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Abstract

Retrieval-augmented generation (RAG) is usu-
ally integrated into large language models
(LLMs) to mitigate hallucinations and knowl-
edge obsolescence. Whereas, conventional one-
step retrieve-and-read methods are insufficient
for multi-hop question answering, facing chal-
lenges of retrieval semantic mismatching and
the high cost in handling interdependent sub-
questions. In this paper, we propose Optimiz-
ing Question Semantic Space for Dynamic
Retrieval-Augmented Multi-hop Question An-
swering (Q-DREAM). Q-DREAM consists of three
key modules: (1) the Question Decomposition
Module (QDM), which decomposes multi-hop
questions into fine-grained subquestions; (2)
the Subquestion Dependency Optimizer Mod-
ule (SDOM), which models the interdependent
relations of subquestions for better understand-
ing; and (3) the Dynamic Passage Retrieval
Module (DPRM), which aligns subquestions
with relevant passages by optimizing the seman-
tic embeddings. Experimental results across
various benchmarks demonstrate that Q-DREAM
significantly outperforms existing RAG meth-
ods, achieving state-of-the-art performance in
both in-domain and out-of-domain settings.
Notably, Q-DREAM also improves retrieval ef-
ficiency while maintaining high accuracy com-
pared with recent baselines.

1 Introduction

Recently, the advent of Large Language Mod-
els (LLMs), such as GPT (Achiam et al., 2023),
LLaMA (Touvron et al., 2023), and Mistral (Jiang
et al., 2023), has significantly expanded the bound-
aries of machine language understanding and gener-
ation, enhancing the performance of a wide range
of NLP tasks (Bang et al., 2023; Ouyang et al.,
2022). However, they also tend to exhibit an in-
clination to generate hallucinations (Bang et al.,
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The melting point of water is 0°C, 
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Who is the star of the film 

The Big Attraction?
Question_2 (q2)

Helpful 

Passage_2 (p2)
p2

Semantic Vector Space Mapping

Big Attraction is a 1931 German 

film directed by Max Reichmann 

and starred by Richard Tauber, 

Margo Lion and Marianne 

Winkelstern.

Who is the composer of the film 

Raagam Thaanam Pallavi?
Question_3 (q3)

Helpful 

Passage_3 (p3)

Raagam Thaanam Pallavi is a 

1980 Indian Malayalam film, 

directed by A. T. Abu and 

composed by M. K. Arjunan.

Semantic Embedding (Ours)

p3

q2

q3

S
em

a
n

tic E
m

b
ed

d
in

g

Test

Train

Question Point

Train Data

Test Data

Passage Point

(b) Semantic Space Optimization

Figure 1: (a) Semantic Mismatching: A semantic prox-
imity gap leads to retrieval failures between question
and helpful passage. (b) Semantic Space Optimization:
Semantic embedding optimization aligns question and
helpful passage by learning the latent semantic match-
ing pattern.

2023; Guerreiro et al., 2023; Chen et al., 2024). In
addition, LLMs inherently suffer from knowledge
obsolescence, as they are trained on static datasets
collected at a fixed point in time (Dhingra et al.,
2022; Huang et al., 2020). Consequently, the re-
sponses do not incorporate real-time updates or
newly emerging information, which can be criti-
cal for many real-world applications (Zhang et al.,
2024; Nguyen et al., 2024; Chen et al., 2025).

One solution is to periodically retrain these mod-
els on updated corpora, while this approach is both
computationally expensive and time-consuming
(Jiang et al., 2024; Xia et al., 2024). A more effi-
cient alternative is retrieval-augmented generation
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(RAG), which integrates LLMs with information
retrieved from external updated knowledge bases
(Ram et al., 2023; Ye et al., 2024; Guu et al., 2020;
Shi et al., 2023). Whereas, the RAG methods strug-
gle with multi-hop QA tasks, as they usually fail
to handle combinatorial questions requiring infor-
mation from multiple passages. Recent prompting-
based approaches (Press et al., 2023; Khot et al.,
2022a; Kim et al., 2024) like IRCoT (Trivedi et al.,
2023) attempt to address the multi-hop QA tasks by
interleaving retrieval with chain-of-thought (CoT)
reasoning. While IRCoT leverages retrieved results
to refine reasoning, it heavily relies on the CoT
capability of the model and demands multiple inter-
actions between retriever and generator, incurring
high computational costs.

Another challenge is that the existing RAG meth-
ods suffer from the semantic mismatching problem,
which introduces the semantic similar but unhelp-
ful passages for generation and negatively impacts
the performance of multi-hop QA. In other words,
even semantically similar passages may lack rele-
vance to the question, leading models to prioritize
the high similar but unhelpful content. As shown in
Figure 1a, for the question "will ice melt into water
at a root temperature at 20°C?", the method incor-
rectly retrieves a passage describing the movement
characteristics of ice (high similar but unhelpful),
while ignoring the low similar passage containing
the relevant fact "The melting point of water is
0°C". This mismatching problem stems from the
semantic proximity gap between the question and
the truly helpful passages.

To address the above problems, we propose Op-
timizing Question Semantic Space for Dynamic
Retrieval-Augmented Multi-hop Question Answer-
ing (Q-DREAM), which enhances retrieval efficiency
and resolves semantic mismatching problem with
a three-module pipeline. The modules consist of
the Question Decomposition Module (QDM), Sub-
question Dependency Optimizer Module (SDOM),
and Dynamic Passage Retrieval Module (DPRM).
The QDM module first decomposes complex ques-
tions into fine-grained subquestions. Each subques-
tion is then processed separately. The independent
subquestions are directly passed to DPRM for re-
trieval, while dependent subquestions are refined
by SDOM before retrieval. The DPRM module
integrates semantic alignment mechanism, which
clusters subquestions and maps each cluster to a
dedicated retrieval space for dynamic retrieval. As
illustrated in Figure 1b, our method bridges the

semantic gap between the question and the helpful
passage. During training, the semantic embeddings
of question q2 and helpful passage p2 are optimized
to be closer in the dedicated retrieval space, which
captures the latent matching pattern by associating
"[Role] of [Film]" with the helpful content ("Film
is..., Role by..."). At test time, the similar question
q3 is mapped to the same cluster as q2. As both
questions share the same semantic pattern "[Role]
of [Film], q3 can align with the helpful passage p3
(Raagam Thaanam Pallavi is..., composed by...")
by leveraging the learned matching patterns during
training.

We perform extensive experiments on various
datasets, and the results demonstrate that Q-DREAM
significantly outperforms existing approaches in
handling multi-hop questions, achieving superior
performance across in-domain and out-of-domain
settings. The main contributions can be summa-
rized as follows:

• We propose a novel retrieval-augmented
framework, namely Q-DREAM, which is model-
agnostic and can be easily adapted to various
LLMs to enhance the retrieval efficiency and
effectiveness for retrieval-augmented multi-
hop QA.

• Three modules as QDM, SDOM and DPRM
are integrated into the framework, which work
collaboratively to address the reconstruction
of interdependent subquestions and resolve
the semantic mismatching issues.

• We conduct elaborate analyses of the exper-
imental results on three benchmark datasets,
demonstrating the effectiveness of Q-DREAM
under both in-domain and out-of-domain set-
tings, and exhibiting scalability across various
LLM backbones.

2 Related Work

2.1 Task Decomposition

Task decomposition is a crucial approach for ad-
dressing complex tasks, particularly in multi-turn
and multi-hop question answering. Prior studies
have explored various methods to break down com-
plex questions into a series of simpler subquestions.
Several works (Iyyer et al., 2017; Talmor and Be-
rant, 2018; Rao and Daumé III, 2019; Wolfson
et al., 2020; Khot et al., 2022b) propose models
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that decompose complex questions, yet these ap-
proaches do not leverage pre-trained language mod-
els (LMs). More recent methods, such as (Wang
et al., 2022), utilize pre-trained models to generate
contextual information for multiple-choice tasks.
In addition, SEQZERO (Yang et al., 2022) intro-
duces a few-shot semantic parsing technique that
decomposes questions into structured subquestions
aligned with a formal representation, enabling effi-
cient reasoning through concise prompts. RA-ISF
(Liu et al., 2024) further refines decomposition
strategies by iteratively answering subquestions to
minimize the impact of irrelevant text. However,
despite these advancements, existing question de-
composition techniques often fail to adequately
handle interdependent subquestions in retrieval-
augmented settings. Since the retrieval of each sub-
question is performed independently, it may lead to
incomplete or suboptimal retrieval results, reducing
the accuracy of multi-hop question answering.

2.2 Retrieval-Augmented Language Models
Retrieval-augmented language models (LMs) en-
hance the reasoning and factual accuracy of LMs
by incorporating externally retrieved information,
thereby mitigating hallucination and factual incon-
sistency issues in open-domain question answer-
ing (ODQA) (Guu et al., 2020; Lewis et al., 2020;
Lazaridou et al., 2022). In previous studies, such
as REALM (Guu et al., 2020) jointly optimizes the
retriever and language model to enhance retrieval-
aware generation, RETRO (Borgeaud et al., 2022)
introduces training language models on top of a
frozen retriever, Atlas (Izacard et al., 2022) ad-
vances further by exploring dedicated loss func-
tions for end-to-end training of both the retriever
and the LM, demonstrating superior performance
in few-shot learning tasks, RePlug (Shi et al., 2023)
maintains a frozen black-box LM during the fine-
tuning of retrieval modules.

However, these retrieval-augmented approaches
struggle with multi-hop reasoning in QA. Recently,
researchers have explored prompt-based methods
to improve multi-hop QA. SelfAsk (Press et al.,
2023) enhances retrieval by integrating structured
prompting and search engines. DecomP (Khot
et al., 2022a) decomposes tasks into modular sub-
prompts tailored to specific reasoning steps. SURE
(Kim et al., 2024) employs prompts to guide the
LLMs in generating summaries for each answer
candidate. All of these approaches do not utilize
the Chain-of-Thought (CoT) reasoning of LLMs.

ReAct (Yao et al., 2023) combines reasoning and
action, prompting LLMs to generate task-related
reasoning traces and actions in an interactive man-
ner. IRCoT (Trivedi et al., 2023) integrates retrieval
with CoT reasoning, using the reasoning to guide
the retrieval and then leveraging the retrieval re-
sults to refine the reasoning process. However, such
interactive approaches rely heavily on model per-
formance and introduce a high computational cost.

3 Method

3.1 Overview

The overall architecture of our approach is shown
in Figure 2, which consists of three modules:
Question Decomposition Module (QDM), Sub-
question Dependency Optimizer Module (SDOM)
and Dynamic Passage Retrieval Module (DPRM).
QDM first decomposes complex questions into fine-
grained subquestions. These subquestions then un-
dergo individual processing, where independent
ones proceed directly to DPRM for retrieval while
dependent ones are refined by SDOM before re-
trieval. DPRM incorporates a semantic alignment
mechanism that clusters subquestions and maps
each cluster to a dedicated retrieval space for dy-
namic retrieval.

Specifically, an origin question as Qori is input
into the Q-DREAM framework to obtain the answer.
The overall process is as follows: Firstly, we use
the QDM to decompose Qori into subquestions
Qsub = {q1, . . . , qn}. If a subquestion qi does not
depend on the answer to a previous subquestion, it
is directly sent to the DPRM for passage retrieval.
Otherwise, qi is first optimized by the SDOM to
generate a new subquestion qi′, which is then sent
to the DPRM.

In the DPRM, each subquestion qi
∗ (where qi

∗

is either qi or qi′) is first assigned to a semantic
cluster based on its embedding. A corresponding
LoRA block is then indexed and used for retrieval
according to the cluster labels. Next, qi∗ and the
candidate retrieved passages P = {p1, . . . , pm}
are encoded with the corresponding LoRA block.
The embeddings Eqi∗ and EP = {Ep1 , . . . , Epm}
are extracted from the last hidden state of the last
layer of the model. We calculate the similarity be-
tween Eqi∗ and each EPv , and the passage with
the highest similarity score is selected as the re-
trieved result for qi∗. Finally, the original question,
the subquestions, and their corresponding retrieved
passages are integrated into the answer generation
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Figure 2: Overall framework of Q-DREAM.

model to generate the final answer.

3.2 Q-DREAM based Training
In this section, we will introduce the training pro-
cess for the three modules of Q-DREAM.

Question Decomposition Module (QDM) de-
composes Qori into subquestions via a model
MQDM . For training the model, we optimize:

max
MQDM

logP (Qsub | Qori;MQDM ) (1)

where Qsub = {q1, . . . , qn}, and qi is a subques-
tion.

Subquestion Dependency Optimization Module
(SDOM) aims at refining the subquestions that have
dependencies on others. For a subquestion qi that
requires the answer to qj , SDOM optimizes qi by
utilizing the retrieved passage pqj of qj as:

max
MSDOM

logP (qi′ | qj , pqj , qi;MSDOM ) (2)

Dynamic Passage Retrieval Module (DPRM) in-
tegrates semantic alignment mechanism to address
the issue of semantic mismatching. We cluster sub-
questions into multiple categories and train cluster-
specific embeddings to align questions and helpful
passages in the semantic space. Given subques-
tions processed through QDM and SDQM, we par-
tition them into k clusters {C1, . . . , Ck} using the
k-means algorithm on their embeddings. For each
cluster Ci, we fine-tune a LoRA block MCi

DPRM to
maximize the similarity between the subquestion
q ∈ Ci and the helpful passage p:

max
M

Ci
DPRM

E(q,p)∈Ci
log

(
Eq ·Ep

∥Eq∥∥Ep∥

)
, (3)

where Eq and Ep are the embeddings from the final
hidden state of the last layer of MCi

DPRM .

3.3 Q-DREAM based Inference

In this section, we offer a comprehensive overview
of how Q-DREAM framework processes and gener-
ates an answer for the original question Qori. Al-
gorithm 1 presents the details of Q-DREAM. During
the inference, we use all pre-trained models of the
three modules.

Question Decomposition. In this process, we
employ the MQDM to decompose the original ques-
tion Qori into multiple subquestions Qsub, which
is formulated as follows:

argmax
Qsub

P (Qsub | Qori;MQDM ) (4)

Next, we process the subquestions in Qsub se-
quentially. If the subquestion qi does not depend on
the answer to previous subquestion, then directly
input to the DPRM and retrieve the passage pqi .
Otherwise, qi is sent to the next step.

We determine whether a subquestion exhibits
dependencies by checking if there is a "#number#"
marker by itself. As shown in Figure 2, the de-
composed Subquestion_2 "Who is the child of the
director from #1#? " exhibits dependencies, with
the marker "#1#" indicating that it depends on the
answer to Subquestion_1.

Subquestion Dependency Optimizer. If sub-
question qi depends on the answer to subquestion
#j#, it is incomplete and cannot effectively retrieve
relevant content. Therefore, we need to utilize sub-
question qj and its retrieved passage pqj that con-
tains useful information for answering qj , to opti-
mize qi, which is formulated as:

argmax
qi′

P (qi′ | qj , pqj , qi;MSDOM ) (5)
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Algorithm 1 The inference process of Q-DREAM

Require: M,MQDM ,MSDOM ,MDPRM ,

Qori, Qsub′ ← ∅, PQsub′ ← ∅
Ensure: Aori

1: Qsub = {q1, . . . , qn} ←MQDM (Qori)
2: for i = 1 to n do
3: if qi depend on the answer to qj then
4: qi′ = MSDOM (qj , pqj , qi)
5: qi

∗ = qi′
6: else
7: qi

∗ = qi
8: end if
9: Qsub′ ← Qsub′ ∪ {qi∗}

10: cqi∗ = cluster(qi
∗), Max_Score = -1

11: Eqi∗ = h
(M)
Last ←M

cqi∗
DPRM (qi

∗)
12: for pv to P do
13: Epv = h

(M)
Last ←M

cqi∗
DPRM (pv)

14: score = cos(Eqi∗ , Epv)
15: if score > Max_Score then
16: Max_Score = score
17: pqi∗ = pv
18: end if
19: end for
20: PQsub′ ← PQsub′ ∪ {pqi∗}
21: end for
22: Aori = M(Qori, Qsub′, PQsub′)

where qi′ is the reconstructed subquestion after
optimization.

After optimization, reconstructed subquestion_2
"Who is the child of Anjan Choudhury?" in Figure
2 becomes more complete by explicitly identify-
ing ’Anjan Choudhury’ as the director during the
retrieval process. Moreover, this explicit reconstruc-
tion process acts as the Chain-of-Thought, which
helps the answer generation model to improve the
reasoning performance for multi-hop QA.

Dynamic Passage Retrieval. In the Dynamic
Passage Retrieval Module, each subquestion qi

∗

(where qi
∗ is either qi or qi′) is clustered based

on its semantic embedding and the correspond-
ing LoRA block is indexed. Subsequently, qi∗ and
candidate passages P = {p1, . . . , pm} are input
into M

cqi∗
DPRM respectively. We obtain Eqi∗ and

EP = {Ep1 , . . . , Epm} form the last hidden state
of the last layer of M

cqi∗
DPRM and select the passage

with the highest score according to the following
formula:

pqi∗ = argmax
pv∈P

f(Eqi∗ , Epv) (6)

where f(·) is a score function such as cosine simi-
larity, and pqi∗ is the retrieved passage of qi∗.

Finally, we replace the subquestions in Qsub that
exhibit dependencies with those reconstructed from
SDOM, forming Qsub′, and obtain the retrieved pas-
sages PQsub′ with DPRM. Then the original ques-
tion Qori, the subquestions Qsub′, and the retrieved
passages PQsub′ are input into the answer gener-
ation model M to generate the answer, which is
formulated as follows:

argmax
Aori

P (Aori | Qori, Qsub′, PQsub′;M) (7)

where Aori is the answer to the original question.

4 Experimental Setup

4.1 Datasets

We use the following three multi-hop QA datasets
in the open-domain setting to evaluate Q-DREAM:
HotpotQA (Yang et al., 2018), 2WikiMulti-
hopQA (2WikiMQA) (Ho et al., 2020), IIRC (Fer-
guson et al., 2020). For the above three datasets,
we use the subsampled splits released by (Trivedi
et al., 2023) as our test set. To evaluate the gener-
alization of Q-DREAM, we only utilize 2WikiMQA
(in-domain) for training, and HotpotQA and IIRC
as the out-of-domain benchmarks for testing.

4.2 Baselines and Evaluation Metrics

We compare with the recent advanced baselines:
InstructRAG (Wei et al., 2025): allows LMs to

denoise retrieved contents by generating rationales
for better verifiability and trustworthiness.

ChatQA2 (Xu et al., 2024): bridge the gap be-
tween open-source LLMs and leading proprietary
models in long context understanding and retrieval-
augmented generation capabilities.

ChatGPT (Achiam et al., 2023): excels at multi-
hop questions by leveraging its ability to under-
stand and analyze questions. In the experiment set-
ting, we evaluate ChatGPT in a one-shot prompting
setting to guide its reasoning process.

SURE (Kim et al., 2024): enhances question-
answering tasks by summarizing retrieved passages
and selecting the most plausible answer from mul-
tiple candidates.

IRCoT (Trivedi et al., 2023): interleaves re-
trieval with CoT reasoning, dynamically refining
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Table 1: EM / F1 scores for different methods on three datasets. Bold number indicates the best performance among
all methods. * indicates the results from the original paper.

Methods/Datasets
In-domain Out-of-domain

Average

2WikiMQA HotpotQA IIRC

Llama

InstructRAG (Llama3-8B) 30.4/38.9 22.6/32.1 14.2/18.1 22.4/29.7

ChatQA2 (Llama3-8B) 29.0/35.2 32.6/42.5 21.4/25.7 27.7/34.5

Q-DREAM (Llama2-7B) 32.4/39.7 36.0/46.1 23.8/27.2 30.7/37.7

ChatGPT

ChatGPT 23.6/29.2 24.2/32.5 11.4/13.8 19.7/25.2

SURE 32.8*/38.1* 33.2*/43.4* 20.6/25.5 28.9/35.7

IRCoT 41.9/55.2 25.5/38.1 21.0/31.0 29.5/41.4

Q-DREAM 48.6/62.1 48.4/60.9 28.2/31.9 41.7/51.6

the retrieval process based on intermediate reason-
ing steps.

We evaluate the QA performance using the stan-
dard exact match (EM) and F1 scores, which have
been widely used in previous studies (Trivedi et al.,
2023; Kim et al., 2024).

4.3 Implementation Details

Our framework consists of one answer generation
model and three modules that serve as intermediate
components. For the answer generation model, we
experiment with open-source Llama2-7B (Touvron
et al., 2023) and closed-source ChatGPT (GPT-
3.5-turbo) (Achiam et al., 2023) through the API.
As for the three modules, we fine-tune Mistral-
7B (Jiang et al., 2023) for QDM and SDOM, and
E5-Mistral-7B-Instruct (E5-Mistral) (Wang et al.,
2023) for DPRM, which is pre-trained on a multi-
lingual mixed data set.

We initially select 15,000 samples from the
2WikiMQA and generate training labels for QDM
and SDOM using ChatGPT. After data cleaning and
denoising, we ultimately obtain 13,363 samples as
our training set. In the DPRM, we use the k-means
(Krishna and Murty, 1999) algorithm for clustering.
During training, we adopt Adam (Kingma and Ba,
2014) with a constant learning rate of 5e-5 and a
dropout rate of 10%. we set the batch size to 16
and train the model with one A100. We use greedy
decoding during the inference process across all

experiments to ensure deterministic generation.

5 Results and Analyses

5.1 Main Results

We report the EM and F1 scores on three multi-hop
QA datasets under in-domain and out-of-domain
settings, and the results are shown in Table 1.

(1) In-Domain Performance with ChatGPT.
Q-DREAM achieves state-of-the-art performance on
2WikiMQA with ChatGPT as the backbone model.
Compared to ChatGPT without retrieval augmenta-
tion, our method exhibits absolute improvements
of 25.0 and 32.9 regarding the EM and F1 scores
respectively. Moreover, Q-DREAM outperforms the
strongest retrieval-augmented baseline IRCoT with
substantial improvements. These findings verify the
effectiveness of our method in multi-hop question
answering.

(2) Generalization in Out-of-Domain Settings.
To evaluate the generalization of our method, we
directly apply our method trained on 2WikiMQA
to HotpotQA and IIRC. As shown in the "Out-of-
domain" column of Table 1, Q-DREAM surpasses
all baselines in out-of-domain datasets, achiev-
ing great improvements of 17.5 in terms of F1
compared with the second best model SURE in
HotpotQA. On the whole, our method is supe-
rior to all the baselines in the average perfor-
mance, demonstrating good generalization and ro-
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bust cross-domain adaptability of our method.
(3) Performance with Smaller-Scale Model. To

show the effectiveness of our method with smaller-
scale models, we also experiment Q-DREAM with
Llama2-7B as the backbone. The results show
that Q-DREAM achieves an average performance of
30.7 and 37.7 in EM and F1 scores respectively
across three datasets, surpassing baselines built on
larger architectures like InstructRAG and ChatQA2.
Moreover, Q-DREAM with Llama2-7B even outper-
forms SURE that uses larger-scale ChatGPT as the
backbone, indicating the superiority of our RAG
method especially for smaller LLMs.

5.2 Ablation Studies
We set up three variants on 2WikiMQA to in-
vestigate the effectiveness of each component of
Q-DREAM:

• - DPRM: This variant refers to the subques-
tions generated by the QDM and SDOM being
directly input to the E5-Mistral model for pas-
sage retrieval, without utilizing the DPRM.

• - (SDOM, DPRM): After QDM, the question
is decomposed into subquestions which are
subsequently directly input to the E5-Mistral
model for passage retrieval.

• - All: The question is directly input to the E5-
Mistral model for passage retrieval. For a fair
comparison, the number of passages retrieved
in this variant is consistent with our method.

The results are shown in Table 2. We can see
that removing DPRM substantially degrades per-
formance, attributable to the absence of semantic
matching optimization with dynamic dedicated re-
trieval. Concurrently removing SDOM and DPRM
yields the most severe deterioration, as directly us-
ing the decomposed questions without optimization
for conventional retrieval is prone to the seman-
tic mismatching problem. Removing all compo-
nents achieves higher performance than - (SDOM,
DPRM) alone, underscoring the critical role of
SDOM. Without SDOM optimization, the depen-
dent subquestions are vague and lack the necessary
contextual information for effective retrieval. Over-
all, each module within the framework plays an
indispensable role in multi-hop QA.

5.3 Further Analyses
Efficiency of Inference. The baseline methods
require multiple model interactions during the rea-

Table 2: The results of ablation studies.

Methods EM F1

Q-DREAM 48.6 62.1
- DPRM 44.4 56.5
- (SDOM, DPRM) 32.4 38.1
- All 37.2 44.7

soning process, resulting in substantial time con-
sumption. In contrast, our approach utilizes pre-
trained sub-modules to generate fine-grained sub-
questions and retrieve relevant passages, which are
then directly processed by the final question gener-
ation model. Thus, our method is more efficient.

To quantify the efficiency of inference, we eval-
uate the inference time in the 2WikiMQA test set.
We compare Q-DREAM with the strong baseline IR-
CoT on the same computing platform with uniform
hardware configurations and operating systems. To
ensure the reliability of the results, each method
run three times independently under the same con-
ditions. As shown in Table 3, Q-DREAM processes
each sample in 4 seconds on average, which is
6× faster than IRCoT. Additionally, our method
demonstrates a smaller variance in inference time
across three experiments, highlighting its stronger
stability compared to IRCoT. These characteristics
are crucial for practical applications.

Performance of Retrieval. To further assess the
effectiveness of our retrieval method, we compare
with the classical and recent advanced information
retrieval (IR) models. Three categories of baselines
are used for comparison: BM25 (Jones et al., 2000)
is a lexical-based retrieval model; Contriever (Izac-
ard et al., 2021) is a dense neural retriever; and the
retrieval methods integrated in InstructRAG and IR-
CoT. For the space of limit, we present the results
of 2WikiMQA in Table 4.

It is observed that our retrieval method with
DPRM obtains superior retrieval performance com-
pared with the pure IR models and the IR methods
used in recent RAG baselines. By removing DPRM
and using the initial E5-Mistral model for retrieval,
the retrieval performance significantly drops since
all questions and passages share the same semantic
encoder, which is prone to the semantic mismatch-
ing problem. By integrating our retrieval method
as DPRM, the similar questions are assigned with
a dedicated LoRA block for retrieval, which forces
the embeddings of the helpful passages to be closer

17820



Table 3: Efficiency of inference on 2WikiMQA. Avg(s)/Dataset represents the average time required to process the
dataset. Avg(s)/Sample represents the average time required to process a single sample.

Methods
Inference Time (s)

Avg(s)/Dataset Avg(s)/Sample

First Second Third

IRCoT 8887 16138 12485 12503 25

Q-DREAM 2009 2000 2025 2011 4

Table 4: Comparison of the retrieval performance. - DPRM refers to an ablated variant of Q-DREAM without its
dynamic passage retrieval module.

Metric / Model BM25 Contriever InstructRAG IRCoT Q-DREAM (- DPRM) Q-DREAM

Precision (%) 41.0 20.5 19.7 53.8 57.4 81.8
Recall (%) 68.0 33.0 40.7 68.9 62.0 85.7
F1 (%) 51.2 25.3 26.5 60.4 59.6 83.7

Figure 3: Impact of the number of retrieved passages.

to the question in the question semantic space.

Impact of Retrieved Passages. We analyze how
the number of retrieved passages (N) for each sub-
question affects the QA performance. As illustrated
in Figure 3, the sensitivity of N varies across vari-
ous datasets. The results show that retrieving just a
single passage in the in-domain dataset 2WikiMQA
achieves optimal performance, which suggests that
our retrieval method can effectively prioritizes rel-
evant information above the irrelevant ones. Re-
garding to the out-of-domain datasets such as Hot-
potQA and IIRC, the performance improves with
the increasing number of retrieved passages at first,
and then tends to drop as more irrelevant infor-
mation will be introduced by excessive retrieval.
This indicates that retrieving additional appropriate
information is usually beneficial to provide more
clues for enhancing the QA performance in the
out-of-domain scenarios.

Figure 4: Impact of the number of clusters.

Impact of Clusters. The impact of the number
of clusters is shown in Figure 4. We observe that
the performance first increases with the growing
number of clusters, and then declines. Specifically,
too few clusters result in coarse-grained retrieval,
which reduces the model’s ability to distinguish
between different question spaces and relevant
passages, and is prone to the semantic mismatch-
ing problem. Whereas, excessive clustering is also
detrimental, as it will cause the semantically re-
lated questions to be unnecessarily separated into
different spaces, which obstructs the learning of the
common matching patterns and thereby diminishes
the retrieval effectiveness. Overall, these findings
indicate that an optimal cluster size balances the
retrieval granularity and generalization. Too few
clusters fail to capture fine-grained semantic dis-
tinctions, while too many clusters lead to seman-
tic fragmentations, ultimately reducing the overall
question answering performance.
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6 Conclusions

In this paper, we propose a method to optimize
the question semantic space for dynamic retrieval-
augmented multi-hop question answering. By inte-
grating three modules as QDM, SDOM and DPRM,
our method well bridges the semantic gaps between
the question and helpful passages. Extensive exper-
iments verify the effectiveness of each module of
our method. In particular, our method outperforms
the state-of-the-art baselines with significant im-
provements in both in-domain and out-of-domain
settings, indicating the good generalization in un-
known scenarios. Moreover, our method improves
the retrieval accuracy, while maintaining high effi-
ciency compared with the recent advanced retrieval
methods. In the future, we will explore to extend
our method to multilingual or multimodal settings,
and investigate the effectiveness on more out-of-
domain datasets.

Limitations

Though Q-DREAM enhances the multi-hop question
answering, its performance remains to be studied
with other complex reasoning tasks. In addition,
how to retrieve the long-tail knowledge for RAG
remains to be studied.

Ethics Statements

Language models may generate incorrect or bi-
ased information, especially when handling sen-
sitive topics. While retrieval-augmented methods
can help mitigate this issue, they do not fully elim-
inate the risk of biased or inappropriate content.
Therefore, caution is necessary when deploying
such systems in user-facing applications.

This work utilizes publicly available datasets
(HotpotQA, 2WikiMQA, IIRC) that comply with
academic licenses and do not contain personal or
sensitive information. All models (e.g., ChatGPT,
Llama2-7B) and training data were used in accor-
dance with their respective terms of service. Our
study does not involve human subjects or private
data collection, thus avoiding risks related to con-
sent or privacy.
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