
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1743–1770
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LANGSAMP: Language-Script Aware Multilingual Pretraining

Yihong Liu1,2,*, Haotian Ye1,2,*, Chunlan Ma1,2, Mingyang Wang1,2,3, and Hinrich Schütze1,2

1Center for Information and Language Processing, LMU Munich
2Munich Center for Machine Learning (MCML)

3Bosch Center for Artificial Intelligence
{yihong, yehao, chunlan, mingyang}@cis.lmu.de

Abstract

Recent multilingual pretrained language mod-
els (mPLMs) often avoid using language em-
beddings – learnable vectors assigned to indi-
vidual languages. However, this places a signif-
icant burden on token representations to encode
all language-specific information, which may
hinder language neutrality. To address this lim-
itation, we propose Language-Script Aware
Multilingual Pretraining (LANGSAMP), a
method that incorporates both language and
script embeddings to enhance representation
learning. Specifically, we integrate these em-
beddings into the output of the Transformer
blocks before passing the final representations
to the language modeling head for predic-
tion. We apply LANGSAMP to the contin-
ual pretraining of XLM-R (Conneau et al.,
2020) on a highly multilingual corpus cov-
ering more than 500 languages. The result-
ing model consistently outperforms the base-
line in zero-shot crosslingual transfer across
diverse downstream tasks. Extensive analysis
reveals that language and script embeddings
capture language- and script-specific nuances,
which benefits more language-neutral repre-
sentations, proven by improved pairwise co-
sine similarity. In our case study, we also
show that language and script embeddings can
be used to select better source languages for
crosslingual transfer. We make our code and
models publicly available at https://github.
com/cisnlp/LangSAMP.

1 Introduction

Encoder-only mPLMs are often regarded as uni-
versal text encoders (Cer et al., 2018; Huang et al.,
2019; Yang et al., 2020), where the sentence-level
or token-level representations are applied to various
downstream tasks across different languages (Wei
et al., 2021). One of the most attractive aspects of
these representations is their utility in crosslingual
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Figure 1: An illustration of LANGSAMP for a single
batch. Each text may come from different languages
and different scripts. Language and script embeddings
are added to the transformer output before feeding into
the language modeling head. This setup improves the
language neutrality of the representations as the auxil-
iary embeddings share the burden by encoding some
language- and script-specific information useful for de-
coding specific tokens in masked language modeling.

transfer (Zoph et al., 2016; Wu and Dredze, 2019;
Artetxe et al., 2020a). That is, representations from
a single source language can be used to fine-tune
a multilingual task-specific model (e.g., an mPLM
+ a task-specific classifier). The fine-tuned model
can be applied directly to other languages, without
further training. Such a pipeline is particularly use-
ful for low-resource languages, where training data
is often scarce (Artetxe et al., 2020b).

The effectiveness of this pipeline depends on
the transferability of crosslingual representations.
However, previous studies have shown that the rep-
resentations from recent mPLMs encode a lot of
language- and script-specific information (Datta
et al., 2020; Chang et al., 2022; Wen-Yi and Mimno,
2023). This is generally not advantageous, as lan-
guage neutrality, i.e., representations from different
languages share a unified subspace, is important
for effective crosslingual transfer (Libovický et al.,
2020; Chang et al., 2022; Hua et al., 2024). While
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some approaches attempt to post-align these rep-
resentations (Cao et al., 2020; Pan et al., 2021;
Liu et al., 2024b; Xhelili et al., 2024), limited ef-
forts have focused on enhancing language neutral-
ity from the architectural perspective of mPLMs
during pretraining.

Early mPLMs, such as XLM (Conneau and Lam-
ple, 2019), leverage language embeddings – learn-
able vectors assigned to different languages. These
embeddings are added to the token embeddings be-
fore being fed into the transformer (Vaswani et al.,
2017) blocks, aiming to alleviate the burden of en-
coding language-specific information within the
token embeddings. Language embeddings can also
guide generation toward the correct target language
in machine translation (Conneau and Lample, 2019;
Song et al., 2019; Liu et al., 2022). However, more
recent mPLMs, such as XLM-R (Conneau et al.,
2020) and mBERT (Devlin et al., 2019), have dis-
carded these embeddings. The two primary rea-
sons are that (1) mPLMs are expected to have a
single, unified parameter set for all languages, and
(2) they need to function seamlessly as universal
text encoders without requiring language IDs as
input. However, the removal inevitably reduces the
language neutrality of token embeddings and rep-
resentations (contextual token embeddings), which
may negatively impact crosslingual transfer.

To address this limitation, this work proposes
Language-Script Aware Multilingual Pretraining
(LANGSAMP), a method that incorporates both
language and script embeddings to facilitate better
representation learning. Instead of adding these em-
beddings to the token embeddings before feeding
them into the transformer blocks, we add them to
the output of the transformer blocks (final contex-
tual token embeddings) before feeding them into
the language modeling head, as shown in Figure
1. In the pretraining phase, language and script IDs
are required to obtain language and script embed-
dings, offloading the burden and helping decode
specific tokens in masked language modeling. Af-
ter pretraining, the backbone (token embeddings
and transformer blocks) can function seamlessly as
a universal text encoder, which can be fine-tuned
together with a task-specific classifier for down-
stream tasks, without any language or script IDs as
input, which are the same as most recent mPLMs.

To validate our approach, we continually pretrain
XLM-R (Conneau et al., 2020) using LANGSAMP
on Glot500-c (ImaniGooghari et al., 2023), a multi-
lingual dataset containing over 500 languages. We

evaluate the resulting model across a diverse set of
downstream tasks, including sentence retrieval, text
classification, and sequence labeling, consistently
achieving superior performance compared to the
baseline. We show that better language neutrality
is achieved – LANGSAMP improves the pairwise
cosine similarity across languages. Additionally,
we observe that language and script embeddings en-
capsulate typological features, making their similar-
ities a useful resource for selecting optimal source
languages in crosslingual transfer.

Our main contributions are as follows: (i) We
propose LANGSAMP, an effective multilingual
pretraining method to improve the language neu-
trality of representations. (ii) We conduct exten-
sive experiments across a spectrum of downstream
tasks, demonstrating that our method consistently
improves crosslingual transfer performance. (iii)
Our case study shows that language embeddings, as
a byproduct, can effectively assist in selecting the
optimal source language for crosslingual transfer.

2 Related Work

2.1 Multilingual Pretrained Language Models

Multilingual pretrained language models (mPLMs)
are models that are trained on many languages, with
one or multiple self-supervised objectives, such as
masked language modeling (MLM) (Devlin et al.,
2019) or causal language modeling (Radford et al.,
2019). These models can be generally classified as
encoder-only (Devlin et al., 2019; Conneau et al.,
2020; Liang et al., 2023), encoder-decoder (Liu
et al., 2020; Fan et al., 2021; Xue et al., 2021), and
decoder-only models (Lin et al., 2022; Shliazhko
et al., 2022; Scao et al., 2022). Decoder-only mod-
els that have considerably many parameters and
are pretrained on a lot of data are also referred to
as large language models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023; Üstün et al., 2024),
which are good at natural language generation
tasks, typically for high- and medium-resource lan-
guages. In parallel, some recent encoder-only mod-
els attempt to scale horizontally, i.e., cover more
languages, especially low-resource ones (Ogueji
et al., 2021; Alabi et al., 2022; ImaniGooghari et al.,
2023; Liu et al., 2024a). These highly multilingual
encoder-only models are particularly good at under-
standing tasks in a zero-shot crosslingual fashion.
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2.2 Language Embeddings

Language embeddings are vectors that explicitly
or implicitly capture the linguistic characteristics
of languages. Early works construct such embed-
dings using prior knowledge of the languages, re-
sulting in vectors where each dimension encodes a
specific linguistic feature (Östling, 2015; Ammar
et al., 2016; Littell et al., 2017). However, such
features have to be manually defined and may be
unavailable for less-studied languages (Yu et al.,
2021). Therefore, researchers also explore learn-
ing language embeddings directly from parallel
corpora (Malaviya et al., 2017; Östling and Tiede-
mann, 2017; Bjerva and Augenstein, 2018; Tan
et al., 2019; Liu et al., 2023; Chen et al., 2023) or
monolingual corpora (Conneau and Lample, 2019;
Yu et al., 2021). This is usually done by assigning
an ID to each language, initializing a fixed-length
learnable vector, and integrating the vector into the
input from that language. The embeddings can cap-
ture linguistic features and help crosslingual tasks,
e.g., guiding language-specific generation in ma-
chine translation in XLM (Conneau and Lample,
2019). This line of approaches requires language
IDs as input for both pretraining and downstream
fine-tuning. In contrast, language embeddings are
only leveraged in our pretraining. The backbone
can be used as a universal text encoder without
language IDs for fine-tuning on downstream tasks.

3 Methodology

We present LANGSAMP, an approach that incor-
porates both language and script embeddings to
facilitate learning more language-neutral represen-
tations in multilingual pretraining. LANGSAMP
preserves the same architecture as the most recent
multilingual encoder-only models, except for re-
quiring auxiliary language and script IDs/embed-
dings in pretraining. In the fine-tuning stage, these
auxiliary IDs and embeddings are not required. We
introduce the key components in the following.

3.1 Language and Script Embeddings

Language and script embeddings are introduced to
share the token representations’ burden of encod-
ing language- and script-specific information. Let
ELang ∈ RL×D and EScript ∈ RS×D be the lan-
guage and script embeddings, respectively, where
L is the number of languages, S is the number
of scripts, and D is the embedding dimension of
the model. We use ELang

l (resp. EScript
s ) to de-

note the embedding of a specific language l (resp.
script s). Similar to token embeddings (which rep-
resent relations between tokens in vector space),
the language/script embeddings are also expected
to capture structural and typological similarities of
languages (§5.2) and be useful for selecting good
source language for crosslingual transfer (§5.4).

3.2 Language-Script Aware Modeling

In the standard MLM pretraining, Transformer
blocks generate the final representation at a masked
position. Subsequently, this representation is fed
to the language modeling head to reconstruct the
original token. Since the original token is used
by a specific language and written in a specific
script, language- or script-specific information is
particularly necessary to decode this token. From
this perspective, the Transformer output used for
decoding is not language-neutral by nature. Our
intuition is that we can ease the decoding by giving
hints (e.g., the token should be generated in a spe-
cific language or script) to the language modeling
head. In this way, the output of the Transformer
blocks does not need to encode much language-
and script-specific information, and can thus be
more language-neutral. Inspired by this, we add
language and script embeddings to the output of
Transformer blocks and feed the resulting represen-
tations to the language modeling head for decoding,
as shown in Figure 2.

Formally, let a training instance (an input sen-
tence) be X = [x1, x2, · · · , xn] that comes from
language l and is written in script s. We feed
X into Transformer blocks and obtain the final
contextualized embeddings from the last layer:
H = [h1,h2, · · · ,hn]. We then add the language
and script embedding to these outputs to form the
final representations: oi = hi +ELang

l +EScript
s .

The final representations at the masked positions
are used to decode the original tokens in MLM:

LMLM = −
∑

i∈M
logPMLM (xi|oi)

where M is the set of masked positions in X and
PMLM (xi|oi) is the probability of decoding the
original token xi given the final representation oi,
which is computed by the language modeling head.
Since ELang

l and EScript
s provide language and

script-specific information, we expect that hi will
be more language-neutral (§5.3), which is benefi-
cial to zero-shot crosslingual transfer (§4.3).
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Figure 2: Illustration of LANGSAMP applied to a German sentence (left) and a Ukrainian sentence (right), both
meaning “I like the cute cat". Language and script embeddings are added to the outputs from the transformer block.
The resulting representation is used to predict the original tokens at the [mask] positions in MLM training.

3.3 Fine-tuning on Downstream tasks

Since we only leverage language and script embed-
ding in the pretraining for MLM, the core architec-
ture (token embeddings + Transformer blocks) re-
mains the same as most mainstream mPLMs, such
as XLM-R. In this way, we do not need any lan-
guage or script IDs as input to obtain the Trans-
former output, i.e., the final contextualized em-
beddings H . This means our pretrained model
can be fine-tuned in the standard way in the NLP
pipeline. Specifically, for any downstream tasks
that require a task-specific classifier (either token-
level or sequence-level tasks), we can feed the final
contextualized embeddings H = [h1,h2, · · · ,hn]
to the classifier and update the model parameters
according to the fine-tuning objective, where lan-
guage or script embeddings are not participating
at all. In addition, as H is more language-neutral
thanks to LANGSAMP, we expect the representa-
tions to boost zero-shot crosslingual transfer (§4.3).

It is important to note that we do not increase
the number of parameters used to compute token
or sentence representations, as the auxiliary lan-
guage/script embeddings are employed only during
pretraining. This contrasts with prior work, which
often introduces additional components – such as
Adapters – during downstream fine-tuning (Pfeif-
fer et al., 2022; Balne et al., 2024). Consequently,
any improvements in downstream task performance
can only be attributed to enhanced representations
learned by the Transformer itself, rather than to
added model capacity because of more parameters.

4 Experiments

4.1 Setups
Training Corpora and Tokenizer We use
Glot500-c (ImaniGooghari et al., 2023), a corpus
that has monolingual data from more than 500 lan-
guages written in 30 different scripts. We treat
each language-script as a separate entity and refer
to those covered by XLM-R (Conneau et al., 2020)
as head languages, whereas the remaining are tail
languages (also low-resource languages). We use
the tokenizer of Glot500-m (ImaniGooghari et al.,
2023), which is a SentencePiece Unigram tokenizer
(Kudo and Richardson, 2018; Kudo, 2018) whose
vocabulary is merged from the subwords in XLM-R
and new subwords learned from Glot500-c.

Continued pretraining We use the weights from
XLM-R to initialize our LANGSAMP model for
MLM pretraining. Language and script embed-
dings are randomly initialized with dimensions
R610×768 and R30×768 respectively. We contin-
ually train our model on Glot500-c, where we
sample data from a multinomial distribution with
a temperature of 0.3, to increase the amount of
training instances of low- and medium-resource
languages. We use AdamW optimizer (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with
(β1, β2) = (0.9, 0.999) and ϵ = 1e-6. The initial
learning rate is set to 5e-5. The effective batch size
is 1,024 in each training step, where the gradient
accumulation is 8 and the per-GPU batch size is
32. We train the model on 4 NVIDIA RTX6000
GPUs. Each training instance in a batch contains
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tail head Latn non-Latn all

Baseline LANGSAMP Baseline LANGSAMP Baseline LANGSAMP Baseline LANGSAMP Baseline LANGSAMP

SR-B 36.9 (0.0) 39.5 (0.0) 60.6 (0.0) 61.3 (0.0) 40.7 (0.0) 42.8 (0.0) 51.2 (0.0) 53.5 (0.0) 42.9 (0.0) 45.1 (0.0)
SR-T 56.9 (0.0) 58.6 (0.0) 74.8 (0.0) 76.1 (0.0) 67.5 (0.0) 68.7 (0.0) 73.7 (0.0) 75.6 (0.0) 69.7 (0.0) 71.1 (0.0)
Taxi1500 47.1 (4.8) 50.8 (2.4) 59.9 (2.9) 61.2 (1.2) 48.2 (4.6) 51.7 (2.1) 58.8 (3.1) 60.1 (1.7) 50.3 (4.2) 53.4 (2.0)
SIB200 69.0 (1.4) 70.2 (1.9) 82.2 (1.4) 82.6 (1.2) 72.1 (1.3) 73.1 (1.8) 81.1 (1.5) 81.7 (1.2) 75.0 (1.3) 75.9 (1.6)
NER 60.1 (0.6) 60.8 (0.8) 64.0 (0.6) 64.1 (0.6) 67.0 (0.5) 67.6 (0.6) 53.9 (0.7) 53.9 (0.5) 62.2 (0.5) 62.6 (0.6)
POS 61.3 (1.0) 61.4 (0.9) 76.0 (0.4) 76.2 (0.4) 74.6 (0.5) 74.5 (0.4) 66.2 (1.0) 66.8 (0.8) 71.5 (0.6) 71.6 (0.5)

Table 1: Performance of LANGSAMP and baseline on six downstream tasks across five random seeds. We report
the performance by grouping languages according to two characteristics: (1) whether it is a head or a tail language,
and (2) whether it is written in Latin script or non-Latin script. The average performance within each group and
the standard deviation (in parentheses) are computed. LANGSAMP consistently achieves on-par performance or
outperforms the baseline across all groups and downstream tasks. Bold: best result for each group in each task.

sentences from the same language-script which
are concatenated to a chunk of 512 tokens. Each
batch contains instances from different language-
scripts. We store checkpoints every 5K steps and
apply early stopping with the best average perfor-
mance on downstream tasks. We set the maximum
steps to 150K. The training takes about 4 weeks.

Baseline To validate LANGSAMP, we create a
baseline where language and script embeddings are
not used. This baseline can be regarded as a repro-
duction of Glot500-m (ImaniGooghari et al., 2023).
For a fair comparison, the training hyperparameters
and training data (100% data of Glot500-c) are the
same as LANGSAMP. However, in our ablation
study §5.1, due to a constrained computing bud-
get, we cannot continually pretrain model variants
on full Glot500-c for validating each component
individually (with/without language or script em-
beddings). Instead, we create such variants and pre-
train them using a small portion (5%) of Glot500-c.
As a result, the baseline model in Table 1 is differ-
ent from the vanilla model in Table 2.

4.2 Downstream Tasks

We consider the following three evaluation types,
with two datasets for each type. The evaluation is
done in an English-centric zero-shot crosslingual
transfer style for evaluation types that require fine-
tuning. That is, we first fine-tune the pretrained
model on the English train set, then select the best
checkpoint on the English development set, and fi-
nally evaluate the best checkpoint on the test sets of
all other languages. For Sentence Retrieval, which
does not involve any fine-tuning, we simply use En-
glish as the retrieval query language. For all tasks,
only a subset of languages (head and tail languages)
supported by Glot500-c are considered. We show
the detailed information of the used dataset and

hyperparameter settings in §A. We introduce the
evaluation types and datasets in the following.

Sentence Retrieval. We use Bible (SR-B) and
Tatoeba (Artetxe and Schwenk, 2019) (SR-T). The
pairwise similarity for retrieving the target sen-
tences is calculated using the mean pooling of con-
textualized word embeddings at the 8th layer.

Text Classification. We use Taxi1500 (Ma et al.,
2023) and SIB200 (Adelani et al., 2024). The for-
mer is a dataset based on the Bible, whereas the
latter is based on FLORES-200 (Costa-jussà et al.,
2022) with more modern genres like technology.

Sequence Labeling. We use WikiANN for
named entity recognition (NER) (Pan et al., 2017)
and Universal Dependencies (de Marneffe et al.,
2021) for Part-Of-Speech (POS) tagging.

4.3 Results and Discussion

We evaluate the LANGSAMP model and baseline
to understand how the integration of language and
script embeddings influences crosslingual transfer.
We group the transfer target languages based on
two characteristics: (1) whether it is a head or tail
language, and (2) whether it is written in Latin or
a non-Latin script. This grouping aims to directly
identify the effectiveness of LANGSAMP on low-
resource languages and languages written in a less
common script. The results are shown in Table 1.

Both tail and head languages benefit. We ob-
serve consistent improvements in tail and head lan-
guages across tasks. The enhancement is more ob-
vious in tail languages. For example, LANGSAMP
improves the performance by 7% for tail languages
vs 1% for head languages in SR-B. A similar phe-
nomenon can also be seen for other tasks. This
pattern indicates that LANGSAMP can be more
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SR-B SR-T Taxi1500 SIB200 NER POS

tail head all tail head all tail head all tail head all tail head all tail head all

vanilla model 11.9 56.4 23.2 46.0 77.7 68.6 18.1 58.6 28.4 56.1 83.0 68.3 55.1 62.8 59.3 49.9 75.7 67.8
w/ ELang 13.1 57.9 24.5 49.1 79.0 70.5 18.3 58.5 28.5 57.2 82.7 68.8 55.2 63.0 59.5 49.9 75.8 67.8
w/ EScript 12.5 57.4 23.9 48.3 78.4 69.8 18.5 57.0 28.2 56.6 82.1 68.2 55.1 62.4 59.0 50.8 76.2 68.4
w/ ELang and EScript 13.4 58.7 24.9 49.1 79.5 70.8 20.6 58.8 30.3 57.9 83.0 69.3 54.9 61.6 58.6 49.7 75.6 67.6

Table 2: Ablation study. We investigate the effectiveness of language and script embeddings on downstream
performance. Note that the vanilla model and w/ELang and EScript are different from Baseline and LANGSAMP
in Table 1 because of the smaller pretraining data size. By including both types of embeddings, the model achieves
the overall best performance among all variants. Bold (underlined): best (second-best) result for each column.

helpful for those tail languages, for which the train-
ing data is scarce. With the help of language embed-
dings sharing the burden, the LANGSAMP model
can have more language-neutral representations for
these languages, resulting in better performance.

Both non-Latin and Latin languages benefit.
We observe similar consistent improvements when
grouping languages into Latin or non-Latin lan-
guages. Different from the trend seen in tail/head
groups, we see that no group shows an obvious
larger enhancement compared to the other group.
This can be explained by the fact that head and tail
languages are distributed more equally in Latn and
non-Latn groups. In addition, the improvements
indicate the incorporation of script embeddings is
helpful. By decoupling some script-specific infor-
mation from the representations, the output gener-
ated by the backbone is more script-neutral, leading
to better crosslingual transfer across scripts.

Improvements can vary slightly across tasks.
We observe more consistent large improvements
for sequence-level tasks – retrieval and classifica-
tion – where LANGSAMP outperforms the base-
line in all groups. However, on sequence label-
ing tasks, LANGSAMP achieves very close perfor-
mance to the baseline. For example, LANGSAMP
scores are 0.1 less compared to the baseline on
NER. This could be related to the difficulty of
the tasks: both NER and POS are relatively easy
tasks, and models can transfer well in prevalent
classes, e.g., nouns, through shared vocabulary
(ImaniGooghari et al., 2023; Liu et al., 2024a).
Therefore, decoupling language- or script-specific
information from the Transformer output can be
less helpful for these tasks. Nevertheless, the over-
all improvements across tasks indicate the superi-
ority of LANGSAMP compared with the baseline.

5 Analysis

5.1 Ablation Study

In the ablation study, we want to explore the ef-
fectiveness of language embeddings and script em-
beddings individually. However, due to a limited
computation budget, we cannot run experiments on
the full corpora for each variant. Therefore, we se-
lect 5% data for each language from Glot500-c and
continually pretrain XLM-R using the same hyper-
parameters used in the main experiments described
in §4.1. Specifically, we consider four variants:
a) model without language/script embeddings; b)
model with only language embeddings; c) model
with only script embeddings; and d) model with
both language and script embeddings. The perfor-
mance of each variant is shown in Table 2.

Either language or script embeddings help.
The vanilla model achieves the overall worst per-
formance among all model variants. As long as
language or script embeddings are included, we
generally observe a consistent improvement across
all downstream tasks. This indicates that both lan-
guage and script embeddings can share the burden
of encoding too much language- and script-specific
information in the token representations. As a re-
sult, the representations generated by the model
variants with language or script embeddings are
more language-neutral, benefiting the crosslingual
transfer. The best overall performance is achieved
when both language and script embeddings are
used, suggesting that decoupling both language-
and script-specific information would be the best
option for improving crosslingual transfer.

Improvement varies across task types. Simi-
lar to the findings in §4.3, we observe that includ-
ing the auxiliary embeddings is very helpful for
sequence-level tasks, especially sentence retrieval,
where we observe the highest enhancement, while
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Figure 3: PCA visualizations of head language embeddings (left) and script embeddings (right). We see that some
related languages and scripts are close to each other, indicating that they encode language- and script-specific
information. Data imbalance may have caused some languages/scripts with limited data to appear as outliers.

less helpful for token-level tasks. It is also no-
ticeable that including language embeddings is the
most effective for sentence retrieval (either best or
the second best per column). On the other hand,
the sequence labeling task does not enjoy large im-
provements: most model variants achieve on-par
performance with each other. The reason has been
discussed in §4.3: NER and POS are relatively
simple tasks since models can transfer easily in
prevalent classes. Nevertheless, the overall results
show the effectiveness of the auxiliary embeddings.

5.2 Qualitative Exploration: Visualization

We visualize language and script embeddings in
Figure 3. Only head language embeddings are cho-
sen for better readability. We observe that similar
or related languages are located close to each other.
For example, cmn and zho (simplified and tradi-
tional Chinese, lower left) are closest to each other,
as are pes (Iranian Persian) and prs (Dari). The
languages that are mutually influenced by Chinese
to a large extent, jpn, kor, and vie, are also close
to each other. Most European languages, as well as
Indian languages that belong to the Indo-European
family, form a rather dense cluster in the middle.

In the plot on the right, most scripts of the In-
dian subcontinent are found close to each other
(Deva, Telu, Mlym, Taml, Knda, Sinh, Beng),
despite some outliers (e.g., Gujr and Guru), prob-
ably due to the small amount of data that is written
in these scripts. Hani and scripts of languages that
are mutually influenced (Hang and Jpan) are not
far from each other. The same is true for two very
related scripts, Thai and Laoo. In summary, the
learnable language and script embeddings can cap-
ture language- and script-specific information in
the training, which can be helpful for the language-
neutrality of the output of transformer blocks.

Figure 4: Similarity improvement (by percentage) from
baseline to LANGSAMP in terms of the pairwise cosine
similarity. Similarity is increased for each pair, indicat-
ing better language neutrality of the representations.

5.3 Quantitative Exploration: Similarity

We expect that LANGSAMP can generate more
language-neutral representations, meaning that
representations of semantically equivalent sen-
tences from different languages are similar. To
evaluate this, we selected 10 high-resource lan-
guages that differ typologically and use a diverse
set of scripts: eng_Latn, rus_Cyrl, zho_Hani,
arb_Arab, hin_Deva, jpn_Jpan, tur_Latn,
spa_Latn, ind_Latn, and swa_Latn. We calcu-
lated the pairwise cosine similarity of sentence rep-
resentations using 100 randomly sampled parallel
sentences from SR-B. Sentence representations are
obtained by mean-pooling the token representa-
tions at the 8th layer, followed by subtracting the
language centroid (the average of all 100 sentence
representations for that language). We report the
pairwise cosine similarity in Figure 5 in §B and
show the improvement (by percentage) in Figure 4.

We can observe that the similarity between any
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tail head Latn non-Latn all

English Donor English Donor English Donor English Donor English Donor

Taxi1500 47.3 48.3 59.1 60.3 48.4 49.0 58.1 60.5 50.2 51.2
SIB200 67.9 67.9 81.2 81.6 71.0 71.1 80.3 80.6 74.0 74.2
NER 61.2 61.7 64.1 65.6 67.5 66.9 54.6 58.5 62.8 63.8
POS 63.2 53.8 77.0 72.3 75.5 68.4 68.1 63.6 72.8 66.6

Table 3: Performance of LANGSAMP, using English vs the closest donor language (based on cosine similarity
induced from language embeddings) as the source language for zero-shot crosslingual transfer. Each number is the
average over all target languages in a class. Bold: the result that is better for an English/Donor comparison.

Taxi1500 SIB200 NER POS

tha eng jpn eng jpn eng jpn eng jpn
63.8 63.8 85.4 85.7 2.1 10.2 58.3 27.5

yue eng zho eng zho eng zho eng zho
55.4 67.7 - - 25.7 73.5 42.6 80.9

san eng hin eng hin eng hin eng hin
- - 72.9 76.6 38.4 53.4 25.5 32.7

urd eng hin eng hin eng hin eng hin
- - 79.1 80.6 65.1 76.8 69.7 89.7

lin eng swh eng swh eng swh eng swh
47.1 54.7 68.2 73.3 47.6 55.9 - -

run eng swh eng swh eng swh eng swh
48.0 55.2 65.2 72.7 - - - -

Table 4: Languages with large improvements when us-
ing the closest donor language. In each task, the first/sec-
ond column indicates results using English/the donor
language as the source language. “-” indicates the lan-
guage is not covered by the task. Bold: best result for
each language in each task.

two languages is improved in LANGSAMP. The
enhancement is especially noticeable for typolog-
ically distinct languages using different scripts.
For example, arb_Arab is in a different language
family and written in a different script com-
pared to the other 9 languages; the similarity in-
volving arb_Arab is greatly improved: 4.7% for
eng_Latn and 4.1% rus_Cyrl. Importantly, since
LANGSAMP does not incorporate additional paral-
lel data, this improvement is solely attributed to the
inclusion of language and script embeddings during
pretraining. This indicates that LANGSAMP effec-
tively generates more language-neutral representa-
tions by decoupling language- and script-specific
features into auxiliary embeddings.

5.4 Case Study: Source Language Selection

Previous studies show language similarities have
been useful for selecting good source languages
for crosslingual transfer (Lin et al., 2019; Lauscher
et al., 2020; Nie et al., 2023; Wang et al., 2023b,a;

Lin et al., 2024). We expect this to also apply to
the similarities induced by our language embed-
dings. Therefore, we conduct a case study and
use the languages mentioned in §5.3 as the donor
languages. When performing the downstream task
for a specific target language, instead of always
using English as the source language, we select the
donor language that is the most cosine-similar to
the target language. We evaluate the LANGSAMP
model on Taxi1500, SIB200, NER, and POS in a
zero-shot crosslingual transfer style. The aggre-
gated results are reported in Table 3, and we select
representative target languages that benefit from
choosing a good donor language in Table 4.

Effects of donor vary across tasks. Our results
suggest that the performance gain from using a
donor language varies across tasks. The gain in the
text classification task is more consistent than in
the sequence labeling task. We assume the primary
reason is that the training data for NER and POS
are not parallel, and the size of the training data
is highly variable across languages. For example,
English has much more data than some of the other
donor languages for these two tasks.

Non-Latin languages benefit more. For the text
classification task, greater improvements can be ob-
served in non-Latin script languages than in Latin
script languages. This reflects previous findings
that non-Latin script languages are less represented
in mPLMs (Muller et al., 2021) and indicates the
effectiveness of leveraging language embeddings
in selecting better donor languages for them.

Donor is frequently from the same family. We
find that language embeddings frequently identify
a donor language of the same family as the target
language, leading to a large performance improve-
ment over English as the source. For example,
as shown in Table 4, zho_Hani as a donor lan-
guage for yue_Hani leads to large performance
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gains on all three tasks. Similar gains are seen
using hin_Deva for san_Deva. Positive effects
can also be found across scripts, as in the case of
using hin_Deva for urd_Arab, two very similar
languages written in different scripts.

Interesting cases of unrelated donors. We also
notice some interesting cases where the closest
donor language is not or only partially related to
the target language, but nevertheless aids transfer
performance as shown in Table 4. For example,
jpn_Jpan has a positive effect for tha_Thai. Simi-
larly, for tuk_Latn, using rus_Cyrl as the source
achieves better transfer performance than English.

6 Conclusion

We propose LANGSAMP, a multilingual pretrain-
ing approach that leverages auxiliary language
and script embeddings to facilitate more language-
neutral representations by offloading the burden of
encoding language- and script-specific information
within the Transformer outputs. These embeddings
are added to the output of the transformer blocks
before being fed into the language modeling head
for decoding. In this way, we keep the model struc-
ture simple, allowing it to function as a universal
text encoder, without requiring language or script
IDs as input, while easing the burden of the output
encoding too much language- and script-specific
information. Through extensive experiments, we
show LANGSAMP consistently outperforms the
baseline on various downstream tasks, especially
in sequence-level tasks. Our ablation study con-
firms the effectiveness of both language and script
embeddings. LANGSAMP exhibits improved lan-
guage neutrality, as reflected by increased pairwise
similarity across all donor languages. Furthermore,
our case study demonstrates that the byproducts
– auxiliary language/script embeddings – encode
language- and script-specific information, which
can facilitate the selection of optimal source lan-
guages for more effective crosslingual transfer.

7 Future Direction

Looking ahead, a promising research direction is to
further explore and refine the use of auxiliary lan-
guage/script embeddings to guide language-neutral
representation learning, particularly in the middle
layers of multilingual models. Prior studies have
shown that intermediate layers of encoder-only or
decoder-only models often exhibit higher language

neutrality (Jalili Sabet et al., 2020; ImaniGooghari
et al., 2023; Zhao et al., 2024; Li et al., 2025).

Future work could investigate ways to explicitly
steer middle-layer representations toward greater
neutrality, for example, by combining auxiliary
embeddings with layer-specific objectives or con-
trastive learning alignment techniques.

Furthermore, language and script embeddings
hold potential for enhancing controlled multi-
lingual generation in decoder-only and encoder-
decoder models, enabling more accurate and con-
sistent generation in the target language based on
instructions provided in the prompt.

Limitations

Due to the constraints of computing resources, we
are not able to continue pretraining the model us-
ing the full Glot500-c data in our ablation study.
However, as all variants are trained in a strictly con-
trolled environment, their results can be compared
in a fair way, and the consistent improvement sug-
gests the effectiveness of the language embeddings.

In addition, we do not consider the possibility
of introducing language and script embeddings be-
fore the Transformer blocks. Although this is also
a possible architecture, it does not fulfill our aim
and therefore is not relevant to us. Our primary
prerequisite is that the resulting model can work as
a universal text encoder without any language or
script IDs as input, just like most highly multilin-
gual models (e.g., XLM-R (Conneau et al., 2020)
and mBERT (Devlin et al., 2019)). LANGSAMP
only requires language or script IDs in the pretrain-
ing stage. After that, the backbone (token embed-
dings + the Transformer blocks) acts exactly as a
universal text encoder. Investigating whether archi-
tectures that integrate language/script embeddings
before the Transformer could improve language
representations at scale is outside the scope of our
work, but we consider it a promising direction for
future research.

Another potential limitation is the coverage of
languages and scripts. Our model uses 610 lan-
guages and 30 scripts from Glot500-c. For low-
resource languages not supported by our model,
we can still generate representations since language
IDs are not required as input. However, without
a corresponding language embedding, it becomes
challenging to select the optimal donor language
for crosslingual transfer. Nonetheless, when adapt-
ing to these languages, the language embeddings
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can be expanded, similar to the approach com-
monly used for vocabulary extension.

Finally, while our results support a strong corre-
lation between improved language neutrality and
enhanced crosslingual transfer, we acknowledge
that this relationship is not necessarily causal. How-
ever, prior studies have shown that improved lan-
guage neutrality or alignment does not always yield
better downstream outcomes (Gaschi et al., 2023;
Hua et al., 2024; Liu et al., 2025), suggesting that
language neutrality alone may not be a sufficient
condition. We believe further research is needed to
understand when and how language-neutral repre-
sentations contribute effectively to transfer, which
remains an open and important question for the
multilingual NLP community.
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A Settings and Hyperparameters

We show the information of the evaluation datasets
and used measures in Table 5 and introduce the
detailed settings and hyperparameters as follows.

Sentence Retrieval We use English-aligned sen-
tences (up to 500 and 1000 for SR-B and SR-T,
respectively) from languages covered by Glot500-
c (ImaniGooghari et al., 2023). No fine-tuning is
needed for this evaluation type: we directly use
each model as a text encoder and generate the
sentence-level representation by averaging the con-
textual token embeddings at the 8th layer, similar
to previous work (Jalili Sabet et al., 2020; Imani-
Googhari et al., 2023; Liu et al., 2024a). We per-
form retrieval by sorting the pairwise similarities.

Text Classification We add a 6-class or 7-class
(for Taxi1500 and SIB200, respectively) sequence-
level classification head onto the backbone model
(no language or script IDs are required as input
since the language modeling head is not needed
in this sequence-level classification model). By
default, we train the model on the English train
set and store the best checkpoint on the English
validation set. We train all models using AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019) for a maximum of 40 epochs, with
a learning rate of 1e-5 and an effective batch size
of 16 (batch size of 8, gradient accumulation of 2).
We use a single GTX 1080 Ti GPU for training.
The evaluation is done in zero-shot transfer: we
directly apply the best checkpoint to the test sets of
all other languages.

Sequence Labeling We add a 7-class or 18-class
(for NER and POS, respectively) token-level clas-
sification head onto the backbone model (no lan-
guage or script IDs are required as input since the
language modeling head is not needed in this token-
level classification model). Similarly, we train the
model on the English train set and store the best
checkpoint on the English validation set by default.
We train all models using the AdamW optimizer
(Kingma and Ba, 2015; Loshchilov and Hutter,
2019) for a maximum of 10 epochs. The learn-
ing rate is set to 2e-5, and the effective batch size is
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|head| |tail| |Latn| |non-Latn| #class measure (%)

SR-B 94 275 290 79 - top-10 Acc.
SR-T 70 28 64 34 - top-10 Acc.
Taxi1500 89 262 281 70 6 F1 score
SIB200 78 94 117 55 7 F1 score
NER 89 75 104 60 7 F1 score
POS 63 28 57 34 18 F1 score

Table 5: Information of the evaluation datasets and used
measures. |head| (resp. |tail|): number of head (resp. tail)
language-scripts. |Latn| (resp. |non-Latn|): number of
languages written in Latin script (resp. non-Latn scripts).
#class: the number of the categories if it belongs to a
text classification or sequence labeling task.

set to 32 (batch size of 8, gradient accumulation of
4). The training is done on a single GTX 1080 Ti
GPU. The evaluation is done in zero-shot transfer:
we directly apply the best checkpoint to the test
sets of all other languages.

B Pairwise Cosine Similarity

As introduced in §5.3, we select 10 topologi-
cally different languages that are written in diverse
scripts to assess the language neutrality: eng_Latn,
rus_Cyrl, zho_Hani, arb_Arab, hin_Deva,
jpn_Jpan, tur_Latn, spa_Latn, ind_Latn, and
swa_Latn. We report the pairwise cosine similarity
for the baseline and LANGSAMP in Figure 5.

It can be observed that the similarity between
any two languages in LANGSAMP is consistently
higher than in the baseline. The absolute increase is
small in general, due to the fact that (1) without the
introduction of the auxiliary language and script
embeddings, the baseline already assigns good sim-
ilarity to translations and (2) LANGSAMP does
not introduce any additional parallel data in the
pretraining, which is usually regarded as important
to improve the similarity. Nevertheless, the con-
sistent improvement indicates that LANGSAMP
effectively improves the language neutrality by de-
coupling language- and script-specific features into
auxiliary embeddings.

C Results for Each Language Family

We report the aggregated results for each language
family for each task in Table 6. We see consistent
improvement for all language families in sentence
retrieval and text classification tasks. For sequence
tagging tasks, LANGSAMP achieves similar per-
formance compared with the baseline. This trend
is similar to the main results we report in §4.3.

D Complete Crosslingual Transfer
Results

We report the complete results of English-centric
zero-shot crosslingual performance of baseline and
LANGSAMP for all tasks and languages in Table 7,
8 (SR-B), Table 9 (SR-T), Table 10, 11(Taxi1500),
12 (SIB200), Table 13 (NER), and Table 14 (POS).
Each result is the average over fine-tuning the base-
line or LANGSAMP under five random seeds.

E Transfer Results Using English and
Closest Donor Language

We report the complete results of the zero-shot
crosslingual performance of LANGSAMP when
using English and the closest donor language as
the source language in Table 15, 16 (Taxi1500), 17
(SIB200), Table 18 (NER), and Table 19 (POS).
Each result is directly obtained from a single
run. We fine-tune the LANGSAMP using different
donor languages under the same random seed.
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Figure 5: Comparison between baseline (left) and LANGSAMP (right) in terms of the pairwise cosine similarity.
LANGSAMP achieves better similarity for each pair, indicating improved language neutrality of the representations.

SR-B

(indo1319, 93) (atla1278, 69) (aust1307, 55) (turk1311, 23) (sino1245, 23) (maya1287, 15) (afro1255, 12) (other, 79) (all, 369)

Baseline 61.4 37.3 42.9 60.9 31.6 15.5 29.5 31.3 42.9
LANGSAMP 62.0 40.2 45.1 63.3 34.8 15.7 32.0 34.6 45.1

SR-T

(indo1319, 54) (atla1278, 2) (aust1307, 7) (turk1311, 7) (sino1245, 3) (maya1287, 0) (afro1255, 5) (other, 20) (all, 98)

Baseline 74.2 50.0 48.7 71.3 81.7 - 52.1 68.7 69.7
LANGSAMP 75.2 50.6 50.2 74.6 83.0 - 54.2 70.5 71.1

Taxi1500

(indo1319, 87) (atla1278, 68) (aust1307, 51) (turk1311, 18) (sino1245, 22) (maya1287, 15) (afro1255, 11) (other, 79) (all, 351)

Baseline 60.8 42.6 51.6 60.3 49.5 42.4 35.7 46.1 50.3
LANGSAMP 62.6 46.8 55.2 62.7 53.6 45.5 38.8 49.1 53.4

SIB200

(indo1319, 71) (atla1278, 33) (aust1307, 17) (turk1311, 10) (sino1245, 5) (maya1287, 0) (afro1255, 13) (other, 23) (all, 172)

Baseline 82.1 59.0 76.4 80.5 67.4 - 73.0 75.1 75.0
LANGSAMP 82.7 60.5 78.0 81.8 68.7 - 73.1 75.7 75.9

NER

(indo1319, 94) (atla1278, 5) (aust1307, 12) (turk1311, 12) (sino1245, 7) (maya1287, 0) (afro1255, 6) (other, 28) (all, 164)

Baseline 66.8 60.4 58.8 62.1 37.1 - 53.8 56.7 62.2
LANGSAMP 67.2 61.2 59.5 61.3 36.6 - 55.5 57.2 62.6

POS

(indo1319, 54) (atla1278, 2) (aust1307, 4) (turk1311, 5) (sino1245, 3) (maya1287, 1) (afro1255, 6) (other, 16) (all, 91)

Baseline 78.0 61.9 74.4 72.1 33.3 61.1 64.1 60.3 71.5
LANGSAMP 78.0 61.0 74.4 71.9 35.8 58.8 64.9 60.6 71.6

Table 6: Aggregated performance of the baseline and LANGSAMP for 7 major language families on all tasks. We
report the average performance for indo1319 (Indo-European), atla1278 (Atlantic-Congo), aust1307 (Austrone-
sian), turk1311 (Turkic), sino1245 (Sino-Tibetan), maya1287 (Mayan), and afro1255 (Afro-Asiatic). We classify
the remaining languages into the group “other”. In addition, we report the average over all languages (group “all”).
The number of languages in that family is shown in parentheses. Bold: best result for each task.
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Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP

ace_Latn 43.8 49.4 ach_Latn 37.6 40.6 acr_Latn 17.6 18.6 afr_Latn 74.2 72.4
agw_Latn 31.0 38.2 ahk_Latn 3.4 3.8 aka_Latn 41.8 48.4 aln_Latn 70.0 70.0
als_Latn 54.4 54.4 alt_Cyrl 53.8 57.0 alz_Latn 36.2 37.4 amh_Ethi 44.4 51.2
aoj_Latn 15.6 18.6 arb_Arab 9.6 11.6 arn_Latn 18.2 23.0 ary_Arab 11.2 13.0
arz_Arab 15.2 15.2 asm_Beng 59.2 59.0 ayr_Latn 37.6 46.0 azb_Arab 55.6 59.0
aze_Latn 73.4 75.4 bak_Cyrl 58.8 62.2 bam_Latn 38.4 44.8 ban_Latn 33.0 33.2
bar_Latn 32.2 34.0 bba_Latn 26.2 31.0 bbc_Latn 60.8 58.8 bci_Latn 12.0 11.8
bcl_Latn 75.4 79.0 bel_Cyrl 70.6 69.6 bem_Latn 51.0 54.4 ben_Beng 53.4 55.4
bhw_Latn 28.4 30.6 bim_Latn 31.4 42.8 bis_Latn 45.2 50.8 bod_Tibt 29.6 33.6
bqc_Latn 27.4 29.2 bre_Latn 31.8 30.0 bts_Latn 62.4 62.0 btx_Latn 57.2 55.8
bul_Cyrl 79.8 80.0 bum_Latn 32.8 35.2 bzj_Latn 69.8 70.2 cab_Latn 11.6 11.8
cac_Latn 10.8 11.8 cak_Latn 17.8 16.6 caq_Latn 26.0 29.8 cat_Latn 85.4 83.2
cbk_Latn 54.8 56.2 cce_Latn 41.8 45.4 ceb_Latn 70.4 70.6 ces_Latn 68.2 67.0
cfm_Latn 34.4 38.8 che_Cyrl 10.2 11.2 chk_Latn 35.2 43.0 chv_Cyrl 45.0 54.4
ckb_Arab 31.2 32.8 cmn_Hani 41.4 40.8 cnh_Latn 38.2 43.2 crh_Cyrl 67.2 70.0
crs_Latn 85.6 84.4 csy_Latn 40.2 49.6 ctd_Latn 44.4 50.6 ctu_Latn 16.6 16.0
cuk_Latn 17.0 17.0 cym_Latn 45.6 43.8 dan_Latn 72.4 71.8 deu_Latn 73.8 74.0
djk_Latn 38.0 38.0 dln_Latn 46.6 51.4 dtp_Latn 17.0 17.8 dyu_Latn 33.0 40.2
dzo_Tibt 28.4 33.0 efi_Latn 41.6 53.6 ell_Grek 48.2 49.2 enm_Latn 69.4 69.4
epo_Latn 67.4 65.8 est_Latn 66.4 66.0 eus_Latn 23.8 24.2 ewe_Latn 33.2 34.8
fao_Latn 79.8 78.4 fas_Arab 80.2 84.2 fij_Latn 30.0 31.0 fil_Latn 77.6 77.2
fin_Latn 65.4 66.0 fon_Latn 20.2 25.2 fra_Latn 87.4 87.2 fry_Latn 47.0 44.0
gaa_Latn 34.4 40.6 gil_Latn 30.0 31.6 giz_Latn 32.4 36.4 gkn_Latn 20.4 24.2
gkp_Latn 13.2 14.6 gla_Latn 39.0 38.0 gle_Latn 41.2 38.4 glv_Latn 37.2 38.6
gom_Latn 33.2 36.0 gor_Latn 21.8 23.0 grc_Grek 44.4 47.0 guc_Latn 9.8 8.2
gug_Latn 28.2 31.2 guj_Gujr 69.8 67.6 gur_Latn 17.6 18.2 guw_Latn 36.8 45.4
gya_Latn 27.6 32.6 gym_Latn 13.6 13.0 hat_Latn 76.4 74.6 hau_Latn 57.6 59.6
haw_Latn 28.0 30.4 heb_Hebr 21.6 23.0 hif_Latn 33.2 34.6 hil_Latn 74.0 79.8
hin_Deva 75.6 74.6 hin_Latn 34.2 36.2 hmo_Latn 44.2 57.0 hne_Deva 71.6 73.6
hnj_Latn 39.6 46.6 hra_Latn 43.4 46.4 hrv_Latn 80.4 79.8 hui_Latn 19.8 22.0
hun_Latn 65.6 69.0 hus_Latn 14.8 16.2 hye_Armn 62.8 65.6 iba_Latn 70.2 71.6
ibo_Latn 32.4 31.6 ifa_Latn 26.2 29.0 ifb_Latn 28.6 28.6 ikk_Latn 30.2 46.4
ilo_Latn 53.4 54.4 ind_Latn 78.4 78.6 isl_Latn 71.0 71.8 ita_Latn 76.2 76.8
ium_Latn 20.0 23.2 ixl_Latn 13.8 14.4 izz_Latn 19.6 22.6 jam_Latn 61.0 59.2
jav_Latn 55.4 52.0 jpn_Jpan 65.8 67.6 kaa_Cyrl 71.2 75.0 kaa_Latn 32.0 37.6
kab_Latn 12.2 13.4 kac_Latn 22.2 27.0 kal_Latn 12.6 16.8 kan_Knda 50.0 52.8
kat_Geor 49.6 52.4 kaz_Cyrl 69.4 70.4 kbp_Latn 21.8 26.8 kek_Latn 16.6 18.6
khm_Khmr 39.4 43.0 kia_Latn 24.6 28.8 kik_Latn 44.4 48.4 kin_Latn 56.6 60.2
kir_Cyrl 69.8 70.2 kjb_Latn 23.4 26.0 kjh_Cyrl 45.6 50.6 kmm_Latn 33.8 38.0
kmr_Cyrl 42.0 40.2 kmr_Latn 60.2 60.4 knv_Latn 7.0 8.4 kor_Hang 60.8 64.0
kpg_Latn 42.6 48.8 krc_Cyrl 59.8 62.2 kri_Latn 61.4 62.6 ksd_Latn 31.4 41.0
kss_Latn 5.2 6.0 ksw_Mymr 26.2 28.0 kua_Latn 43.0 43.8 lam_Latn 20.4 22.8
lao_Laoo 41.6 47.2 lat_Latn 56.6 58.0 lav_Latn 69.8 71.2 ldi_Latn 22.4 22.0
leh_Latn 46.8 45.8 lhu_Latn 4.4 4.2 lin_Latn 64.6 71.0 lit_Latn 67.0 66.6
loz_Latn 46.8 45.6 ltz_Latn 63.8 63.2 lug_Latn 37.2 40.8 luo_Latn 42.8 42.6
lus_Latn 46.6 53.2 lzh_Hani 59.8 62.4 mad_Latn 42.6 44.6 mah_Latn 30.4 33.8
mai_Deva 52.6 56.0 mal_Mlym 51.6 57.4 mam_Latn 10.2 10.2 mar_Deva 68.4 71.4
mau_Latn 2.8 3.4 mbb_Latn 22.0 29.8 mck_Latn 55.6 53.4 mcn_Latn 34.2 40.8
mco_Latn 6.6 6.4 mdy_Ethi 21.4 30.6 meu_Latn 48.8 52.0 mfe_Latn 77.4 77.4

Table 7: Top-10 accuracy of models on SR-B (Part I).
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mgh_Latn 17.4 20.8 mgr_Latn 48.6 47.2 mhr_Cyrl 37.4 43.2 min_Latn 32.4 29.6
miq_Latn 28.8 36.8 mkd_Cyrl 78.4 78.8 mlg_Latn 60.2 61.2 mlt_Latn 48.0 50.4
mos_Latn 32.2 32.8 mps_Latn 16.4 20.6 mri_Latn 45.6 55.0 mrw_Latn 34.0 40.6
msa_Latn 43.6 44.2 mwm_Latn 24.0 25.6 mxv_Latn 7.0 7.0 mya_Mymr 25.8 28.0
myv_Cyrl 26.6 30.6 mzh_Latn 24.6 25.4 nan_Latn 13.2 13.6 naq_Latn 16.8 26.8
nav_Latn 8.6 8.6 nbl_Latn 49.4 48.4 nch_Latn 21.6 21.6 ncj_Latn 18.8 19.4
ndc_Latn 32.4 36.2 nde_Latn 51.0 54.8 ndo_Latn 41.0 44.0 nds_Latn 38.4 38.4
nep_Deva 56.4 59.0 ngu_Latn 26.2 26.0 nia_Latn 25.6 28.0 nld_Latn 78.4 78.0
nmf_Latn 25.6 28.2 nnb_Latn 33.2 38.8 nno_Latn 76.8 75.8 nob_Latn 85.4 85.0
nor_Latn 85.8 83.4 npi_Deva 77.4 80.8 nse_Latn 48.4 51.8 nso_Latn 46.2 50.2
nya_Latn 57.6 57.6 nyn_Latn 48.8 47.4 nyy_Latn 23.4 24.6 nzi_Latn 29.2 34.4
ori_Orya 51.2 53.4 ory_Orya 46.4 49.8 oss_Cyrl 41.4 56.4 ote_Latn 12.0 13.2
pag_Latn 55.2 52.2 pam_Latn 37.4 41.2 pan_Guru 46.2 45.4 pap_Latn 72.8 75.0
pau_Latn 17.0 23.4 pcm_Latn 69.8 69.4 pdt_Latn 69.4 66.0 pes_Arab 74.2 75.2
pis_Latn 51.4 54.8 pls_Latn 27.0 31.8 plt_Latn 60.2 60.8 poh_Latn 10.6 11.4
pol_Latn 73.8 75.6 pon_Latn 21.4 24.0 por_Latn 81.8 81.0 prk_Latn 42.0 47.4
prs_Arab 84.6 87.0 pxm_Latn 18.2 19.8 qub_Latn 30.6 35.6 quc_Latn 18.6 17.4
qug_Latn 53.6 59.2 quh_Latn 40.2 43.8 quw_Latn 46.2 50.4 quy_Latn 47.4 54.4
quz_Latn 59.4 63.6 qvi_Latn 49.2 57.6 rap_Latn 17.0 17.8 rar_Latn 20.4 19.8
rmy_Latn 30.4 32.2 ron_Latn 69.4 69.0 rop_Latn 35.8 41.4 rug_Latn 37.8 38.4
run_Latn 48.2 52.4 rus_Cyrl 74.6 76.4 sag_Latn 39.6 45.4 sah_Cyrl 43.4 45.8
san_Deva 24.2 23.6 san_Latn 7.8 7.4 sba_Latn 28.0 29.2 seh_Latn 67.4 69.4
sin_Sinh 45.6 49.0 slk_Latn 69.8 69.2 slv_Latn 61.2 60.8 sme_Latn 35.0 37.6
smo_Latn 27.6 28.8 sna_Latn 38.4 41.2 snd_Arab 67.2 65.0 som_Latn 35.0 34.8
sop_Latn 32.4 28.8 sot_Latn 48.4 52.4 spa_Latn 80.8 81.4 sqi_Latn 62.2 64.8
srm_Latn 28.2 26.6 srn_Latn 75.4 75.6 srp_Cyrl 87.2 85.8 srp_Latn 85.8 85.4
ssw_Latn 42.8 47.0 sun_Latn 52.0 54.0 suz_Deva 21.0 22.6 swe_Latn 78.6 77.0
swh_Latn 71.6 71.4 sxn_Latn 20.6 20.8 tam_Taml 47.0 50.6 tat_Cyrl 68.2 70.4
tbz_Latn 13.2 18.2 tca_Latn 10.0 13.8 tdt_Latn 50.0 53.6 tel_Telu 48.0 50.2
teo_Latn 19.4 19.6 tgk_Cyrl 69.2 69.4 tgl_Latn 79.6 78.0 tha_Thai 33.8 38.0
tih_Latn 42.2 46.4 tir_Ethi 32.2 34.8 tlh_Latn 62.0 66.4 tob_Latn 11.6 11.4
toh_Latn 36.8 41.8 toi_Latn 39.4 39.4 toj_Latn 14.8 12.6 ton_Latn 16.0 16.6
top_Latn 6.6 6.0 tpi_Latn 58.0 62.2 tpm_Latn 27.4 23.0 tsn_Latn 32.6 34.6
tso_Latn 50.0 51.0 tsz_Latn 21.2 25.8 tuc_Latn 25.6 32.4 tui_Latn 29.8 31.0
tuk_Cyrl 67.4 69.4 tuk_Latn 67.6 70.0 tum_Latn 58.4 57.0 tur_Latn 70.2 70.4
twi_Latn 35.0 42.0 tyv_Cyrl 44.2 43.4 tzh_Latn 19.0 19.8 tzo_Latn 14.2 13.6
udm_Cyrl 41.6 45.2 uig_Arab 47.4 50.8 uig_Latn 57.2 58.8 ukr_Cyrl 67.0 68.0
urd_Arab 60.4 61.4 uzb_Cyrl 80.6 81.2 uzb_Latn 70.0 68.2 uzn_Cyrl 82.4 83.0
ven_Latn 37.2 42.0 vie_Latn 68.0 69.4 wal_Latn 35.0 43.4 war_Latn 42.6 44.0
wbm_Latn 37.6 46.2 wol_Latn 31.8 33.2 xav_Latn 3.8 4.0 xho_Latn 42.6 44.2
yan_Latn 16.4 27.2 yao_Latn 37.4 37.6 yap_Latn 15.8 19.6 yom_Latn 37.6 40.0
yor_Latn 27.4 28.8 yua_Latn 13.2 12.8 yue_Hani 17.2 17.2 zai_Latn 29.0 30.6
zho_Hani 41.6 41.8 zlm_Latn 84.8 84.8 zom_Latn 39.6 45.0 zsm_Latn 90.0 91.0
zul_Latn 51.4 51.0

Table 8: Top-10 accuracy of models on SR-B (Part II).
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afr_Latn 77.9 80.4 amh_Ethi 47.0 52.4 ara_Arab 69.4 68.7 arz_Arab 61.8 63.9
ast_Latn 80.3 84.3 aze_Latn 82.6 84.1 bel_Cyrl 83.6 83.0 ben_Beng 72.1 74.9
bos_Latn 90.1 90.4 bre_Latn 17.4 18.2 bul_Cyrl 87.5 89.2 cat_Latn 78.2 78.6
cbk_Latn 49.4 48.0 ceb_Latn 39.0 42.5 ces_Latn 75.7 73.5 cmn_Hani 87.1 87.4
csb_Latn 38.3 38.7 cym_Latn 52.2 55.0 dan_Latn 91.7 92.9 deu_Latn 95.5 95.7
dtp_Latn 17.0 19.3 ell_Grek 79.3 82.7 epo_Latn 71.8 74.8 est_Latn 68.2 69.9
eus_Latn 52.2 55.4 fao_Latn 77.1 75.6 fin_Latn 72.3 74.2 fra_Latn 85.3 85.2
fry_Latn 75.1 79.2 gla_Latn 38.4 38.6 gle_Latn 44.8 48.3 glg_Latn 77.1 76.4
gsw_Latn 58.1 63.2 heb_Hebr 71.4 74.9 hin_Deva 88.1 87.3 hrv_Latn 87.9 87.5
hsb_Latn 49.7 49.7 hun_Latn 71.5 73.2 hye_Armn 79.1 81.3 ido_Latn 54.6 55.8
ile_Latn 71.2 71.5 ina_Latn 89.2 90.7 ind_Latn 88.1 88.9 isl_Latn 84.0 84.5
ita_Latn 84.1 85.7 jpn_Jpan 77.2 77.1 kab_Latn 10.8 11.0 kat_Geor 71.2 72.4
kaz_Cyrl 74.6 77.7 khm_Khmr 57.5 63.0 kor_Hang 80.8 81.1 kur_Latn 49.8 52.4
lat_Latn 39.2 42.1 lfn_Latn 55.8 56.8 lit_Latn 70.4 72.9 lvs_Latn 76.2 78.1
mal_Mlym 87.5 91.6 mar_Deva 79.8 81.6 mhr_Cyrl 27.7 33.4 mkd_Cyrl 79.6 79.4
mon_Cyrl 78.2 80.5 nds_Latn 71.3 72.5 nld_Latn 92.4 93.4 nno_Latn 85.5 87.4
nob_Latn 94.5 95.3 oci_Latn 46.6 44.9 pam_Latn 10.2 10.2 pes_Arab 86.7 86.9
pms_Latn 49.5 50.9 pol_Latn 84.3 83.4 por_Latn 90.2 90.7 ron_Latn 86.0 86.9
rus_Cyrl 91.6 92.1 slk_Latn 77.9 78.2 slv_Latn 76.2 75.9 spa_Latn 88.6 88.3
sqi_Latn 84.1 85.2 srp_Latn 89.7 89.6 swe_Latn 89.4 89.6 swh_Latn 45.1 44.9
tam_Taml 50.2 45.0 tat_Cyrl 71.2 74.6 tel_Telu 72.6 74.8 tgl_Latn 73.9 74.2
tha_Thai 75.4 79.2 tuk_Latn 62.1 68.0 tur_Latn 79.1 82.0 uig_Arab 64.7 68.4
ukr_Cyrl 84.9 86.5 urd_Arab 78.5 81.7 uzb_Cyrl 65.0 67.3 vie_Latn 88.9 88.8
war_Latn 22.7 25.2 wuu_Hani 79.0 82.4 xho_Latn 54.9 56.3 yid_Hebr 65.8 67.6
yue_Hani 79.0 79.3 zsm_Latn 90.2 91.0

Table 9: Top-10 accuracy of models on SR-T.
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ace_Latn 66.6 64.5 ach_Latn 36.6 40.5 acr_Latn 45.6 51.4 afr_Latn 60.7 58.9
agw_Latn 53.6 55.8 ahk_Latn 7.6 7.3 aka_Latn 43.3 47.4 aln_Latn 56.0 57.4
als_Latn 56.6 57.1 alt_Cyrl 48.5 49.9 alz_Latn 31.9 39.1 amh_Ethi 8.7 7.9
aoj_Latn 36.8 42.5 arn_Latn 41.9 45.1 ary_Arab 33.8 34.3 arz_Arab 36.2 40.5
asm_Beng 63.2 62.4 ayr_Latn 55.9 57.3 azb_Arab 63.7 62.8 aze_Latn 67.3 70.3
bak_Cyrl 60.8 58.9 bam_Latn 43.8 49.6 ban_Latn 42.6 47.7 bar_Latn 46.2 49.7
bba_Latn 40.9 43.3 bci_Latn 31.3 33.7 bcl_Latn 55.0 61.7 bel_Cyrl 59.8 59.8
bem_Latn 45.5 50.6 ben_Beng 62.4 65.9 bhw_Latn 45.3 53.2 bim_Latn 49.4 49.8
bis_Latn 67.2 71.8 bqc_Latn 32.3 36.7 bre_Latn 37.3 44.0 btx_Latn 54.0 64.6
bul_Cyrl 65.3 65.3 bum_Latn 39.5 45.3 bzj_Latn 66.2 67.7 cab_Latn 24.5 31.0
cac_Latn 44.8 45.9 cak_Latn 53.2 54.4 caq_Latn 39.9 45.7 cat_Latn 63.6 61.6
cbk_Latn 62.2 68.4 cce_Latn 42.5 48.3 ceb_Latn 53.1 56.0 ces_Latn 61.6 66.3
cfm_Latn 55.3 64.8 che_Cyrl 17.6 23.2 chv_Cyrl 56.7 61.7 cmn_Hani 67.8 69.2
cnh_Latn 61.9 64.5 crh_Cyrl 61.2 64.3 crs_Latn 65.9 64.3 csy_Latn 53.6 62.8
ctd_Latn 53.5 58.5 ctu_Latn 52.2 51.8 cuk_Latn 40.2 43.3 cym_Latn 50.1 49.4
dan_Latn 62.4 63.6 deu_Latn 53.4 56.7 djk_Latn 46.5 54.7 dln_Latn 49.3 61.4
dtp_Latn 50.2 51.8 dyu_Latn 48.0 57.1 dzo_Tibt 55.9 57.8 efi_Latn 52.4 56.2
ell_Grek 59.8 61.3 eng_Latn 74.3 75.3 enm_Latn 72.2 70.7 epo_Latn 57.6 58.8
est_Latn 56.8 57.5 eus_Latn 23.3 27.8 ewe_Latn 43.6 52.4 fao_Latn 57.5 59.5
fas_Arab 71.7 70.3 fij_Latn 44.2 48.5 fil_Latn 57.5 58.8 fin_Latn 58.3 59.2
fon_Latn 42.9 44.0 fra_Latn 65.4 70.4 fry_Latn 40.0 43.1 gaa_Latn 40.2 41.8
gil_Latn 42.0 44.5 giz_Latn 45.1 49.7 gkn_Latn 38.3 43.7 gkp_Latn 32.1 37.5
gla_Latn 48.3 49.4 gle_Latn 42.9 44.9 glv_Latn 39.7 43.5 gom_Latn 35.5 38.2
gor_Latn 42.5 50.8 guc_Latn 33.4 38.4 gug_Latn 36.2 41.2 guj_Gujr 68.8 70.3
gur_Latn 34.1 43.3 guw_Latn 48.4 52.1 gya_Latn 40.6 39.9 gym_Latn 41.1 47.2
hat_Latn 62.8 65.2 hau_Latn 54.2 58.6 haw_Latn 30.2 38.3 heb_Hebr 18.7 21.7
hif_Latn 46.2 47.9 hil_Latn 65.1 67.3 hin_Deva 66.2 69.0 hmo_Latn 60.7 65.3
hne_Deva 66.3 67.4 hnj_Latn 63.4 66.3 hra_Latn 51.5 56.0 hrv_Latn 63.4 67.3
hui_Latn 46.5 50.2 hun_Latn 64.2 67.5 hus_Latn 38.0 42.3 hye_Armn 70.0 70.9
iba_Latn 57.6 61.3 ibo_Latn 58.2 56.8 ifa_Latn 49.1 55.0 ifb_Latn 50.3 50.7
ikk_Latn 47.8 51.8 ilo_Latn 53.2 60.5 ind_Latn 76.4 78.0 isl_Latn 50.4 59.3
ita_Latn 64.8 66.3 ium_Latn 57.5 58.9 ixl_Latn 32.2 38.3 izz_Latn 42.4 49.4
jam_Latn 64.2 68.5 jav_Latn 45.9 50.5 jpn_Jpan 64.9 63.1 kaa_Cyrl 59.3 66.8
kab_Latn 23.0 29.9 kac_Latn 49.0 45.6 kal_Latn 32.1 37.2 kan_Knda 67.1 65.2
kat_Geor 60.0 57.2 kaz_Cyrl 65.2 62.8 kbp_Latn 35.3 38.0 kek_Latn 45.5 47.4
khm_Khmr 69.0 66.5 kia_Latn 41.3 52.7 kik_Latn 42.7 46.4 kin_Latn 44.7 56.7
kir_Cyrl 67.4 67.9 kjb_Latn 46.8 48.5 kjh_Cyrl 50.9 55.8 kmm_Latn 46.2 57.4
kmr_Cyrl 49.9 51.7 knv_Latn 44.5 45.8 kor_Hang 70.2 71.6 kpg_Latn 64.4 65.4
krc_Cyrl 57.6 61.8 kri_Latn 59.4 62.8 ksd_Latn 54.8 52.9 kss_Latn 23.7 18.9
ksw_Mymr 49.0 50.8 kua_Latn 42.6 45.4 lam_Latn 33.3 38.1 lao_Laoo 72.7 70.7
lat_Latn 58.5 63.0 lav_Latn 62.8 63.8 ldi_Latn 27.6 35.8 leh_Latn 45.1 46.9
lhu_Latn 24.0 25.9 lin_Latn 47.6 54.7 lit_Latn 61.2 61.7 loz_Latn 51.2 52.6
ltz_Latn 53.3 51.9 lug_Latn 44.0 52.6 luo_Latn 38.7 43.5 lus_Latn 48.1 53.9
lzh_Hani 61.5 67.2 mad_Latn 60.6 62.5 mah_Latn 34.3 45.3 mai_Deva 65.1 64.8
mal_Mlym 7.2 6.1 mam_Latn 29.2 34.9 mar_Deva 62.4 62.6 mau_Latn 7.0 5.7
mbb_Latn 52.0 54.4 mck_Latn 41.1 46.0 mcn_Latn 36.6 42.8 mco_Latn 24.4 26.8
mdy_Ethi 49.1 54.4 meu_Latn 49.4 57.8 mfe_Latn 68.8 68.5 mgh_Latn 32.9 34.8
mgr_Latn 47.3 50.9 mhr_Cyrl 41.6 40.9 min_Latn 51.2 53.2 miq_Latn 52.1 52.7
mkd_Cyrl 68.8 71.7 mlg_Latn 48.3 51.9 mlt_Latn 51.3 53.2 mos_Latn 36.4 44.4

Table 10: F1 scores of models on Taxi1500 (Part I).
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mps_Latn 51.6 56.2 mri_Latn 43.2 49.8 mrw_Latn 48.7 47.9 msa_Latn 46.7 48.9
mwm_Latn 52.5 58.5 mxv_Latn 16.0 27.6 mya_Mymr 57.2 57.8 myv_Cyrl 42.9 48.1
mzh_Latn 39.2 41.9 nan_Latn 26.2 33.7 naq_Latn 40.3 45.5 nav_Latn 22.2 25.7
nbl_Latn 46.7 52.9 nch_Latn 41.8 46.0 ncj_Latn 36.2 42.2 ndc_Latn 39.3 44.6
nde_Latn 46.7 52.9 ndo_Latn 47.3 51.2 nds_Latn 39.1 48.6 nep_Deva 70.7 72.5
ngu_Latn 41.5 44.1 nld_Latn 62.7 62.1 nmf_Latn 43.1 47.8 nnb_Latn 38.5 46.0
nno_Latn 63.1 65.5 nob_Latn 60.6 60.0 nor_Latn 61.7 60.8 npi_Deva 69.7 70.1
nse_Latn 43.9 45.1 nso_Latn 53.6 52.4 nya_Latn 55.4 61.9 nyn_Latn 43.6 47.0
nyy_Latn 31.1 37.7 nzi_Latn 34.4 38.3 ori_Orya 70.3 69.5 ory_Orya 71.4 69.3
oss_Cyrl 48.0 57.6 ote_Latn 35.6 35.7 pag_Latn 52.0 54.3 pam_Latn 40.1 45.4
pan_Guru 67.8 66.4 pap_Latn 65.5 66.2 pau_Latn 42.0 43.3 pcm_Latn 63.8 67.1
pdt_Latn 58.1 58.7 pes_Arab 70.5 69.6 pis_Latn 67.5 67.9 pls_Latn 46.5 49.1
plt_Latn 52.6 50.1 poh_Latn 47.2 48.2 pol_Latn 64.8 68.8 pon_Latn 53.1 53.9
por_Latn 68.0 72.3 prk_Latn 56.4 56.4 prs_Arab 68.9 68.9 pxm_Latn 40.6 40.2
qub_Latn 58.3 59.1 quc_Latn 51.0 53.3 qug_Latn 64.5 68.2 quh_Latn 62.4 68.6
quw_Latn 53.5 55.6 quy_Latn 71.6 70.6 quz_Latn 64.8 67.6 qvi_Latn 63.2 65.2
rap_Latn 47.9 49.4 rar_Latn 45.8 52.7 rmy_Latn 45.0 47.9 ron_Latn 59.4 66.7
rop_Latn 57.0 58.1 rug_Latn 51.2 55.1 run_Latn 48.2 53.6 rus_Cyrl 69.4 72.3
sag_Latn 44.7 47.1 sah_Cyrl 59.0 61.6 sba_Latn 38.7 41.0 seh_Latn 47.5 49.9
sin_Sinh 67.5 66.6 slk_Latn 60.3 60.6 slv_Latn 62.4 62.6 sme_Latn 36.8 48.8
smo_Latn 56.2 61.6 sna_Latn 40.9 45.4 snd_Arab 67.7 68.7 som_Latn 33.6 35.8
sop_Latn 34.1 39.0 sot_Latn 45.2 48.6 spa_Latn 64.2 67.5 sqi_Latn 70.8 70.3
srm_Latn 48.7 52.4 srn_Latn 64.0 64.4 srp_Latn 64.9 69.0 ssw_Latn 38.0 46.9
sun_Latn 54.0 56.6 suz_Deva 58.2 60.3 swe_Latn 67.8 69.0 swh_Latn 62.1 64.2
sxn_Latn 49.0 51.8 tam_Taml 72.6 73.7 tat_Cyrl 65.5 68.0 tbz_Latn 36.0 42.7
tca_Latn 42.2 48.3 tdt_Latn 58.2 66.0 tel_Telu 70.9 71.4 teo_Latn 24.0 26.6
tgk_Cyrl 64.0 65.7 tgl_Latn 57.5 58.8 tha_Thai 65.3 65.5 tih_Latn 56.6 60.3
tir_Ethi 51.9 52.5 tlh_Latn 64.0 65.3 tob_Latn 44.3 44.0 toh_Latn 38.1 40.3
toi_Latn 39.5 49.4 toj_Latn 36.7 39.2 ton_Latn 48.2 50.9 top_Latn 22.9 26.6
tpi_Latn 68.4 69.7 tpm_Latn 45.8 51.4 tsn_Latn 45.6 46.5 tsz_Latn 37.3 42.8
tuc_Latn 56.3 62.2 tui_Latn 45.6 48.1 tuk_Latn 56.9 63.5 tum_Latn 48.1 50.1
tur_Latn 62.6 65.8 twi_Latn 42.1 47.5 tyv_Cyrl 58.2 63.0 tzh_Latn 38.8 44.2
tzo_Latn 38.3 42.5 udm_Cyrl 53.8 54.2 ukr_Cyrl 65.3 67.5 urd_Arab 61.3 60.4
uzb_Latn 59.7 58.0 uzn_Cyrl 65.3 65.8 ven_Latn 43.4 46.3 vie_Latn 70.0 69.3
wal_Latn 42.1 49.0 war_Latn 45.6 52.4 wbm_Latn 57.5 56.1 wol_Latn 34.0 40.4
xav_Latn 29.9 33.1 xho_Latn 45.3 48.5 yan_Latn 51.2 53.6 yao_Latn 40.0 46.5
yap_Latn 39.3 42.0 yom_Latn 36.2 37.8 yor_Latn 47.4 46.9 yua_Latn 36.7 39.8
yue_Hani 58.4 60.4 zai_Latn 39.3 44.2 zho_Hani 64.6 67.0 zlm_Latn 70.3 69.7
zom_Latn 47.2 49.9 zsm_Latn 69.7 68.0 zul_Latn 50.6 53.4

Table 11: F1 scores of models on Taxi1500 (Part II).
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Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP

ace_Latn 71.5 73.6 acm_Arab 82.2 83.0 afr_Latn 82.3 82.7 ajp_Arab 83.4 81.8
aka_Latn 62.2 67.2 als_Latn 82.4 84.4 amh_Ethi 74.2 73.6 apc_Arab 83.9 82.9
arb_Arab 83.8 82.9 ary_Arab 81.5 80.2 arz_Arab 84.5 84.1 asm_Beng 83.6 84.2
ast_Latn 88.4 88.0 ayr_Latn 51.1 53.8 azb_Arab 71.5 74.7 azj_Latn 87.0 88.0
bak_Cyrl 84.6 86.6 bam_Latn 47.9 47.6 ban_Latn 80.3 83.0 bel_Cyrl 83.7 83.4
bem_Latn 63.0 63.9 ben_Beng 83.3 84.3 bjn_Latn 77.1 78.5 bod_Tibt 73.5 69.2
bos_Latn 86.5 88.2 bul_Cyrl 86.1 87.5 cat_Latn 84.8 86.4 ceb_Latn 81.8 84.6
ces_Latn 89.1 86.9 cjk_Latn 46.6 48.1 ckb_Arab 83.9 80.2 crh_Latn 74.0 76.2
cym_Latn 75.9 75.4 dan_Latn 86.8 87.4 deu_Latn 86.5 87.8 dyu_Latn 42.6 44.5
dzo_Tibt 68.7 72.6 ell_Grek 79.5 80.0 eng_Latn 90.8 90.0 epo_Latn 83.8 82.2
est_Latn 80.6 81.6 eus_Latn 82.1 82.2 ewe_Latn 49.3 51.5 fao_Latn 83.7 84.9
fij_Latn 56.1 58.0 fin_Latn 82.1 82.9 fon_Latn 41.7 44.6 fra_Latn 87.9 89.6
fur_Latn 77.6 80.2 gla_Latn 57.6 54.3 gle_Latn 62.2 64.1 glg_Latn 87.8 89.0
grn_Latn 75.0 74.5 guj_Gujr 83.9 84.7 hat_Latn 77.4 79.1 hau_Latn 62.7 62.1
heb_Hebr 77.9 79.2 hin_Deva 84.1 84.4 hne_Deva 77.9 80.1 hrv_Latn 87.3 89.0
hun_Latn 86.8 87.6 hye_Armn 83.0 82.5 ibo_Latn 72.3 74.1 ilo_Latn 75.8 79.6
ind_Latn 88.7 89.1 isl_Latn 78.5 79.1 ita_Latn 87.7 89.2 jav_Latn 80.2 80.3
jpn_Jpan 87.1 87.9 kab_Latn 31.1 36.9 kac_Latn 49.3 52.3 kam_Latn 49.1 49.5
kan_Knda 83.2 82.0 kat_Geor 81.8 83.7 kaz_Cyrl 84.2 84.9 kbp_Latn 45.1 44.2
kea_Latn 75.4 77.0 khm_Khmr 84.3 84.4 kik_Latn 57.1 59.9 kin_Latn 69.5 70.5
kir_Cyrl 80.7 80.3 kmb_Latn 48.2 49.5 kmr_Latn 70.7 70.0 kon_Latn 65.3 69.2
kor_Hang 85.2 83.9 lao_Laoo 85.1 84.2 lij_Latn 77.7 79.6 lim_Latn 74.7 75.2
lin_Latn 69.3 71.4 lit_Latn 86.5 84.7 lmo_Latn 77.7 79.1 ltz_Latn 76.6 79.1
lua_Latn 59.1 56.4 lug_Latn 55.5 59.1 luo_Latn 52.6 53.0 lus_Latn 65.3 67.9
lvs_Latn 84.4 83.6 mai_Deva 83.4 84.0 mal_Mlym 80.6 79.9 mar_Deva 84.1 82.5
min_Latn 77.7 79.6 mkd_Cyrl 83.3 84.6 mlt_Latn 82.9 83.0 mos_Latn 44.9 46.6
mri_Latn 54.4 59.3 mya_Mymr 80.1 81.6 nld_Latn 86.5 85.8 nno_Latn 86.6 86.4
nob_Latn 85.8 86.1 npi_Deva 86.8 86.0 nso_Latn 61.3 61.9 nya_Latn 71.1 72.7
oci_Latn 83.1 84.9 ory_Orya 79.7 80.3 pag_Latn 78.7 79.7 pan_Guru 77.4 79.0
pap_Latn 77.2 79.0 pes_Arab 87.6 89.2 plt_Latn 68.4 68.5 pol_Latn 86.4 86.7
por_Latn 87.3 88.6 prs_Arab 85.8 88.4 quy_Latn 63.7 64.0 ron_Latn 86.4 84.5
run_Latn 68.3 67.2 rus_Cyrl 87.6 87.9 sag_Latn 52.4 55.1 san_Deva 77.9 77.8
sat_Olck 53.0 57.4 scn_Latn 77.6 78.2 sin_Sinh 84.5 84.1 slk_Latn 86.1 87.0
slv_Latn 86.4 85.5 smo_Latn 73.4 74.1 sna_Latn 59.3 58.0 snd_Arab 72.1 76.9
som_Latn 61.8 59.8 sot_Latn 65.3 67.6 spa_Latn 86.4 86.2 srd_Latn 74.0 75.8
srp_Cyrl 85.8 85.2 ssw_Latn 67.5 68.1 sun_Latn 84.0 85.2 swe_Latn 86.6 87.3
swh_Latn 76.0 78.6 szl_Latn 74.3 75.5 tam_Taml 80.6 84.3 tat_Cyrl 84.0 85.2
tel_Telu 85.3 85.7 tgk_Cyrl 81.6 80.9 tgl_Latn 81.9 83.0 tha_Thai 87.4 88.9
tir_Ethi 59.9 61.4 tpi_Latn 80.6 82.3 tsn_Latn 59.1 55.2 tso_Latn 59.3 61.2
tuk_Latn 78.3 78.2 tum_Latn 70.3 70.8 tur_Latn 82.9 83.6 twi_Latn 61.4 68.0
uig_Arab 77.7 80.0 ukr_Cyrl 84.7 84.5 umb_Latn 45.9 45.8 urd_Arab 81.3 81.9
vec_Latn 82.0 81.1 vie_Latn 84.9 85.8 war_Latn 81.7 83.4 wol_Latn 49.2 52.1
xho_Latn 62.4 64.0 yor_Latn 46.6 51.8 zsm_Latn 87.2 86.6 zul_Latn 73.8 73.6

Table 12: F1 scores of models on SIB200.
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Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP

ace_Latn 42.8 42.6 afr_Latn 76.4 76.8 als_Latn 81.7 82.2 amh_Ethi 40.8 39.0
ara_Arab 55.9 56.5 arg_Latn 78.9 80.0 arz_Arab 56.8 58.4 asm_Beng 66.0 64.8
ast_Latn 82.3 84.5 aym_Latn 45.9 43.8 aze_Latn 65.4 65.9 bak_Cyrl 61.3 60.2
bar_Latn 68.2 70.0 bel_Cyrl 74.4 74.6 ben_Beng 71.1 70.5 bih_Deva 55.9 55.2
bod_Tibt 27.1 35.0 bos_Latn 73.0 72.6 bre_Latn 64.6 63.9 bul_Cyrl 75.6 75.2
cat_Latn 83.8 83.8 cbk_Latn 53.9 51.6 ceb_Latn 54.0 57.5 ces_Latn 78.6 78.7
che_Cyrl 45.6 55.7 chv_Cyrl 77.4 75.2 ckb_Arab 73.2 73.3 cos_Latn 59.1 59.7
crh_Latn 51.9 50.2 csb_Latn 61.9 62.0 cym_Latn 62.2 60.2 dan_Latn 81.7 81.7
deu_Latn 76.0 76.7 diq_Latn 51.7 53.4 div_Thaa 48.2 55.2 ell_Grek 73.0 72.9
eml_Latn 42.0 42.1 eng_Latn 83.5 83.4 epo_Latn 68.1 69.0 est_Latn 72.9 73.6
eus_Latn 57.5 59.1 ext_Latn 45.0 46.2 fao_Latn 70.9 69.6 fas_Arab 52.7 51.5
fin_Latn 75.0 75.4 fra_Latn 76.4 76.8 frr_Latn 55.3 54.5 fry_Latn 77.2 76.3
fur_Latn 57.5 57.1 gla_Latn 59.5 65.4 gle_Latn 72.7 72.8 glg_Latn 79.9 80.4
grn_Latn 54.0 54.1 guj_Gujr 58.8 59.2 hbs_Latn 62.7 65.5 heb_Hebr 50.4 51.7
hin_Deva 68.4 68.9 hrv_Latn 77.1 77.8 hsb_Latn 74.2 75.9 hun_Latn 76.2 76.7
hye_Armn 54.1 57.2 ibo_Latn 57.3 57.3 ido_Latn 79.0 79.9 ilo_Latn 73.6 76.8
ina_Latn 57.8 58.5 ind_Latn 62.2 64.0 isl_Latn 72.4 72.1 ita_Latn 78.4 78.6
jav_Latn 58.9 57.8 jbo_Latn 25.0 25.1 jpn_Jpan 21.0 17.5 kan_Knda 58.5 58.7
kat_Geor 67.5 68.2 kaz_Cyrl 50.0 51.1 khm_Khmr 42.4 43.1 kin_Latn 63.5 69.0
kir_Cyrl 45.4 44.2 kor_Hang 52.7 51.2 ksh_Latn 58.0 59.2 kur_Latn 63.1 64.8
lat_Latn 75.7 74.7 lav_Latn 72.4 74.9 lij_Latn 42.7 46.3 lim_Latn 70.3 71.0
lin_Latn 51.5 49.2 lit_Latn 75.0 74.6 lmo_Latn 75.3 74.1 ltz_Latn 68.6 69.0
lzh_Hani 14.6 11.5 mal_Mlym 62.8 61.7 mar_Deva 63.0 62.0 mhr_Cyrl 60.6 61.9
min_Latn 41.5 42.9 mkd_Cyrl 75.7 76.3 mlg_Latn 57.8 58.7 mlt_Latn 66.9 71.3
mon_Cyrl 66.0 68.9 mri_Latn 49.5 48.0 msa_Latn 68.7 69.0 mwl_Latn 48.9 51.1
mya_Mymr 53.8 53.6 mzn_Arab 44.9 47.4 nan_Latn 83.6 85.0 nap_Latn 59.0 59.3
nds_Latn 77.8 77.0 nep_Deva 63.1 61.7 nld_Latn 81.4 81.1 nno_Latn 76.5 77.3
nor_Latn 76.6 77.7 oci_Latn 68.6 70.7 ori_Orya 31.7 31.9 oss_Cyrl 53.5 51.3
pan_Guru 49.7 48.1 pms_Latn 78.9 80.3 pnb_Arab 65.1 64.7 pol_Latn 78.0 78.1
por_Latn 77.6 78.7 pus_Arab 40.5 42.0 que_Latn 66.1 67.4 roh_Latn 62.0 58.8
ron_Latn 76.0 75.6 rus_Cyrl 69.0 69.1 sah_Cyrl 75.3 69.3 san_Deva 35.5 37.1
scn_Latn 65.4 66.0 sco_Latn 84.5 87.3 sgs_Latn 60.7 64.0 sin_Sinh 53.0 49.4
slk_Latn 77.9 77.3 slv_Latn 80.2 80.1 snd_Arab 44.3 41.9 som_Latn 52.2 55.8
spa_Latn 74.0 76.5 sqi_Latn 77.7 77.6 srp_Cyrl 63.5 64.3 sun_Latn 55.4 53.8
swa_Latn 69.1 69.0 swe_Latn 70.3 73.0 szl_Latn 68.1 70.8 tam_Taml 54.9 55.3
tat_Cyrl 65.9 63.0 tel_Telu 50.2 49.1 tgk_Cyrl 63.0 66.0 tgl_Latn 75.5 76.8
tha_Thai 4.6 2.2 tuk_Latn 56.3 56.5 tur_Latn 76.1 76.6 uig_Arab 47.8 48.6
ukr_Cyrl 76.6 76.6 urd_Arab 66.2 65.1 uzb_Latn 73.1 74.5 vec_Latn 68.6 67.7
vep_Latn 71.1 71.2 vie_Latn 73.0 73.1 vls_Latn 75.5 76.5 vol_Latn 59.6 59.7
war_Latn 66.4 66.6 wuu_Hani 32.3 28.5 xmf_Geor 63.6 65.7 yid_Hebr 50.4 55.7
yor_Latn 60.7 61.6 yue_Hani 23.7 21.6 zea_Latn 66.8 63.7 zho_Hani 24.7 20.9

Table 13: F1 scores of models on NER.
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Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP Language Baseline LANGSAMP

afr_Latn 87.8 88.2 ajp_Arab 70.4 69.2 aln_Latn 52.9 50.7 amh_Ethi 65.9 67.0
ara_Arab 66.5 66.5 bam_Latn 42.2 41.5 bel_Cyrl 86.0 85.5 ben_Beng 83.2 83.0
bre_Latn 61.0 60.0 bul_Cyrl 88.1 88.2 cat_Latn 86.5 86.7 ceb_Latn 65.2 65.2
ces_Latn 84.7 84.7 cym_Latn 65.7 64.6 dan_Latn 90.4 90.4 deu_Latn 87.9 87.6
ell_Grek 86.1 84.9 eng_Latn 96.0 96.0 est_Latn 83.7 83.7 eus_Latn 65.2 64.2
fao_Latn 88.8 88.3 fas_Arab 71.3 71.9 fin_Latn 82.1 81.7 fra_Latn 86.2 85.8
gla_Latn 57.9 57.5 gle_Latn 64.0 64.0 glg_Latn 83.1 83.5 glv_Latn 51.7 51.0
grc_Grek 71.7 71.0 grn_Latn 19.7 21.3 gsw_Latn 79.7 80.0 hbo_Hebr 34.0 38.6
heb_Hebr 68.5 68.0 hin_Deva 70.4 71.8 hrv_Latn 85.6 85.5 hsb_Latn 83.2 82.9
hun_Latn 81.5 82.3 hye_Armn 84.0 84.4 hyw_Armn 81.2 81.4 ind_Latn 83.6 83.3
isl_Latn 82.9 82.7 ita_Latn 87.8 88.7 jav_Latn 73.4 74.0 jpn_Jpan 22.6 28.9
kaz_Cyrl 76.5 76.0 kmr_Latn 74.1 74.2 kor_Hang 52.8 52.2 lat_Latn 72.8 71.7
lav_Latn 83.6 83.6 lij_Latn 76.4 75.6 lit_Latn 81.5 81.3 lzh_Hani 23.7 21.3
mal_Mlym 86.4 86.1 mar_Deva 81.4 80.7 mlt_Latn 79.5 80.0 myv_Cyrl 64.4 64.6
nap_Latn 70.6 75.9 nds_Latn 77.0 77.8 nld_Latn 88.2 88.3 nor_Latn 88.2 88.2
pcm_Latn 57.3 57.3 pol_Latn 83.5 83.2 por_Latn 88.0 88.1 quc_Latn 61.1 58.8
ron_Latn 81.4 81.7 rus_Cyrl 88.9 88.5 sah_Cyrl 74.0 73.0 san_Deva 25.7 24.2
sin_Sinh 56.0 56.5 slk_Latn 84.3 84.9 slv_Latn 77.2 77.0 sme_Latn 73.0 73.1
spa_Latn 87.6 87.8 sqi_Latn 76.3 76.9 srp_Latn 85.3 85.3 swe_Latn 92.5 92.6
tam_Taml 73.6 73.7 tat_Cyrl 70.2 71.1 tel_Telu 81.8 81.7 tgl_Latn 75.5 75.0
tha_Thai 55.9 56.7 tur_Latn 71.3 71.1 uig_Arab 68.2 68.2 ukr_Cyrl 85.0 85.2
urd_Arab 62.0 64.6 vie_Latn 68.3 67.4 wol_Latn 61.6 59.5 xav_Latn 11.8 10.5
yor_Latn 62.3 62.6 yue_Hani 37.4 41.3 zho_Hani 38.7 44.8

Table 14: F1 scores of models on POS.
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Language English Closest donor Language English Closest donor Language English Closest donor Language English Closest donor

ace_Latn 63.3 60.1 ach_Latn 35.6 48.1 acr_Latn 48.8 46.7 afr_Latn 58.6 58.5
ahk_Latn 5.4 8.3 aka_Latn 44.9 41.2 aln_Latn 56.2 54.7 als_Latn 57.1 57.1
alz_Latn 34.1 43.0 aoj_Latn 40.9 46.2 arb_Arab 55.4 55.4 arn_Latn 43.1 44.4
arz_Arab 33.7 40.3 asm_Beng 53.4 61.5 ayr_Latn 52.7 62.2 azb_Arab 61.0 61.0
bak_Cyrl 54.7 59.7 bam_Latn 48.9 55.6 ban_Latn 43.0 42.5 bar_Latn 47.8 43.3
bci_Latn 34.6 37.1 bcl_Latn 54.2 60.5 bel_Cyrl 59.1 61.5 bem_Latn 44.2 49.4
bhw_Latn 50.2 46.9 bim_Latn 47.3 55.1 bis_Latn 68.4 68.1 bqc_Latn 33.2 41.6
btx_Latn 56.7 53.8 bul_Cyrl 62.5 62.6 bum_Latn 39.6 42.2 bzj_Latn 65.7 60.3
cac_Latn 43.8 46.0 cak_Latn 51.0 57.9 caq_Latn 42.7 51.0 cat_Latn 61.2 62.3
cce_Latn 43.8 38.0 ceb_Latn 49.8 49.1 ces_Latn 63.3 63.7 cfm_Latn 58.3 57.1
chk_Latn 42.8 38.9 chv_Cyrl 60.3 64.3 ckb_Arab 58.3 67.0 cmn_Hani 60.8 73.0
crh_Cyrl 61.4 67.7 crs_Latn 62.3 63.5 csy_Latn 58.3 56.7 ctd_Latn 56.6 55.8
cuk_Latn 39.1 40.8 cym_Latn 51.9 46.0 dan_Latn 58.1 54.0 deu_Latn 51.5 51.5
dln_Latn 54.4 54.4 dtp_Latn 51.5 51.6 dyu_Latn 55.6 48.2 dzo_Tibt 50.6 58.1
ell_Grek 56.9 53.9 eng_Latn 78.0 78.0 enm_Latn 70.8 67.0 epo_Latn 58.3 58.3
eus_Latn 25.2 21.4 ewe_Latn 46.4 52.1 fao_Latn 56.5 64.8 fas_Arab 69.6 70.2
fil_Latn 56.7 58.7 fin_Latn 56.4 55.7 fon_Latn 36.8 35.4 fra_Latn 66.8 66.8
gaa_Latn 36.9 47.7 gil_Latn 40.4 47.2 giz_Latn 48.4 48.5 gkn_Latn 40.0 34.1
gla_Latn 45.6 45.6 gle_Latn 41.8 45.1 glv_Latn 37.3 48.7 gom_Latn 34.8 41.6
guc_Latn 39.6 37.6 gug_Latn 39.0 46.0 guj_Gujr 67.1 70.4 gur_Latn 37.0 44.2
gya_Latn 39.6 41.8 gym_Latn 45.4 52.9 hat_Latn 63.0 60.0 hau_Latn 54.0 59.6
heb_Hebr 16.7 15.2 hif_Latn 42.4 53.6 hil_Latn 63.7 61.6 hin_Deva 64.8 64.8
hne_Deva 64.1 67.5 hnj_Latn 61.5 63.2 hra_Latn 48.2 53.1 hrv_Latn 62.7 60.7
hun_Latn 65.2 65.9 hus_Latn 37.6 40.7 hye_Armn 67.2 69.3 iba_Latn 57.9 59.2
ifa_Latn 49.7 51.5 ifb_Latn 48.3 48.1 ikk_Latn 46.6 52.5 ilo_Latn 58.8 55.7
isl_Latn 53.5 61.2 ita_Latn 62.8 67.1 ium_Latn 51.4 58.0 ixl_Latn 36.6 38.2
jam_Latn 66.1 61.0 jav_Latn 43.9 47.6 jpn_Jpan 58.6 58.6 kaa_Latn 57.7 62.6
kac_Latn 44.5 47.3 kal_Latn 31.5 34.5 kan_Knda 60.6 67.5 kat_Geor 55.2 62.2
kbp_Latn 34.9 39.5 kek_Latn 41.5 40.3 khm_Khmr 64.7 64.7 kia_Latn 48.0 51.7
kin_Latn 47.2 52.5 kir_Cyrl 61.1 64.7 kjb_Latn 44.7 48.1 kjh_Cyrl 52.3 51.1
kmr_Cyrl 45.5 53.1 knv_Latn 42.6 40.5 kor_Hang 69.8 71.3 kpg_Latn 64.1 57.4
kri_Latn 63.2 56.0 ksd_Latn 54.2 54.4 kss_Latn 16.2 21.6 ksw_Mymr 50.4 50.3
lam_Latn 34.7 35.6 lao_Laoo 69.1 72.7 lat_Latn 57.2 62.9 lav_Latn 60.4 57.7
leh_Latn 43.5 37.2 lhu_Latn 22.3 29.0 lin_Latn 47.1 54.7 lit_Latn 58.3 59.7
ltz_Latn 48.2 48.2 lug_Latn 46.1 39.0 luo_Latn 40.6 41.2 lus_Latn 51.6 51.6
mad_Latn 55.3 63.0 mah_Latn 41.6 38.3 mai_Deva 62.7 60.5 mam_Latn 33.9 33.2
mau_Latn 5.5 8.4 mbb_Latn 52.6 53.1 mck_Latn 41.9 41.2 mcn_Latn 37.7 39.3
mdy_Ethi 51.6 57.6 meu_Latn 54.9 55.8 mfe_Latn 66.0 66.2 mgh_Latn 30.3 33.1
mhr_Cyrl 36.0 38.5 min_Latn 49.9 40.7 miq_Latn 52.2 52.2 mkd_Cyrl 71.2 70.3
mlt_Latn 50.7 50.7 mos_Latn 40.3 41.2 mps_Latn 57.1 53.1 mri_Latn 50.9 52.6

Table 15: F1 scores of LANGSAMP on Taxi1500 using English and the closest donor language as source (Part I).
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Language English Closest donor Language English Closest donor Language English Closest donor Language English Closest donor

msa_Latn 41.7 42.0 mwm_Latn 55.1 55.0 mxv_Latn 29.6 27.4 mya_Mymr 54.4 53.4
mzh_Latn 39.7 45.1 nan_Latn 31.5 31.8 naq_Latn 41.7 43.7 nav_Latn 21.1 29.5
nch_Latn 44.0 36.6 ncj_Latn 38.6 39.1 ndc_Latn 34.7 36.6 nde_Latn 45.7 49.8
nds_Latn 49.6 44.0 nep_Deva 68.0 72.1 ngu_Latn 43.4 48.2 nld_Latn 61.1 53.7
nnb_Latn 40.7 46.1 nno_Latn 63.1 63.1 nob_Latn 57.2 58.2 nor_Latn 56.4 57.8
nse_Latn 45.9 48.5 nso_Latn 48.6 48.6 nya_Latn 56.0 47.4 nyn_Latn 43.0 44.1
nzi_Latn 33.0 33.8 ori_Orya 67.3 67.3 ory_Orya 66.9 70.7 oss_Cyrl 55.5 57.5
pag_Latn 55.5 52.5 pam_Latn 42.0 37.8 pan_Guru 64.1 64.1 pap_Latn 65.6 59.8
pcm_Latn 66.1 65.9 pdt_Latn 60.0 56.5 pes_Arab 69.0 69.0 pis_Latn 64.3 65.0
plt_Latn 46.8 52.9 poh_Latn 44.3 45.5 pol_Latn 64.8 65.1 pon_Latn 50.5 52.2
prk_Latn 52.9 53.0 prs_Arab 69.2 70.0 pxm_Latn 34.5 41.5 qub_Latn 51.5 56.3
qug_Latn 65.0 61.3 quh_Latn 66.7 58.8 quw_Latn 55.9 56.0 quy_Latn 65.5 67.7
qvi_Latn 62.0 58.5 rap_Latn 48.9 49.3 rar_Latn 48.9 51.9 rmy_Latn 45.4 49.1
rop_Latn 56.6 54.7 rug_Latn 53.8 55.1 run_Latn 48.0 55.2 rus_Cyrl 68.1 68.1
sah_Cyrl 55.1 57.6 sba_Latn 39.1 41.4 seh_Latn 45.0 46.7 sin_Sinh 64.1 66.9
slv_Latn 63.8 60.7 sme_Latn 42.8 37.6 smo_Latn 60.8 54.2 sna_Latn 42.6 44.9
som_Latn 33.9 35.5 sop_Latn 36.4 36.0 sot_Latn 43.5 45.5 spa_Latn 64.2 64.2
srm_Latn 48.1 48.4 srn_Latn 63.7 62.8 srp_Latn 64.9 65.2 ssw_Latn 43.7 37.7
suz_Deva 58.0 57.8 swe_Latn 66.8 65.3 swh_Latn 59.8 59.8 sxn_Latn 46.6 40.2
tat_Cyrl 62.2 68.2 tbz_Latn 36.4 39.5 tca_Latn 43.3 50.3 tdt_Latn 60.3 55.1
teo_Latn 23.7 23.1 tgk_Cyrl 60.9 60.9 tgl_Latn 56.7 58.7 tha_Thai 63.8 63.8
tir_Ethi 50.1 50.1 tlh_Latn 65.0 65.0 tob_Latn 43.3 50.4 toh_Latn 37.1 39.0
toj_Latn 36.6 34.1 ton_Latn 47.3 51.5 top_Latn 21.9 21.3 tpi_Latn 63.8 67.6
tsn_Latn 39.8 44.1 tsz_Latn 40.4 41.0 tuc_Latn 57.4 56.9 tui_Latn 43.7 43.7
tum_Latn 47.6 43.2 tur_Latn 62.1 62.1 twi_Latn 41.4 38.9 tyv_Cyrl 59.8 60.3
tzo_Latn 39.5 39.5 udm_Cyrl 49.6 49.9 ukr_Cyrl 62.4 62.2 uzb_Latn 53.5 57.7
ven_Latn 41.9 48.6 vie_Latn 62.4 65.4 wal_Latn 48.9 42.7 war_Latn 47.7 54.5
wol_Latn 37.2 33.9 xav_Latn 25.5 23.7 xho_Latn 44.9 44.4 yan_Latn 50.3 53.5
yap_Latn 42.8 42.9 yom_Latn 37.6 34.1 yor_Latn 41.8 35.4 yua_Latn 40.1 43.2
zai_Latn 42.6 41.4 zho_Hani 60.7 60.7 zlm_Latn 68.4 65.5 zom_Latn 44.6 44.4
zul_Latn 51.9 52.2

Table 16: F1 scores of LANGSAMP on Taxi1500 using English and the closest donor language as source (Part II).
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Language English Closest donor Language English Closest donor Language English Closest donor Language English Closest donor

ace_Latn 69.9 72.4 acm_Arab 80.6 81.4 afr_Latn 81.4 81.8 ajp_Arab 81.4 83.0
als_Latn 82.3 82.3 amh_Ethi 72.6 72.6 apc_Arab 81.7 83.2 arb_Arab 81.5 81.5
arz_Arab 82.1 84.4 asm_Beng 83.0 83.0 ast_Latn 87.1 87.6 ayr_Latn 48.6 51.1
azj_Latn 86.5 84.0 bak_Cyrl 84.3 86.5 bam_Latn 46.5 42.2 ban_Latn 79.5 81.3
bem_Latn 61.1 51.4 ben_Beng 83.7 84.0 bjn_Latn 75.9 77.9 bod_Tibt 65.7 71.0
bul_Cyrl 86.3 86.6 cat_Latn 85.7 85.2 ceb_Latn 81.2 83.2 ces_Latn 86.3 85.6
ckb_Arab 80.0 76.8 crh_Latn 76.8 75.7 cym_Latn 73.6 76.6 dan_Latn 85.0 86.0
dyu_Latn 43.6 42.4 dzo_Tibt 68.2 59.8 ell_Grek 79.5 78.8 eng_Latn 88.9 88.9
est_Latn 78.9 78.1 eus_Latn 78.8 80.7 ewe_Latn 49.9 46.7 fao_Latn 84.4 83.6
fin_Latn 80.9 81.5 fon_Latn 40.8 38.1 fra_Latn 87.8 87.8 fur_Latn 77.4 77.9
gle_Latn 61.5 64.4 glg_Latn 87.6 87.6 grn_Latn 71.6 73.2 guj_Gujr 82.1 83.4
hau_Latn 59.3 64.2 heb_Hebr 76.8 80.2 hin_Deva 82.8 82.8 hne_Deva 77.9 79.5
hun_Latn 86.6 87.5 hye_Armn 81.3 80.3 ibo_Latn 71.4 71.3 ilo_Latn 76.1 76.7
isl_Latn 78.0 78.3 ita_Latn 86.4 87.5 jav_Latn 79.9 79.7 jpn_Jpan 86.8 86.8
kac_Latn 48.9 46.6 kam_Latn 45.8 48.3 kan_Knda 82.9 83.0 kat_Geor 83.7 81.0
kbp_Latn 42.8 42.2 kea_Latn 73.1 73.1 khm_Khmr 82.7 82.7 kik_Latn 55.1 56.7
kir_Cyrl 79.3 80.1 kmb_Latn 46.2 42.6 kmr_Latn 69.8 68.9 kon_Latn 65.2 63.4
lao_Laoo 83.4 82.9 lij_Latn 76.4 74.9 lim_Latn 74.1 73.0 lin_Latn 68.2 73.3
lmo_Latn 77.0 78.3 ltz_Latn 76.4 76.4 lua_Latn 54.4 54.3 lug_Latn 58.2 55.8
lus_Latn 64.8 64.8 lvs_Latn 83.2 83.0 mai_Deva 82.9 82.1 mal_Mlym 79.8 79.3
min_Latn 76.7 79.8 mkd_Cyrl 83.6 82.8 mlt_Latn 81.3 81.3 mos_Latn 44.7 40.9
mya_Mymr 80.5 78.8 nld_Latn 85.1 86.4 nno_Latn 86.0 86.0 nob_Latn 84.8 84.4
nso_Latn 57.6 57.6 nya_Latn 69.2 70.9 oci_Latn 85.0 84.1 ory_Orya 78.6 79.0
pan_Guru 76.4 76.4 pap_Latn 76.9 78.1 pes_Arab 87.5 87.3 plt_Latn 67.5 69.3
por_Latn 85.3 86.8 prs_Arab 85.0 85.5 quy_Latn 62.6 59.7 ron_Latn 84.0 84.4
rus_Cyrl 86.8 86.8 sag_Latn 51.3 50.2 san_Deva 72.9 76.6 sat_Olck 56.4 53.5
sin_Sinh 82.7 82.7 slk_Latn 85.4 85.1 slv_Latn 84.2 87.4 smo_Latn 74.2 75.3
snd_Arab 70.4 70.4 som_Latn 58.9 61.1 sot_Latn 64.1 63.2 spa_Latn 84.4 84.4
srp_Cyrl 84.8 85.0 ssw_Latn 64.1 65.2 sun_Latn 82.6 85.2 swe_Latn 84.2 86.2
szl_Latn 72.4 72.4 tam_Taml 81.2 81.2 tat_Cyrl 83.6 83.6 tel_Telu 84.0 85.4
tgl_Latn 82.1 81.7 tha_Thai 85.4 85.7 tir_Ethi 60.3 60.3 tpi_Latn 80.3 75.7
tso_Latn 57.3 60.3 tuk_Latn 78.1 78.5 tum_Latn 65.4 68.5 tur_Latn 80.4 80.4
uig_Arab 75.5 75.5 ukr_Cyrl 84.3 83.8 umb_Latn 41.0 46.5 urd_Arab 79.1 80.6
vie_Latn 86.2 83.9 war_Latn 80.7 81.3 wol_Latn 50.5 46.4 xho_Latn 60.1 59.8
zho_Hans 89.6 89.2 zho_Hant 88.8 88.8 zsm_Latn 86.4 86.0 zul_Latn 68.1 69.8

Table 17: F1 scores of LANGSAMP on SIB200. using English and the closest donor language as source.
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Language English Closest donor Language English Closest donor Language English Closest donor Language English Closest donor

ace_Latn 41.5 56.9 afr_Latn 75.8 80.3 als_Latn 80.9 80.9 amh_Ethi 39.7 39.7
arg_Latn 82.2 88.8 arz_Arab 55.1 82.6 asm_Beng 69.0 45.9 ast_Latn 84.6 85.8
aze_Latn 65.0 74.0 bak_Cyrl 62.5 72.2 bar_Latn 68.2 62.8 bel_Cyrl 74.9 79.7
bih_Deva 56.2 67.6 bod_Tibt 35.2 35.7 bos_Latn 70.1 75.2 bre_Latn 63.3 66.0
cat_Latn 83.8 85.1 cbk_Latn 53.7 48.9 ceb_Latn 56.0 26.8 ces_Latn 77.9 69.6
chv_Cyrl 73.6 84.3 ckb_Arab 76.0 60.6 cos_Latn 63.0 61.9 crh_Latn 52.7 59.4
cym_Latn 61.7 62.1 dan_Latn 81.4 81.3 deu_Latn 74.6 74.6 diq_Latn 54.0 72.2
ell_Grek 71.9 72.0 eml_Latn 41.3 41.3 eng_Latn 83.5 83.5 epo_Latn 68.3 68.3
eus_Latn 60.9 65.1 ext_Latn 44.2 48.6 fao_Latn 68.7 79.2 fas_Arab 55.0 53.6
fra_Latn 76.5 76.5 frr_Latn 52.0 52.0 fry_Latn 74.6 73.9 fur_Latn 58.2 54.0
gle_Latn 72.6 69.6 glg_Latn 80.7 86.1 grn_Latn 55.1 59.8 guj_Gujr 61.2 61.0
heb_Hebr 52.0 52.9 hin_Deva 69.4 69.4 hrv_Latn 77.2 79.8 hsb_Latn 74.3 69.7
hye_Armn 53.0 62.2 ibo_Latn 58.1 58.4 ido_Latn 82.6 81.5 ilo_Latn 80.0 74.9
ind_Latn 67.6 67.6 isl_Latn 70.1 75.4 ita_Latn 78.2 79.5 jav_Latn 56.0 86.4
jpn_Jpan 22.0 22.0 kan_Knda 57.5 61.8 kat_Geor 68.7 60.1 kaz_Cyrl 50.5 57.1
kin_Latn 69.6 67.3 kir_Cyrl 44.3 60.9 kor_Hang 50.4 51.2 ksh_Latn 59.7 51.4
lat_Latn 71.9 81.4 lav_Latn 74.4 69.0 lij_Latn 45.2 54.2 lim_Latn 69.3 61.2
lit_Latn 74.2 76.1 lmo_Latn 73.6 65.5 ltz_Latn 67.9 67.9 lzh_Hani 14.8 14.8
mar_Deva 62.5 76.6 mhr_Cyrl 60.6 72.3 min_Latn 42.6 57.5 mkd_Cyrl 72.2 73.1
mlt_Latn 75.9 75.9 mon_Cyrl 68.7 60.9 mri_Latn 50.0 47.0 msa_Latn 67.6 73.0
mya_Mymr 55.3 56.3 mzn_Arab 43.3 47.2 nan_Latn 88.1 36.6 nap_Latn 63.0 55.3
nep_Deva 56.9 60.4 nld_Latn 80.8 80.0 nno_Latn 77.6 77.6 nor_Latn 77.9 80.4
ori_Orya 34.2 34.2 oss_Cyrl 50.6 59.1 pan_Guru 51.5 51.5 pms_Latn 80.9 78.4
pol_Latn 77.7 71.1 por_Latn 78.9 84.9 pus_Arab 42.6 45.3 que_Latn 70.4 55.5
ron_Latn 77.8 75.5 rus_Cyrl 67.5 67.5 sah_Cyrl 71.9 77.9 san_Deva 38.4 53.4
sco_Latn 86.4 84.5 sgs_Latn 66.4 69.8 sin_Sinh 53.0 51.2 slk_Latn 76.4 55.9
snd_Arab 41.8 41.8 som_Latn 57.5 56.2 spa_Latn 77.6 77.6 sqi_Latn 76.8 78.7
sun_Latn 50.8 75.1 swa_Latn 71.8 71.8 swe_Latn 70.9 65.8 szl_Latn 70.9 70.9
tat_Cyrl 63.8 76.5 tel_Telu 48.1 49.0 tgk_Cyrl 68.4 68.4 tgl_Latn 71.9 73.7
tuk_Latn 54.4 57.3 tur_Latn 77.1 77.1 uig_Arab 47.7 62.3 ukr_Cyrl 76.6 85.3
uzb_Latn 73.2 76.0 vec_Latn 68.0 75.1 vep_Latn 72.0 63.0 vie_Latn 72.3 49.7
vol_Latn 61.0 36.5 war_Latn 64.9 56.1 wuu_Hani 35.7 66.7 xmf_Geor 69.3 55.7
yor_Latn 69.3 41.7 yue_Hani 25.7 73.5 zea_Latn 62.9 75.4 zho_Hani 25.2 25.2

Table 18: F1 scores of LANGSAMP on NER using English and the closest donor language as source.

Language English Closest donor Language English Closest donor Language English Closest donor Language English Closest donor

afr_Latn 88.5 79.5 ajp_Arab 71.1 41.9 aln_Latn 53.4 45.1 amh_Ethi 66.8 66.8
bam_Latn 43.0 31.2 bel_Cyrl 86.4 93.8 ben_Beng 87.5 80.2 bre_Latn 61.1 62.3
cat_Latn 86.8 95.8 ceb_Latn 66.7 32.5 ces_Latn 85.4 73.3 cym_Latn 65.5 60.4
deu_Latn 88.2 88.2 ell_Grek 84.9 75.5 eng_Latn 96.0 96.0 est_Latn 84.7 77.4
fao_Latn 88.7 67.5 fas_Arab 72.2 69.1 fin_Latn 82.2 75.8 fra_Latn 85.8 85.8
gle_Latn 64.6 65.5 glg_Latn 83.6 87.8 glv_Latn 51.9 57.8 grc_Grek 71.6 71.6
gsw_Latn 82.7 82.7 hbo_Hebr 38.9 37.4 heb_Hebr 67.9 69.3 hin_Deva 77.2 77.2
hsb_Latn 83.7 73.4 hun_Latn 82.2 42.0 hye_Armn 85.1 84.9 hyw_Armn 83.0 56.8
isl_Latn 82.7 81.2 ita_Latn 88.9 92.4 jav_Latn 75.4 78.8 jpn_Jpan 33.1 33.1
kmr_Latn 76.6 61.6 kor_Hang 52.7 45.3 lat_Latn 72.8 74.2 lav_Latn 83.7 78.4
lit_Latn 82.1 80.7 lzh_Hani 24.5 24.5 mal_Mlym 86.0 52.1 mar_Deva 84.1 81.7
myv_Cyrl 65.9 58.4 nap_Latn 82.4 70.6 nds_Latn 79.1 34.0 nld_Latn 88.2 82.2
pcm_Latn 58.2 48.1 pol_Latn 84.2 89.1 por_Latn 87.9 92.0 quc_Latn 63.3 52.6
rus_Cyrl 88.7 88.7 sah_Cyrl 74.2 74.5 san_Deva 25.5 32.7 sin_Sinh 56.2 34.4
slv_Latn 77.6 79.0 sme_Latn 74.8 60.6 spa_Latn 87.8 87.8 sqi_Latn 77.5 72.7
swe_Latn 92.7 83.2 tam_Taml 74.6 74.6 tat_Cyrl 72.4 70.9 tel_Telu 80.9 55.9
tha_Thai 58.3 27.5 tur_Latn 71.2 71.2 uig_Arab 68.2 48.3 ukr_Cyrl 85.6 91.7
vie_Latn 68.4 32.4 wol_Latn 61.6 57.4 xav_Latn 16.7 11.2 yor_Latn 62.7 46.5
zho_Hani 47.4 47.4

Table 19: F1 scores of LANGSAMP on POS using English and the closest donor language as source.
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