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Abstract

Cognitive signals, particularly eye-tracking
data, offer valuable insights into human lan-
guage processing. Leveraging eye-gaze data
from the Ghent Eye-Tracking Corpus, we con-
ducted a series of experiments to examine
how integrating knowledge of human read-
ing behavior impacts Neural Language Models
(NLMs) across multiple dimensions: task per-
formance, attention mechanisms, and the ge-
ometry of their embedding space. We explored
several fine-tuning methodologies to inject eye-
tracking features into the models. Our results
reveal that incorporating these features does
not degrade downstream task performance, en-
hances alignment between model attention and
human attention patterns, and compresses the
geometry of the embedding space 1.

1 Introduction and Motivations

Understanding the inner workings of Neural Lan-
guage Models (NLMs) remains a fundamental
challenge in NLP. While these models achieve re-
markable performance across a variety of tasks
(Hendrycks et al., 2021; Bubeck et al., 2023), their
decision-making processes are largely opaque due
to their complex architectures and increasingly
large number of parameters. To address these chal-
lenges, cognitively informed approaches that draw
on insights from human language acquisition and
processing have gained increasing attention in both
the training and evaluation stages (Ettinger, 2020;
Evanson et al., 2023). These approaches not only
offer potential strategies for enhancing model in-
terpretability but also provide frameworks for de-
veloping efficient learning methods, which are par-
ticularly useful in small-scale settings where data
and computational resources are limited (Huebner
et al., 2021; Warstadt et al., 2023).

In this scenario, eye-tracking (ET) data, which
reflect human gaze patterns during reading, offers

1Code to reproduce our experiments is available on Github.
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Figure 1: Scheme of the eye-tracking injection strate-
gies. i.) is the intermediate fine-tuning; ii.) is the fine-
tuning using LoRa adapters for the downstream task;
iii.) is the multitask fine-tuning with interleaved steps
(one on eye-tracking and one in downstream task); iv.) is
the multitask fine-tuning with eye-tracking silver labels
on the downstream task dataset. In the diagram, nodes
correspond to models and edges represent fine-tuning
processes, with EYE and DST indicating eye-tracking
data or downstream task fine-tuning, respectively. PT
stands for the pre-trained model. Blue colored nodes in-
dicate that the model is specialized on the prediction of
eye-tracking features, while red colored nodes indicate
the specialization on the downstream task.

a potential bridge between human cognition and
model behavior. Gaze has long been widely con-
sidered a rich source of cognitive information, as it
reflects both early and late stages of text process-
ing (Just and Carpenter, 1980; Rayner, 1998). This
makes ET an important tool for formulating theoret-
ical accounts on a variety of linguistic phenomena,
from sentence complexity (Staub, 2010), to syntac-
tic ambiguity resolution (Frazier and Rayner, 1982)
and reading proficiency (Ashby et al., 2005).

Given their informativeness, a line of research
in NLP has focused on leveraging these signals to
improve model’s performance on multiple down-
stream tasks, including core linguistic tasks like
part-of-speech tagging and dependency parsing
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(Barrett et al., 2016), as well as more applied tasks
such as sentiment analysis and sarcasm detection
(Mishra et al., 2016; Tiwari et al., 2023), question
answering (Malmaud et al., 2020; Zhang and Hol-
lenstein, 2024), text readability (Singh et al., 2016).
More recently, interest has shifted toward also us-
ing ET data for interpretability purposes, with the
goal of clarifying the potential connection between
language learning and processing in both humans
and models, thus providing a transparent and cog-
nitively grounded framework for analyzing model
performance and representational capacity. This
includes exploring parallels between human gaze
patterns and model attention mechanisms (Wang
et al., 2024a; Morger et al., 2022; Sood et al., 2020;
Wang et al., 2024b), as well as investigating the
effectiveness of model perplexity related metrics to
predict reading estimates (Oh and Schuler, 2023a,b;
Hao et al., 2020).

This work aims to advance this line of research
by conducting a comprehensive investigation of
NLMs informed by data representative of human
reading behavior. We explore the integration of
ET signals into the model by designing and test-
ing various strategies for injecting gaze-related fea-
tures and evaluate them on an encoder-based model,
i.e. RoBERTa-base (Liu et al., 2019). Despite
the growing prominence of large language models
(LLMs), we focus on encoder-only transformers,
as they remain the foundation of many real-world
applications (Tunstall et al., 2022; Zaratiana et al.,
2024). Encoders are particularly well-suited for
scenarios where computational resources are lim-
ited, making LLMs impractical for deployment in
every task (Karpukhin et al., 2020; Lewis et al.,
2020). Accordingly, interpretability approaches are
especially crucial for understanding their behavior
and increasing transparency.

Our goal is to analyze the impact of ET data on
these models across multiple dimensions, which,
to the best of our knowledge, have never been as-
sessed together. Specifically, we focus on these
main dimensions and research questions:

i.) Effect on downstream task performance:
Does injecting ET features into the model affect
its performance on a downstream task, and how do
task-specific characteristics influence this effect?

ii.) Impact on model attention patterns: What
is the impact of injecting ET features on the
model’s attention mechanism? Additionally, how
does the attention mechanism change when the
model is also trained to solve downstream tasks?

iii.) Changes in representation space: How
does the ET injection affect the geometric proper-
ties of the model’s representation space?

For all aspects, we examined the impact of differ-
ent approaches to inject ET features into the model
to determine whether a particular approach consis-
tently yields better results than others and whether
its effectiveness is consistent across all dimensions.

2 Related Work

Eye-tracking data in NLMs In recent years, a
growing line of research in NLP has focused on
using physiological signals to study the properties
of language models and enhance their performance.
Among these signals, ET data recorded during read-
ing has gained particular prominence, largely due
to its relative ease of collection using non-invasive
equipment compared to other physiological mea-
surement techniques such as fMRI. The availability
of many publicly accessible ET datasets (Cop et al.,
2017; Siegelman et al., 2022; Raymond et al., 2023)
has further facilitated advancements in this field.

Research leveraging ET data has followed two
main directions. One focuses on improving perfor-
mance on downstream tasks by augmenting mod-
els with gaze-related features (Hollenstein et al.,
2019). The other, which is more directly relevant
to our study, investigates the intersection between
ET data and the internal mechanisms of NLMs, of-
fering insights into both model interpretability and
the cognitive plausibility of language processing in
artificial systems (Beinborn and Hollenstein, 2023).
In this context, Sood et al. (2020) were among the
first to compare the attention mechanisms of neural
models based on different architectures with ET
data. Their findings revealed that, although trans-
formers achieved the highest task performance,
they exhibited significantly lower correlation with
human gaze patterns compared to other architec-
tures. Similarly focusing on task-oriented reading,
Eberle et al. (2022) explored whether learned self-
attention functions in large transformers correlated
to eye fixation patterns across two task-specific
reading datasets for sentiment analysis and rela-
tion extraction. They observed that task-specific
fine-tuning does not increase the correlation with
human reading. Contrasting with these findings,
Bensemann et al. (2022) demonstrated that gaze
dwell times are closely aligned with the early lay-
ers of pre-trained transformers like BERT, with this
correlation remaining consistent regardless of the
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model’s parameter count. Likewise, Morger et al.
(2022), in their cross-lingual study on human and
model-derived word importance metrics, found ro-
bust correlations, particularly for monolingual mod-
els. Wang et al. (2024b) extended the experiments
on the correlation between self-attention head val-
ues from LLMs and eye-tracking measures, finding
similarities on the deeper layers of the model.

Embedding Space Studies The embedding
space is a learned high-dimensional vector space
where discrete tokens are mapped to dense repre-
sentations capturing semantic and syntactic infor-
mation. When a word is input to the model, it
is first mapped to its embedding, which serves as
its internal representation for further processing.
A substantial body of research (Ethayarajh, 2019;
Godey et al., 2023) has demonstrated that the em-
bedding spaces induced by Transformer models
often exhibit anisotropy. In other words, the em-
beddings do not fully occupy all available dimen-
sions but cluster closely together, a phenomenon
referred to as the representation degradation prob-
lem (Gao et al., 2019). In NLP, anisotropy is often
seen as detrimental as it confines embeddings to
a “narrow cone” in the embedding space, thereby
masking linguistic information and diminishing
expressive power (Cai et al., 2021; Zhang et al.,
2020; Mickus et al., 2020). However, broader ma-
chine learning literature has noted that anisotropy
naturally arises from stochastic gradient descent
and may, in fact, enhance generalization. In this
respect, studying model behavior in downstream
tasks provides valuable insights (Diehl Martinez
et al., 2024; Rudman and Eickhoff, 2024; Machina
and Mercer, 2024). Specifically, models that com-
press data onto lower-dimensional manifolds often
achieve superior performance in downstream tasks
(Ansuini et al., 2019). In this work we extend the
analysis of anisotropy to sentence embeddings.

3 Our Approach

We develop a comprehensive framework to inves-
tigate the impact of incorporating human read-
ing behavior into a NLM across three key dimen-
sions: performance on downstream tasks, mod-
ifications in attention mechanisms, and shifts
in embedding space. To incorporate reading-
related information into the model, we leverage
a set of ET features extracted from the dataset
described in 3.1. However, unlike most existing
literature—which typically aggregate data across

participants, with very few exceptions (Brandl and
Hollenstein, 2022)— we analyze each reader sepa-
rately, conducting experiments independently for
each one. This choice is motivated by the great
variability in reading behaviors among readers,
even highly skilled ones (Parker and Slattery, 2021;
Ashby et al., 2005; Slattery and Yates, 2018), and
allows us to better model reader-specific dynamics.

One key feature of our work is the design and
evaluation of multiple injection strategies for incor-
porating ET data into the model. These strategies,
described in Section 3.3, include established tech-
niques such as intermediate fine-tuning, in which
the task of predicting ET features is performed be-
fore training the model on the target task, as well
as novel ones proposed in this study, including two
multitask fine-tuning approaches. While studies
such as Weller et al. (2022) have shown that dif-
ferent transfer learning strategies can yield varying
results depending on factors such as the relative
size of the target and supporting tasks, to the best
of our knowledge, no prior work has conducted an
in-depth comparison of fine-tuning strategies using
ET features prediction as a supporting task while
also examining their impact on the model’s inner
mechanisms beyond task performance.

An additional peculiarity of our approach is the
development of distinct evaluation strategies for
each dimension under analysis. Specifically, for
downstream task performance, we assess models
using task-specific evaluation metrics. To examine
attention mechanisms, we compute the correlation
between human gaze patterns and model attention
distributions. Lastly, to analyze the representation
space, we investigate changes in isotropy and lin-
ear effective dimensionality, providing insights into
how fine-tuning with ET signals reshapes the em-
bedding space. Section 3.3 reports details on the
implementation of these strategies.

To comprehensively evaluate the effect of ET
injection strategies on each dimension, we com-
pare the models fine-tuned with both ET and down-
stream task data, against i.) the pre-trained model;
ii.) models fine-tuned only on ET data, and iii.)
models fine-tuned solely on downstream tasks. No-
tably, to gain a deeper understanding of the effects
of incorporating ET knowledge into the model,
we evaluate these models across a range of down-
stream tasks, which were chosen as they provide in-
sights into various aspects of language competence.
In what follows, we describe the key components
and methodological choices of our research.
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3.1 Data

Eye-tracking dataset We leveraged ET data
from the English section of the GECO corpus (Cop
et al., 2017), which contains metrics from 14 par-
ticipants (users) reading the novel The Mysterious
Affair at Styles by Agatha Christie. The dataset
consists of 56,410 words (588 sentences) read by
all participants. However, two participants did not
complete the entire novel and were excluded from
our analysis. For each participant we extracted five
features from GECO, corresponding to word-level
reading time measures and serving as proxies for
different stages of reading behavior: First Fixation
Duration, the duration of the first fixation landing
on the word; Gaze Duration, the summed duration
of fixations on the word in the first pass reading;
First-run Number of Fixations, the number of fixa-
tions on a word during the first pass; Total Reading
Time, the summed duration of all fixations on the
current word, including regressions; Total Number
of Fixations, number of fixations on a word overall.
To create a test dataset, we randomly selected 20%
of sentences, while the remaining 80% were used
for training. The split is consistent across all users.
The features were scaled to the range [0, 100] to
balance the training process and facilitate the inter-
pretability of the results.

Downstream task datasets As regards the down-
stream tasks on which models were tested, we
chose the following dataset: i.) Human Complexity
Judgment (COMP), which involves predicting the
complexity score assigned by human annotators to
a given sentence. For this purpose, we used the
English section of the dataset described in Brunato
et al. (2018). This task was chosen due to its close
relationship with ET data, as it offers a comple-
mentary perspective— i.e. an offline perception
of sentence complexity that may reflect cognitive
processing during reading. ii.) The GLUE bench-
mark (Wang et al., 2018), a standard evaluation
suite designed to test model performance across
9 natural language understanding tasks covering:
Corpus of Linguistic Acceptability (CoLa), Stan-
ford Sentiment Treebank (SST-2), Multi-Genre Nat-
ural Language Inference (MNLI), Question Natural
Language Inference (QNLI), Recognizing Textual
Entailment (RTE), Winograd Natural Language In-
ference (WNLI), Quora Question Pairs (QQP), Mi-
crosoft Research Paraphrase Corpus (MRPC), and
Semantic Textual Similarity Benchmark (STS-B).

3.2 Models and Implementation

For all experiments, we used RoBERTa-base, an
encoder-only transformer model with 12 hidden
layers and an embedding size of 768. Fine-tuning
on ET data was framed as a multi-label token-level
regression task, where the model predicts the five
ET features simultaneously for each token in a
sentence. Since ET features are recorded at the
word level, and the model tokenizes words into
sub-tokens, we associated the features only with
the first sub-token of a word, following the ap-
proach in (Hollenstein et al., 2021). In contrast,
all downstream tasks were formulated as sentence-
level classification or regression tasks, based on
their output prediction. All training details are re-
ported in Appendix A.

3.3 Eye-tracking injection strategies

To integrate knowledge about human reading be-
havior and train the model on downstream tasks,
we designed several injection strategies, based on
different fine-tuning techniques. We outline these
strategies below. A visual summary is provided
in Figure 1. i.) Intermediate fine-tuning: This
strategy involves a fine-tuning on the ET dataset,
followed by a fine-tuning on the downstream task.
For the final fine-tuning on the downstream task,
we fine-tuned the whole model (INT-FULL) or just
the last layers: only the classification/regression
head (INT-CLF), the classification/regression head
and the last hidden layer (INT-LAST2) or clas-
sification/regression head and the last two hid-
den layers (INT-LAST3). ii.) Fine-tuning with
Adapters (LORA): Similarly to the intermediate
fine-tuning, we first finetune the model on the pre-
diction of ET labels. Then we finetune the model
on the downstream task using Low-Rank Adap-
tation (LoRA) (Hu et al., 2022), and a classifica-
tion/regression head. Lastly, we add the obtained
adapters to the first model and substitute the clas-
sification/regression head. iii.) Multi-task inter-
leaved fine-tuning (MT-IL): In this method, the
model alternates between two tasks during fine-
tuning: one step on the ET dataset and the next on
the downstream task dataset. To address the im-
balance in dataset sizes—where the ET dataset is
significantly smaller—we repeated the ET dataset
multiple times to match the size of the downstream
task dataset. iv.) Multi-task fine-tuning with et
silver labels on downstream task dataset (MT-
SILV): In this method, we first fine-tuned a model
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on predicting ET features. We then used this model
to generate silver labels (predicted ET features) for
the sentences in the downstream task dataset. A
new model was subsequently fine-tuned using sil-
ver labels as additional features alongside the down-
stream task resolution. We tested this strategy to
observe what happens when multi-task fine-tuning
is performed on the same data as the downstream
task, rather than on two different datasets.

3.4 Evaluation Strategies
Performance on Downstream Tasks We evalu-
ated the model’s performance on the downstream
tasks according to their corresponding official met-
rics. To improve the comprehensibility of the re-
sults, when a task could be evaluated using multiple
metrics, we chose to report the most global or in-
formative one. Specifically, we used the Spearman
correlation coefficient for COMP, Matthews cor-
relation coefficient for CoLA, accuracy for MNLI,
QNLI, RTE, WNLI, and SST-2, a combined accu-
racy/F1 score for MRPC and QQP, and a combined
Spearman/Pearson correlation score for STS-B. All
these metrics yield scores in the range [0, 1], where
values closer to 1 indicate better performance.

Attention Patterns To evaluate whether inject-
ing ET data modifies the model’s attention mech-
anisms—potentially aligning them more closely
with human attention—we calculated the Spear-
man correlation coefficient between human and
model attentions across the model’s layers. Human
attention was approximated using ET features ex-
tracted from the dataset, while model attention was
represented by the weights of the attention matrix,
which indicate the distribution of focus across to-
kens during representation computation. For each
sentence, model attention was calculated as the
attention weight of each word contributing to the
representation of the BOS token (<s> in the model
used). To ensure consistency with the training pro-
cess, when a token was split into sub-tokens by
the tokenizer, only the first sub-token was used as
a representative of the entire word. Moreover, to
focus on the strength of the association we used the
absolute values of the correlation coefficients.

This analysis was computed on GECO test set.

Embeddings Space To investigate the geome-
try of embedding space, we employ two scores:
i.) Linear effective dimensionality (Lee et al.,
2024), defined as the dimension of the minimal
linear subspace that contains the embeddings. Note

that linear approaches like PCA might miss non-
linear structures, so our effective dimensionality
analysis is only an initial step in understanding em-
bedding geometry. ii.) IsoScore∗ (Rudman et al.,
2022), which formalizes isotropy into a continuous
score ∈ [0,1], with higher values indicating more
uniform usage of the embedding space. We opt
for IsoScore∗ because, as the authors demonstrate,
other existing isotropy metrics lack a rigorous math-
ematical foundation. We extract sentence embed-
dings via mean pooling from the GECO corpus
and the English Universal Dependencies treebanks
(de Marneffe et al., 2021), specifically using sen-
tences from English-EWT (Silveira et al., 2014)
matched in length to GECO, and compute scores
for every model layer. Despite limited data, poten-
tial rank deficiency, and unstable singular values,
Figure 2 in Appendix C shows that IsoScore∗ re-
mains stable and effectively distinguishes isotropic
from anisotropic point clouds.

4 Experimental Results

This section presents our experimental results. Due
to space constraints, user-specific results are avail-
able on our GitHub page.

4.1 Impact on Downstream Task Performance

We first report the performance results of the ET in-
jected models on the resolution of the downstream
tasks, averaged across all users, and in comparison
to models fine-tuned only on the downstream task.
For reference, Appendix B reports the detailed per-
formance of models fine-tuned exclusively on ET
feature prediction.

As shown in Table 1, results suggest that inter-
mediate fine-tuning followed by full fine-tuning
on the downstream task (INT-FULL) effectively
preserves task performance, with only minor ex-
ceptions. This is particularly interesting, as it is
well established that sequential fine-tuning on mul-
tiple tasks typically leads to performance degra-
dation on the final task due to catastrophic for-
getting—a phenomenon where the model loses
pretraining-acquired capabilities that are not di-
rectly relevant for the first fine-tuning task but
could be crucial for the second (McCloskey and Co-
hen, 1989; Kirkpatrick et al., 2017). While it is rea-
sonable to expect that this issue would be mitigated
in the COMP task—given that ET data provides a
complementary perspective to the conscious judg-
ment of sentence complexity—the fact that this
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Downstream Task

Fine-tuning COLA COMP MNLI M/MM MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.56 0.90 0.88 / 0.88 0.90 0.93 0.90 0.70 0.92 0.91 0.56 0.82
INT-LAST3 0.25 0.88 0.70 / 0.71 0.80 0.82 0.81 0.54 0.88 0.81 0.56 0.71
INT-LAST2 0.15 0.85 0.62 / 0.64 0.77 0.75 0.77 0.53 0.86 0.74 0.56 0.66
INT-CLF 0.00 0.70 0.43 / 0.44 0.75 0.61 0.61 0.50 0.76 0.12 0.56 0.50
LORA 0.41 0.87 0.85 / 0.85 0.80 0.91 0.86 0.49 0.93 0.88 0.55 0.76
MT-IL 0.53 0.91 0.83 / 0.83 0.90 0.92 0.88 0.75 0.93 0.90 0.52 0.81
MT-SILV 0.51 0.91 0.88 / 0.87 0.88 0.93 0.90 0.60 0.93 0.91 0.50 0.76

DST-ONLY 0.60 0.91 0.88 / 0.88 0.90 0.93 0.90 0.77 0.93 0.90 0.56 0.83

Table 1: Performance on downstream tasks. Each row corresponds to a model fine-tuned using a distinct ET injection
strategy. For comparison, DST-ONLY is the model fine-tuned exclusively on the downstream task. Highlighted cells
in the table indicate a minimal performance drop (at most 0.02 points) compared to DST-ONLY. Note that MNLI
is released with two test sets: Matched (M), with data coming from the same distribution as the training set, and
MisMatched (MM), with out-of-domain test data.

pattern holds across nearly all tasks suggests that
predicting ET features draws upon a broad set of
capabilities acquired during pretraining. However,
when the fine-tuning on downstream task is par-
tial or employs LoRa adapters, performance
degradation is observed for almost all tasks.
This indicates that training only a small subset of
parameters is insufficient for our model to learn and
solve the downstream tasks effectively. In contrast,
multitask fine-tuning approaches (MT-IL and
MT-SILV) consistently maintain performance
across nearly all tasks, showing their robustness
in preserving downstream task capabilities while
integrating ET knowledge. Regarding performance
across tasks, we observed that the two sentence-
level tasks from GLUE, i.e. COLA and SST-2, ex-
hibit contrasting performance degradation across
nearly all fine-tuning strategies. While COLA is the
most affected, SST-2 shows the least degradation.
Similarly, although both RTE and WNLI are catego-
rized as inference tasks in GLUE, RTE experiences
the most significant performance degradation when
fine-tuned on ET data, while for WNLI, most fine-
tuning strategies yield results comparable to the
model not fine-tuned on ET data. These findings
highlight that the interaction between ET signals
and downstream tasks is not straightforward and
may depend on deeper task-specific factors rather
than broad task categorizations.

4.2 Impact on Attention Patterns

To address our second research question, we as-
sessed the impact of fine-tuning on ET data by
analyzing the correlation between the model’s at-
tention and human attention before and after the ET
injection. Table 2 presents these correlations, us-
ing Attention Weights as model attention and Total
Reading Time (TRT) as human attention proxies.

We focused on this feature as it serves as a com-
prehensive measure of the reading process, encom-
passing both full semantic integration and syntactic
reanalysis (de Varda and Marelli, 2023). Results
for all the other ET features are reported in Ap-
pendix E showing consistent patterns across all of
them. The EYE-ONLY row displays the average
correlation across all users, whereas the BASE row
represents the average correlation between the at-
tention weights of the pre-trained RoBERTa-base
model and human attention, serving as a baseline
for comparison. For each layer of the model, we
report the Spearman correlation coefficient, along
with the average correlation score across all layers
(AVG column). Appendix E.1 reports the correla-
tion scores for each reader. Our results indicate
that fine-tuning on eye-tracking data aligns the
model’s attention weights more closely with hu-
man attention patterns, and this is true for all
readers. As highlighted in the table, this effect
emerges from the sixth layer onward and is partic-
ularly pronounced in the last four layers, whereas
in the base model the highest correlation is ob-
served in the initial layers. Furthermore, for the
base model, the attention of only half of the readers
shows a statistically significant correlation (p-value
≤ 0.05) with the model’s attention.

We now examine whether this increased align-
ment between model attention and human atten-
tion persists after the model undergoes fine-tuning
on downstream tasks. Table 3 reports the Spear-
man correlation coefficients between model atten-
tion and human attention for models fine-tuned on
the downstream tasks, across all injection strate-
gies. For each model, we provide the correla-
tion at the last layer (the closest to the classifi-
cation/regression head) with correlation scores av-
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Model Layer

Model 1 2 3 4 5 6 7 8 9 10 11 12 AVG

EYE-ONLY 0.23 0.20 0.26 0.23 0.19 0.22 0.25 0.25 0.32 0.27 0.24 0.29 0.25

BASE 0.25 0.21 0.28 0.25 0.21 0.17 0.16 0.19 0.18 0.05 0.08 0.12 0.18

Table 2: Spearman correlation coefficients between
model attention and user attention for the model fine-
tuned on predicting user ET features (EYE-ONLY) and
RoBERTa-base (BASE). The scores are averaged across
all users. Differently from EYE-ONLY, only half of users
lead to significant correlations with BASE; the others
were excluded from the mean.

eraged across all users2. Our primary focus is to
compare the correlation scores of ET injected mod-
els against those of models fine-tuned directly on
the downstream task, in order to determine whether
incorporating gaze-related signals enhances or pre-
serves the alignment between model attention and
human attention, even after fine-tuning on task-
specific objectives.

The first observation is that the last-layer corre-
lations between ET injected models and human at-
tention are largely preserved even after fine-tuning
on the downstream task. Across almost all tasks,
the average correlation scores for different injec-
tion strategies (after downstream task fine-tuning)
remain closely aligned with those of the model
fine-tuned exclusively on ET feature prediction.
Notably, only minimal differences (≤ 0.05) are
observed for COLA, MRPC, RTE, and WNLI, sug-
gesting that integrating eye-tracking signals does
not substantially disrupt the learned alignment
with human attention. Regarding the effect of dif-
ferent injection strategies, the highest last-layer cor-
relations are achieved by partial downstream task
fine-tuning applied after intermediate fine-tuning
on ET data (INT-LAST3, INT-LAST2, and INT-CLF).
This result is expected, as the most correlated lay-
ers of the EYE-ONLY model were frozen during the
second fine-tuning step. Notably, the two multi-
task injection strategies (MT-IL and MT-SILV)
and LORA prove effective in maintaining align-
ment with human attention patterns. The worst-
performing system is INT-FULL, as expected, since
fine-tuning a model sequentially on two different
tasks leads to a loss of competence in the first task.
However, when compared to the model fine-tuned
exclusively on the downstream task (DTS-ONLY),
all models that incorporate ET data consistently

2Appendix E.2 reports the same results where correlations
are averaged across all layers of the model.

achieve higher correlation scores.

4.3 Impact on Representation Space

Using RoBERTa-base (BASE) and the model fine-
tuned solely on downstream tasks (DST-ONLY) as
baselines, we evaluate their isotropy and linear in-
trinsic dimensionality in comparison to models
fine-tuned either exclusively on ET data or on
both ET data and downstream tasks. Tables 4 and
5 report the corresponding scores on the GECO
dataset3. As known from literature (Rudman and
Eickhoff, 2024; Cheng et al., 2023; Li et al., 2020),
the BASE model exhibits an anisotropic subspace
(IsoScore* ≈ 0.029 in a range [0,1]) and reduces
the number of linearly independent dimensions
from 768 to 297. Further fine-tuning drives both
metrics even lower. In addition, Tables 4 and 5
demonstrate that fine-tuning on eye-tracking
data (EYE-ONLY) makes the representations
more anisotropic and lower-dimensional com-
pared to the RoBERTa-base model and to the same
extent as models fine-tuned exclusively on down-
stream tasks. This trend is generally observed
across all ET-injected models, with a few excep-
tions found in the LORA and MT-SILV models, as
well as in specific tasks such as QQP, SST-2, and
QNLI. Notably, INT-FULL maintains strong perfor-
mance (Table 1) while effectively “compressing”
its representational space compared to other injec-
tion methods. This suggests that fine-tuning with
eye-tracking data can reduce isotropy and di-
mensionality while preserving downstream task
performance. More generally, with respect to
the different injection strategies, when aiming to
maximize representation compression, the inter-
mediate fine-tuning INT-* models emerges as the
most effective. Furthermore, we observe a strong
Spearman correlation (C = 0.75) between model
isotropy and linear intrinsic dimensionality, a find-
ing not previously reported to our knowledge.

5 Discussion and Conclusion

The impressive abilities of deep learning models
have fostered growing interest across disciplines
in understanding how they work and represent lan-
guage. One approach to interpretability draws in-
spiration from human language behavior, seeking
to uncover connections between artificial models
and human cognition, with the potential to improve

3Appendix D provides a full analysis of the embedding
space for both GECO and the English-EWT dataset.
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Attention correlation (last layer)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.19 0.35 0.05 0.16 0.06 0.08 0.12 0.04 0.09 0.18 0.13
INT-LAST3 0.29 0.28 0.24 0.31 0.16 0.29 0.26 0.21 0.20 0.23 0.25
INT-LAST2 0.28 0.26 0.19 0.28 0.30 0.24 0.28 0.29 0.31 0.28 0.27
INT-CLF 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
LORA 0.27 0.22 0.13 0.20 0.13 0.20 0.32 0.16 0.21 0.30 0.21
MT-IL 0.26 0.23 0.22 0.27 0.16 0.21 0.27 0.20 0.27 0.28 0.24
MT-SILV 0.25 0.11 0.28 0.15 0.31 0.23 0.33 0.31 0.14 0.27 0.24

DST-ONLY 0.06 0.08 0.05 0.01 0.07 0.03 0.02 0.07 0.11 0.12 0.08

Table 3: Correlations between human attention (TRT) and model attention on the last layer for each injection
strategy. The scores are averaged across all readers. Highlighted cells indicate that the correlation score of the ET
injected model exceeds that of DST-ONLY by at least 0.02 points. Bold scores are the highest correlation coefficients:
those exceeding 0.27, which is 0.02 points lower than the last-layer correlation of EYE-ONLY.

Linear ID

F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 127 89 191 185 242 11 161 4 32 127 117
INT-LAST3 173 135 194 162 148 154 154 92 142 154 151
INT-LAST2 162 148 166 160 160 153 157 142 158 158 157
INT-CLF 160 160 160 160 160 160 160 160 160 160 160
LORA 184 144 310 158 279 256 166 202 146 163 201
MT-IL 232 154 110 179 228 88 155 251 228 152 178
MT-SILV 249 209 233 268 251 207 206 221 264 209 232

DST-ONLY 289 249 249 249 249 3 278 4 249 16 186

BASE 297 –
EYE-ONLY 160 –

Table 4: Layer 12 Linear ID values averaged over all
users in the GECO dataset. Entries in bold mark the
lowest value for each task.

IsoScore∗ ×103

F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.74 1.19 2.75 15.59 3.03 0.35 5.95 0.88 0.71 9.74 4.09
INT-LAST3 7.92 2.96 7.40 6.79 2.10 3.53 4.36 0.69 3.46 5.00 4.42
INT-LAST2 5.89 3.78 7.45 5.05 5.58 4.08 4.35 3.24 5.77 4.69 4.99
INT-CLF 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99
LORA 11.26 5.36 30.23 8.47 11.34 28.62 6.01 9.99 2.72 5.27 11.93
MT-IL 4.34 5.02 1.39 2.71 4.06 1.07 2.52 5.83 4.66 3.69 3.53
MT-SILV 17.38 10.76 8.28 12.00 11.89 6.57 10.14 11.26 21.56 11.97 12.18

DST-ONLY 6.53 35.94 4.58 15.08 4.69 0.40 28.03 1.17 11.14 0.27 10.78

BASE 28.69 –
EYE-ONLY 4.97 –

Table 5: Layer 12 IsoScore∗ values (×103 for better vi-
sualization) averaged over all users in the GECO dataset.
Entries in bold mark the lowest value for each task.

both transparency and efficiency beyond task per-
formance. In this context, our work provides novel
insights by exploring the integration of human at-
tention patterns—captured through real-time ET
signals—into transformer-based language models.
Through a comprehensive set of experiments, we
examined the impact of injecting ET features into
a transformer encoder model, assessing both in-
terpretability and performance implications. Our
findings reveal that fine-tuning on ET prediction
enhances the alignment between the model’s at-
tention mechanisms and gaze patterns, making its
internal processing more reflective of human read-
ing behavior. This pattern holds consistently across
all readers in our dataset. Crucially, this increased
alignment does not come at the cost of task perfor-
mance. Despite the well-known risk of catastrophic
forgetting in sequential fine-tuning, we observe
that overall models incorporating ET data maintain
strong performance across a diverse set of down-
stream tasks. Moreover, the alignment between
model and human attention persists even after the
model is fine-tuned on downstream tasks. Beyond
attention alignment, we also examined the impact
of incorporating ET knowledge on the model’s rep-
resentation space showing that this process makes
representations more anisotropic and reduces their

intrinsic dimensionality. This compression effect,
however, does not compromise downstream task
performance, suggesting that incorporating ET
signals may lead to a more efficient representa-
tion space while preserving task-relevant knowl-
edge—potentially opening new ways for model
optimization and compression. As for the effective-
ness of different injection strategies, we showed
that certain approaches, particularly those based
on full intermediate fine-tuning, consistently out-
perform others across nearly all dimensions and
tasks. These strategies prove to be especially ro-
bust, maintaining higher downstream task perfor-
mance while efficiently compressing the model’s
representational space. Conversely, partial fine-
tuning strategies, while less effective in preserving
downstream task performance, show the highest
alignment with human attention. Overall, our study
highlights the potential of leveraging cognitive sig-
nals for both interpretability and task effectiveness,
offering a promising pathway for designing more
transparent and efficient models. Future research
should focus on scaling these techniques to larger
models, exploring different architectures, and in-
corporating additional cognitive signals to deepen
our understanding of deep learning systems.
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Limitations

While our study provides valuable insights into the
integration of eye-tracking (ET) data into encoder-
based language models, several limitations must be
acknowledged.

First, our experiments focus exclusively on
RoBERTa-base, a single encoder-only architecture.
Although RoBERTa is one of the most prominent
transformer-based language model, our findings
may not generalize to other models, such as differ-
ent encoder-based architectures (e.g., BERT, De-
BERTa). Future work should explore whether the
observed effects hold across a broader range of
architectures, including multilingual and domain-
specific models.

Second, our study is limited to the Ghent Eye-
Tracking Corpus (GECO) as the source of cogni-
tive signals. While GECO provides high-quality
eye-tracking data, it is relatively small and pri-
marily based on English reading behavior. Larger,
more diverse datasets spanning different languages
and reading conditions (e.g., task-specific reading,
second-language readers) could offer a more com-
prehensive understanding of how ET signals influ-
ence model behavior.
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A Training Hyperparameters

In general, all fine-tuning procedures used the fol-
lowing hyperparameter settings: a learning rate of
1e− 05, 10 epochs, a batch size of 16, a warmup
ratio of 0.06, and a weight decay of 0.1. However,
there were some exceptions:

• For tasks with larger datasets, such as MNLI,
QNLI, QQP, and SST-2, fine-tuning was per-
formed for only 3 epochs, except when using
LoRa adapters or fine-tuning on WNLI, where
training extended to 20 epochs.

• All fine-tuning with LoRa adapters employed
a learning rate of 5e − 05 and lasted for 10
epochs, except for WNLI, where training was
conducted for 20 epochs.

For LoRa adapter settings, we used the follow-
ing default configuration: r = 32, α = 8, and
a dropout rate of 0.05. For all the experiments
we employed the Transformers library of Hugging-
face4.

B Performances on prediction of
eye-tracking features

Table B.1 summarizes the model’s performance on
the eye-tracking feature prediction task for each
user, reported in terms of Spearman correlation
coefficient. All reported correlations are statisti-
cally significant at a p-value of 0.05. Correlations
that are not significant are marked as NS. These
scores refer to the pre-trained RoBERTa-base fine-
tuned exclusively on this task, i.e., the first step of
the injection process using intermediate fine-tuning
(INT-*) and LoRa adapters (LORA).

From now on we will use these acronyms for eye-
tracking features: FFD = First Fixation Duration,
GD = Gaze Duration, FRNF = First-run Number of
Fixations, TRT = Total Reading Time and TNF =
Total Number of Fixations.

The results indicate that, for most readers, the
model achieves consistent performance across all
eye-tracking features. However, for some readers,
such as User 29, the model performs significantly
worse than the average, while for others, like User
30, it achieves substantially better results. These
findings support our decision to treat data from
each user separately rather than aggregating it, as
this allows us to better capture user-specific pat-
terns.

4https://huggingface.co/

Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

21 0.34 0.38 0.39 0.37 0.38 0.37
22 0.36 0.36 0.36 0.36 0.36 0.36
23 0.37 0.42 0.42 0.42 0.42 0.41
26 0.29 0.34 0.34 0.33 0.34 0.33
28 0.32 0.36 0.37 0.35 0.36 0.35
29 0.21 0.25 0.26 -0.18 0.28 0.16
30 0.50 0.51 0.51 0.50 0.50 0.50
31 0.36 0.37 0.37 0.37 0.37 0.37
32 0.37 0.39 0.39 0.38 0.39 0.38
33 0.45 0.45 0.45 0.45 0.45 0.45
34 0.27 0.32 0.32 0.30 0.33 0.31
35 0.36 0.41 0.40 0.41 0.42 0.40

AVG 0.35 0.38 0.38 0.34 0.38 0.37

Table B.1: Spearman correlation coefficient for each
user on the prediction of eye-tracking features of the
RoBERTa-base fine-tuned only on this task.

Table B.2 reports the same evaluation, but mea-
sured using Mean Absolute Error (MAE). For com-
parison, Table B.3 reports the performance of a
baseline that always predicts the average value of
each feature.

Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

21 5.01 4.97 4.98 5.00 5.00 4.99
22 3.55 3.54 3.55 3.55 3.55 3.55
23 4.92 4.88 4.90 4.91 4.90 4.90
26 4.88 4.84 4.85 4.86 4.86 4.86
28 4.48 4.44 4.43 4.47 4.45 4.45
29 7.24 7.23 7.23 7.24 7.23 7.23
30 2.80 2.79 2.79 2.80 2.80 2.80
31 3.04 3.04 3.03 3.04 3.04 3.04
32 3.83 3.82 3.82 3.83 3.83 3.83
33 2.66 2.66 2.66 2.66 2.66 2.66
34 6.35 6.31 6.32 6.34 6.32 6.33
35 5.38 5.31 5.34 5.35 4.34 5.14

AVG 4.59 4.56 4.56 4.57 4.57 4.57

Table B.2: Mean Absolute Error for each user on the
prediction of eye-tracking features of the RoBERTa-
base fine-tuned only on this task.

We can clearly see that each user has almost the
same error across all the features. This is expected
since the 5 features lay in the same value range,
and their loss is averaged during model training.
The results are in line with the evaluation using
Spearman correlation coefficients.

Comparing the results with the baseline, we can
see that the models outperform it.

Below, we report the performance of models
trained using multi-task injection strategies on the
prediction of eye-tracking features. Tables B.4 and
B.5 present the results for the model injected us-
ing interleaved fine-tuning (MT-IL). The first table
shows the scores averaged across all downstream
tasks for each user, while the second table reports
the scores for models trained on each downstream
task, averaged across all users.

While the correlation scores are slightly lower on

17808

https://huggingface.co/


Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

21 7.42 5.31 5.14 5.12 5.49 5.70
22 8.64 3.95 5.18 5.22 3.21 5.24
23 7.79 5.39 7.65 8.26 6.49 7.12
26 4.96 5.14 7.37 6.14 6.17 5.96
28 5.41 4.64 7.13 4.18 2.98 4.87
29 9.85 7.15 10.34 5.55 5.09 7.59
30 9.50 3.34 4.60 5.56 4.51 5.50
31 2.94 3.24 6.14 6.39 3.81 4.50
32 11.86 4.32 5.14 4.71 3.65 5.94
33 9.12 3.04 7.37 5.07 3.53 5.62
34 7.31 6.79 8.94 9.43 8.14 8.12
35 7.56 5.90 6.55 4.33 3.64 5.60

AVG 7.70 4.85 6.80 5.83 4.73 5.98

Table B.3: Mean Absolute Error for each user on the
prediction of eye-tracking features of the baseline al-
ways predicting the mean value.

Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

21 0.37 0.37 0.38 0.37 0.38 0.37
22 0.28 0.29 0.29 0.29 0.29 0.29
23 0.34 0.35 0.36 0.33 0.36 0.35
26 0.28 0.29 0.29 0.27 0.30 0.29
28 0.34 0.35 0.35 0.34 0.35 0.35
29 0.35 0.35 0.35 0.35 0.36 0.35
30 0.40 0.40 0.41 0.38 0.42 0.40
31 0.30 0.30 0.30 0.30 0.31 0.30
32 0.30 0.31 0.30 0.29 0.31 0.30
33 0.29 0.31 0.30 0.27 0.33 0.30
34 0.25 0.26 0.26 0.23 0.27 0.25
35 0.40 0.41 0.40 0.41 0.41 0.41

AVG 0.32 0.33 0.33 0.32 0.34 0.33

Table B.4: Spearman correlation coefficient on the pre-
diction of eye-tracking features on Interleaved Multi-
task injection (MT-IL), averaged across all tasks for each
user.

average, with respect to those of the model solely
finetuned on eye-tracking feature prediction, the rel-
ative ranking of performance across users is largely
preserved. There is not a big difference on eye-
tracking prediction, while varying the downstream
task.

Lastly, Tables B.6 and B.7 contain the results
of the models injected using multitask fine-tuning
with silver labels (MT-SILV), respectively aggre-
gated across tasks and across users. It is impor-
tant to note that, for this model, the eye-tracking
features are not gold but are instead predicted by
another model. Consequently, these results are less
indicative of the model’s true ability to predict eye-
tracking features.

C Stability of IsoScore*

Figure 2 demonstrates that IsoScore∗ is stable
and effectively differentiates between isotropic and
anisotropic point clouds. This contrasts with the
Partition Score, a widely recognized metric in
literature (Arora et al., 2016; Mu and Viswanath,

Eye-tracking feature

Task FFD GD FRNF TNF TRT AVG

COLA 0.35 0.34 0.35 0.35 0.35 0.35
COMP 0.35 0.32 0.34 0.33 0.30 0.33
MNLI 0.31 0.31 0.31 0.31 0.31 0.31
MRPC 0.35 0.32 0.35 0.33 0.33 0.34
QNLI 0.34 0.34 0.34 0.34 0.34 0.34
QQP 0.31 0.31 0.31 0.31 0.31 0.31
RTE 0.34 0.29 0.32 0.32 0.31 0.32
SST-2 0.36 0.35 0.35 0.36 0.36 0.36
STSB 0.36 0.35 0.36 0.36 0.36 0.36
WNLI 0.32 0.29 0.30 0.32 0.25 0.29

AVG 0.34 0.32 0.33 0.33 0.32 0.33

Table B.5: Spearman correlation coefficient on the pre-
diction of eye-tracking features on Interleaved Multi-
task injection (MT-IL), averaged across all user for each
task.

Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

21 0.90 0.91 0.90 0.90 0.90 0.90
22 0.92 0.93 0.92 0.92 0.92 0.92
23 0.91 0.92 0.91 0.91 0.91 0.91
26 0.93 0.93 0.93 0.92 0.93 0.93
28 0.88 0.89 0.88 0.88 0.88 0.88
29 0.78 0.81 0.76 0.78 0.78 0.78
30 0.94 0.94 0.94 0.94 0.94 0.94
31 0.92 0.92 0.91 0.92 0.91 0.92
32 0.92 0.93 0.93 0.92 0.92 0.92
33 0.92 0.92 0.92 0.92 0.92 0.90
34 0.90 0.91 0.90 0.90 0.90 0.93
35 0.93 0.93 0.93 0.93 0.93 0.90

AVG 0.90 0.91 0.90 0.90 0.90 0.90

Table B.6: Spearman correlation coefficient on the pre-
diction of eye-tracking features on silver labels multitask
fine-tuning (MT-SILV) averaged across all tasks.

Figure 2: IsoScore∗compared to the Partition Score
known in literature (1000 runs per number of points).

Eye-tracking feature

User FFD GD FRNF TNF TRT AVG

COLA 0.91 0.91 0.91 0.91 0.91 0.91
COMP 0.93 0.92 0.93 0.92 0.90 0.92
MNLI 0.93 0.93 0.93 0.93 0.93 0.93
MRPC 0.91 0.91 0.92 0.91 0.91 0.91
QNLI 0.91 0.91 0.91 0.91 0.91 0.91
QQP 0.95 0.95 0.95 0.95 0.95 0.95
RTE 0.89 0.89 0.89 0.89 0.89 0.89
SST2 0.93 0.93 0.93 0.93 0.93 0.93
STSB 0.85 0.85 0.86 0.85 0.86 0.86
WNLI 0.83 0.84 0.87 0.83 0.84 0.84

AVG 0.90 0.90 0.91 0.90 0.90 0.90

Table B.7: Spearman correlation coefficient on the pre-
diction of eye-tracking features on silver labels multitask
fine-tuning (MT-SILV) averaged across all users.
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2018).

D Embedding space

This Section extends Section 4.3, by reporting Lin-
ear ID (Tables D.8) and IsoScore* (D.9) computed
on the English-UD dataset, to study the impact
of eye-tracking injection on the embedding space,
when representing out-of-domain sentences.

Linear ID

F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 243 153 243 234 284 30 254 3 159 143 175
INT-LAST3 207 182 246 214 209 226 204 183 210 197 208
INT-LAST2 191 183 209 196 192 200 204 185 199 198 196
INT-CLF 198 198 198 198 198 198 198 198 198 198 198
LORA 258 166 304 216 309 322 218 309 246 200 255
MT-IL 268 231 168 265 272 146 286 267 301 207 241
MT-SILV 199 138 203 269 236 202 208 207 245 198 211

DST-ONLY 305 249 265 273 288 4 304 4 264 24 198

BASE 308 –
EYE-ONLY 198 –

Table D.8: The 12-layer Linear ID values averaged over
all users for English-ETW. Entries in bold mark the
lowest value for each task.

IsoScore∗ ×103

F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 5.74 2.95 4.54 11.79 6.56 0.63 12.66 0.56 2.78 3.74 5.20
INT-LAST3 9.84 5.71 8.28 9.01 4.91 5.31 5.89 1.84 9.53 4.71 6.50
INT-LAST2 5.96 5.20 6.24 4.92 4.85 4.53 5.12 4.18 6.54 4.52 5.21
INT-CLF 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25
LORA 15.17 4.10 21.15 7.46 28.98 34.77 6.34 27.13 16.74 5.23 16.71
MT-IL 8.88 6.70 6.07 12.28 13.06 3.21 22.62 5.86 32.22 5.65 11.66
MT-SILV 4.48 2.63 3.39 8.33 5.19 3.25 5.91 3.61 7.76 5.66 5.02

DST-ONLY 12.89 5.34 5.22 6.09 6.21 1.83 17.31 0.53 12.11 0.67 6.82

BASE 11.90 –
EYE-ONLY 5.25 –

Table D.9: Layer 12 IsoScore∗ (×103 for better visual-
ization) averaged over users for English-ETW. Entries
in bold mark the lowest value for each task.

The results show a significant correlation (cid
= 0.74 and ciso = 0.40) with those obtained on
GECO. Overall, fine-tuning the models injecting
eye-tracking features in the model reduces both
linear dimensionality and isotropy without compro-
mising performance (see Table 1).

Table D.10 and D.11 present an average over
users, the two datasets, and, for some models, the
downstream tasks, of our scores. They confirm the
findings discussed in 4.3. In almost every layer,
INT-FULL appears to be the model that reduces the
embedding dimensions the most and exhibits the
highest anisotropy.

E Additional Results on Attention
correlation

This appendix provides supplementary results re-
lated to Section 4.2. Specifically, Section E.1
presents the correlation coefficients between model
attention and human attention for all users, using
the Total Reading Time (TRT) feature, as in the
main body of the paper. Section E.2 reports cor-
relation scores averaged across all model layers
rather than reporting the last layer correlation. Fi-
nally, Section E.3 reports the correlation scores
aggregated across users but computed using the
four remaining eye-tracking features.

E.1 Correlations with TRT for all users

Table E.12 extends Table 2 by reporting correla-
tion scores for each individual user. Highlighted
cells indicate that the correlation score for a given
user at a specific layer is higher than the average
correlation score of the RoBERTa model without
fine-tuning on eye-tracking data (BASE). Bold val-
ues represent the highest correlation scores for each
user.

We observe that, in most cases, the correlation
increases as we move toward the final layers of
the model, peaking around layers 9 and 10. In-
terestingly, there is no clear relationship between
a model’s performance in predicting eye-tracking
features and the average correlation between model
and human attention across different users.

E.2 Attention correlation with TRT with
model attention averaged across layers

Table E.13 is analogous to Table 3, but instead of
reporting the correlation between human attention
and the model’s last-layer attention, it presents the
correlation scores averaged across all model layers.
The overall correlation scores remain similar on
average, and the results are largely consistent with
those in Section 4.2. One difference is that when
averaging attention across all layers, models in-
jected using LoRa adapters (LORA) exhibit slightly
higher correlations than those injected via multitask
fine-tuning with interleaved steps (MT-IL).

E.3 Attention correlations with other eye
tracking features

This section extends Table 3 by using the remain-
ing four eye-tracking features to represent human
attention. Specifically, Table E.14 reports correla-
tion scores obtained using First Fixation Duration
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Linear ID

Layer 1 2 3 4 5 6 7 8 9 10 11 12

INT-FULL 340 338 336 327 317 300 275 248 205 179 152 143
INT-LAST3 340 340 342 337 329 317 293 272 250 228 201 197
INT-LAST2 340 340. 342 337 329 317 293 272 250 227.8 204 198
INT-CLF 340 340 342 337 329 317 293 272 250 228 204 198
LORA 340 341 342 337 330 318 294 273 251 229 206 200
MT-IL 341 341 344 339 332 320 299 280 258 237 217 207
MT-SILV 341 343 344 340 333 317 297 272 256 236 204 199

DST-ONLY 339 340 347 350 348 336 312 290 277 262 251 213

BASE 340 342 349 351 353 349. 347 345 340 332 321.0 303
EYE-ONLY 337 332 333 326 320 309 287 263 238 216 193 179

Table D.10: Average Linear ID (over user, dataset and, for some models, downstream task). Entries in bold mark
the lowest value for each task.

IsoScore∗ ×103

Layer 1 2 3 4 5 6 7 8 9 10 11 12

INT-FULL 31.35 25.23 20.91 14.91 10.75 8.73 7.61 5.81 4.13 3.39 2.59 3.74
INT-LAST3 31.57 25.69 23.88 17.49 12.52 10.80 10.13 7.21 5.70 4.45 2.84 4.72
INT-LAST2 31.57 25.69 23.88 17.49 12.52 10.80 10.13 7.21 5.70 4.45 3.09 4.52
INT-CLF 31.57 25.69 23.88 17.49 12.52 10.80 10.13 7.21 5.70 4.45 3.09 5.26
LORA 31.56 25.69 23.84 17.44 12.54 10.86 10.19 7.23 5.71 4.43 3.11 5.23
MT-IL 31.72 25.70 24.86 18.19 13.74 12.10 12.03 9.03 7.19 5.55 3.78 5.66
MT-SILV 31.90 26.66 23.63 17.58 13.15 10.58 8.53 7.94 6.01 5.80 3.14 5.67

DST-ONLY 34.26 30.12 33.32 30.99 27.94 25.20 22.15 23.19 22.29 19.89 16.57 8.80

BASE 34.73 30.96 33.25 29.30 27.68 26.33 26.09 26.33 25.67 23.99 21.54 20.29
EYE-ONLY 33.02 27.21 26.31 21.21 18.73 17.07 16.85 13.71 9.73 7.40 5.05 5.13

Table D.11: Average IsoScore∗ (over user, dataset and, for some models, downstream task), all values multiplied by
103. Entries in bold mark the lowest value for each task.

(FFD), Table E.15 uses Gaze Duration (GD), Ta-
ble E.16 employs First Run Number of Fixations
(FRNX), and Table E.17 presents results based on
the Total Number of Fixations (NFIX). Once again,
the results remain consistent with those in Section
4.2.
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Model Layer

User 1 2 3 4 5 6 7 8 9 10 11 12 AVG

21 0.25 0.16 0.25 0.29 0.20 0.19 0.25 0.27 0.34 NS 0.32 0.33 0.26
22 0.18 0.14 0.19 0.16 0.15 0.19 0.19 0.19 0.33 0.31 0.29 0.24 0.21
23 0.25 0.23 0.29 0.25 0.21 0.25 0.33 0.32 0.39 0.29 0.20 0.35 0.28
26 0.19 0.18 0.21 0.17 0.13 0.14 0.21 0.26 0.24 NS 0.26 0.32 0.20
28 0.24 0.19 0.25 0.21 0.12 0.21 0.21 0.27 0.27 0.25 0.33 0.20 0.23
29 0.23 0.24 0.28 0.21 0.23 0.21 0.24 0.27 0.27 0.10 0.10 0.13 0.21
30 0.24 0.27 0.32 0.26 0.25 0.29 0.27 0.19 0.39 0.44 0.44 0.40 0.31
31 0.23 0.16 0.23 0.20 0.10 0.17 0.20 0.22 0.32 0.20 0.10 0.32 0.20
32 0.25 0.24 0.29 0.24 0.24 0.26 0.29 0.28 0.33 0.34 0.34 0.34 0.29
33 0.26 0.23 0.28 0.25 0.24 0.22 0.19 0.27 0.36 0.37 0.33 0.23 0.27
34 0.19 0.18 0.23 0.18 0.13 0.20 0.27 0.23 0.21 0.13 0.02 0.26 0.19
35 0.28 0.24 0.32 0.27 0.24 0.28 0.36 0.37 0.37 0.22 0.16 0.38 0.29

AVG 0.23 0.20 0.26 0.23 0.19 0.22 0.25 0.25 0.32 0.27 0.24 0.29 0.25

BASE 0.25 0.21 0.28 0.25 0.21 0.17 0.16 0.19 0.18 0.05 0.08 0.12 0.18

Table E.12: Spearman correlation coefficients between model attention and user attention for the RoBERTa-base
model fine-tuned on predicting user eye-tracking features.

Attention correlation TRT (layers avg)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.17 0.22 0.16 0.18 0.16 0.16 0.17 0.15 0.15 0.20 0.17
INT-LAST3 0.25 0.24 0.24 0.25 0.23 0.24 0.25 0.23 0.24 0.24 0.24
INT-LAST2 0.24 0.24 0.24 0.24 0.25 0.24 0.24 0.25 0.25 0.24 0.24
INT-CLF 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
LORA 0.21 0.24 0.18 0.24 0.18 0.19 0.25 0.20 0.21 0.25 0.21
MT-IL 0.19 0.24 0.14 0.20 0.17 0.14 0.21 0.20 0.23 0.23 0.19
MT-SILV 0.22 0.23 0.20 0.20 0.22 0.18 0.25 0.21 0.21 0.24 0.22

DST-ONLY 0.17 0.17 0.16 0.16 0.16 0.13 0.17 0.14 0.17 0.17 0.16

BASE 0.18 –
EYE-ONLY 0.25 –

Table E.13: Correlations between human attention and model attention averaged acros all models’ layers for each
eye-tracking injection strategy. The used eye-tracking features is TRT The scores are averaged across all readers.

Attention correlation FFD (last layer)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.17 0.31 0.04 0.14 0.06 0.05 0.09 0.03 0.10 0.16 0.12
INT-LAST3 0.26 0.26 0.21 0.28 0.15 0.26 0.24 0.18 0.19 0.21 0.22
INT-LAST2 0.25 0.23 0.18 0.25 0.29 0.24 0.23 0.26 0.27 0.25 0.25
INT-CLF 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
LORA 0.24 0.21 0.12 0.19 0.12 0.18 0.28 0.15 0.18 0.27 0.19
MT-IL 0.22 0.23 0.19 0.24 0.15 0.19 0.23 0.20 0.24 0.25 0.22
MT-SILV 0.22 0.10 0.25 0.14 0.28 0.21 0.30 0.28 0.13 0.25 0.21

DST-ONLY 0.05 0.05 NS 0.10 NS NS 0.03 0.06 0.10 0.11 0.07

BASE 0.11 –
EYE-ONLY 0.26 –

Table E.14: Correlations between human attention and model attention on the last layer for each eye-tracking
injection strategy. The used eye-tracking features is FFD The scores are averaged across all readers.

Attention correlation GD (last layer)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.18 0.33 0.04 0.16 0.06 0.05 0.09 0.03 0.10 0.18 0.12
INT-LAST3 0.28 0.29 0.23 0.30 0.16 0.28 0.24 0.20 0.20 0.22 0.24
INT-LAST2 0.27 0.25 0.20 0.27 0.31 0.25 0.25 0.28 0.29 0.27 0.27
INT-CLF 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
LORA 0.26 0.22 0.13 0.20 0.13 0.19 0.31 0.16 0.20 0.29 0.21
MT-IL 0.24 0.25 0.21 0.26 0.15 0.20 0.25 0.19 0.26 0.27 0.23
MT-SILV 0.24 0.11 0.27 0.15 0.30 0.22 0.32 0.30 0.14 0.26 0.23

DST-ONLY 0.08 0.11 0.03 0.08 0.04 NS 0.04 0.05 0.11 0.16 0.08

BASE 0.13 –
EYE-ONLY 0.28 –

Table E.15: Correlations between human attention and model attention on the last layer for each eye-tracking
injection strategy. The used eye-tracking features is GD The scores are averaged across all readers.
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Attention correlation FRNF (last layer)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.17 0.32 0.04 0.17 0.06 0.05 0.10 0.03 0.11 0.17 0.12
INT-LAST3 0.27 0.28 0.23 0.29 0.15 0.25 0.25 0.21 0.19 0.22 0.24
INT-LAST2 0.27 0.24 0.19 0.26 0.28 0.23 0.24 0.28 0.29 0.26 0.25
INT-CLF 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
LORA 0.26 0.21 0.12 0.20 0.12 0.19 0.30 0.16 0.20 0.28 0.20
MT-IL 0.23 0.24 0.20 0.25 0.14 0.20 0.24 0.20 0.25 0.28 0.22
MT-SILV 0.24 0.11 0.26 0.14 0.29 0.21 0.31 0.29 0.13 0.25 0.22

DST-ONLY 0.08 0.10 0.03 0.08 0.04 0.03 0.04 0.05 0.10 0.16 0.07

BASE 0.12 –
EYE-ONLY 0.27 –

Table E.16: Correlations between human attention and model attention on the last layer for each eye-tracking
injection strategy. The used eye-tracking features is FRNF The scores are averaged across all readers.

Attention correlation NFIX (last layer)

Fine-tuning COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.18 0.33 0.04 0.16 0.06 0.05 0.10 0.04 0.11 0.17 0.12
INT-LAST3 0.28 0.29 0.23 0.30 0.16 0.29 0.26 0.19 0.19 0.23 0.24
INT-LAST2 0.28 0.25 0.19 0.28 0.27 0.26 0.27 0.28 0.30 0.27 0.26
INT-CLF 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
LORA 0.27 0.21 0.13 0.20 0.13 0.19 0.31 0.17 0.20 0.29 0.21
MT-IL 0.24 0.25 0.21 0.26 0.16 0.20 0.26 0.20 0.26 0.27 0.23
MT-SILV 0.24 0.11 0.27 0.15 0.30 0.22 0.32 0.31 0.14 0.26 0.23

DST-ONLY 0.09 0.11 NS 0.08 0.04 NS 0.05 0.05 0.11 0.16 0.09

BASE 0.12 –
EYE-ONLY 0.28 –

Table E.17: Correlations between human attention and model attention on the last layer for each eye-tracking
injection strategy. The used eye-tracking features is NFIX The scores are averaged across all readers.
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