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Abstract

Automated Essay Scoring (AES) plays a cru-
cial role in language assessment. In particular,
cross-prompt essay trait scoring provides learn-
ers with valuable feedback to improve their
writing skills. However, due to the scarcity of
prompts, most existing methods overlook criti-
cal information, such as content from prompts
or essays, resulting in incomplete assessment
perspectives. In this paper, we propose a robust
AES framework, the Mixture of Ordered Scor-
ing Experts (MOOSE), which integrates infor-
mation from both prompts and essays. MOOSE
employs three specialized experts to evaluate
(1) the overall quality of an essay, (2) the rel-
ative quality across multiple essays, and (3)
the relevance between an essay and its prompt.
MOOSE introduces the ordered aggregation
of assessment results from these experts along
with effective feature learning techniques. Ex-
perimental results demonstrate that MOOSE
achieves exceptionally stable and state-of-the-
art performance in both cross-prompt scor-
ing and multi-trait scoring on the ASAP++
dataset. The source code is released at https:
//github.com/antslabtw/MOOSE-AES.

1 Introduction

Language education is essential in today’s glob-
alized world, facilitating cross-cultural communi-
cation and interaction. Automated Essay Scoring
(AES) has gained significant attention for its ability
to provide rapid, objective, and scalable assess-
ments of written responses. AES rapidly provides
objective writing assessments has gotten significant
attention. Earlier AES methods adopt a prompt-
specific training scheme (Taghipour and Ng, 2016;
Dong and Zhang, 2016; Yang et al., 2020; Wang
et al., 2022), which often limits their performance
to prompts seen during training. When encounter-
ing unseen topics, these systems struggle to rate
essays in alignment with an appropriate rubric. As
a result, developing cross-prompt AES models (Jin
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Figure 1: Concept of Ordered Scoring Experts (OSE).

et al., 2018; Li et al., 2020; Ridley et al., 2020) that
can adapt to unseen topics is essential for improv-
ing the generalizability of AES.

To enhance the accuracy of the AES models, re-
searchers have paid their attention on developing
deep learning-based approaches (Jin et al., 2018;
Li et al., 2020; Ridley et al., 2020; Mizumoto and
Eguchi, 2023; Mansour et al., 2024; Lee et al.,
2024; Stahl et al., 2024; Do et al., 2024). How-
ever, most of these studies generate only a holistic
score, rather than providing detailed feedback to
meet educational needs. Teachers and students re-
quire assessments that evaluate multiple facets of
writing, such as content, organization, grammar,
and vocabulary, to support pedagogical objectives
and enhance learning outcomes. Thus, recent work
on multi-trait scoring (Ridley et al., 2021; Chen
and Li, 2023; Do et al., 2023; Xu et al., 2025) has
gained more attention for providing more compre-
hensive writing feedback. Building on this foun-
dation, our research focuses on multi-trait AES to
ensure robust performance across prompts.

It is challenging to train a generalized cross-
prompt essay trait scoring model with the limited
number of available prompts. For example, Ridley
et al. (2020) considers only essays as input to the
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model, narrowing the task to assessing writing style
or surface-level quality. Although work like Pro-
TACT (Do et al., 2023) incorporate essay-prompt
correlation features, they rely solely on syntactic
features to represent essays. These existing meth-
ods overlook critical information, such as the con-
tent of prompts or essays, leading to incomplete
assessment perspectives.

More recently, Large Language Models (LLMs)
have been introduced to address various AES tasks
(Mizumoto and Eguchi, 2023; Lee et al., 2024;
Stahl et al., 2024; Chu et al., 2025). For instance,
Do et al. (2024) proposed the T5 (Do et al., 2024)-
based ArTS for multi-trait scoring, while Mansour
et al. (2024) explored the performance of Chat-
GPT and Llama-2 (Touvron et al., 2023) for essay
scoring and feedback generation. Additionally, Xu
et al. (2025) built EPCTS on top of Qianwen (Bai
et al., 2023), achieving promising cross-prompt
essay trait scoring results.

In this work, we draw on the concepts of LLMs
but develop a robust cross-prompt essay trait scor-
ing system without relying on LLMs. First, we
establish a simple yet strong baseline, Multi-cunk
BERT with Trait Attention (MBTA), by leverag-
ing content features, and various linguistic features.
We then propose the Ordered Scorer Experts (OSE),
as shown in Figure 1, which models the evaluation
process of professional human raters when scoring
essays. Additionally, OSE addresses the inherent
scarcity of prompts, a key factor limiting the ro-
bustness of AES on unseen prompts. To maximize
the utility of the limited available prompts, we re-
formulate the training of the scoring module from
learning how to score to learning how to select scor-
ing cues. This change allows the model to focus
on learning diverse scoring cues, which reducing
overfitting to previously seen data. Building on
these strategies, a Mixture of Experts (MoE) ap-
proach is introduced to dynamically select relevant
scoring cues based on prompts, culminating in our
AES framework, MOOSE. Our work makes the
following key contributions:

• A strong baseline for cross-prompt essay trait
scoring called Multi-chunk BERT with Trait
Attention (MBTA) is developed.

• We reformulating the AES training objective
from direct scoring to scoring cue retrieval,
this change enhances the robustness of cross-
prompt AES model.

• We decompose the scoring mechanism into
three aspects, which are (1) essay-intrinsic
quality, (2) cross-essay comparison, and (3)
essay–prompt relevance, to strengthen the rea-
soning in cross-prompt essay trait scoring.

• The proposed MOOSE framework achieves
state-of-the-art performance in cross-prompt
AES with trait scoring.

2 Related Work

2.1 Cross-Prompt AES
In the early research of AES, they focused on
prompt-specific settings (Taghipour and Ng, 2016;
Dong and Zhang, 2016; Dong et al., 2017; Yang
et al., 2020; Wang et al., 2022; Cao et al., 2020).
These settings evaluate the performance of trained
models on seen prompt in training stage. However,
in the real world applications, it is impossible to
take all of the prompts to train a model. Recently,
more studies (Jin et al., 2018; Li et al., 2020; Rid-
ley et al., 2020; Zhang et al., 2025) focus on cross-
prompt setting which is more close to the real world
settings. Cross-prompt setting trains the model on
multiple prompts and uses unseen prompts for test-
ing. Tackling on this setting, researchers do their
efforts on designing unbiased feature extractor and
devloping methods to find out the real adherence
between prompt and essay. For example, PAES (Ri-
dley et al., 2020) applies hierarchical-CNN-LSTM
with Part-Of-Speech (POS) embedding and linguis-
tic features to decrease the semantic bias from dif-
ferent prompts. PANN (Jiang et al., 2023) disen-
tangles quality and content information in essay
features for better finding out the fake correlation
between essay and prompt adherence features.

With advances in LLMs, some research (Mizu-
moto and Eguchi, 2023; Mansour et al., 2024; Lee
et al., 2024; Stahl et al., 2024) started to apply
LLMs for developing AES models. Do et al. (2024)
proposed ArTS in auto-regressive manner for gen-
erating multi-trait scores. Lee et al. (2024) intro-
duced multi-trait decomposition which generate
specific prompt trait rubric by LLMs. Stahl et al.
(2024) designed various kinds of prompt and in-
struction, and applying in-context learning method
to enhance few-shot learning AES performance.

Most of the above cross-prompt studies are strug-
gling with the imbalance performance across differ-
ent prompts. In this paper, we address this research
problem.
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Figure 2: System overview of our proposed AES system for cross-prompt essay trait scoring.

2.2 Cross-Prompt AES with Trait Scoring

Research on cross-prompt AES trait scoring (Ri-
dley et al., 2021; Chen and Li, 2023; Do et al.,
2023; Sun et al., 2024; Xu et al., 2025) has gained
significant attention, as it emphasizes the gener-
alization ability of AES models to evaluate mul-
tiple writing traits on unseen prompts. For ex-
ample, CTS (Ridley et al., 2021) employs a trait-
attention mechanism to exchange cross-trait infor-
mation and enhances the scoring performance of
each trait. PMAES (Chen and Li, 2023) adopts a
mapping learning strategy that aligns source and
target prompts within a unified feature space to
achieve stable cross-prompt scoring. It further tack-
les multi-trait scoring through a hierarchical en-
coder coupled with trait-specific dense layers and
cross-trait correlation loss. ProTACT (Do et al.,
2023) emphasizes prompt adherence by leveraging
essay–prompt attention and incorporating a topic-
coherence feature, along with a trait-similarity loss
to promote integration and consistency in multi-
trait scoring. However, these studies often discard
crucial information from either the prompt or the
essay, such as essay content, to prevent the trained
model from overfitting to seen prompts.

Recent work proposed by Li and Ng (2024)
demonstrates that performing feature selection for
each prompt could further enhance scoring perfor-
mance. While EPCTS (Xu et al., 2025) leverages
LLMs to capture the nuanced relationship between
the prompt and the essay via semantic segmenta-
tion and similarity computation, thereby effectively
evaluating prompt relevance.

Inspired on these impressive works, our ap-
proach establishes a strong baseline that includes
complete information of the prompt and essay. We
then design a robust AES framework build upon it
to imitate scoring process of professional human
raters, which enable the model dynamically retrieve
the scoring cues in an ordered point of view.

3 Methods
3.1 System Overview
Figure 2 illustrates our proposed AES system for
cross-prompt essay trait scoring. The proposed
AES system contains three main steps. First, we
extract content features of the essay and prompt,
with multi-granularity, via document BERT and
multi-chunk BERT models (Wang et al., 2022).
Additionally, various linguistic features of the essay
are extracted as side information for trait scoring.
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Next, we adopt the architecture of trait atten-
tion mechanism proposed in ProTACT (Do et al.,
2023) to learn trait-specific representations. Differ-
ent from the ProTACT, we use the document BERT
feature as the query and the multi-chunk BERT fea-
tures as both key and value in the cross-attention
layer to learn non-prompt specific representation
of the essay. The attended representation is then
concatenated with the non-prompt specific linguis-
tic features, and fed into a linear layer to obtain
trait-specific representations for each essay.

Finally, Both of the trait-specific essay repre-
sentations and the prompt features are fed into our
proposed MOOSE framework to predict the essay’s
trait scores. Notably, our approach differs from pre-
vious state-of-the-art methods (Do et al., 2023; Xu
et al., 2025) that treat the prompt as the query. In-
stead, MOOSE uses the essay as the query to learn
more robust representations and capture scoring
cues with rich diversity. Existing SoTAs design
their solutions from the prompt’s perspective, aim-
ing to determine whether a given essay is likely
to receive a high score under the given prompt. In
contrast, MOOSE transfers the scoring process into
a scoring cue retrieval problem from the essay, and
prompt features are treated as one kind of cue for
selecting prompt-relation scoring cues. The fol-
lowing sections will detail our proposed problem
transfer strategy and the MOOSE framework.

3.2 Essay as Queries

In the Transformer architecture (Vaswani et al.,
2017), an attention score is defined as: ai =
softmax(qiK

T )V . First, the relevance score for
each query qi ∈ Q is computed against all keys
kj ∈ K. Next, the softmax function gives relative
importance to the keys K based on their alignment
with the given query q. Finally, the importance is
used to estimate the distribution of the query qi over
the values V , thus producing an attention-informed
representation of the query.

When aligning the Transformer process de-
scribed above to the AES context, if prompt p is
used as the query and essay e is used as the key and
value, it is equivalent to reconstructing the prompt
information with the components of the essay for
scoring. This will only retain the parts of essay e’s
information that are highly correlated with prompt
p, which will lead to biased scoring results. We
proposed to use essay e as the query and concate-
nates prompt p and essay e as the key and value, as
shown in Figure 3 (c). The estimated joint distri-
bution of query over values will include both the
degree of prompt adherence and the degree of es-
say for the content and organization, which have
a more robust representation of the essay scoring
task. Since the scoring of AES traits such as word
choice, grammar, organization, etc., primarily re-
lies on the content of the essay itself, using the
essay as the query results in more robust perfor-
mance.
3.3 From Scoring to Scoring Cue Retrieval
When training a cross-prompt AES model, the di-
versity of available prompts is often severely lim-
ited. Focusing exclusively on feature (query) learn-
ing can lead to overfitting on seen prompts. There-
fore, we propose that the model should concentrate
on learning comprehensive scoring cues (value).
By expanding and refining these scoring cues, the
model is more likely to remain robust when encoun-
tering unseen prompts. Specifically, in the score
prediction module, we apply a stop-gradient opera-
tion on the query, allowing gradients to update only
the key and value. The fixed query then serves the
function of retrieving relevant scoring cues.

Likewise, in the multi-layer decoder, we aim to
prevent the model overfitting to the seen prompts.
We achieve this by reusing the same key and value
across different decoder layers. Reuse of the key
and value making the decoding process become a
progressive feature selection process. Figure 3 il-
lustrates mainstream approaches and our approach:
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• Figure 3 (a): Early methods (Taghipour and
Ng, 2016; Dong and Zhang, 2016; Yang et al.,
2020; Cao et al., 2020; Ridley et al., 2020,
2021) often scored the essay solely based on
its content of essay.

• Figure 3 (b): Since ProTACT (Do et al., 2023),
subsequent methods use the prompt as the
principal role for scoring. Currently, this ap-
proach needs LLMs to generalize the relation-
ship between the prompt and the essay for
stable results across diverse prompts, such as
EPCTS (Xu et al., 2025).

• Figure 3 (c): We propose to treat the essay as
the principal role and reformulating the scor-
ing process as a scoring cue retrieval, leading
to a robust cross-prompt AES approach.

3.4 Mixture of Ordered Scoring Experts
In our MOOSE framework, we aim for a scoring
mechanism that imitates the reasoning process of
human experts. We design three specialized “ex-
perts” to tackle the following aspects of scoring:

The inherent writing quality of the essay. To
measure the inherent writing quality of the es-
say, we adopt the loss function proposed by Pro-
TACT (Do et al., 2023), which considers both the
final trait scores and the reasoning among different
traits using Pearson correlation coefficient r. If
the correlation exceeds the threshold ϵ, the model
is encouraged to maintain similarity between the
predicted trait scores. The trait similarity loss is
shown in Equation (1):

Lts(y, ŷ) =
1

c

M∑

j=2

M∑

k=j+1

ts(ŷj , ŷk,yj ,yk), (1)

ts =

{
1− cos(ŷj , ŷk), if r(yj ,yk) ≥ ϵ

0, otherwise
, (2)

where c is the number of calculated ts that is not
0, M is the number of traits, j and k are indexes
of the selected trait. Note that the trait Overall
(j = 1) is excluded, as its score has relatively low
correlations than other traits, so the index of j is
from 2.

Relative quality across multiple essays. To
compare the relative quality of multiple essays, we
use the pairwise ranking loss (Equation 3). For
each essay pair (a, b) in a training batch, we com-
pute the predicted scores ŷa and ŷb and their dif-
ference ∆ŷ = ŷa − ŷb. If the ground-truth scores

satisfy ya > yb, we set δ = 1 (otherwise, δ = 0).
The ranking loss penalizes incorrect orderings and
encourages a larger ∆ŷ for correct rankings. Addi-
tionally, log(1 + e−|∆ŷ|) smooths the penalty, pre-
venting gradient vanishing. Notably, only scores
associated with the same trait are paired and used to
compute the ranking loss. When different prompts
share the same trait, the scores for that trait are also
paired and included in the ranking loss calculation.

Lrank = δ·
(
max(0,−∆ŷ)+log(1+e−|∆ŷ|)

)
. (3)

Prompt adherence of the essay. We measure the
prompt adherence by estimate the probability of
essay on joint distribution of multi-trait essay rep-
resentations and prompt features. To achieve this
purpose, the multi-chunk BERT features extracted
from the prompt are concatenated with the key and
value of cross attention layer. The model then ex-
amines the degree to which the prompt value is
attended, identifying potential off-topic situations.

By leveraging these three specialized experts
and integrating their insights, MOOSE imitates the
multiple perspectives scoring process of human
raters, thereby enhancing both the accuracy and
robustness of cross-prompt essay trait scoring.

Figure 4 illustrates the architecture of MOOSE,
which is built upon a dual-layer cross-attention de-
coder and incorporates three sequential experts –
scoring expert, ranking expert, and adherence ex-
pert, which forming an OSE. To transfer the train-
ing objective into a process of scoring cue retrieval,
the stop-gradient operation is applied on the queries
in the decoder. Then, the scoring expert takes only
multi-trait essay features as input to learn essay
inherent scoring cues. Following, the input query
of ranking expert is dynamic selected by a Mix-
ture of Expert (MoE) module, which determines
whether to reuse the existing key–value pairs. The
gating function of the MoE is calculted by attended
feature of a cross attention layer which takes multi-
trait essay representation as query and multi-chunk
prompt feature as key and value. Finally, the ad-
herence expert passing the multi-chunk prompt fea-
tures to the ranking expert, making ranking expert
to estimate whether the essay is addressed to the
given prompt or not. By modeling the step-wise rea-
soning of human experts, MOOSE aims to achieve
more accurate and robust essay trait scoring.

Next, we describe the implementation details of
the Mixture-of-Experts (MoE) architecture within
MOOSE. The general formula of MoE is given by:
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Prompt Essay Type Content Organization Word Choice Sentence Fluency Conventions Prompt Adherence Language Narrativity

1 Argumentative ✓ ✓ ✓ ✓ ✓
2 Argumentative ✓ ✓ ✓ ✓ ✓
3 Response (Source-Dependent) ✓ ✓ ✓ ✓
4 Response (Source-Dependent) ✓ ✓ ✓ ✓
5 Response (Source-Dependent) ✓ ✓ ✓ ✓
6 Response (Source-Dependent) ✓ ✓ ✓ ✓
7 Narrative ✓ ✓ ✓
8 Narrative ✓ ✓ ✓ ✓ ✓

Table 1: Essay type and trait information of the ASAP++ dataset. (Mathias and Bhattacharyya, 2018)

y =
n∑

i=1

G(x)i · Ei(x), (4)

where n is the number of experts, G is the gating
function, and E represents the expert network. In
MOOSE, the MoE consists of two experts, both
implemented as linear layers, and the gating func-
tion is a sigmoid gating function σ. To enhance
the adaptability of the model, we replace the in-
puts of the gating function with the cross-attention
outputs between the essay features and prompt fea-
tures, allowing MOOSE to dynamically select the
appropriate expert based on the essay-prompt rela-
tionship for score prediction. The MoE formula in
the MOOSE could be rewritten as Equation (5):

y = σ(CA(SG(Fe1), Fp)) · E1(Fe1)

+ (1− σ(CA(SG(Fe1), Fp))) · E2(Fe2).
(5)

where CA represents cross-attention, SG denotes
stop gradient, and Fe, Fp correspond to essay and
prompt features, respectively.

4 Experiments

4.1 Experimental Setup
In this study, we evaluate our model using the
publicly available ASAP (Hamner et al., 2012)
and ASAP++ (Mathias and Bhattacharyya, 2018)
datasets. The original ASAP corpus comprises
approximately 13,000 English essays across eight
prompts, each assigned a holistic score. In con-
trast, ASAP++ augments these essay sets by pro-
viding additional trait-level scores. The trait infor-
mation of ASAP++ dataset is shown in Table 1,
and more information of the datasets are provided
in Appendix B. To maintain the consistent compar-
ison with previous works, the experimental settings
of (Do et al., 2023) is adopted. The Quadratic
Weighted Kappa (QWK) is a common metric in
AES, which measures the agreement between our
predicted scores and the ground-truth labels. In
cross-prompt evaluation, essays from one prompt
set serve as the test set, while essays from the re-
maining prompts are used for training.

The training details of MOOSE are as follows.
All hyperparameters of MBTA follow the settings
from the referenced papers. Multi-chunk BERT
segments the input text into four fixed chunk sizes
(10, 30, 90, 130), enabling the model to learn text
features at different granularities. The LSTM di-
mension is set to 576, matching the BERT-base
configuration. The feature dimension of Trait At-
tention is set to 256, which is also used for MOOSE.
For the loss functions, the scoring expert and rank-
ing expert use following weighted losses:

• Scoring expert: 0.7Lmse + 0.3Lts.

• Ranking expert: 0.5Lmse + 0.2Lts + 0.3Lrank.

The overall loss is simply the summation of the
scoring expert loss and ranking expert loss. More
details about training hyper-parameters and used
linguistic features are provided in Appendix A.

4.2 Comparison with State-of-The-Arts

We compare our proposed OSE and MOOSE
with State-of-The-Arts (SoTAs) in cross-prompt
essay trait scoring. Specifically, methods that rely
solely on essay representations include PAES (Ri-
dley et al., 2020), PMAES (Chen and Li, 2023),
CTS (Ridley et al., 2021), and RDCTS (Sun et al.,
2024). Methods that incorporate part-of-speech
embeddings and linguistic features but do not lever-
age content information of essay are PAES (Ri-
dley et al., 2020), PMAES (Chen and Li, 2023),
CTS (Ridley et al., 2021), and ProTACT (Do et al.,
2023). Additionally, EPCTS (Xu et al., 2025) is the
method which use content features of both essay
and prompt, it also enhances AES robustness by in-
tegrating LLMs (Bai et al., 2023). The comparison
of the prompt-based and trait-specific evaluations
are presented in Table 2 and Table 3, respectively.

Table 2 shows that proposed methods achieves
the highest average performance, and gets best per-
formance on 5 out of 8 prompts. MOOSE demon-
strates the highest stability across all prompts with
the lowest standard deviation (STD). We observe
that except for EPCTS (Xu et al., 2025) which
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Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Prompt 7 Prompt 8 AVG STD

PAES (Ridley et al., 2020) .605 .522 .575 .606 .634 .545 .356 .447 .536 .088
PMAES (Chen and Li, 2023) .656 .553 .598 .606 .626 .572 .386 .530 .566 .078
CTS (Ridley et al., 2021) .623 .540 .592 .623 .613 .548 .384 .504 .553 .076
RDCTS (Sun et al., 2024) .651 .553 .608 .623 .651 .580 .375 .529 .571 .085
ProTACT (Do et al., 2023) .647 .587 .623 .632 .674 .584 .446 .541 .592 .067
EPCTS (Xu et al., 2025) .659 .609 .619 .686 .671 .629 .555 .630 .632 .038
OSE (Ours) .679 .612 .660 .660 .686 .596 .581 .627 .638 .037
MOOSE (Ours) .685 .613 .657 .652 .700 .615 .592 .621 .642 .036

Table 2: Comparison of average QWK for each prompt on the ASAP++ dataset, bold font indicates best performance.

Model Overall Content Organization WC SF Convention PA Language Narrativity AVG STD

PAES (Ridley et al., 2020) .657 .539 .414 .531 .536 .367 .570 .531 .605 .527 .075
PMAES (Chen and Li, 2023) .671 .567 .481 .584 .582 .421 .584 .545 .614 .561 .060
CTS (Ridley et al., 2021) .670 .555 .458 .557 .545 .412 .565 .536 .608 .586 .062
RDCTS (Sun et al., 2024) .673 .561 .480 .591 .576 .426 .609 .560 .634 .568 .065
ProTACT (Do et al., 2023) .674 .596 .518 .599 .585 .450 .619 .596 .639 .586 .058
EPCTS (Xu et al., 2025) .728 .630 .606 .614 .617 .525 .630 .613 .647 .623 .035
OSE (Ours) .677 .643 .639 .641 .635 .575 .637 .610 .649 .634 .023
MOOSE (Ours) .650 .651 .652 .634 .643 .604 .649 .624 .665 .641 .018

Table 3: Comparison of average QWK for each trait on the ASAP++ dataset, bold font indicates best performance.

leverages LLMs, all other models exhibit high sen-
sitivity to the type of the prompt. In particular, for
prompts 7 and 8, the open-ended nature of narrative
essays leads to a significant drop in performance

Table 3 presents the performance of the score
of traits in different models. Our proposed model
outperforms all baselines in all of eight traits. No-
tably, previous methods struggle with the con-
vention trait.Among previous SoTAs, except for
EPCTS (Xu et al., 2025) which benefits from
LLMs, all models exhibit weak performance in
content and organization traits. Furthermore, POS
embedding-based models, such as PAES and CTS,
show inferior performance in sentence fluency.
EPCTS achieves the highest QWK in overall score
by leveraging prompt-relevant features extracted
by LLMs. Overall, the proposed MOOSE demon-
strating its highly consistent scoring ability across
different traits via imitating scoring process of hu-
man expert, it achieves at least half of standard
deviation (STD) than previous SoTAs.

Based on above observations, we will conduct
further experiments in Section 4.4 and Section 4.5
to analyze the proposed components contributing
to the observed performance improvements.

4.3 Ablation Studies

Table 4 presents the results of our ablation stud-
ies, which evaluate the impact of each proposed
component. Our developed baseline model, Multi-
chunk BERT with Trait Attention (MBTA), pro-
cesses essays as input and employs a single-layer
transformer decoder for trait scoring. To systemat-

Model P1 P2 P3 P4 P5 P6 P7 P8 AVG IMP

A:MBTA .639 .593 .603 .604 .657 .555 .469 .589 .589 =
B:A+QD .645 .616 .613 .617 .648 .553 .477 .600 .595 +.006
C:B+DH .657 .606 .612 .629 .672 .538 .473 .595 .598 +.009
D:C+RK .679 .612 .646 .655 .688 .560 .549 .461 .606 +.017
E:D+KV .668 .604 .650 .658 .679 .570 .559 .495 .610 +.021
F:D+PP .630 .583 .636 .656 .683 .575 .579 .514 .607 +.018
G:F+OSE .675 .617 .654 .668 .686 .600 .528 .560 .624 +.034

H:G+HA .679 .612 .660 .660 .686 .596 .581 .627 .638 +.048
I:H+MoE .685 .613 .657 .652 .700 .615 .592 .621 .642 +.052

Table 4: Ablation studies of proposed components.

ically assess the contribution of different compo-
nents in the proposed MOOSE, we conduct abla-
tion experiments on six key components: Query
Detach (QD), Dual-layer Head (DH), RanKing loss
(RK), reuse of Key and Value (KV), Prompt fea-
ture integration in the Prediction layer (PP), and
Ordered Scoring Experts (OSE). Each model vari-
ant was trained for 14 epochs with a learning rate
of 1e−5. Finally, Hyper-parameter Alignment to
ProTACT (HA) and Mixture of Experts (MoE) are
applied on the ORE model and hyper-parameter
aligned ORE model respectively as the final mod-
els. The HA involves increasing the learning rate
to 1e−4 and extending saving checkpoints to 50, al-
lowing for analysis on a consistent basis for making
comparison with other SoTAs. The architectures of
ablated model variants are shown in Appendix C.1.

We first introduce QD, which reformulates the
learning objective into a scoring cue retrieval task.
This modification leads to a general performance
improvement across most prompts. Next, we
deepen the transformer decoder by adding an addi-
tional layer (DH), resulting in a slight performance
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Model P1 P2 P3 P4 P5 P6 P7 P8

prompt as query .677 .611 .643 .664 .646 .576 .480 .427
essay as query .675 .617 .654 .668 .686 .600 .528 .560

Table 5: Analysis of query type on each prompt.

Model P1 P2 P3 P4 P5 P6 P7 P8

scoring .639 .593 .603 .604 .657 .555 .469 .594
cue retrieval .645 .616 .613 .617 .648 .553 .477 .600

Table 6: Analysis of learning goal on each prompt.

Model P1 P2 P3 P4 P5 P6 P7 P8

scoring experts .648 .608 .592 .638 .651 .535 .484 .616
ranking experts .630 .583 .636 .656 .683 .575 .579 .514
ordered experts .675 .617 .654 .668 .686 .600 .528 .560

Table 7: Analysis of expert type on each prompt.

Model Overall T1 T2 T3 T4 T5 T6 T7 T8

prompt as query .631 .607 .547 .575 .552 .478 .628 .593 .645
essay as query .678 .627 .603 .634 .601 .522 .638 .610 .658

Table 8: Analysis of query type on each trait.

Model Overall T1 T2 T3 T4 T5 T6 T7 T8

rank→score .633 .595 .581 .620 .619 .525 .592 .588 .611
score→rank .649 .605 .568 .577 .553 .506 .622 .605 .646

Table 9: Analysis of experts’ order on each trait.

Model Overall T1 T2 T3 T4 T5 T6 T7 T8

scoring experts .632 .603 .571 .628 .612 .509 .608 .591 .628
ranking experts .666 .603 .569 .585 .567 .512 .613 .603 .628
ordered experts .678 .627 .603 .634 .601 .522 .638 .610 .658

Table 10: Analysis of expert type on each trait.

gain. The incorporation of RK (ranking loss) fur-
ther enhances scoring accuracy, however, we ob-
serve a performance drop on Prompt 8. We hy-
pothesize that this decline is due to the open-ended
nature of Prompt 8, where responses are based on
personal experiences, making direct quality rank-
ing inherently challenging. This observation un-
derscores the importance of selecting appropriate
features for different prompt types. To address
this, we integrate KV to fine-tune the second-layer
decoder as a feature selector, effectively reducing
scoring sensitivity across prompts.

Furthermore, we investigate the role of prompt
features in our model. While the introduction of PP
does not improve overall performance, it enhances
scoring consistency across prompts. This suggests
that prompt adherence is crucial for reliable scoring.
The introduction of OSE yields the most substan-
tial performance gain, confirming that structuring
the scoring process into specialized components -
scoring expert, ranking expert, and adherence ex-
pert effectively improves scoring accuracy. At th
final, we add MoE on OSE to construct MOOSE.
Both ORE and MOOSE show excellent results in
cross-prompt essay trait scoring. They achieve an
average QWK of 0.638 and 0.642, respectively,
which set the new SoTA on the ASAP++ dataset.

4.4 Analysis of Cross-Prompt Scoring

In this section, we analyze and discuss three key as-
pects of cross-prompt scoring, which are query se-
lection, scoring cue retrieval, and expert decoders.

Query Type Table 5 compares using an essay
or a prompt as a query. Results show that essay
queries consistently improve performance, espe-
cially mitigating the underperformance of prompt

queries on narrative prompts (P7-P8). We infer
that, when the prompt serves as the query while the
essay is treated as the value, the model essentially
learns the distribution of prompt-related features
within the essay. This approach tends to excel when
the prompt strongly dictates the writing direction,
but suffers for more open-ended topics. In such
cases, essays under the same prompt may exhibit
large intra-class variation, which cannot be effec-
tively learned from the limited prompt distribution
alone. Because there are significantly more essays
than prompts, using the essay as the query enables
the model to learn a more generalized distribution.
Consequently, prompt-based queries achieve their
best performance on highly topic-focused argumen-
tative prompts (P1–P2), show only moderate effec-
tiveness on partially constrained response prompts
(P3–P6), and fail to capture the full spectrum for
more open-ended narrative prompts (P7–P8).

Scoring Cue Retrieval Table 6 examines Query
Detach (QD), which reformulates learning as a scor-
ing cue retrieval task. QD yields slight but consis-
tent improvements, enhancing robustness in cross-
prompt AES settings. This confirms that making
the model learning to select scoring cues lead the
model more robust when the prompts are scarce.

Expert Decoders Table 7 presents results of dif-
ferent type of expert decoders. OSE outperforms
other combinations and shows strong consistency.
Ranking experts perform poorly on argumentative
prompts (P1-P2) but excel when reference materi-
als are available (P3-P6). Narrative questions are
closely related to personal experiences according to
the subject matter, so scoring experts and ranking
experts have their own strengths in different topics.
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4.5 Analysis of Trait Scoring
In this section, we analyze and discuss serveral
key different between our proposed method and
existing method in cross-prompt trait scoring.

Query Type Table 8 compare “prompt as query”
with “essay as query”. The result shows that “essay
as query“ increase scoring ability in all of the traits.
The trait with the smallest difference is prompt
adherence. This suggests that using the prompt as a
query relies too heavily on the relationship between
the prompt and the essay.

Order of Experts Table 9 shows the results of
swapping the order of experts. It is obvious that the
scoring of the traits important for response prompts
(PA, Lang, and Nar) perform better when perform-
ing ranking experts at last. The scoring of the traits
that are important for argumentative prompts (Org,
WC, SF, Conv) perform better when performing
scoring experts at last. This is consistent with the
conclusions in cross-prompt scoring analysis.

Expert Decoders Finally, Table 10 summarizes
how different expert combinations perform across
various decoders. The proposed ordered scoring
experts achieve the best results for all traits, con-
firming that imitates the human scoring process is
a promising strategy for AES. Notably, the ranking
expert exhibits weaker performance on WC and
SF, primarily due to prompt 8. This underscores
an inherent issue with the ranking expert approach:
when the prompt type in the training data differs
substantially from that in the test data, the relative-
quality features it learns do not generalize. Taken
together with the ranking expert’s less favorable
performance on argumentative prompts, these find-
ings highlight the need for additional research on
loss functions that more effectively capture relative
essay quality in a broader range of scenarios.

4.6 Visualization of Mixture of Experts
Figure 5 visualizes the outputs of the gating func-
tions when using prompt features to guide gating
functions. The darker the color, the higher the
probability of selecting tokens refined by scoring
experts as input for ranking experts. When prompt
feature is used as guidence, the choice of experts is
highly correlated with the prompt type. For Nara-
tive prompts (P7–P8), the probability of selecting
refined tokens is the highest, followed by Argumen-
tative prompts (P1–P2), while Response (Source-
Dependent) prompts (P3–P6) almost completely

Prompt 1

Prompt 2

Prompt 3

Prompt 4

Prompt 5

Prompt 6

Prompt 7

Prompt 8

Figure 5: Outputs of the gating functions when using
prompt feature as keys and values.

select original tokens. The result is consistent with
previous observations. Narative prompts are more
open-ended and require high-level semantic fea-
tures to determine the relevance between essays
and prompts. Argumentative prompts have positive
and negative opinions, so sometimes high-level se-
mantic features are needed to assist in determining
the relevance between essays and prompts. For
Response (Source-Dependent) prompts, since the
reference source of the essay is specified, using the
essay itself can highly reflect the relevance between
the essay and the prompt.

5 Conclusions

This paper proposes an AES framework – MOOSE,
that imitates the scoring process of human experts
for cross-prompt essay trait scoring. MOOSE aims
to learn robust content features that generalize to
unseen prompts while predicting corresponding
trait scores to guide language learning. To imitate
the human scoring process, we design three types
of experts: a scoring expert to assess the inherent
quality of the essay, a ranking expert to compare
relative quality across different essays, and an ad-
herence expert to measure the relation between the
essay-prompt pair. These experts are integrated
into an ordered mixture of experts.

To learn robust features, we introduce essay
query, query detach, and key value reuse tech-
niques, which enable the model to capture fine-
grained features and focus on retrieving useful scor-
ing cues. Thereby reducing overfitting to the seen
prompts. Consequently, MOOSE achieves impres-
sive performance on the ASAP++ cross-prompt
essay trait scoring task, surpassing current SoTA
approaches built on LLMs.
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Limitations

Our method enhances AES robustness in cross-
prompt scoring and multi-trait scoring, yet sev-
eral limitations persist. First, expert performance
varies across prompts, underscoring the need for a
dynamic selection mechanism that adapts scoring
strategies to prompt characteristics. Second, ex-
pert combination order significantly impacts trait-
specific scoring, highlighting the importance of
integrating trait-aware expert training.

Additionally, prompt types influence trait scor-
ing, yet our approach prioritizes cross-prompt ro-
bustness while overlooking prompt-type-specific
scoring nuances. Incorporating these factors into
loss functions remains an open challenge.

Lastly, our method struggles to capture high-
level semantic relationships. While LLMs do not
necessarily excel in multi-trait scoring, they outper-
form in holistic assessment, suggesting that human
raters consider hidden factors beyond predefined
traits. Enabling AES with self-reasoning capabil-
ities could bridge this gap by uncovering deeper
semantic structures.
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A Training Details

A.1 Hyper-Parameter Settings

Table 11 shows the hyper-parameters setting for
training our ablated and final models.

Hyper-Parameter Ablated Model Final Model

epoch 14 14
optimizer AdamW AdamW
learning rate 1e−5 1e−4

weight decay 0.0 0.001
batch size 8 8
encoder BERT-base BERT-base
chunk size {10,30,90,130} {10,30,90,130}
multi-head num 2 2
hidden dim 256 256
checkpoints 14 56
scoring loss .7Lmse+.3Lts .7Lmse+.3Lts

ranking loss .5Lmse+.2Lts+.3Lrank .5Lmse+.2Lts+.3Lrank

Table 11: Hyper-parameter settings.

A.2 List of Linguistic Features

We extract 86 dimension of linguistic features, and
the details are shown in Table 12.

Type Feature (86)

readability grades (9) Kincaid, ARI, Coleman-Liau,
Flesch Reading Ease, Gunning
Fog Index, LIX, SMOG Index,
RIX, Dale Chall Index.

sentence information (14) characters per word, syll per
word, words per sentence, sen-
tence per paragraph, type to-
ken ratio, chracters, syllables,
words, wordtypes, sentences,
paragraphs, long words, complex
words, complex words dc.

word usage (6) tobeverb, auxverb, conjunction,
pronoun, preposition, nominal-
ization.

sentence beginnings (6) pronoun, interrogative, article,
subordination, conjunction,
preposition.

part-of-speech (27) VB, JJR, WP, PRP$, VBN, VBG,
IN, CC, JJS, PRP, MD, WRB,
RB, VBD, RBR, VBZ, NNP,
POS, WDT, DT, CD, NN, TO,
JJ, VBP, RP, NMS.

other hand craft (24) mean word, word variance,
mean sentence, sentence vari-
ance, essay character length,
word count, prep comma, unique
word, clause per sentence, mean
clause length, nax clause in sen-
tence, spelling error, sentence av-
erage depth, average leaf depth,
automated readability, linsear
write, stop prop, positive sen-
tence prop, nagative sentence
prop, overall positivity score,
overall negativity score, number
of “,”, number of “.”.

Table 12: List of lingustic features.

B Information of ASAP++ Dataset

B.1 Statistical Information of ASAP++
The statistics of ASAP++ is shown in Table 13.

Prompt Essay Type Essay Num Avg Len Max Len

1 Argumentative 1785 350 960
2 Argumentative 1800 350 1173
3 Response 1726 150 415
4 Response 1772 150 395
5 Response 1805 150 474
6 Response 1800 150 502
7 Narrative 1569 300 732
8 Narrative 723 650 1146

Table 13: Statistical information of the ASAP++ dataset.

B.2 Prompt List of ASAP++
Prompts of ASAP++ are listed in Table 14.

ID Prompt

1 More and more people use computers, but not everyone agrees that this
benefits society. Those who support advances in technology believe
that computers have a positive effect on people. They teach hand-eye
coordination, give people the ability to learn about faraway places and
people, and even allow people to talk online with other people. Others
have different ideas. Some experts are concerned that people are
spending too much time on their computers and less time exercising,
enjoying nature, and interacting with family and friends.

2 Censorship in the Libraries "All of us can think of a book that we
hope none of our children or any other children have taken off the
shelf. But if I have the right to remove that book from the shelf –
that work I abhor – then you also have exactly the same right and
so does everyone else. And then we have no books left on the shelf
for any of us." –Katherine Paterson, Author Write a persuasive essay
to a newspaper reflecting your vies on censorship in libraries. Do
you believe that certain materials, such as books, music, movies,
magazines, etc., should be removed from the shelves if they are found
offensive? Support your position with convincing arguments from
your own experience, observations, and/or reading.

3 Write a response that explains how the features of the setting affect
the cyclist. In your response, include examples from the essay that
support your conclusion.

4 Read the last paragraph of the story.
"When they come back, Saeng vowed silently to herself, in the spring,
when the snows melt and the geese return and this hibiscus is budding,
then I will take that test again."
Write a response that explains why the author concludes the story with
this paragraph. In your response, include details and examples from
the story that support your ideas.

5 Describe the mood created by the author in the memoir. Support your
answer with relevant and specific information from the memoir.

6 Based on the excerpt, describe the obstacles the builders of the Empire
State Building faced in attempting to allow dirigibles to dock there.
Support your answer with relevant and specific information from the
excerpt.

7 Write about patience. Being patient means that you are understanding
and tolerant. A patient person experience difficulties without com-
plaining. Do only one of the following: write a story about a time
when you were patient OR write a story about a time when someone
you know was patient OR write a story in your own way about pa-
tience.

8 We all understand the benefits of laughter. For example, someone
once said, “Laughter is the shortest distance between two people.”
Many other people believe that laughter is an important part of any
relationship. Tell a true story in which laughter was one element or
part.

Table 14: Prompts of ASAP++ dataset.

C Experiment Details

C.1 Ablated Architectures
Figure 6 illustrates the architectures in Section 4.3.
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(f) F: D + Prompt-dependent Predictor
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Figure 6: Ablated architectures in Section 4.3, including (a) base predictor, (b) Query Detach (QD), (c) Dual-layer
Head (DH), (d) RanKing loss (RK), (e) Key-Value reuse (KV), (f) Prompt-dependent Predictor (PP), (g) Ordered
Scoring Experts (OSE), and (h) Mixture Of Orderd Scoring Experts (MOOSE).
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D How query detach (stop gradient)
works

The scoring cue retrieval mechanism in MOOSE is
highly related to the stop gradient operation, here
we make a brief description to show how stop gra-
dient works for MOOSE.

Stop gradient, also known as detach, is a com-
mon technique in training deep neural networks. It
works by cutting off the gradient flow from a spe-
cific layer, preventing it from being used to update
the weights and parameters of preceding layers.
Below, we outline the effects of stop-gradient in
different areas and its role in our work. In con-
trastive learning, stop gradient is often used to
prevent mode collapse or to avoid having feature
learning dominated by a small subset of neurons,
such as (Chen and He, 2021). In Large Language
Models (LLMs), it has been applied for progres-
sive learning of language modeling tasks (Meng
et al., 2021), independent layer updates (Deutch
et al., 2024), and reducing training costs (Chevalier
et al., 2023). The design of MOOSE is most similar
to (Chen and He, 2021) and (Deutch et al., 2024),
where stop-gradient is applied to the query branch
to enable progressive learning via ordered scoring
experts.

In standard Transformer training, both feature
learning (query) and updates to the elements used
for feature recomposition (values) occur simulta-
neously. However, in MOOSE, since the query
undergoes a stop gradient operation, it remains un-
changed and can be treated as a fixed input. In this
setting, the values effectively serve as the neces-
sary cues that transform the input into the targets.
After training, the input will produce the consis-
tent features and scoring cues through the trained
model. Since the usage of values is positively cor-
related with their relevance to both the query and
keys (which are identical to values), this mecha-
nism aligns with retrieval tasks in NLP. As a result,
we referred to this process as scoring cue retrieval.

E Efficiency of MOOSE

In terms of time efficiency, our method incurs lower
computational cost compared to standard encoder-
decoder models or large language models (LLMs).
The critical inference path of our model includes
BERT (12-layer Transformer), LSTM (sequence
length / chunk size), Trait Attention (1-layer Trans-
former), and MOOSE (3-layer Transformer), total-
ing 16 Transformer layers and LSTM steps of the
sequence length divided by chunk size. In compari-
son, encoder-decoder models like T5 have 12-layer
Transformer encoders and 12-layer Transformer
decoders, making both training and inference more
expensive. If using the auto-regressive approach
adopted by LLMs, the entire 12-layer Transformer
decoder needs to run for each step in the sequence,
resulting in a much higher inference cost.

The most expensive part of our architecture is the
Multi-chunk BERT. The computational complexity
of the Transformer is O(n2d + nd2), where n is
the sequence length and d the hidden dimension. A
chunked Transformer with chunk size k has com-
plexity O((n/k)k2d+kd2)) = O(nkd+nd2). In
typical NLP tasks where the sequence length n is
large, the complexity is dominated by sequence
length, and thus chunking has minimal impact on
overall inference speed. But in essay scoring, n is
relatively small, so the hidden dimension d domi-
nates the computational cost. Subsequent modules
do not significantly add to the inference overhead
because the multi-chunk BERT already uses atten-
tion pooling to reduce the sequence length.

For the ranking expert, training involves a cross-
essay ranking loss to learn fine-grained distinctions
between essays. At inference time, however, it
operates on a single essay and produces a score
prediction in real time.
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