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Abstract

Tool learning has emerged as a crucial capa-
bility for large language models (LLMs) to
solve complex real-world tasks through inter-
action with external tools. Existing approaches
face significant challenges, including reliance
on hand-crafted prompts, difficulty in multi-
step planning, and lack of precise error di-
agnosis and reflection mechanisms. We pro-
pose ToolCoder, a novel framework that re-
formulates tool learning as a code generation
task. Inspired by software engineering princi-
ples, ToolCoder transforms natural language
queries into structured Python function scaffold
and systematically breaks down tasks with de-
scriptive comments, enabling LLMs to leverage
coding paradigms for complex reasoning and
planning. It then generates and executes func-
tion implementations to obtain final responses.
Additionally, ToolCoder stores successfully
executed functions in a repository to promote
code reuse, while leveraging error traceback
mechanisms for systematic debugging, opti-
mizing both execution efficiency and robust-
ness. Experiments demonstrate that ToolCoder
achieves superior performance in task comple-
tion accuracy and execution reliability com-
pared to existing approaches, establishing the
effectiveness of code-centric approaches in tool
learning. Our code is available at this link.

1 Introduction

As large language models (LLMs) continue to ad-
vance, tool learning has emerged as a critical capa-
bility, enabling LLMs to solve complex real-world
tasks through dynamic interaction with external
tools and APIs (Qu et al., 2024). This capability
extends LLMs’ problem-solving abilities and al-
lows them to adapt to dynamic environments and
specialized domains (Wang et al., 2024c).

Current approaches for tool learning predom-
inantly follow a sequential plan-execute-observe
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Figure 1: Illustration of key limitations in existing ap-
proaches: weak planning strategies, insufficient error
handling, and lack of experience reuse.

paradigm (Yao et al., 2023; Paranjape et al., 2023;
Lu et al., 2023), where LLMs iteratively plan ac-
tions, execute tools, and observe outcomes. While
frameworks like ReAct (Yao et al., 2023) and
Chameleon (Lu et al., 2023) have demonstrated suc-
cess in simple task handling, they suffer from sev-
eral limitations. As shown in Figure 1, these meth-
ods rely heavily on hand-crafted prompts and nat-
ural language reasoning, making multi-step plan-
ning difficult and often leading to unreliable perfor-
mance in complex tasks (Huang et al., 2024; Wang
et al., 2024b). Moreover, they lack precise error
diagnosis and reflection mechanisms—when exe-
cution fails, they are unable to identify the actual
causes of errors or propose targeted corrective ac-
tions (Wang et al., 2024b,a). Furthermore, current
frameworks are unable to accumulate and reuse
successful experiences from past executions, treat-
ing each query in isolation and repeatedly solving
similar problems from scratch (Yuan et al., 2024a).
These limitations hinder the robustness, adaptabil-
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ity, and scalability of tool-learning systems.

In this paper, we propose ToolCoder, a novel
code-empowered framework that re-formulates
tool learning as a code generation task. Inspired by
software engineering principles, ToolCoder sys-
tematically addresses these challenges in tool learn-
ing through these key stages: First, ToolCoder
converts vague natural language queries into struc-
tured Python function scaffold, analogous to
the requirement analysis in software engineering,
enabling clearly defined input-output specifica-
tions. Then, following modular design princi-
ples, ToolCoder systematically breaks down scaf-
fold into subtasks with descriptive comments, en-
abling LLMs to leverage coding paradigms for
complex reasoning and planning. In the implemen-
tation phase, ToolCoder generates well-structured
runnable code for both sub-function and main func-
tions, then executes them to obtain final responses.
Successfully executed code snippets are stored in
a function repository to accumulate proven imple-
mentations, helping solving similar problems. For
failed executions, ToolCoder leverages explicit
Python’s error traceback mechanism for accurate
error diagnosis, significantly improving the relia-
bility of tool learning system.

To evaluate ToolCoder’s effectiveness, we
conduct comprehensive experiments on multiple
benchmark datasets (Song et al., 2023; Li et al.,
2023). Our experimental results demonstrate that
ToolCoder significantly outperforms SOTA ap-
proaches in all metrics. We also validate the ne-
cessity of each proposed component. Furthermore,
we observe that ToolCoder brings more substan-
tial improvements in code LLMs compared to base
LLMs. These findings confirm the superiority of
systematic code-centric framework and its potential
for advancing tool learning systems.

The main contributions of this work are:

e We propose ToolCoder framework that re-
formulates tool learning as a code generation
task, leveraging both software engineering prin-
ciples and LLMs’ code generation capabilities.

e We design a systematic architecture that con-
verts natural language task into modular code
components, implements and executes them to
generate final response. We also incorporate
error diagnosis and code reuse mechanisms for
efficiency and reliability.

e Extensive experiments on benchmarks demon-
strate ToolCoder significantly improve the suc-

cess rate and reliability of tool learning.

2 Related works

2.1 Text-based Tool Learning

Recent approaches have focused on enhancing
LLMs by integrating external tools to improve their
problem-solving capabilities (Masterman et al.,
2024; Qu et al., 2024; Qian et al., 2023; Yuan
et al., 2024a). Typically, these methods follow
a sequential plan-execute-observe paradigm and
involve utilizing text few-shot prompt to decom-
pose complex tasks into sequential steps, with the
LLM executes each tool individually and incorpo-
rates the results into its context to manage data
flow dependencies (Liu et al., 2024; Shinn et al.,
2023; Shi et al., 2024b; Paranjape et al., 2023).
For instance, ReAct (Yao et al., 2023) enables
LLMs to generate both reasoning traces and ac-
tion plans, facilitating more effective task execu-
tion. Similarly, Chameleon (Lu et al., 2023) em-
ploys a compositional reasoning framework that
dynamically assembles specialized tools to address
complex reasoning tasks. RestGPT (Song et al.,
2023) introduces a coarse-to-fine online planning
approach, allowing LLMs to iteratively refine task
decomposition. However, these text-based meth-
ods heavily rely on carefully crafted prompts and
struggle with complex multi-step tasks, limiting
reliability. ToolCoder addresses these challenges
by re-formulating tool learning as code generation,
leveraging structured code generation and software
engineering principles for better adaptability.

2.2 Code-based Tool Learning

Code pre-training has been shown to significantly
enhance the chain-of-thought (CoT) performance
of LLMs, enabling them to logically decompose
complex tasks into smaller, more manageable sub-
tasks (Lyu et al., 2023; Cheng et al., 2023; Ye
et al., 2023). Recent studies have further high-
lighted the potential of code-empowered LLMs to
improve the planning and reasoning capabilities
of these models (Yang et al., 2024; Chen et al.,
2023; Gao et al., 2023). For example, certain ap-
proaches enable LLMs to generate programmatic
chains of thought to solve complex numeric reason-
ing tasks, yielding impressive performance (Chen
et al., 2023; Gao et al., 2023). In the context of
tool learning, LLLMs can generate code snippets
as actions (Wang et al., 2024b), leveraging widely
used Python functions and simplifying operations
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Figure 2: Overview of our ToolCoder framework, which converts a user task into executable Python code through
task-to-code transformation, tool planning and selection, code implementation, and error reflection. The framework
also leverages reusable function snippets to enhance efficiency and accuracy.

such as lengthy for-loops (Shi et al., 2024a). Pre-
vious approaches generate Python code in a single
pass, lacking iterative refinement, intent alignment,
and learning from past executions (Hsieh et al.,
2023; Yuan et al., 2024b; Wang et al., 2024b). Our
ToolCoder framework addresses these limitations
by integrating software engineering principles, in-
cluding modular code construction, stepwise verifi-
cation, and experience-driven refinement, ensuring
the generated code is executable and robust.

3 Methodology

We formulate the tool learning task, present our mo-
tivation, and propose the ToolCoder framework.

3.1 Task Formulation and Motivation

The goal of tool learning is to enable a LLM M to
accomplish natural language tasks by generating
and executing appropriate tool sequences. Given
a task ¢, the LLM selects appropriate tools from
atoolbox T = {t1,t2,...,t7}, where each tool
t; is accompanied by its documentation d; € D
describing its functionality, arguments, and output
schema. Through tool interaction, M generates a
solution response 7 that finally addresses the task.

Existing methods struggle with complex task
planning and robust execution. To address these
limitations, We draw inspiration from software en-
gineering principles, which emphasize modular de-
sign, error diagnosis, and code reusability. Fur-

thermore, by expressing complex tasks through
structured code, LLMs can leverage established
programming paradigms to enhance their system-
atic reasoning and planning capabilities (Gao et al.,
2023; Wang et al., 2024b).

Inspired by these insights, we reformulate tool
learning as a code generation task. This reformu-
lation enables us to apply fundamental software
engineering principles throughout the tool learn-
ing process: from initial requirement analysis and
task decomposition, through modular implementa-
tion, to systematic error handling and code reuse.
By structuring tool operations as well-defined pro-
gramming components, we can leverage both the
systematic methodology of software engineering
and the code generation capabilities of LLMs.

3.2 ToolCoder: Code-Empowered Tool
Learning Framework

We propose a novel framework ToolCoder, which
converts queries into Python function scaffolds
(§ 3.2.1), performs subtask planning and tool selec-
tion (§ 3.2.2), and generates executable implemen-
tations (§ 3.2.3) with error reflection mechanisms
(§ 3.2.4), as illustrated in Figure 2.

3.2.1 Task-to-Code Transformation

Our ToolCoder starts by identifying user needs
and transforming the natural language task ¢ into
a structured Python function scaffold ¢, aligning
with the requirements analysis phase in software
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def get_directed_movie_count(director_name: str) -> int:
Get the number of movies directed by a specific director.
Parameters:
director_name (str): The full name of the director whose

movies to count.

Returns:
int: The number of movies directed by the specified director.

# Function logic goes here

if __name__ == "__main__":

number_of_movies_directed = get_directed_movie_count(
director_name="Sofia Coppola")

print("Number of movies directed by Sofia Coppola:",
number_of_movies_directed)

Figure 3: An example of the Python function scaffold
c generated by ToolCoder for the query: give me the
number of movies directed by Sofia Coppola.

engineering. This process can be formalized as:

c = Mrac(q), (D

where Mroc represents the task-to-code transfor-
mation module, following the prompt template
shown in Appendix Figure 9. The scaffold ¢, as
shown in Figure 3, includes several key compo-
nents: a descriptive function name that indicates
the intended task, a parameter list that specifies re-
quired inputs, and a comprehensive docstring that
documents the function’s purpose, parameter de-
scriptions, and expected return value. The function
body is deliberately left empty at this stage, serv-
ing as a structured placeholder to be filled during
subsequent planning and tool execution phases.

By converting natural language queries into
structured code scaffolds, ToolCoder clearly un-
derstands the requirements, precise input and out-
put specifications, and clear task goals, laying a
solid foundation for task decomposition.

3.2.2 Subtask Planning and Tool Selection

This stage focuses on subtask planning and tool
selection, decomposing tasks into modular compo-
nents and determining appropriate tools, following
modular design in software engineering. Given can-
didate toolbox 7" and the generated Python scaffold
¢, ToolCoder translates high-level tasks into con-
crete, actionable subtasks:

S:MTP(C)T) :{517525"'75771}) (2)

where Mrp is the subtask planning module (im-
plemented with the prompt in Appendix Figure 10).
M p analyzes the Python scaffold ¢ and generates
concrete subtasks s = {s1,52,...,8m}. These
subtasks are then embedded as structured code com-
ments within scaffold ¢, forming a subtask-based

plan cg that outlines all the necessary steps.

The tool selection module Mg (prompt in
Appendix Figure 11) systematically analyzes the
subtask-based plan cs and references the documen-
tation of each tool to understand their input-output
specifications. Based on the analysis, ToolCoder
generates pseudocode ¢, whose main function
body contains proper tool invocation sequences
and clear data flow pathways, such as parsing the
necessary parameters from the previous API to in-
put the next API call. Each necessary tool call
is placed with a sub-function placeholder, whose
specific functionality is not implemented.

Through structured planning and tool selection,
ToolCoder maximizes the model’s reasoning po-
tential by leveraging coding paradigms, ensuring
reliable and systematic task completion.

3.2.3 Implementation and Execution

Implementation In this stage, ToolCoder im-
plements the specific functionality of sub-function
placeholder, using the API documentation of se-
lected tools 75 and a repository of correctly-
executed subfunction F, assembling them into an
executable program F'.

F:MCG<CP77TS7]:)7 (3)

where Mg is the code generation module
(prompt in Appendix Figure 12), T denotes the
subset of candidate tools selected based on the pseu-
docode cp, and F represents the reusable reposi-
tory of successfully executed functions. For each
subplan s;, ToolCoder implements corresponding
sub-functions by leveraging tool documentation
from 74 and reusable repository F.

Execution Once the function F' is generated, it
is executed within the Python environment E to
produce response 7 or exceptions e:

r,e = E(F). “4)

If program F' is successfully executed, the gener-
ated response r will be returned as the final answer
to the user’s task g. Otherwise, the error message e
triggers an error reflection process to identify and
resolve any issues.

Reusable Function Repository To facilitate the
implementation process, ToolCoder maintains a
reusable function repository F, which stores suc-
cessfully executed sub-function snippets that imple-
ment specific API functionalities. During task ex-
ecution, ToolCoder extracts these successful sub-
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functions from program F' and adds them to reposi-
tory JF, creating a collection of reusable implemen-
tations with their execution contexts.

Through collecting these sub-function snippets,
ToolCoder builds a reliable function repository for
each tool used. This enables efficient code reuse in
future tasks, preventing potential errors and elim-
inating redundant development while enhancing
system efficiency and reliability.

3.2.4 Error Reflection

To mitigate common errors like vague planning,
invalid tool selection, and execution failures,
ToolCoder leverages explicit exception tracebacks
to identify and correct issues, and iteratively refine
task plans and enhance the reliability of the system.

Plan Reformulation If the plan c; generated
by the task decomposition module Mrp includes
invalid or non-existent tools, ToolCoder invokes
planning reformulation strategy to refine the plan.
Specifically, it detects errors by cross-referencing
each tool in the plan against the available tools in
T . For every invalid tool, it generates explicit in-
structions for the LLLM, guiding LLM to select an
appropriate alternative from 7 to fulfill the required
functionality. This ensures that the reformulated
plan c s consists entirely of tools that are present
in the candidate toolbox.

Code Review If the initial function F' fails, pro-
ducing an error e, ToolCoder employs code review
to analyze the error, identify its cause, and generate
corrections. Python’s clear and detailed exception
tracebacks allow precise pinpointing of the error
location and facilitate understanding of the under-
lying issue. The function F' is revised based on
the current error e and then re-executed using E,
yielding a new result r and an updated error state e.
This process is performed iteratively, typically up
to three times, until execution succeeds (i.e., e = )
or the maximum number of attempts is reached.

4 Experiments

In this section, we describe the experimental setup,
including the datasets, evaluation metrics, and base-
line methods. We then present the main experimen-
tal results, followed by a comprehensive analysis
that offers an in-depth examination of the model’s
capabilities and efficiency.

4.1 Experimental Settings

Datasets. To validate the effectiveness of our
method in tool learning, we conduct experi-
ments on two well-established benchmarks: Rest-
Bench (Song et al., 2023) and API-Bank (Li et al.,
2023). RestBench comprises two real-world sce-
narios: TMDB, a human-annotated dataset with
100 tasks utilizing 54 tools, designed for movie-
related scenarios; and Spotify, which features 40
tools tailored to music-related tasks. Each tool in
RestBench is paired with a detailed RESTful API
document, making it inherently suitable for bench-
marking the real-world tool-learning capabilities of
LLMs. API-Bank consists of 73 commonly used
APIs and 314 tool-use dialogues with 753 manu-
ally annotated API calls, designed to evaluate the
effectiveness of LLMs in utilizing tools.

Evaluation metrics. For RestBench (Song et al.,
2023), we adopt their evaluation framework and
utilize three metrics: success rate (Success%),
which relies on human evaluation to determine
whether the model’s output effectively fulfills the
user query; correct path rate (Path%), which mea-
sures the proportion of ground-truth tools correctly
included in the model-generated tool calls. We also
introduce Accuracy %, specifically for the TMDB
scenario, to assess whether the generated answers
align with the ground-truth answers. These ground-
truth answers are derived by executing the anno-
tated solution paths, providing a reliable bench-
mark for comparison. For API-Bank (Li et al.,
2023), we evaluate API-calling performance using
their Correctness % metric, which compares the
ground-truth API outputs with the execution results
of the model-generated API calls.

4.2 Baselines

We compare our method against seven well-known
baselines: (1) ReAct (Yao et al., 2023), prompting
LLMs to generate interleaved chains of thought and
actions. (2) Chameleon (Lu et al., 2023), an LLM-
based agent that creates multi-step plans for tool
usage and executes them sequentially. (3) ConA-
gents (Shi et al., 2024b), which facilitates the col-
laboration of three specialized LLMs to solve com-
plex tasks. (4) RestGPT (Song et al., 2023) features
a coarse-to-fine planning module and a tool execu-
tor. (5) EasyTool (Yuan et al., 2024b) converts
lengthy and diverse tool documentation into uni-
fied, concise instructions for easier tool usage. (6)
ATC (Shi et al., 2024a) utilizes a chain of tools
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Methods RestBench-TMDB

RestBench-Spotify ~ API-Bank (LV1) API-Bank (LV2)

Success(%) Accuracy(%) Path(%) Success(%) Path(%) Correctness(%) Correctness(%)
Text-based Tool Learning
ReAct (Yao et al., 2023) 76.0 48.0 50.0 68.42 52.63 73.93 56.30
Chameleon (Lu et al., 2023) 75.0 45.0 52.0 70.18 63.16 74.87 37.04
ConAgents (Shi et al., 2024b) 72.0 38.0 57.0 64.92 68.42 67.26 36.24
RestGPT (Song et al., 2023) 83.0 33.0 49.0 61.41 57.89 65.47 34.83
EasyTool (Yuan et al., 2024b) 75.0 45.0 62.0 62.19 64.92 74.97 58.24
Code-based Tool Learning
ATC (Shi et al., 2024a) 78.0 58.0 62.0 65.47 68.42 70.21 52.18
CodeAct (Wang et al., 2024b) 80.0 56.0 67.0 71.93 66.67 75.94 54.07
ToolCoder 85.0 78.0 83.0 87.72 78.95 83.08 62.41
w/o Reusable Repository 83.0 71.0 78.0 78.95 71.93 83.08* 62.41*
w/o Error Reflection 75.0 65.0 77.0 73.68 70.18 79.85 58.02

Table 1: Main experimental results on RestBench and API-Bank datasets. All methods are implemented with
gpt-4o-mini. The best results are bolded. * Results from the API-Bank dataset are reported without the reusability

mechanism due to its built-in API calls in this dataset.

through programming and proposes a black-box
probing method. (7) CodeAct (Wang et al., 2024b),
enabling LLMs to generate executable code snip-
pets as actions to interact with tools.

4.3 Main Results

The experimental results in Table 1 provide a com-
prehensive evaluation of ToolCoder in comparison
to existing text-based and code-based tool learn-
ing approaches. These results highlight the sig-
nificant performance improvements achieved by
ToolCoder, validating the effectiveness of its code-
empowered framework.

From the experimental results presented in Ta-
ble 1, text-based approaches demonstrate limited
effectiveness in complex tool learning scenarios,
as evidenced by their low path rates and accuracy
scores. This underperformance stems from two
key limitations: the inherent constraints of natural
language prompting for structured reasoning, and
their inability to effectively handle execution errors.
While code-based methods like ATC and CodeAct
show significant improvements in path planning,
achieving higher success rates than their text-based
counterparts, they still face challenges in maintain-
ing consistent performance across different scenar-
ios. This is particularly evident in their accuracy
scores, suggesting that even with better planning
capabilities, these methods still lack robust mecha-
nisms for error handling and output verification.

Building on the strengths of code-empowered
LLMs, ToolCoder achieves SOTA performance
across all benchmarks compared to baseline meth-
ods, consistently achieving the highest success,
accuracy, and correct path rates, showcasing its

[ Toolcoder
[ wlo code
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1=}

@
o

o
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Path(%) / Correctness
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TMDB Spotify API-Bank(LV1)  API-Bank(LV2)

Figure 4: Impact of code-empowered planning on path
correctness. Removing the structured Python function
scaffold c leads to significant performance degradation
across all benchmarks.

robustness and adaptability. For instance, on
RestBench-Spotify, ToolCoder improves the suc-
cess rate by 10.79% and the accuracy by 22.22%
compared to the strongest baseline, CodeAct. Sim-
ilarly, on API-Bank (LV2), it improves correct-
ness by 8.34% over CodeAct, highlighting its abil-
ity to handle multi-step tool interactions. The
performance gains stem from ToolCoder’s code-
empowered framework, which leverages the rea-
soning capabilities of code-empowered LLMs and
the advantages of systematic software development
principles to generate precise tool execution paths
and accurate final responses.

4.4 Ablation Study

Effect of Code-Empowered Planning To inves-
tigate the effect of code-empowered planning, we
remove the structured Python function scaffold ¢
(denoted as w/o code) during the tool planning
phase and compare its performance with the origi-
nal ToolCoder. As shown in Figure 4, the correct
path rate drops significantly without ¢ across all
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benchmarks. This decline highlights the scaffold’s
role in enhancing the model’s reasoning capabili-
ties. Without the scaffold, the model struggles to
fully leverage its code-enhanced reasoning abilities,
leading to a marked decrease in correct path rate.
The absence of c results in a reduced understand-
ing of task objectives and an impaired ability to
structure information into coherent plans. These
findings underscore the critical importance of the
structured Python function scaffold c in activating
the model’s reasoning potential and maintaining
effective task planning.

Effect of Reusable Function Repository To as-
sess the impact of the reusable function repository
JF, we conduct an ablation study by removing the
reusability mechanism. As shown in Table 1, this
results in a 2-5% performance drop across vari-
ous benchmarks, highlighting the effectiveness of
reusable code snippets.

Furthermore, to gain deeper insights into how
reusability enhances tool execution, we analyze the
cumulative success rate and cumulative accuracy
across different sample proportions, as illustrated
in Figure 5. The results demonstrate a significant
performance boost due to the reusability mecha-
nism. As the inference process progresses (with
increasing sample proportions on the x-axis), the
cumulative success rate steadily grows. This indi-
cates that the model accumulates experience from
past successes, aiding in the generation of more
robust code. For example, on the TMDB dataset,
the cumulative success rate approaches 90% as
more samples are utilized, reflecting improved gen-
eralization and execution efficiency. Additionally,
the cumulative accuracy on TMDB consistently
improves, further confirming that the reusability
mechanism not only enhances success rates but

ToolAlpaca (Real-world)

Methods
Procedure Response Overall
ReAct 64.86 60.81 54.05
Chameleon 68.06 58.33 57.92
CodeAct 68.92 58.11 56.94
ToolCoder 78.38 75.68 72.97
w/o Error Reflection 76.46 68.11 67.94

Table 2: Performance comparison of different models on
real-world API tasks using the ToolAlpaca dataset. Met-
rics include Procedure, Response, and Overall scores.
All methods are implemented with gpt-4o-mini. Due to
the small number of questions under each tool category,
we do not use the reusability mechanism on this dataset.

also improves answer precision.

Effect of Error Reflection Mechanism To as-
sess the impact of the error reflection mechanism,
we conduct an ablation study by removing it from
ToolCoder and evaluating the resulting perfor-
mance changes. The results, as shown in Table 1,
indicate a significant performance drop across mul-
tiple datasets when the error reflection mechanism
is removed. Both correct path rate and success
rates decrease markedly. This decline is attributed
to the error reflection mechanism’s ability to diag-
nose planning and execution errors, allowing for
iterative refinement and adaptive self-correction.
Without this mechanism, the model’s reliability is
severely compromised. This ablation study demon-
strates the critical role of the error reflection mech-
anism in ensuring robust tool learning and effective
adaptation to complex execution challenges.

4.5 Analysis of Generalization Capabilities

Experiments on New Dataset ToolAlpaca-Real
To evaluate the generalization performance of
ToolCoder, we conduct experiments on the ToolAl-
paca dataset (Tang et al., 2023) with real-world API
tasks. The evaluation framework contains three
metrics: Procedure, Response, and Overall. Pro-
cedure assesses the model’s ability to select appro-
priate actions, use correct parameters, and execute
steps without redundancy. Response measures the
model’s capability to produce outputs that fully
satisfy the user’s requirements. Overall is a com-
prehensive metric that reflects the accuracy and
effectiveness of the entire process, encompassing
both procedural correctness and response quality.
The experimental results in Table 2 demonstrate
that ToolCoder outperforms traditional methods,
including ReAct, Chameleon, and CodeAct, across
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RestBench-TMDB

Methods

Success Accuracy Path
Owen2.5-14B-Instruct
ReAct (Yao et al., 2023) 67.0 40.0 42.0
Chameleon (Lu et al., 2023) 68.0 38.0 45.0
CodeAct (Wang et al., 2024b) 72.0 58.0 62.5
ToolCoder 81.0 72.0 76.0
Owen2.5-Coder-14B-Instruct
ReAct (Yao et al., 2023) 68.0 41.5 47.0
Chameleon (Lu et al., 2023) 70.0 454 50.0
CodeAct (Wang et al., 2024b) 80.0 65.0 75.0
ToolCoder 85.0 76.0 80.0
Owen2.5-32B-Instruct
ReAct (Yao et al., 2023) 73.0 50.0 51.0
Chameleon (Lu et al., 2023) 71.0 48.5 54.5
CodeAct (Wang et al., 2024b) 82.0 62.5 76.5
ToolCoder 89.0 82.0 84.0
Owen2.5-Coder-32B-Instruct
ReAct (Yao et al., 2023) 76.5 56.5 58.0
Chameleon (Lu et al., 2023) 78.0 56.0 57.0
CodeAct (Wang et al., 2024b) 92.0 82.0 85.0
ToolCoder 96.0 90.0 91.0

Table 3: Evaluate the performance of ToolCoder on
different open source LLMs on RestBench-TMDB.

all metrics. ToolCoder achieves significant im-
provements in Procedure and Response, which lead
to a superior Overall performance. These advance-
ments can be attributed to the code-empowered
LLM’s superior planning and execution capabili-
ties, enabling more accurate action selection and
task completion. Additionally, the integration of a
reflection strategy further enhances the quality of
the responses, resulting in more effective handling
of real-world API tasks compared to baselines.

Experiments on Open-Source LLMs To eval-
uate the effectiveness of ToolCoder with open-
source LLMs, we conduct comprehensive experi-
ments on RestBench-TMDB. The results in Table 3
reveal several significant findings. First, model
scaling demonstrates consistent performance im-
provements across all methods. When scaling from
14B to 32B, we observe substantial gains in suc-
cess rate, accuracy, and path correctness across
all approaches. Second, the comparison between
base models and their coder-enhanced counter-
parts reveals the substantial advantages of code-
specialized capabilities. This is particularly evi-
dent in code-empowered methods like ToolCoder
and CodeAct. These improvements demonstrate
that code-specialized models are better equipped
to handle the structured reasoning and precise ex-
ecution required in tool learning tasks. Third,

RestBench API-Bank
Methods 0B Spotify LVI LV2
ReAct 7.78 8.68 6.45 8.38
Chameleon 6.52 7.12 5.64 692

ConAgents  6.78 7.68 545 7.38
RestGPT 9.04 1024 727 9.84
ToolCoder  7.69 870 646 847

Table 4: Efficiency analysis of different methods on the
RestBench and API-Bank datasets. We report the aver-
age number of API calls required per question, where a
lower value indicates higher efficiency.

ToolCoder consistently outperforms all baselines
across different model configurations. This supe-
rior performance validates the effectiveness of our
code-empowered framework in leveraging the code-
specific strengths of LLMs for tool learning.

4.6 Efficiency Analysis

To analyze the efficiency of API usage among dif-
ferent methods, we compare the average number of
LLMs calls required per question on the RestBench
and API-Bank benchmarks, as shown in Table 4.
ToolCoder demonstrates comparable efficiency to
baseline methods such as ReAct, Chameleon, and
ConAgents, with basically similar API usage. This
result suggests that ToolCoder achieves higher cor-
rect path rates and success rates in task planning
and execution compared to other methods, with-
out incurring additional efficiency costs, thereby
maintaining a practical balance between improved
performance and resource consumption.

5 Conclusion

We present ToolCoder, a novel framework that
reformulates tool learning as a code generation
task, leveraging software engineering principles
and Python function structures to enhance complex
reasoning and execution reliability. By systemat-
ically transforming natural language queries into
structured function scaffolds, incorporating descrip-
tive comments for multi-step planning, and main-
taining a repository of successfully executed func-
tions, ToolCoder establishes a robust approach to
tool learning. Its integrated error diagnosis mech-
anism further ensures adaptability based on code-
based feedback. Experimental results demonstrate
its superior performance in both task completion
accuracy and execution reliability compared to ex-
isting methods, validating the effectiveness of our
code-centric approach to tool learning.

17883



Acknowledgement

This work was supported by the Strategic Pri-
ority Research Program of the CAS under
Grants No.XDB0680302, the National Natural Sci-
ence Foundation of China (NSFC) under Grants
No062276248, and the Youth Innovation Promotion
Association CAS under Grants No. 2023111.

Limitations

Despite the promising performance demonstrated
by our approach, several limitations constrain its
applicability and highlight directions for future im-
provement. First, the method relies heavily on the
availability of clear, well-defined, and comprehen-
sive API documentation. When such documenta-
tion is incomplete, ambiguous, or inconsistent, the
model’s ability to infer tool behavior and execute
tasks correctly is significantly hindered. This de-
pendency limits the approach’s robustness in real-
world scenarios where documentation quality is
not guaranteed. Second, our approach adopts a
global planning strategy that excels in generating
structured and efficient solutions but lacks the flex-
ibility to address dynamic, real-time constraints
in evolving environments. For example, unfore-
seen changes in task requirements or partial observ-
ability may require adaptive or incremental adjust-
ments that our current framework does not fully
support. Finally, scalability remains a challenge
when dealing with tasks involving numerous tools
and complex interactions. While our approach is
effective for moderately complex tool planning,
scenarios with a large number of interdependent
tools may introduce combinatorial challenges, po-
tentially resulting in suboptimal plans.
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A Appendix

To provide an intuitive understanding of how our
framework works, we present detailed examples in
this section. We first provide example solutions for
our ToolCoder for the query: give me the number
of movies directed by Sofia Coppola. All results
are generated with gpt-4o-mini. Furthermore, we
also display the prompts used to implement each
module on the RestBench-TMDB dataset.
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def get_directed_movie_count(director_name: str) -> int:

Get the number of movies directed by a specific director.

Parameters:
director_name (str): The full name of the director whose movies to count.

Returns:
int: The number of movies directed by the specified director.
# Step 1. Search for the director "Sofia Coppola” using the /3/search/person API to find her person_id.
# Step 2. Retrieve the movie credits for Sofia Coppola using her person_id with the /3/person/{person_id}/movie_credits API.

if __name__ == "__main_
number_of_movies_directed = get_directed_movie_count(director_name="Sofia Coppola”)
print("Number of movies directed by Sofia Coppola:”, number_of_movies_directed)

Figure 6: An example of the task decomposition result ¢, generated by ToolCoder for the query: give me the
number of movies directed by Sofia Coppola.

def get_directed_movie_count(director_name: str) -> int:

Get the number of movies directed by a specific director.

Parameters:
director_name (str): The full name of the director whose movies to count.

Returns:

int: The number of movies directed by the specified director.
# Step 1. Search for the director "Sofia Coppola” using the /3/search/person API to find her person_id.
person_search_response = call_api(

api_path="/3/search/person”, params={"query”: director_name}

)

# Get person_id from response

person_id = (
person_search_response.get("results”)[@]["id"]
if person_search_response.get("results”)
else None

)

# Step 2. Retrieve the movie credits for Sofia Coppola using her person_id with the /3/person/{person_id}/movie_credits API.
if person_id:
movie_credits_response = call_api(
api_path="/3/person/{person_id}/movie_credits”,
params={"person_id": person_id},

)

# Step 3. Count the number of movies in the credits retrieved.
# Filter for movies that Sofia Coppola directed
directed_movies = [

movie
for movie in movie_credits_response["crew”]
if movie["job"] == "Director”

]

number_of_movies_directed = len(directed_movies)
return number_of_movies_directed

return 0

if __name__ == "__main__":
number_of_movies_directed = get_directed_movie_count(director_name="Sofia Coppola”)
print("Number of movies directed by Sofia Coppola:", number_of_movies_directed)

Figure 7: An example of the pseudo-code ¢, generated by ToolCoder for the query: give me the number of movies
directed by Sofia Coppola.
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import requests

# Define the required headers for API access.
headers = {"Authorization”: "YOUR API KEY"}

def search_person(query: str, include_adult=False, language="en-US", page=1):

Omitted for simplicity due to space limitations

url = "https://api.themoviedb.org/3/search/person”

# Prepare the parameters for the request
params = {
"query": query,
"include_adult”: include_adult,
"language”: language,
"page"”: page
}

# Make the API request

response = requests.get(url, headers=headers, params=params)
response.raise_for_status()

return response.json()

def get_person_movie_credits(person_id: int, language="en-US"):

Omitted for simplicity due to space limitations

url = f"https://api.themoviedb.org/3/person/{person_id}/movie_credits”

# Prepare query parameters
params = {"language”: language}

# Make the API request

response = requests.get(url, headers=headers, params=params)
response.raise_for_status()

return response.json()

de

3

get_directed_movie_count(director_name: str) -> int:

Get the number of movies directed by a specific director.

Parameters:
director_name (str): The full name of the director whose movies to count.

Returns:

int: The number of movies directed by the specified director.
# Step 1. Search for the director "Sofia Coppola” using the /3/search/person API to find her person_id.
person_search_response = search_person(query=director_name)

# Get person_id from response

person_id = (
person_search_response.get("results”)[@]["id"]
if person_search_response and person_search_response.get("results”)
else None

)

# Step 2. Retrieve the movie credits for Sofia Coppola using her person_id with the /3/person/{person_id}/movie_credits API.
if person_id:
movie_credits_response = get_person_movie_credits(person_id)

# Step 3. Count the number of movies in the credits retrieved.
# Filter for movies that Sofia Coppola directed
directed_movies = [

movie
for movie in movie_credits_response["crew”]
if movie["”job"] == "Director”

]

number_of_movies_directed = len(directed_movies)
return number_of_movies_directed

return 0

if __name__ == "__main__":
number_of_movies_directed = get_directed_movie_count(director_name="Sofia Coppola”)
print("Number of movies directed by Sofia Coppola:", number_of_movies_directed)

Figure 8: An code example of the main function F' generated by ToolCoder for the query: give me the number of
movies directed by Sofia Coppola. This step implements the actual functionality of all API calls in the call_api
placeholders in Figure 7 according to their API documentations. Due to space limitations, the docstrings of some

functions have been omitted.
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You are a coding assistant specialized in converting task requirements into precise Python
function definitions. Your role is to define a function that fully meets the task’s objectives
by specifying a clear function name, parameters, return type, and docstring.

### Instructions:
For each given task, carefully follow these steps to create a well-structured function
definition:
1. Function Name: Choose a concise, meaningful function name that accurately reflects the
task’s purpose.
2. Parameters: Identify and define the essential input(s) the function requires. For each
parameter:
- Use a descriptive name and include a type annotation.
3. Return Type: Specify an appropriate return type (e.g., ’int’,
best represents the function’s output.
4. Docstring: Write a detailed, clear docstring that includes:
- A brief description of the function’s purpose.
- Descriptions for each parameter, detailing its type and role.
- Explanation of the return value, with type and a brief on what it represents.
- Explicit Notes on using ’call_api’, with the following rules:
- Each ’call_api’ invocation must use an ’api_path’ from the provided toolbox; do not invent
or alter paths.
- Place all request parameters within the ’params’ dictionary; do not format ’api_path’
using string interpolation or formatted strings.
- Example: use ’call_api(api_path="/3/movie/{movie_id}/credits”, params={"movie_id":
movie_id})’ instead of ’call_api(api_path=f"/3/movie/movie_id/credits”, params={})’.
- Refer to the example functions below for guidance on structuring this.
- Use triple single quotes for the docstring, as shown below.
5. Function Body: Leave the function body empty. Only include the function definition,
parameters, and docstring in your output.

’str’, ’dict’, ’list’) that

Now, let’s begin!
You are given a question: {question}
Python Function:

Figure 9: The prompt used for implementing the task-to-code function module Mo in the RestBench-TMDB
dataset during our experiments.
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Your objective is to analyze the user’s complex question and create a breakdown of actionable
subtasks, identifying the most appropriate APIs from the provided toolbox to address each
subtask in sequence.

### Available Tools:
{toolbox}

Each API includes a request path and a description of its functionality. Utilize these APIs
strategically to decompose and solve the user’s question according to the following guidelines:

### Guidelines

1. Clarify Requirements: Carefully read the user’s question to determine key requirements,
objectives, and expected outcomes. Identify any specific data or information you need to gather
to satisfy the request.

2. Break Down the Task: Divide the complex task into clear, manageable subtasks that each
address part of the user’s needs and can be fulfilled using one or more APIs.

3. Select Relevant APIs: Match each subtask to the most relevant API(s) from the toolbox. Base
your choices on each API’s functionality and response format to ensure it provides the required
information.

4. Handle Dependencies: Check for dependencies between APIs. For example, to access
’/3/movie/{movie_id}/credits’, the ’movie_id’ must first be retrieved via a compatible API.

5. Output in Pseudo-Code: Write your solution as a Python function using pseudo-code, with each
step annotated in comments (denote as Step 1 to N) describing the subtask. Do not write any
code implementation for the steps—only document the subtasks in comments.

User’s Question: {question}

Pseudo-Code Task: {pseudo_code_task}
Planned Subtasks:

Figure 10: The prompt used for implementing the subtask planning module M p in the RestBench-TMDB dataset
during our experiments.
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Your task is to help the user select appropriate APIs from the provided toolbox and complete
the function template to solve the problem accurately.

### Instructions
1. Input Provided:
- Problem Description: A specific question or request from the user (e.g., "give me the number
of movies directed by Sofia Coppola”).
- Pseudo-Code Task Template: A function template with the following components:

- Function signature, parameters, return type, and a functional description.

- Structured subtask comments directly embedded in the pseudo-code template, outlining each
planned subtask step-by-step.

2. Expected Output:
- Based on the problem description and the structured action plan provided, complete the

pseudo-code by selecting and integrating suitable API calls from the provided candidate toolbox.
- Use the placeholder ’call_api(api_path, params)’ for each API call, where:

- ’api_path’ strictly matches a valid, existing API path from the provided candidate toolbox.
Do not create or assume any non-existent API paths. No ’api_path’ outside this toolbox should
be used or inferred.

- Place all request parameters within the ’params’ dictionary; do not format ’api_path’
using string interpolation or formatted strings.

- Example: use ’call_api(api_path="/3/movie/{movie_id}/credits”, params={"movie_id":
movie_id})’ instead of ’call_api(api_path=f"/3/movie/movie_id/credits”, params={})’.

3. Guidelines for API Selection:
- Do not provide a direct answer to the problem. Instead, fill in the pseudo-code template to
enable successful execution.
- Follow these steps for each ’call_api’ integration:
- Identify any necessary preliminary calls (e.g., fetching an entity ID).
- Ensure each step logically contributes to the function’s purpose, using helper variables
and conditional checks where needed.
- Keep pseudo-code succinct, adding comments that clarify the role of each API call.

### Provided API toolbox:
{toolbox}

Let’s begin!

Question: {question}

Pseudo-Code Task: {pseudo_code_task}
Please complete the pseudo-code solution:

Figure 11: The prompt used for implementing the tool selection module Mg in the RestBench-TMDB dataset
during our experiments.
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You are a coding assistant specializing in Python and API integration. Your task is to translate
code snippets with ’call_api’ placeholders into executable Python code. Each ’call_api’
placeholder represents an API call that should be implemented as a separate function.

### Input:
1. A Python code snippet containing one or more ’call_api’ placeholders.
2. The OpenAPI documentation describing the APIs, including:

- Endpoints (’path’),

- Expected input parameters (’parameters’),

- Response structure (’schema’).

### Requirements:
1. Function Creation: For each API in the OpenAPI specification:
- First, check if the API’s dictionary in the documentation contains a ’reusable_code’ field.
If present:
- Extract the function code from the ’reusable_code’ field and reuse it to implement the
corresponding API functionality in ’call_api’.
- Make minimal modifications if necessary to integrate the function with the current
codebase, while preserving its original logic.
- If the ’reusable_code’ field is not present:
- Implement a Python function using the ’requests’ library.
- Use ’https://api.themoviedb.org’ as the ’base_url’. Construct the full URL by appending
the ’api_path’ to this ’base_url’.
- Use the ’GET’ method for all requests.
- Include two parameters in the function signature:
- ’params’: An optional dictionary for query parameters.
- ’headers’: A mandatory dictionary containing the following: headers = {"Authorization”:
"Bearer {API_KEY}"}
- Ensure the function returns parsed response data in a usable format.
2. Integration: Replace each ’call_api’ placeholder in the original code with calls to the
corresponding functions, ensuring that the replacement maintains the original logic.
3. Error Handling: Add error handling to manage API failures (e.g., HTTP errors). Use
*try/except’ blocks to log errors or raise exceptions.
4. Code Quality:
- Write clear and descriptive docstrings for each function.
- Follow Python best practices for readability and maintainability.

### Additional Notes:

- Validate input parameters where applicable.

- Ensure all requests include the ’headers’ defined above.

- Clearly document any assumptions made during implementation.

- If reusing functions from the ’reusable_code’ field, ensure their integration complies with
Python conventions and the overall project architecture.

### Output:
The complete, executable Python code with:
- Defined functions for each API,
- Updated logic that calls these functions.

Now, it’s your turn!

### Question: {question}

### Input: {code_solution}

### OpenAPI Documents as well as a reusable code snippet (optional):
{api_doc}

### Output:

Figure 12: The prompt utilized for implementing the code generation module M ¢ in the RestBench-TMDB
dataset for our experiments.
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