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Abstract

Continually expanding new languages for exist-
ing large language models (LLMs) is a promis-
ing yet challenging approach to building power-
ful multilingual LLMs. The biggest challenge
is to make the model continuously learn new
languages while preserving the proficient abil-
ity of old languages. To achieve this, recent
work utilizes the Mixture-of-Experts (MoE) ar-
chitecture to expand new languages by adding
new experts and avoid catastrophic forgetting
of old languages by routing corresponding to-
kens to the original model backbone (old ex-
perts). Although intuitive, this kind of method
is parameter-costly when expanding new lan-
guages and still inevitably impacts the perfor-
mance of old languages. To address these limi-
tations, we analyze the language characteristics
of different layers in LLMs and propose a layer-
wise expert allocation algorithm (LayerMoE)
to determine the appropriate number of new
experts for each layer. Specifically, we find
different layers in LLMs exhibit different rep-
resentation similarities between languages and
then utilize the similarity as the indicator to
allocate experts for each layer, i.e., the higher
similarity, the fewer experts. Additionally, to
further mitigate the forgetting of old languages,
we add a classifier in front of the router net-
work on the layers with higher similarity to
guide the routing of old language tokens. Ex-
perimental results show that our method out-
performs the previous state-of-the-art baseline
with 60% fewer experts in the single-expansion
setting and with 33.3% fewer experts in the
lifelong-expansion setting, demonstrating the
effectiveness of our method.

1 Introduction

Although existing large language models (LLMs)
have exhibited remarkable ability in high-resource

* This work was done during the internship at Pattern
Recognition Center, WeChat AI, Tencent Inc, China.

† Yufeng Chen is the corresponding author.

languages, their performance in multilingual sce-
narios is still limited (Lai et al., 2023b; Zhang et al.,
2024c; Huang et al., 2025). To enhance the mul-
tilingual ability of LLMs, continually expanding
new languages for existing LLMs is a sustainable
approach, which does not require excessive com-
putation or data resources than re-training from
scratch (Huang et al., 2024). During this process,
the key challenge is updating the model with new
language data while avoiding catastrophic forget-
ting of the ability in originally proficient languages.

As a promising solution, MoE-LPR (Zhou et al.,
2024), a two-stage training strategy, utilizes the
Mixture-of-Experts (MoE) architecture to achieve
expansion of new languages and seeks to preserve
the ability of the original languages by targeted
routing. Specifically, at the first stage, it adds and
trains several new experts beyond the dense LLM
to learn new languages. Then, at the second stage,
it tries to recover the ability of old languages by
language priors routing training. Although this
method shows the potential of MoE on balancing
the capability of newly expanded languages and the
original languages, there are still two problems. For
one thing, the expansion of MoE-LPR is inefficient
and leads to high resource usage after expansion
(e.g., the original Qwen1.5-1.8B has to be 3.2×
larger to accommodate three additional languages).
For another, although MoE-LPR designs the lan-
guage priors routing to recover the abilities of the
original languages, the corresponding performance
of old languages still declines noticeably.

Towards these limitations, we first analyze the
similarity between hidden states in different lan-
guages and find that some layers exhibit high simi-
larity. On this basis, we propose a layer-wise expert
allocation algorithm (LayerMoE) to determine the
appropriate number of new experts for each layer,
with the insight that higher representation similarity
requires fewer experts. Additionally, we speculate
that high similarity between old and new languages
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in some layers may confuse the router network,
causing the forgetting of old languages. To fur-
ther mitigate the forgetting, we add a classifier in
front of the router network on the layers exhibiting
higher similarity to guide the routing of tokens in
old languages.

We conduct experiments under two settings: (1)
single-expansion, where the model is enhanced
once by incorporating a new language group, and
(2) lifelong-expansion, where the model under-
goes sequential adaptation to multiple new lan-
guage groups. The corresponding experimental
results on four benchmarks demonstrate the ef-
fectiveness of our LayerMoE. Specifically, in the
single-expansion setting (please refer to Table 1),
our method achieves superior performance with
60% fewer experts compared to the previous state-
of-the-art method, i.e., better expansion of new
languages, and less forgetting of old languages.
In the lifelong-expansion setting (please refer to
Table 2), our method also outperforms baselines,
requiring 33.3% fewer experts. These results indi-
cate that our expert allocation algorithm offers a
resource-efficient solution for continuous language
learning, and the classifier added in front of the
router network further prevents the forgetting of
old languages.

In summary, the major contributions of this pa-
per are as follows1:

• We devise a layer-wise expert allocation algo-
rithm to assign the appropriate number of new
experts for each layer, which is parameter-
efficient and achieves better expansion perfor-
mance of new languages.

• We add a classifier in front of the router net-
work on the layers that exhibit higher simi-
larity, further mitigating the forgetting of old
languages.

• Experimental results in the single-expansion
and lifelong-expansion settings demonstrate
the effectiveness and the efficiency of our Lay-
erMoE.

2 Background

In this section, we first introduce the two-stage
expansion method MoE-LPR (Zhou et al., 2024)
and discuss its limitations.

1The code is publicly available at https://github.com/
XZhang00/LayerMoE.

Stage-1: Continual pre-training with MoE.
The dense model is upcycled to an MoE model
by adding new feed-forward networks (FFNs) and
router networks. Formally, the MoE model in-
cludes N experts and a linear router network Wr ∈
Rh×N for each layer, where h is the dimension of
hidden states after the Attention module. During
the forward process, the top-K experts I are dy-
namically selected by the router according to the
router scores:

G(x) = Softmax(x ·Wr), (1)

I = {i | Gi(x) ∈ TopK(G(x),K)}, (2)

where x ∈ Rh is the input token hidden state vector
of the router network, G(x) ∈ RN represents the
router scores of each expert, and K is the number of
the activated experts (K = 2). Then we normalize
the weights of the selected experts and weighted
sum their outputs to obtain the final representation:

y =
∑

i∈I

Gi(x)

Σj∈IGj(x)
Ei(x) + x, (3)

where Gi(x) and Ei(x) denote the router score and
the output of the i-th expert respectively.

In stage-1, the parameters of the original dense
model are frozen to avoid catastrophic forgetting
and the newly added experts and routers are up-
dated with the data of expanded languages. The
training objective includes the next token predic-
tion loss LNTP and the load balance loss Lbalance

(Fedus et al., 2022). Given the MoE model M with
the parameters of the newly added experts θe and
the routers θr, the LNTP of one input sequence t

is LNTP (θe, θr) = −∑|t|
i log pM(ti | t<i). The

Lbalance is an expert-level load balance loss (please
refer to Appendix A for the detailed introduction)
to mitigate the risk of routing collapse. The final
training loss of stage-1 is:

Lstage1(θe, θr) = LNTP + αLbalance, (4)

where α is a hyper-parameter that controls the
weight of the load balance loss (α = 0.01).

Stage-2: Review with LPR. In this stage, only
the routers are updated with the mixed data of the
old languages and the new languages. The lan-
guage priors routing (LPR) loss is designed to route
the old language tokens to the original frozen ex-
perts (i.e., the expert 0 in each layer). Formally,
given a batch tokens T including the old language
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tokens set Told and the indicator function F (t), the
LPR loss LLPR is defined as:

LLPR(θr) = −
∑

t∈T
F (t) logG0(t), (5)

F (t) =

{
1, if t ∈ Told,
0, if t /∈ Told,

(6)

where G0(t) is the routing score of the expert 0.
The final training loss of stage-2 is:

Lstage2(θr) = LNTP + βLLPR, (7)

where β is a hyper-parameter that controls the
weight of the LPR loss (β = 0.1).

Discussions about MoE-LPR. During stage-1,
MoE-LPR directly adds uniformly distributed ex-
perts for each layer, i.e., each layer adds the same
number of new experts. This expansion paradigm
may lead to inefficient expansion and high resource
usage, especially in lifelong learning settings. In-
spired by the findings on language-specific and
language-agnostic characteristics of different lay-
ers (Chen et al., 2023; Zhang et al., 2024b), we
raise a question: do all layers need the same num-
ber of new experts? One intuition is that decreasing
the number of experts in some layers may not hurt
the overall performance, which motivates us to de-
sign an expert allocation algorithm. During stage-2,
although the LPR loss is used to guide the routing
of old language tokens, the performance of the old
languages still declines noticeably. This suggests
that the routing rules in some layers may be diffi-
cult for the router network to learn.

3 Methodology

To address the two limitations of MoE-LPR, we
first analyze the similarity of hidden states between
different languages across different layers. Then
we introduce our layer-wise expert allocation algo-
rithm based on the similarity. Lastly, we introduce
the classifier ahead of the router network in the
layers with high similarity to control the routing of
the old languages.

3.1 Similarity Analysis
Considering the simplistic structure of the rout-
ing network, which essentially performs a linear
transformation, the routing results are typically de-
pendent on the input of the router network, i.e., the
Hidden States obtained after the Attention module
(HSAs). Therefore, we analyze the similarity of

Figure 1: The similarity of HSAs in different languages
across all layers within Qwen1.5-1.8B.

HSAs in different languages to investigate the po-
tential differences of languages at different layers.

Given two languages ℓ1 and ℓ2, we randomly
sample many examples for each language and per-
form forward propagation to obtain HSAs of each
token at different layers. Then we randomly select
Q tokens for each language and take their HSAs to
build the candidate set Qℓ1 and Qℓ2 for calculating
the similarity of these selected tokens in different
languages. For example in layer i, the similarity of
Qi

ℓ1
and Qi

ℓ2
are obtained by calculating the cosine

similarity of any two HSA vectors:

sim(Qi
ℓ1 ,Q

i
ℓ2)=

1

Q2

∑

u∈Qi
ℓ1

∑

v∈Qi
ℓ2

cos(u,v), (8)

where cos(·) denotes the cosine similarity, and
u/v ∈ Rh. These HSAs of randomly selected to-
kens contain different contextual information (Etha-
yarajh, 2019), which simulates the actual input of
the router network.

As a preliminary study, we calculate the similar-
ity of HSAs between some languages in different
layers. We select Qwen1.5-1.8B (Team, 2024) as
the base model and choose four languages includ-
ing English (en), Spanish (es), Bengali (bn), and
Greek (el). For each language ℓ, we sample ex-
amples from CulturalX (Nguyen et al., 2024a) and
then randomly select Q = 100000 tokens to obtain
the candidate set Qℓ. Then we follow Eq.(8) to cal-
culate the similarity between four language pairs,
including en&en, en&es, en&bn, and bn&hi. The
results in Figure 1 show that the similarity in dif-
ferent layers exhibits significant differences, with
higher similarity in the middle and last few layers,
and lower similarity in the 0~4 layers and 17~21
layers. en&en (the red line) displays the highest
similarity across all layers among the four language
pairs, while the other 3 language pairs show similar
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Figure 2: The procedure of our LayerMoE. In Step 1, we first calculate the indicated similarity for each layer. In
Step 2, we allocate experts based on the similarity. The layers with lower similarity are allocated more experts,
while those with higher similarity are assigned fewer experts. Additionally, we add a classifier in front of the router
in the layers with higher similarity to guide the routing of old language tokens.

trends with en&en.
According to the similarity difference across all

layers, we speculate that the higher similarity indi-
cates that HSAs capture more language-agnostic in-
formation, while the lower similarity suggests more
language-specific characteristics, which aligns with
previous studies (Zhang et al., 2024b; Tang et al.,
2024) that have observed the existence of language-
agnostic/specific neurons within LLMs. We hy-
pothesize that a layer with higher similarity needs
fewer new experts when expanding new languages,
as the model can extract language-agnostic repre-
sentations in this layer. Conversely, lower simi-
larity implies that more experts are necessary to
accommodate language-specific features for the
new languages. On this basis, we propose our Lay-
erMoE.

3.2 Layer-wise Expert Allocation

Figure 2 shows the procedure of our method. When
expanding new languages, we first calculate the
similarity between new&new and new&old lan-
guages for each layer. Then we allocate appropriate
experts for each layer according to the similarity.

Step 1: Calculate Similarity. Given the dense
model M0, and its proficient language group Lold

and current expanded language group Lnew, we
first randomly select Q tokens to build the candi-
date token set Qold and Qnew. Then we calculate
the similarity of Qnew&Qold and Qnew&Qnew,
and compute their average as the indicated simi-
larity of each layer. For example in layer i, the
indicated similarity Si is calucluated by:

Si
new&old=

∑|Lnew|
j

∑|Lold|
k sim(Qi

ℓj
,Qi

ℓk
)

|Lnew||Lold|
,

Si
new&new=

∑|Lnew|
j

∑|Lnew|
k,k ̸=j sim(Qi

ℓj
,Qi

ℓk
)

2|Lnew|(|Lnew| − 1)
,

Si =
Si
new&old + Si

new&new

2
, (9)

where sim(·, ·) follows Eq.(8).

Step 2: Allocate Experts. Given the dense
model with m layers, we obtain the indicated sim-
ilarity vector S = [S1, S2, . . . , Sm] after Step 1.
Then numbers of experts across m layers N =
[N1, N2, . . . , Nm] is calculated as follows:

N i =

⌈(
(Si)−1

∑m
i=1(S

i)−1

)
× δ

⌉
, (10)

where δ is the target sum number of all experts such
that

∑m
i=1N

i = δ, and ⌈·⌉ denotes round up to the
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nearest integer. As a result, fewer experts will be
allocated to the layers with higher similarity, while
more experts to the layers with lower similarity.
After allocating experts to each layer, we conduct
the post-training (stage-1) using the data of new
languages to obtain the MoE model Mstage1.

3.3 Routing Classification Network
During stage-2, the key objective is LLPR that
trains the router network to route the tokens in
old languages to old experts. To reduce the con-
fusion of the routers on old languages and new
languages, we add a routing classification network
Wc in front of the router network to judge whether
the current token belongs to old languages, where
Wc ∈ Rh×2. After obtaining the model Mstage1,
we first calculate the similarities Snew&old =
[S1

new&old, S
2
new&old, . . . , S

m
new&old] between new

and old languages following Eq.(9) for each layer.
Then we add the classifier to the top-K layers ac-
cording to {i|Si

new&old ∈ TopK(Snew&old,K)}.
The training objective of Wc is:

LCLS(θc)=−
∑

t∈T
F (t)log_softmax(x ·Wc),

(11)
where the indicator function F (t) is the same as
Eq.(6), x is the hidden state of the token t, and θc
denotes the parameters of the classifiers. Therefore,
the final training loss of stage-2 is:

Lstage2(θr, θc) = LNTP + βLLPR + γLCLS ,
(12)

where β and γ are hyper-parameters that control
the weights of LLPR and LCLS .

During inference, the tokens classified to old lan-
guages are directly routed to the old expert, while
others classified to new languages are normally
routed following Eq.(3):

y=

{
E0(x) + x, cls(x)=0,∑

i∈I
Gi(x)

Σj∈IGj(x)
Ei(x) + x, cls(x)=1,

(13)
where cls(x) = argmax(x·Wr), “0/1” denotes the
current token belonging to “old/new” languages,
and E0 represents the old expert.

4 Experiments

4.1 Experimental Setup
We conduct the experiments under single-
expansion and lifelong-expansion settings. The
single-expansion setting means expanding one

group of new languages to enhance the original
model once, while the lifelong-expansion setting
means sequentially adapting the model on multiple
groups of new languages.

Model and Languages. Following MoE-LPR
(Zhou et al., 2024), we select Qwen1.5-1.8B (Team,
2024) as our base model, which has a powerful
multilingual tokenizer and lower computation over-
head for easily upcycling. Based on the ability
of Qwen1.5-1.8B, we select three languages with
high performance as the old language group (G0)
to observe the catastrophic forgetting phenomenon:
English (en), Chinese (zh), and Spanish (es). Ad-
ditionally, we choose six low-resource languages2

in which Qwen1.5-1.8B performs poorly as the
expanded languages: Greek (el), Hungarian (hu),
Turkish (tr), Bengali (bn), Hindi (hi), and Nepali
(ne). Specifically, the selection of el, hu, and tr
follows MoE-LPR (Zhou et al., 2024), while bn,
hi, and ne are selected to observe the performance
of different methods on morphologically rich non-
Latin scripts, which pose greater modeling chal-
lenges and suffer from limited resources. Hence,
we divide them into two groups (G1: el, hu, and tr,
G2: bn, hi, and ne) for the single-expansion setting
(G0→G1, G0→G2, and G0→G1+G2) and the
lifelong-expansion setting (G0→G1→G2, and G0
→G2→G1).

Training. During stage-1, we train the new ex-
perts and the router network with new language
data. For each new language, we sample 2 bil-
lion tokens from CulturalX (Nguyen et al., 2024a),
a substantial multilingual dataset with 6.3 trillion
tokens in 167 languages. The detailed training
setup follows MoE-LPR (Zhou et al., 2024): the
batch size is 512, the sequence length is 1024, the
learning rate is 5e-5, and the weight α of the load
balancing loss is 0.01. During stage-2, we mix
the data of old languages and new languages to
train the router network and the classification net-
work. The top-7 layers with high similarity for
the single-expansion settings and top-5 layers for
the lifelong-expansion settings are taken accord-
ing to the best performance to add the routing
classification network. We randomly sample 50K
examples for each old language and 100K exam-
ples for each new language as the training data of
stage-2. Following MoE-LPR (Zhou et al., 2024),

2The performance on six languages is shown in Table 1.
More details of each language are listed in Appendix B.1.
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the English/Chinese/Spanish data is sampled from
Slimpajam (Soboleva et al., 2023), SkyPile-150B
(Wei et al., 2023a), and CulturalX (Nguyen et al.,
2024a), respectively. The 100k examples for each
new language are sampled from the training data of
stage-1. We set the batch size to 768 and the learn-
ing rate to 5e-5. The weight of LLPR and LCLS

loss is set to 0.1. All experiments are conducted on
8×A100-40G GPUs.

Evaluation. We evaluate all methods on 4 bench-
marks: ARC-Challenge (25-shot) (Clark et al.,
2018), MMLU (5-shot) (Hendrycks et al., 2021),
HellaSwag (10-shot) (Zellers et al., 2019), and
Belebele (5-shot) (Bandarkar et al., 2024). We
utilize the lm-evaluation-hardness3 framework
(Gao et al., 2024b) to conduct evaluation on their
multilingual version. Please refer to Appendix B.2
for the detailed introduction.

4.2 Baselines

MoE-LPR (Zhou et al., 2024) adds the same num-
ber of new experts for each layer. Gao et al. pro-
poses MOLA that experts in lower layers are more
similar than those in higher layers, i.e., higher lay-
ers need more experts. For G0→G1, G0→G2, we
conduct three versions of MoE-LPR, adding 2/3/5
experts per layer as 3*24/4*24/6*24 (Qwen1.5-
1.8B contains 24 layers). And MOLA (∇, 2468)
is employed following the best setting, allocating
2/4/6/8 experts for 0~5/6~11/12~17/18~23 layers.
For G0→G1+G2, G0→G1→G2, and G0→
G2→G1, we conduct MoE-LPR (7*24/4*24) as
baselines. For a fair comparison, we reproduce all
versions of MoE-LPR and MOLA using the same
data as our method, i.e., 2 billion tokens for each
new language.

Additionally, we directly take five baselines of
MoE-LPR (trained with 8 billion tokens for each
new language) under G0 → G1 for a clear com-
parison, including LoRA (Hu et al., 2021), Full
Fine-tuning, LLaMA-Pro (Wu et al., 2024), MoE,
and LoRAMoE (Dou et al., 2024). LoRA (Hu
et al., 2021) introduces Low-Rank Adaptation for
efficiently fine-tuning large language models. In
this paper, the LoRA targets include all linear mod-
ules. The LoRA rank is set to 8. Full Fine-tuning
is fine-tuning all parameters on the dense model.
LLaMA-Pro (Wu et al., 2024) insert new trans-
former blocks to replace the duplicate layers. Only

3https://github.com/EleutherAI/
lm-evaluation-harness

Figure 3: The expert allocation of our method and base-
lines for each layer under G0→G1, G0→G2.

the newly inserted blocks are trained to store new
knowledge during post-pretraining. 12 new layers
(the best setting) are inserted into the original dense
model. MoE means that only the stage-1 of MoE-
LPR is conducted. LoRAMoE (Dou et al., 2024) is
a novel framework that combines multiple LoRAs
with a router network. The router selects all LoRAs
for each token. The LoRA rank is set to 180, and
the number of LoRAs is 8 for each module. Due to
the poor performance of the 5 baselines, we do not
reproduce them and directly take the results trained
with 8 billion tokens for each new language from
the MoE-LPR paper (Zhou et al., 2024).

4.3 Allocation of Experts
After calculating the similarity following Step 1,
we assign the number of new experts for each layer
according to Eq.(10). For a fair comparison with
MoE-LPR (3*24), we set the targeted number of
new experts δ in Eq.(10) to 72. The allocation
results of our LayerMoE and baselines (under G0
→G1 and G0→G2) are present in Figure 3. Our
method allocates more experts for the shallow and
deep layers and less experts for the middle layers.
The detailed similarity and expert allocation results
of our method under each setting are plotted in
Figure 4 of Appendix B.3.

5 Results and Analysis

5.1 Main Results
Single-Expansion. The evaluation results of the
single-expansion setting (G0→G1 and G0→G2)
are listed in Table 1. The results show that our
method surpasses all baselines in “Old-avg” and
“New-avg” under the expansion of G1 and G2.
Particularly, our method outperforms the previ-
ous SOTA method “MoE-LPR (6*24)” with 60%
fewer parameter numbers of newly added experts
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ARC-C MMLU Hellaswag Belebele
Methods Expand-params Old New Old New Old New Old New Old-avg New-avg avg

Old (G0): en, es, zh→New (G1): el, hu, tr
Qwen1.5-1.8B / 33.31 22.93 47.23 30.52 49.70 29.27 55.89 32.92 46.53 28.91 37.72
∗LoRA / 28.33 23.89 37.42 29.30 41.48 29.78 39.45 26.93 36.67 27.48 32.07
∗Full Fine-tuning / 31.72 25.98 43.51 33.18 47.38 35.28 45.26 33.70 41.98 32.04 37.00
∗LLaMA-Pro 0.6B 31.77 24.35 44.06 34.02 48.36 33.85 48.78 31.52 43.24 30.94 37.09
∗MoE 4B 32.51 26.43 44.16 35.07 48.54 37.01 45.37 32.74 42.65 32.81 37.73
∗LoRAMoE 0.8B 32.43 26.63 45.41 34.17 48.61 37.17 47.74 32.81 43.55 32.70 38.12
MoE-LPR (6*24) 4B 32.26 26.55 46.51 34.95 49.75 37.53 52.92 39.04 45.36 34.52 39.94
MOLA (∇) 3.2B (↓ 20%) 32.49 27.00 46.38 33.98 49.63 37.03 53.85 38.37 45.59 34.10 39.84
MoE-LPR (4*24) 2.4B (↓ 40%) 32.29 26.69 46.51 34.11 49.60 37.12 52.33 37.74 45.18 33.92 39.55
MoE-LPR (3*24) 1.6B (↓ 60%) 32.77 26.43 46.54 34.59 49.63 37.08 52.07 37.15 45.25 33.81 39.53
LayerMoE (Ours) 1.6B (↓ 60%) 33.03 26.66 46.12 34.80 49.24 37.01 54.82 40.37 45.80 34.71 40.26

Old (G0): en, es, zh→New (G2): bn, hi, ne
Qwen1.5-1.8B / 33.31 23.05 47.23 29.54 49.70 28.22 55.89 28.85 46.53 27.41 36.97
MoE-LPR (6*24) 4B 33.06 23.85 47.04 30.62 49.69 30.92 53.11 33.85 45.72 29.81 37.77
MOLA (∇) 3.2B (↓ 20%) 32.48 23.67 47.02 30.82 49.73 30.48 53.59 32.15 45.71 29.28 37.49
MoE-LPR (4*24) 2.4B (↓ 40%) 33.08 23.27 47.21 30.74 49.64 30.67 52.85 33.04 45.70 29.43 37.56
MoE-LPR (3*24) 1.6B (↓ 60%) 32.77 23.53 46.97 30.72 49.68 30.56 52.59 33.33 45.50 29.53 37.52
LayerMoE (Ours) 1.6B (↓ 60%) 32.52 24.02 47.10 30.85 49.46 30.47 55.15 34.11 46.06 29.86 37.96

Table 1: The results of the single-expansion settings (G0→G1, G0→G2). The results marked with ∗ represent
that they are directly taken from the MoE-LPR paper (Zhou et al., 2024), which utilizes 8 billion tokens for each
new language during post-pretraining. Other experiments are trained with 2 billion tokens for each new language.
“Expand-params” denotes the parameter number of newly added experts and (↓ *%) means the reduction percentage
of parameters compared to MoE-LPR (6*24). The results in bold mean they are better than the previous SOTA
method “MoE-LPR (6*24)”. The detailed results for each language are reported in Table 7 and 8 of Appendix C.

(i.e., from 4B to 1.6B), which suggests that our
method is more parameter-efficient. On the con-
trary, MOLA and MoE-LPR (3*24/4*24) underper-
form MoE-LPR (6*24) when decreasing the num-
ber of expansion parameters. Although other base-
lines (LoRA, Full Fine-tuning, LLaMA-Pro, MoE,
and LoRAMoE) utilize 8B tokens for each new
language during post-pretraining, they still perform
poorly due to the lack of special designs. Addition-
ally, when keeping the same parameter numbers
(1.6B) with “MoE-LPR (3*24)”, our method ex-
hibits a significant improvement over “MoE-LPR
(3*24)” referring to “New-avg” (for G1 from 33.81
to 34.71 and for G2 from 29.53 to 29.86). This
superiority indicates that allocating experts based
on the language similarity in different layers has
a positive contribution to the expansion of new
languages. Furthermore, the results of “Old-avg’
showcase that our method performs the best on pre-
serving the ability of the old languages, with 45.80
for expanding G1 and 46.06 for G2. These re-
sults prove that appropriate correction of the router
network can effectively mitigate the catastrophic
forgetting of old languages.

The expansion performance exhibits differences
among different languages according to “New-avg”.
When conducting G0→G1, the performance of

new languages improves by 5.8 from 28.91 to
34.71, while only improves by 2.45 (from 27.41 to
29.86) on G0→G2. Although the amounts of train-
ing tokens (2B) for each new language are the same,
the morphologically rich non-Latin languages in
G2 (bn, hi, ne) obtain a smaller performance im-
provement compared to expanding G1. The dif-
ference can be attributed to their lower encoding
efficiencies (Arnett and Bergen, 2024; Rust et al.,
2021; Ahia et al., 2023; Petrov et al., 2023; Ali
et al., 2024), i.e., these languages typically employ
UTF-8 encoding during the tokenization process,
which results in longer encoded sequences. Conse-
quently, the number of effective training tokens is
reduced, limiting the potential for performance im-
provement. These results suggest that more tokens
are needed for better expansion of G2. Further-
more, when expanding G1 or G2, there are different
degrees of forgetting of old languages. Expanding
G1 brings more forgetting (from 46.53 to 45.80)
compared to expanding G2 (from 46.53 to 46.06),
which may be caused by more token overlaps be-
tween G0 and G1 since the writing systems of en/es
in G0 and hu/tr in G1 all contain the Latin alphabet
(as shown in Table 6 of Appendix B.1).

Lifelong-Expansion. The results of G0→G1→
G2 and G0→G2 →G1 in Table 2 demonstrate that
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Methods Order G1-E-p G2-E-p All-E-p G0-avg G1-avg G2-avg avg
Qwen1.5-1.8B / / / / 46.53 28.91 27.41 34.29
MoE-LPR (7*24) G0→G1+G2 4.8B 4.8B 4.8B 45.15 34.17 29.98 36.43
MoE-LPR (4*24) G0→G1+G2 2.4B 2.4B 2.4B (↓ 50.0%) 45.28 34.07 29.55 36.30
LayerMoE (Ours) G0→G1+G2 1.6B 1.6B 1.6B (↓ 66.7%) 45.56 34.73 29.94 36.74
MoE-LPR (7*24) G0→G1→G2 2.4B 2.4B 4.8B 45.88 34.40 30.26 36.85
LayerMoE (Ours) G0→G1→G2 1.6B 1.6B 3.2B (↓ 33.3%) 46.10 34.56 30.29 36.98
MoE-LPR (7*24) G0→G2→G1 2.4B 2.4B 4.8B 45.28 33.42 28.39 35.70
LayerMoE (Ours) G0→G2→G1 1.6B 1.6B 3.2B (↓ 33.3%) 46.25 33.76 29.80 36.60

Table 2: The results of G0→G1+G2 and the lifelong-expansion settings (G0→G1→G2 and G0→G2 →G1).
“G1/G2/All-E-p” represents the expansion number of newly added parameters for G1, G2, and the sum, respectively.
The detailed results for each language are reported in Table 9 of Appendix C.

Old-avg (↑) New-avg (↑) avg (↑)
LayerMoE (G0→G1) 45.80 34.71 40.26

w/ random 45.68 (↓ 0.12) 34.11 (↓ 0.60) 39.90
w/o classifier 45.33 (↓ 0.47) 34.61 (↓ 0.10) 39.97

LayerMoE (G0→G2) 46.06 29.86 37.96
w/ random 45.94 (↓ 0.12) 29.15 (↓ 0.71) 37.54
w/o classifier 45.39 (↓ 0.67) 29.53 (↓ 0.33) 37.46

Table 3: The ablation results under G0→G1 and G0→
G2. “w/ random” means randomly allocating numbers
of new experts for each layer without calculating the
similarity. “w/o classifier” denotes no classifier is added
in front of the router network.

our method outperforms MoE-LPR (7*24) with
fewer 33.3% new experts in terms of “G0/G1/G2-
avg”, proving the effectiveness of our method in
lifelong-expansion setting. Additionally, we sur-
prisingly observe that G0→G1→G2 brings better
expansion performance for G2 (“G2-avg”) and less
forgetting of old languages (“G0-avg”) compared
to G0→G1+G2. But G0→G2→G1 does not
show similar improvement for G1. This difference
indicates that the learning order of different lan-
guages may have non-trivial influences on the final
performance of each language.

5.2 Ablation Study

To verify the effectiveness of our expert allocation
algorithm and the added classifier, we conduct the
ablation experiments under G0→G1 and G0→G2
settings and report the results in Table 3. These
results show that randomly allocating experts for
each layer without calculating the similarity sig-
nificantly decreases the expansion performance (↓
0.60 in G1, ↓ 0.71 in G2). Additionally, the forget-
ting of old languages becomes worse (↓ 0.47 in G1,
↓ 0.67 in G2) when no classifiers are added in front
of the router network. Overall, these results prove
the necessity of our layer-wise expert allocation

Old New avg Old New avg
top-1 44.90 34.30 39.60 top-7 45.80 34.71 40.26
top-2 44.81 34.69 39.75 top-8 45.79 34.54 40.17
top-3 45.10 34.41 39.76 top-9 45.95 34.42 40.19
top-4 45.41 34.67 40.04 top-10 46.16 34.28 40.22
top-5 45.28 34.66 39.97 top-24 46.04 34.32 40.18
top-6 45.74 34.72 40.23 top-23 46.15 33.23 39.69
last-7 44.96 34.60 39.78 random-7 45.32 34.60 39.96

Table 4: The results of adding classifiers in different lay-
ers under G0→G1. “top-*” denotes adding classifiers to
* layers with the highest similarity. “random-7” means
randomly selecting 7 layers, while “last-7” represents
the 7 layers with the lowest similarity.

algorithm and the added classifier.

5.3 Classifiers in Different Layers

The top-K layers with the higher similarity be-
tween new and old languages are selected accord-
ing to {i|Si

new&old ∈ TopK(Snew&old,K)} to add
the classifier. To investigate the best value of K,
we conduct the experiments from top-1 to top-11
and top-24 (all layers) under G0 → G1 and list
the results in Table 4. The results show that as
more classifiers are added, the performance of the
new language expansion first increases and then
decreases, and the performance of the old language
preservation increases constantly. The best overall
performance peaks on the top-7 setting. Addition-
ally, we also report the results of “random-7” and
“last-7” to verify the effectiveness of adding clas-
sifiers in layers with higher similarity. Randomly
selecting layers or opting for those with lower sim-
ilarity consistently yields poor performance in pre-
serving the capability of old languages.

5.4 Generalization Study

To evaluate the generalization of our method on
different models, we conduct a brief verification
of our method on G0 → G1 with Llama-3.2-3B
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ARC-C MMLU Hellaswag Belebele FLORES
Methods Old New Old New Old New Old New Old New Old-avg New-avg avg
Llama-3.2-3B 44.64 33.39 49.84 42.15 63.56 43.62 70.48 61.37 84.88 83.96 62.68 52.90 57.79
MoE-LPR (3*24) 43.70 37.58 49.99 43.98 64.17 51.19 70.74 64.41 84.58 84.35 62.64 56.30 59.47
LayerMoE (Ours) 44.10 37.64 49.96 44.08 64.07 51.33 71.22 64.63 84.72 84.69 62.81 56.47 59.64

Table 5: The results of Llama-3.2-3B under the single-expansion setting (G0→G1). The detailed results for each
language are reported in Table 10 and 11 of Appendix C.

(Grattafiori et al., 2024) and evaluate the perfor-
mance on 5 benchmarks. Particularly, we add the
machine translation task FLORES (Team, 2022)
to prove the effectiveness of our method on gen-
eration tasks. Specifically, we set the following
directions: en → zh, zh → en, en → es, es → en,
en → el, el → en, en → hu, hu → en, en → tr,
and tr → en. And we utilize COMET (Rei et al.,
2020) as the evaluation metric. The results in Ta-
ble 5 demonstrate the effectiveness of our method
across different LLMs and generative tasks, which
further proves the practical application value of our
method.

6 Related Work

There are two categories (Huang et al., 2024) in
expanding new languages to build powerful multi-
lingual LLMs: (1) utilizing the collected multilin-
gual corpus to train the multilingual LLMs from
scratch and (2) continually training LLMs on top of
existing LLMs only with new language data. The
first category generally necessitates meticulous de-
sign in terms of the data ratio between different
languages (AI et al., 2024; Zhang et al., 2024a;
Nguyen et al., 2024b) and the implementation of
curriculum learning strategies (Wei et al., 2023b;
Üstün et al., 2024) during the training process to en-
sure a balanced improvement in proficiency across
various languages. Training from scratch typically
requires excessive computational resources and
training durations, which are often challenging to
implement and environmentally unfriendly.

The second category is to continually train the
original model with new language data to enhance
the ability of new languages while avoiding the
catastrophic forgetting of the ability in originally
proficient languages. MoE-LPR (Zhou et al., 2024)
and MoE-CT (Li et al., 2024) upcycle the dense
model to the MoE model for improving the multi-
lingual ability of LLMs. Similarly, some methods
also have introduced external parameters to im-
prove the ability of the original LLMs and preserve
the original capabilities by freezing the old param-

eters. LLaMA-Pro (Wu et al., 2024) insert new
transformer blocks to replace the duplicate layers to
further enhance the original LLM. LoRAMoE (Dou
et al., 2024) combines multiple low-rank adapters
with a router network to achieve better performance
on downstream tasks. In this work, we only focus
on the multilingual expansion and propose Layer-
MoE to address the limitations of existing methods,
e.g., inefficient expansion, high resource usage, and
accumulated forgetfulness of old languages. Ad-
ditionally, the concurrent work AlphaLoRA (Qing
et al., 2024) similar to ours allocates LoRA experts
based on Heavy-Tailed Self-Regularization Theory
to mitigate redundancy of LoRA experts and im-
prove the general ability of LLMs. Differently, we
calculate the representation similarity of different
languages in different layers as the indicator to al-
locate new experts for each layer, which is intuitive
and effective for the expansion of new languages.

7 Conclusion

In this work, we propose a layer-wise expert allo-
cation algorithm to assign the appropriate number
of new experts for each layer when expanding new
languages for existing LLMs. We first calculate
the similarity of different languages for each layer
as the indicator and allocate more experts to the
layers exhibiting lower similarity. Additionally, we
add a classifier in front of the router network for
the layers with higher similarity to further mitigate
the forgetting of old languages. Experimental re-
sults demonstrate the effectiveness of our method,
which is parameter-efficient and achieves good ex-
pansion of new languages and less forgetting of old
languages.

Limitations

Although our method achieves better improvements
in terms of “Old-avg” and “New-avg” than MoE-
LPR (6*24) with 60% fewer experts, the improve-
ments in different benchmarks and languages are
inconsistent. The inherent reasons for the incon-
sistency are not yet clear and need further inves-
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tigation. Additionally, we set the total number of
new experts according to the baseline “MoE-LPR
(3*24)” for a fair comparison rather than exploring
the optimal total number. In the future, we will con-
tinually solve these limitations for a better expert
allocation solution.
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A Load Balance Loss

The load balance loss (Fedus et al., 2022) generally mitigates the risk of routing collapse by constraining
an even distribution of tokens across different experts. Given a batch tokens T and N experts for each
layer, the load balance loss Lbalance (Zhou et al., 2024) is calculated following:

Lbalance =
N∑

i=1

fiPi, (14)

fi =
N

K|T|
∑

t∈T
1{Token t selects expert i}, (15)

Pi =
1

|T|
∑

t∈T
Gi(t), (16)

where t represents a token, Gi(t) is the router score of the expert i, and 1(·) is a indicator function when
the token t selecting the expert i equals 1.

B Experimental Details

B.1 Detailed Introduction of Different Languages

The language families and writing systems of our nine selected languages are listed in Table 6. Specifically,
bn, hi, and ne all belong to the Indo-Aryan branch of the Indo-European family and use non-Latin scripts,
making them more challenging to model effectively and less well-resourced compared to Latin-script
languages.

Languages Language Family Writing System
English (en) Indo-European (Germanic) Latin alphabet (26 letters)
Chinese (zh) Sino-Tibetan (Sinitic) Chinese characters
Spanish (es) Indo-European (Romance) Latin alphabet (27 letters, including ñ)
Greek (el) Indo-European (Hellenic) Greek alphabet (24 letters)
Hungarian (hu) Uralic (Finno-Ugric) Latin alphabet with diacritics (40 letters)
Turkish (tr) Turkic Latin alphabet (29 letters)
Bengali (bn) Indo-European (Indo-Aryan) Bengali script
Nepali (ne) Indo-European (Indo-Aryan) Devanagari script
Hindi (hi) Indo-European (Indo-Aryan) Devanagari script

Table 6: The detailed language families and writing systems.

B.2 Evaluation Details

The lm-evaluation-hardness framework has included the multilingual version of ARC-Challenge,
MMLU, and HellaSwag translated by Okapi (Lai et al., 2023a). For unsupported languages in new
languages, we manually integrate the Turkish version from OpenLLM Turkish leaderboard4 and the
Greek version translated by ILSP5 following the official guide6.

B.3 Similarity and Allocation

Figure 4 presents the detailed similarity and expert allocation of our method for each layer under the five
settings.

4https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard
5https://huggingface.co/ilsp
6https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/new_task_guide.md
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(a) G0→G1 (b) G0→G2 (c) G0→G1+G2

(d) G0→G1→G2 (e) G0→G2 →G1

Figure 4: The detailed similarity and expert allocation of our method for each layer of Qwen1.5-1.8B under the five
settings.

C Detailed Results

Qwen1.5-1.8B: The detailed results for each language under the single-expansion settings (G0→G1,
G0→G2) are listed in Table 7 and 8. The detailed results of G0→G1+G2 and the lifelong-expansion
settings (G0→G1→G2 and G0→G2 →G1) are reported in Table 9.

ARC-Challenge MMLU Hellaswag Belebele
Methods en es zh en es zh en es zh en es zh G0-avg
Qwen1.5-1.8B 37.97 27.86 34.10 45.67 38.81 57.21 61.62 39.35 48.14 60.78 47.44 59.44 46.53
MoE-LPR (6*24) 38.05 26.84 31.88 45.77 38.26 55.50 61.34 39.41 48.49 58.44 45.89 54.44 45.36
MOLA 37.88 26.84 32.74 45.81 38.30 55.02 61.36 39.27 48.26 60.11 47.11 54.33 45.59
MoE-LPR (4*24) 36.69 27.35 32.82 46.09 38.57 54.87 61.17 39.37 48.27 58.33 44.22 54.44 45.18
MoE-LPR (3*24) 37.46 27.35 33.50 46.00 38.67 54.94 61.20 39.43 48.25 59.44 44.44 52.33 45.25
LayerMoE (Ours) 38.57 26.58 33.93 45.81 37.97 54.59 60.90 38.98 47.84 60.56 46.89 57.00 45.80
Methods el hu tr el hu tr el hu tr el hu tr G1-avg
Qwen1.5-1.8B 22.95 23.20 22.63 28.94 32.25 30.37 29.15 29.63 29.04 33.33 32.00 33.44 28.91
MoE-LPR (6*24) 25.26 27.14 27.24 32.06 36.30 36.49 36.09 38.63 37.87 38.33 36.56 42.22 34.52
MOLA 25.94 27.40 27.67 31.43 35.80 34.71 35.85 37.79 37.46 35.22 39.00 40.89 34.10
MoE-LPR (4*24) 25.34 27.57 27.16 31.58 35.79 34.97 35.70 38.26 37.39 34.44 40.22 38.56 33.92
MoE-LPR (3*24) 24.32 27.05 27.92 31.90 36.27 35.59 35.55 38.18 37.51 32.00 39.56 39.89 33.81
LayerMoE (Ours) 25.34 26.80 27.84 31.96 36.76 35.68 35.61 38.10 37.31 37.44 41.56 42.11 34.71

Table 7: The detailed results of Qwen1.5-1.8B under the G0→G1 setting for each language.

Llama-3.2-3B: Figure 5 presents the detailed similarity and expert allocation of our method for each
layer of Llama-3.2-3B under the G0→G1 setting. The detailed results for each language under the G0→
G1 setting are listed in Table 10 and 11.
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ARC-Challenge MMLU Hellaswag Belebele
Methods en es zh en es zh en es zh en es zh G0-avg
Qwen1.5-1.8B 37.97 27.86 34.10 45.67 38.81 57.21 61.62 39.35 48.14 60.78 47.44 59.44 46.53
MoE-LPR (6*24) 37.29 27.26 34.62 46.05 38.46 56.60 61.73 39.27 48.07 59.67 46.33 53.33 45.72
MOLA 37.37 27.26 32.82 45.88 38.71 56.48 61.76 39.09 48.34 59.56 46.22 55.00 45.71
MoE-LPR (4*24) 37.80 27.18 34.27 46.00 38.88 56.76 61.65 39.03 48.24 59.67 45.22 53.67 45.70
MoE-LPR (3*24) 37.80 27.09 33.42 45.52 38.62 56.78 61.59 39.13 48.32 59.89 45.33 52.56 45.50
LayerMoE (Ours) 36.86 27.44 33.25 46.15 39.05 56.09 61.50 39.11 47.77 61.89 46.67 56.89 46.06
Methods bn hi ne bn hi ne bn hi ne bn hi ne G2-avg
Qwen1.5-1.8B 22.50 23.46 23.18 29.59 29.89 29.13 28.23 28.48 27.95 29.67 30.00 26.89 27.41
MoE-LPR (6*24) 24.64 25.26 21.64 30.29 30.57 31.01 29.90 32.78 30.08 33.22 35.22 33.11 29.81
MOLA 24.29 25.09 21.64 31.01 30.67 30.77 29.44 32.54 29.46 31.00 33.33 32.11 29.28
MoE-LPR (4*24) 23.52 24.91 21.39 30.73 30.54 30.94 30.02 32.55 29.45 32.11 34.33 32.67 29.43
MoE-LPR (3*24) 24.98 24.57 21.04 31.59 30.87 29.70 29.55 32.68 29.44 32.44 34.33 33.22 29.53
LayerMoE (Ours) 24.21 25.26 22.58 31.10 30.43 31.01 29.31 32.42 29.67 33.44 33.44 35.44 29.86

Table 8: The detailed results of Qwen1.5-1.8B under the G0→G2 setting for each language.

Figure 5: The detailed similarity and expert allocation of our method for each layer of Llama-3.2-3B under the G0
→G1 setting.
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ARC-Challenge MMLU Hellaswag Belebele
Methods Order en es zh en es zh en es zh en es zh G0-avg
Qwen1.5-1.8B / 37.97 27.86 34.10 45.67 38.81 57.21 61.62 39.35 48.14 60.78 47.44 59.44 46.53
MoE-LPR (7*24) G0→G1+G2 37.88 26.92 33.85 45.26 37.61 54.51 61.43 39.29 48.14 59.33 44.56 53.00 45.15
MoE-LPR (4*24) G0→G1+G2 37.80 27.69 32.82 45.29 38.12 54.39 61.45 39.11 48.20 59.89 44.33 54.22 45.28
LayerMoE (Ours) G0→G1+G2 37.46 27.01 34.27 45.63 38.14 54.18 61.37 39.08 47.86 60.11 46.22 55.44 45.56
MoE-LPR (7*24) G0→G1→G2 37.54 26.84 33.16 45.71 38.29 55.42 61.43 39.21 48.12 61.22 47.33 56.33 45.88
LayerMoE (Ours) G0→G1→G2 37.29 26.58 33.93 45.69 38.86 55.40 61.23 39.23 48.05 62.22 48.00 56.67 46.10
MoE-LPR (7*24) G0→G2→G1 38.14 27.18 33.42 46.07 38.26 55.28 61.36 39.44 48.26 57.44 44.78 53.67 45.28
LayerMoE (Ours) G0→G2→G1 38.31 27.09 34.70 46.19 38.79 55.85 61.19 39.05 48.05 61.89 46.44 57.44 46.25
Methods Order el hu tr el hu tr el hu tr el hu tr G1-avg
Qwen1.5-1.8B / 22.95 23.20 22.63 28.94 32.25 30.37 29.15 29.63 29.04 33.33 32.00 33.44 28.91
MoE-LPR (7*24) G0→G1+G2 26.46 28.00 27.92 30.38 35.14 34.64 36.40 39.01 37.92 35.33 39.00 39.78 34.17
MoE-LPR (4*24) G0→G1+G2 26.20 27.65 27.92 31.01 35.08 34.37 35.60 38.14 37.11 34.11 41.11 40.56 34.07
LayerMoE (Ours) G0→G1+G2 25.34 27.83 27.92 31.51 36.43 35.32 35.50 38.00 37.27 36.89 42.11 42.67 34.73
MoE-LPR (7*24) G0→G1→G2 25.51 26.20 27.75 30.51 35.29 34.46 35.20 37.92 37.08 37.44 43.44 42.00 34.40
LayerMoE (Ours) G0→G1→G2 25.34 25.77 27.75 31.94 36.58 35.09 35.17 37.92 36.24 37.34 43.34 42.18 34.56
MoE-LPR (7*24) G0→G2→G1 25.34 26.97 26.47 30.76 34.41 34.47 35.11 37.42 37.09 33.67 38.44 40.89 33.42
LayerMoE (Ours) G0→G2→G1 24.57 26.80 26.30 30.86 35.36 35.26 34.54 37.07 36.12 36.44 39.00 42.78 33.76
Methods Order bn hi ne bn hi ne bn hi ne bn hi ne G2-avg
Qwen1.5-1.8B / 22.50 23.46 23.18 29.59 29.89 29.13 28.23 28.48 27.95 29.67 30.00 26.89 27.41
MoE-LPR (7*24) G0→G1+G2 24.29 24.91 20.96 30.94 32.26 31.31 30.03 33.24 30.03 31.56 34.00 36.22 29.98
MoE-LPR (4*24) G0→G1+G2 24.38 25.00 21.47 29.64 31.81 30.09 29.59 32.72 29.73 33.11 34.33 32.78 29.55
LayerMoE (Ours) G0→G1+G2 23.27 25.26 21.47 31.23 32.05 30.60 29.67 32.34 29.66 32.67 36.00 35.00 29.94
MoE-LPR (7*24) G0→G1→G2 23.44 25.34 21.81 31.66 32.31 31.41 29.55 32.60 29.54 34.22 35.44 35.78 30.26
LayerMoE (Ours) G0→G1→G2 23.78 25.43 22.33 31.42 31.92 31.11 29.71 32.49 29.88 34.02 35.62 35.82 30.29
MoE-LPR (7*24) G0→G2→G1 25.32 24.40 21.81 30.41 31.89 29.92 28.79 30.73 29.00 27.78 29.67 31.00 28.39
LayerMoE (Ours) G0→G2→G1 24.98 25.17 22.67 31.75 29.95 30.41 29.25 32.49 29.46 32.56 35.11 33.78 29.80

Table 9: The detailed results of Qwen1.5-1.8B under the G0→G1+G2, G0→G1→G2, and G0→G2 →G1 settings
for each language.

ARC-Challenge MMLU Hellaswag Belebele
Methods en es zh en es zh en es zh en es zh G0-avg
Llama-3.2-3B 51.11 43.59 39.23 56.42 49.09 44.00 76.32 61.50 52.87 74.22 68.56 68.67 57.13
MoE-LPR (3*24) 50.00 42.31 38.80 56.25 49.63 44.08 76.35 62.23 53.94 74.89 69.22 68.11 57.15
LayerMoE (Ours) 49.91 42.56 39.83 56.05 49.77 44.07 76.28 62.18 53.74 75.33 69.44 68.89 57.34
Methods el hu tr el hu tr el hu tr el hu tr G1-avg
Llama-3.2-3B 31.76 34.85 33.56 41.08 43.01 42.37 43.37 44.65 42.85 65.22 59.67 59.22 45.13
MoE-LPR (3*24) 36.64 39.21 36.89 43.96 44.51 43.46 52.49 51.33 49.74 68.44 63.00 61.78 49.29
LayerMoE (Ours) 36.64 39.73 36.55 43.88 44.86 43.51 52.72 51.66 49.60 67.89 64.22 61.78 49.42

Table 10: The results of Llama-3.2-3B on ARC-Challenge, MMLU, Hellaswag, and Belebele under the G0→G1
setting for each language.

Methods en → zh zh → en en → es es → en old-avg en → el el → en en → hu hu → en en → tr tr → en new-avg
Llama-3.2-3B 84.36 83.95 84.79 86.4 84.88 82.47 85.86 83.81 86.15 78.97 86.53 83.96
MoE-LPR (3*24) 84.19 83.19 84.67 86.27 84.58 84.18 85.89 83.24 85.6 81.95 85.26 84.35
LayerMoE (Ours) 84.32 83.67 84.63 86.26 84.72 85.14 86.18 83.7 85.65 82.02 85.44 84.69

Table 11: The detailed results of Llama-3.2-3B on the FLORES benchmark under the G0→G1 setting for each
language.
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