print(f"Content: {line }")

[observation]
Status: Executable
Output:
File: ./torchdata -programming -tasks/task_82/file_0.txt
Content: This is line 0 of file 0
File: ./torchdata -programming -tasks/task_82/file_0.txt
... omit 995 lines ...
File: ./torchdata -programming -tasks/task_82/file_4.txt
Content: This is line 99 of file 4
-------------------- Subtask 3 on CoAE --------------------
[subtask]
3. Process the text data into paragraphs
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

IoPathFileOpener , LineReader , ParagraphAggregator
from typing import Tuple
root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
file_opener = IoPathFileOpener(source_datapipe=file_lister)
line_reader = LineReader(source_datapipe=file_opener)
paragraph_aggregator =

ParagraphAggregator(source_datapipe=line_reader)
for file_name , paragraph in paragraph_aggregator:

print(f"File: {file_name }")
print(f"Paragraph: {paragraph }")

[observation]
Status: Executable
Output:
File: ./torchdata -programming -tasks/task_82/file_0.txt
Paragraph: This is line 0 of file 0
This is line 1 of file 0
... omit 500 lines ...
This is line 98 of file 4
This is line 99 of file 4
-------------------- Subtask 4 on CoAE --------------------
[subtask]
4. Create mini -batches of paragraphs using torchdata APIs
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

IoPathFileOpener , LineReader , ParagraphAggregator ,
Batcher

from typing import Tuple
root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
file_opener = IoPathFileOpener(source_datapipe=file_lister)
line_reader = LineReader(source_datapipe=file_opener)
paragraph_aggregator =

ParagraphAggregator(source_datapipe=line_reader)
batcher = Batcher(datapipe=paragraph_aggregator ,

batch_size =16)
for batch in batcher:

print(batch)

[observation]
Status: Executable
Output:
[('./ torchdata -programming -tasks/task_82/file_0.tx...is

line 98 of file 4\nThis is line 99 of file 4')]
-------------------- Subtask 5 on CoAE --------------------
[subtask]
5. Shuffle the batches using shuffle API
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

IoPathFileOpener , LineReader , ParagraphAggregator ,
Batcher , InBatchShuffler

root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
file_opener = IoPathFileOpener(source_datapipe=file_lister)
line_reader = LineReader(source_datapipe=file_opener)
paragraph_aggregator =

ParagraphAggregator(source_datapipe=line_reader)
batcher = Batcher(datapipe=paragraph_aggregator ,

batch_size =16)
shuffler = InBatchShuffler(datapipe=batcher)
for shuffled_batch in shuffler:

print(shuffled_batch)
[observation]
Status: Executable
Output:
[('./ torchdata -programming -tasks/task_82/file_4.tx...is

line 98 of file 2\nThis is line 99 of file 2')]
--------------------- Subtask 6 on CoAE --------------------
[subtask]
6. Cache and hold the processed data in memory
[exploratory code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

IoPathFileOpener , LineReader , ParagraphAggregator ,
Batcher , InMemoryCacheHolder

from typing import Tuple
root = "./ torchdata -programming -tasks/task_82"
file_lister = FileLister(root=root)
file_opener = IoPathFileOpener(source_datapipe=file_lister)
line_reader = LineReader(source_datapipe=file_opener)
paragraph_aggregator =

ParagraphAggregator(source_datapipe=line_reader)
batcher = Batcher(datapipe=paragraph_aggregator ,

batch_size =16)
cache_holder = InMemoryCacheHolder(source_dp=batcher)
for data in cache_holder:

print(data)
[observation]
Status: Executable
Output:
[('./ torchdata -programming -tasks/task_82/file_0.tx...is

line 98 of file 4\nThis is line 99 of file 4')]
</explorations_experience >
Refer to relevant APIs information:
<library_documents >
{# We omit the API information for simplicity}
</library_documents >
Now make use of the experience and supplemented APIs to

complete the function.
Note that the subtasks may not directly related to the user

requirement , excessive or unnecessary API calls may
exist. But they are to help you understand the
library 's APIs behavior and usage. You have to
reorganize API call sequence , add your own
implementation to help transforming the data format
between API calls.

---------------------- Final Solution ----------------------
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch
def build_text_data_pipe(

root: str ="./ torchdata -programming -tasks/task_82",
# Directory containing text files

batch_size: int=16, # Batch size
):
file_lister = FileLister(root=root)
file_opener =
IoPathFileOpener(source_datapipe=file_lister)

line_reader = LineReader(source_datapipe=file_opener)
paragraph_aggregator =
ParagraphAggregator(source_datapipe=line_reader)

batcher = Batcher(datapipe=paragraph_aggregator ,
batch_size=batch_size)

shuffler = InBatchShuffler(datapipe=batcher)
cache_holder = InMemoryCacheHolder(source_dp=shuffler)
return cache_holder

------------------------- Analysis -------------------------
We can find that during CoAE , ExploraCoder increamentally

reuse APIs invocations from prior subtask , and
experiments with new API invocations and observe their
behaviour. Eventually , ExploraCoder manage to find a
successful API exploration trace , helping it to
generate correct final solution.
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Listing 10: A successful example for intermediate self-
debug on ExploraCoder.
[API invocation subtask]
Load the text data from the zip file using

load_text_data_from_zip
----------------- failed experimental code -----------------
[code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

ZipArchiveLoader , FileOpener
from torchdata.datapipes.utils.common import StreamWrapper

# define test inputs
root = './torchdata -programming -tasks/task_89 '
file_path =

'./torchdata -programming -tasks/task_89/file_0.zip '

# Load text data from the zip file
file_stream = open(file_path , 'rb ')
zip_loader = ZipArchiveLoader ([( file_path ,

StreamWrapper(file_stream))])
file_opener = FileOpener(zip_loader)

# Iterate over the file opener to get text data
for file_info in file_opener:

file_path , file_stream = file_info
text_data = file_stream.read()
print(f"Text Data from {file_path }: {text_data }")

file_stream.close()
[onservation]
Status: failed
Output:
Error Message:
TypeError: Expected string type for pathname , but got

<class 'tuple '>
This exception is thrown by __iter__ of

FileOpenerIterDataPipe(datapipe=
ZipArchiveLoaderIterDataPipe , encoding=None , length=-1,

mode='r')
Error traceback at:
- line 15 in <module >: for file_info in file_opener:
- line 212 in get_file_binaries_from_pathnames: raise

TypeError (" Expected string type for pathname , but got
{}"

------------------- fixed by self -debug -------------------
[code]
import torchdata
from torchdata.datapipes.iter import FileLister ,

ZipArchiveLoader , FileOpener
from torchdata.datapipes.utils.common import StreamWrapper

# User -defined test inputs
root = './torchdata -programming -tasks/task_89 '
file_path =

'./torchdata -programming -tasks/task_89/file_0.zip '

# Load text data from the zip file
file_stream = open(file_path , 'rb ')
zip_loader = ZipArchiveLoader ([( file_path ,

StreamWrapper(file_stream))])

# Iterate over the zip loader to get text data
for file_info in zip_loader:

file_path , file_stream = file_info
text_data = file_stream.read()
print(f"Text Data from {file_path }: {text_data }")

[observation]
Status: success
Output:
Text Data from torchdata -programming -tasks/task_89/
file_0.zip/file_0_0.txt: b'...'
... omit 3 lines ...
tasks/task_89/file_0.zip/file_0_4.txt: b'...'
------------------------- Analysis -------------------------
In ExploraCoder 's initial experimental code , it incorrectly

hallucinates the usage of FileOpener. However , after a
round of self -debugging , ExploraCoder is able to
correct this simple API misuse and successfully
observe behavior from the correct API invocation.

Listing 11: A failed example for Self-Repair.
[requirement]
Load text data from files under a given directory , process

the text data into paragraphs , create mini -batches of
paragraphs , and shuffle the batches. The processed
data should be cached and held in memory.

-------------------- initial candidate --------------------
[code]
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch
def process_paragraphs_map_fn(paragraph: Tuple[str , str])

-> str:
file_name = paragraph [0]

paragraph_content = paragraph [1]
return paragraph_content

def build_text_data_pipe(
root: str ="./ torchdata -programming -tasks/task_82",

# Directory containing text files
batch_size: int=16, # Batch size

):
data_pipe = FileLister(root) >> IoPathFileLister () >>
FileOpener () >> LineReader ()

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()

data_pipe = data_pipe >> Shuffler ()
return data_pipe

list_dp =
list(build_text_data_pipe(root ="./ torchdata -programming

-tasks/task_82", batch_size =4))
[execution result]
Status: failed
Error message:
TypeError: __init__ () missing 1 required positional

argument: 'root '
Error traceback at:
- line 23 in <module >: list_dp =

list(build_text_data_pipe(root ="./ torchdata -programming
-tasks/task_82", batch_size =4))
- line 18 in build_text_data_pipe: data_pipe =

FileLister(root) >> IoPathFileLister () >> FileOpener ()
>> LineReader ()

------------------- round 1 self -repair -------------------
[feedback]
The error message indicates that the `FileLister ` class in

the `build_text_data_pipe ` function is missing the
required positional argument `root `. The `FileLister `
class expects the root directory containing text files
as an argument. To resolve this error , make sure to
provide the `root ` argument when creating the
`FileLister ` instance in the `build_text_data_pipe `
function.

[code]
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch

def process_paragraphs_map_fn(paragraph: Tuple[str , str])
-> str:

file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content

def build_text_data_pipe(
root: str ="./ torchdata -programming -tasks/task_82",

# Directory containing text files
batch_size: int=16, # Batch size

):
"""
Load text data from files under a given directory ,
process the text data into paragraphs , create
mini -batches of paragraphs , and shuffle the batches.
The processed data should be cached and held in memory.

"""
data_pipe = FileLister(root=root) >> IoPathFileLister ()
>> FileOpener () >> LineReader ()

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()

data_pipe = data_pipe >> Shuffler ()

return data_pipe
list_dp = list(build_text_data_pipe
(root ="./ torchdata -programming -tasks/task_82",

batch_size =4))
Status: failed
Error message:
TypeError: __init__ () missing 1 required positional

argument: 'root '
Error traceback at:
- line 23 in <module >: list_dp = list
(build_text_data_pipe(root ="./ torchdata -programming -
tasks/task_82", batch_size =4))
- line 18 in build_text_data_pipe: data_pipe =

FileLister(root=root) >> IoPathFileLister () >>
FileOpener () >> LineReader ()

------------------- round 2 self -repair -------------------
[feedback]
The error message indicates that the `FileLister ` class in

the `build_text_data_pipe ` function is missing the
required positional argument `root `. The `FileLister `
class expects the root directory containing text files
as an argument. To resolve this error , make sure to
provide the `root ` argument when creating the
`FileLister ` instance in the `build_text_data_pipe `
function.

[code]
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch
def process_paragraphs_map_fn(paragraph: Tuple[str , str])

-> str:
file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content
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def build_text_data_pipe(
root: str ="./ torchdata -programming -tasks/task_82",

# Directory containing text files
batch_size: int=16, # Batch size

):
"""
Load text data from files under a given directory ,
process the text data into paragraphs , create
mini -batches of paragraphs , and shuffle the batches.
The processed data should be cached and held in memory.

"""
data_pipe = FileLister(root=root) >> IoPathFileLister ()
>> FileOpener () >> LineReader ()

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()

data_pipe = data_pipe >> Shuffler ()
return data_pipe

list_dp = list(build_text_data_pipe(root ="./ torchdata
-programming -tasks/task_82", batch_size =4))
[execution result]
Status: failed
Error message:
TypeError: __init__ () missing 1 required positional

argument: 'root '
Error traceback at:
- line 23 in <module >: list_dp =

list(build_text_data_pipe(root ="./ torchdata -programming
-tasks/task_82", batch_size =4))
- line 18 in build_text_data_pipe: data_pipe =

FileLister(root=root) >> IoPathFileLister () >>
FileOpener () >> LineReader ()

------------------- round 3 self -repair -------------------
[feedback]

Listing 12: A failed example for Self-Repair (Cont.).
The error message indicates that the `build_text_data_pipe `

function is missing the required positional argument
`root `. In this case , the `FileLister ` class expects
the `root ` argument to be provided. To resolve this
issue , make sure to pass the `root ` argument when
calling the `build_text_data_pipe ` function.

[code]
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch
def process_paragraphs_map_fn(paragraph: Tuple[str , str])

-> str:
file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content

def build_text_data_pipe(
root: str =

"./ torchdata -programming -tasks/task_82", # Directory
containing text files

batch_size: int = 16, # Batch size
):
"""
Load text data from files under a given directory ,
process the text data into paragraphs , create
mini -batches of paragraphs , and shuffle the batches.
The processed data should be cached and held in memory.

"""
data_pipe = FileLister(root=root) >> IoPathFileLister ()
>> FileOpener () >> LineReader ()

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()

data_pipe = data_pipe >> Shuffler ()
return data_pipe

list_dp = list(build_text_data_pipe(
root ="./ torchdata -programming -tasks/task_82", batch_size =4))
------------------ round 4-5 self -repair ------------------
... omit for simplicity ...
------------------- round 6 self -repair -------------------
[feedback]
The error message indicates that the 'root ' argument is

missing when creating the FileLister data pipe. The
FileLister API expects the root argument to be
provided , but it is not being passed correctly in the
build_text_data_pipe function. To resolve this issue ,
ensure that the 'root ' argument is correctly passed
when creating the FileLister data pipe within the
build_text_data_pipe function.

[code]
from torchdata.datapipes.iter import *
from typing import List , Tuple
import torch

def process_paragraphs_map_fn(paragraph: Tuple[str , str])
-> str:

file_name = paragraph [0]
paragraph_content = paragraph [1]
return paragraph_content

def build_text_data_pipe(
root: str =

"./ torchdata -programming -tasks/task_82", # Directory
containing text files

batch_size: int = 16, # Batch size
):
"""
Load text data from files under a given directory ,
process the text data into paragraphs , create
mini -batches of paragraphs , and shuffle the batches.
The processed data should be cached and held in memory.

"""
data_pipe = FileLister(root=[root]) >>
IoPathFileLister () >> FileOpener () >> LineReader ()

data_pipe = data_pipe.map(process_paragraphs_map_fn) >>
Batcher(batch_size=batch_size) >> InMemoryCacheHolder ()

data_pipe = data_pipe >> Shuffler ()
return data_pipe

list_dp = list(build_text_data_pipe(
root ="./ torchdata -programming -tasks/task_82", batch_size =4))
[execution result]
Status: failed
Error message:
TypeError: __init__ () missing 1 required positional

argument: 'root '
Error traceback at:
- line 23 in <module >: list_dp = list(build_text_data_pipe(
root ="./ torchdata -programming -tasks/task_82",

batch_size =4))
- line 18 in build_text_data_pipe: data_pipe =

FileLister(root=[root]) >> IoPathFileLister () >>
FileOpener () >> LineReader ()

------------------------- Analysis -------------------------
In the initial code solution , Self -Repair severely misuses

the Torchdata library. Specifically , it incorrectly
assumes that Torchdata APIs can be chained using “”>>,
and this incorrect API usage pattern propagates
throughout the entire LLM -decoded API invocation
sequence. Despite receiving clear error messages in
each round of Self -Repair , the system fails to correct
the code because its initial solution deviates
significantly from the canonical implementation.
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