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Abstract

Large language models (LLMs) have shown
promise in formal theorem proving, but their
token-level processing often fails to capture the
inherent hierarchical nature of mathematical
proofs. We introduce Hierarchical Attention,
a regularization method that aligns LLMs’ at-
tention mechanisms with mathematical reason-
ing structures. Our approach establishes a five-
level hierarchy from foundational elements to
high-level concepts, ensuring structured infor-
mation flow in proof generation. Experiments
demonstrate that our method improves proof
success rates by 2.05% on miniF2F and 1.69%
on ProofNet while reducing proof complexity
by 23.81% and 16.50% respectively. The code
is available at https://github.com/Car-pe/
HAGBP.

1 Introduction

The intersection of AI and mathematics has
emerged as an important research direction in re-
cent years, particularly in the domain of formal
theorem proving. Proof assistants, such as Lean
(De Moura et al., 2015; Moura and Ullrich, 2021),
Coq (The Coq Development Team, 2024), and
Isabelle (Paulson, 1994), have become key plat-
forms to explore this direction. Traditionally, theo-
rem provers primarily rely on search-based meth-
ods to systematically explore proof spaces, often
guided by complex rule-based techniques or sym-
bolic heuristics (Han et al., 2021; Jiang et al., 2021;
Polu and Sutskever, 2020; Polu et al., 2022; Lam-
ple et al., 2022; Jiang et al., 2022b; Yang et al.,
2024).

The advent of large language models (LLMs)
has brought a transformative shift, leveraging their
capacity for deep contextual understanding to rea-
son about mathematical proofs (Xin et al., 2024;
Welleck and Saha, 2023; Zhao et al., 2023; Jiang

†Corresponding author.

et al., 2023; Wang et al., 2023a; First et al., 2023).
These models excel at generating proofs and tack-
ling a broad array of problems, significantly re-
ducing the need for manually crafted heuristics.
However, they still struggle with key challenges
in formal theorem proving, often failing to gener-
ate difficult proofs or producing unnecessarily long
ones.

These limitations arise because mathematics is
inherently formal and rigorous, whereas LLMs
are primarily designed to process plain token se-
quences, without explicit formal semantics. There-
fore, the structured nature of formal concepts —
where dependencies and relationships between con-
cepts play a critical role — is difficult for LLMs to
fully capture. This raises a natural question:

How to understand structure better?

Mathematical theorem proving exhibits inherent
hierarchical structures in the flow of information
between different components. While large lan-
guage models have shown promising results in this
domain, their attention mechanisms often fail to
capture these natural hierarchies. We propose a
novel framework that guides the model’s attention
patterns to better align with the hierarchical na-
ture of mathematical reasoning, while maintaining
flexibility for complex proof steps.

Our key insight is that mathematical reasoning
follows a natural hierarchical structure, with in-
formation flowing from foundational elements to
higher-level concepts. As shown in Figure 1, we
formalize this intuition through a five-level hierar-
chy and implement it by structured attention pat-
terns. This hierarchical framework not only re-
spects the natural dependencies in mathematical
proofs but also provides flexibility in attention dis-
tribution, allowing the model to capture both local
and cross-level relationships necessary for complex
reasoning.

Based on this framework, we propose Hierar-
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Figure 1: Overview of our hierarchical attention framework. Left: The five-level hierarchy from inner (context) to
outer (goal) layer, illustrating the natural information flow in mathematical reasoning. Right: A concrete example
showing how different components in a theorem proving state are assigned to hierarchical levels, with guided and
unrestricted flow (solid arrows) representing allowed attention paths and limited flow (dashed arrows) representing
restricted attention paths.

chical Attention, a novel regularization method
aimed at improving structural learning in LLMs.
Our approach constructs a hierarchical tree from
the input token sequence, assigning levels to tokens
and guiding information flow based on these levels.
Specifically, we enforce the following constraints:

• Tokens at higher levels can access information
from the same level or lower levels.

• Tokens at lower levels are restricted from ac-
cessing higher-level information.

Through extensive experiments on multi-
ple theorem-proving benchmarks—including
miniF2F (Zheng et al., 2021) and ProofNet (Azer-
bayev et al., 2023)—our method demonstrates
significant improvements in both proof success
rates and proof conciseness. Specifically, our
approach achieves a 2.05% improvement in proof
success rates while reducing the proof length
by 23.81% in successful cases. These results
highlight the advantages of preserving semantic
and hierarchical structures in theorem proving.
This is further confirmed by our ablation studies
and attention pattern analysis.

The main contributions of this work are as fol-
lows:

• We analyzed the hierarchical structure in math-
ematical reasoning, from foundational defini-
tions to final goals.

• We proposed a new algorithm for better struc-
ture learning for LLMs.

• We demonstrated substantial improvements
on multiple standard benchmarks in proof ac-
curacy and proof conciseness.

2 Related Work

Formal Theorem Proving. Formal theorem prov-
ing systems are typically classified into two cate-
gories: Automated Theorem Proving (ATP) and In-
teractive Theorem Proving (ITP). ATP systems aim
to discover proofs without human intervention auto-
matically. Saturation-based provers like E (Schulz,
2002) and Vampire (Kovács and Voronkov, 2013)
use resolution calculus, while specialized solvers
like SAT and SMT solvers (e.g., MiniSat (Eén
and Sörensson, 2003), Z3 (De Moura and Bjørner,
2008)) focus on boolean satisfiability and other
mathematical theories. Domain-specific systems
like GEX (Chou et al., 2000) handle geometric
problems through specialized deduction rules.

In contrast, ITP systems like Lean (De Moura
et al., 2015; Moura and Ullrich, 2021), Coq (The
Coq Development Team, 2024), and Isabelle (Paul-
son, 1994) emphasize human-machine collabora-
tion. These systems provide expressive proof lan-
guages and sound kernels, enabling mathemati-
cians to formalize theorems and construct proofs
in a manner that mirrors informal mathematical
reasoning while ensuring logical correctness.

Neural Theorem Proving. Neural Theorem
Proving has risen to prominence alongside the rapid
development of LLMs and more specialized neural
architectures for formal reasoning. A central fo-
cus has been autoformalization (Wang et al., 2018,
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2020; Wu et al., 2022b; Murphy et al., 2024; Jiang
et al., 2022a, 2023; Lu et al., 2024; Ying et al.,
2024a; Azerbayev et al., 2023; Liu et al., 2023; ?),
which converts informal mathematical statements
and proofs into machine-verifiable languages de-
spite the ongoing challenges in semantic alignment.
Another key area is premise selection (Irving et al.,
2016; Kucik and Korovin, 2018; Piotrowski and
Urban, 2020; Ferreira and Freitas, 2020a,b; Wu,
2022; Mikuła et al., 2023; Holden and Korovin,
2025), where models retrieve the most relevant
lemmas from vast libraries to aid in proving a tar-
get statement. Researchers also tackle proof-step
generation (Huang et al., 2018; Yang et al., 2024;
Welleck and Saha, 2023; Sanchez-Stern et al., 2020,
2023; Yang and Deng, 2019; Polu and Sutskever,
2020; Han et al., 2021; Wang et al., 2023b, 2024;
Lin et al., 2024; Wu et al., 2024; Rute et al., 2024;
Dong and Ma, 2025; Lin et al., 2025; Wang et al.,
2025b,a; Zhang et al., 2025), aiming to accurately
predict the next formal step or tactic, often through
auto-regressive models that learn from existing
proofs. A further challenge is proof search (Loos
et al., 2017; Suda, 2021; Aygün et al., 2020, 2022;
Chvalovskỳ et al., 2023; Rawson and Reger, 2019,
2021; McKeown and Sutcliffe, 2023; Fokoue et al.,
2023; Abdelaziz et al., 2022; Crouse et al., 2021;
Xin et al., 2025), where deep learning-guided algo-
rithms, sometimes using Monte Carlo Tree Search
or reinforcement learning, explore and prune mas-
sive proof spaces, balancing correctness with com-
putational efficiency.

Hierarchical Attention Mechanisms for Math-
ematical Reasoning. Mathematical documents
typically have an implicit multilevel structure, from
foundational definitions to the main theorems. Pre-
vious studies have attempted to exploit this hier-
archical nature by parsing formulas or proofs into
trees or graphs to better represent logical struc-
tures (Wang et al., 2017; Peng and Ma, 2017; Pali-
wal et al., 2020; Rawson and Reger, 2020), or by
building dependency graphs over entire libraries
to capture relationships between statements and
lemmas (Ferreira and Freitas, 2020b; Bauer et al.,
2024). These approaches, while promising, often
depend on carefully crafted rules or programmati-
cally generated data, lacking mechanisms to ensure
that neural models respect the partial orders and
compositional dependencies inherent in mathemat-
ical logic.

The attention mechanism is central to modern
Transformer-based models (Vaswani, 2017). Al-

though studies have explored their use in tasks such
as generating math problems or document classifi-
cation (Yang et al., 2016; Wu et al., 2022a), there
is a gap in leveraging attention-based methods ex-
plicitly for mathematical reasoning.

3 Preliminaries

3.1 Hierarchical Structure in Lean
Lean is a strongly typed language, which allows all
tokens to be naturally unfolded across multiple se-
mantic levels. These levels align with various com-
ponents of reasoning, with each successive level
built upon the foundations of the preceding ones.
The categorization of these layers can be delineated
as follows:

Lowest or contextual layer: Contains back-
ground information, auxiliary concepts, or
general knowledge relevant to the proof (T0:
context).

Intermediate layers: Include pattern matching
and case analysis (T1: case), type declarations
and definitions (T2: type), instance declara-
tions and concrete examples (T3: instance)
that support the proof.

Highest or goal layer: Represents the core theo-
rem or proposition to be proved (T4: goal),
which relies on the information introduced in
the lower layers.

These layers follow a natural partial order:
context ≺ case ≺ type ≺ instance ≺ goal.
Structuring mathematical reasoning within this hi-
erarchy yields two key benefits:

• Proper Scoping: Contextual elements and def-
initions are confined to their appropriate lev-
els. Intuitively, each concept is most mean-
ingfully analyzed in conjunction with others
at the same level, ensuring logical coherence
and clarity.

• Clear Semantic Flow: The reasoning pro-
gresses seamlessly from foundational defini-
tions to the final goal, reflecting the natural
and intuitive structure of mathematical argu-
ments.

3.2 Information Flow
We want to exploit the hierarchical structure by
incorporating flow control into the model. Let T be
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the set of all tokens of the input theorem. We use
ti, tj to denote individual tokens, L for the number
of transformer layers, and 1 ≤ l ≤ L for layer
indices. For tokens ti, tj in layer l, we define:

• attl(ti, tj): attention score from ti to tj , rep-
resenting how much ti will affect embedding
of tj at layer l,

• Mij : binary attention mask, controlling the
information flow from ti to tj ,

• αl = 1 − l/L: layer-wise adaptation factor,
which attenuates flow control for deeper lay-
ers.

We use level(ti) to denote the hierarchical level
of token ti, taking value from {0, 1, 2, 3, 4}, cor-
responding to the five levels in our hierarchy. By
controlling attention flow based on these levels, we
encourage the model to follow natural mathemati-
cal reasoning patterns, where higher-level concepts
build upon lower-level foundations.

4 Approach

To enhance the model’s comprehension of the hier-
archical structure and its ability to reason in align-
ment with it, we propose a two-step approach. First,
we extract the flow pattern from the input by identi-
fying different hierarchical levels in mathematical
statements. Second, we guide the model’s attention
through a specialized loss function that encourages
the model to respect these hierarchical relationships
during training.

4.1 Extract Flow Pattern
In mathematical reasoning, different components
of a statement naturally form a hierarchy. We iden-
tify five distinct levels (labeled 0 to 4): basic tokens,
case-specific elements, type definitions, problem
instances, and goal statements. The flow from to-
ken ti to token tj may follow one of three types,
based on their hierarchical levels:





Unrestricted if level(ti) = level(tj)
Guided if level(ti) < level(tj)
Limited if level(ti) > level(tj)

(1)

While sharing similar algorithmic treatment, un-
restricted and guided flows are distinctly catego-
rized due to their different functional roles. Our
experiments 5.3 show these flows develop distinct
patterns during training: unrestricted flow shows

Algorithm 1: Hierarchical Attention Imple-
mentation

Input: Theorem text T , Model layers L
Output: Flow loss Lflow
/* Initialize hierarchical levels

*/
Parse input into level sets {T0, ..., T4} ;
// Using Algorithm 2

;
Initialize attention mask M , Lflow ← 0;

for each layer l in 1 to L do
αl ← (1− l/L) ; // Layer
adaptation factor

for tokens ti, tj in input do
/* Construct attention mask

*/
if level(ti) ≤ level(tj) then

Mij ← 1 ; // Allow
upward/horizontal flow

else
Mij ← 0 ; // Limit
downward flow

/* Compute loss contribution
*/

invalidflow ←
attl(ti, tj) · (1−Mij);
Lflow ←
Lflow + αl · ReLU(invalidflow);

Lflow ← Lflow/|T |;
return Lflow;

reduced attention proportion, while guided flow
demonstrates increased dominance. This structure
ensures that semantic dependencies respect the hi-
erarchical nature of mathematical reasoning, with
tokens primarily attending to those at the same or
lower levels, while limiting attention in the reverse
direction to maintain logical consistency.

4.2 Algorithm Implementation
Based on these flow patterns, we implement a hi-
erarchical attention mechanism as shown in Al-
gorithm 1. The algorithm first parses the input
into different hierarchical levels using string pattern
matching to identify key mathematical components.
It then constructs attention masks and computes a
flow loss that penalizes attention patterns violating
hierarchical constraints.

The flow loss Lflow penalizes attention patterns
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that violate hierarchical constraints:

Lflow =
1

|T |
L∑

l=1

αl·
∑

i,j

ReLU(attl(ti, tj)·(1−Mij))

(2)
where αl = (1− l

L) provides stronger regulariza-
tion in earlier layers while allowing more flexibility
in later layers.

The final training objective combines this flow
loss with the standard cross-entropy loss LLM :

L = LLM + λLflow (3)

where λ controls the strength of hierarchical con-
straints. A larger λ enforces stricter adherence to
the hierarchy, while a smaller value allows more
flexible attention patterns.

In summary, our approach:

• Identifies natural hierarchical levels in mathe-
matical statements.

• Guides attention patterns to respect hierarchi-
cal relationships.

• Enables flexible reasoning through layer-wise
adaptation.

5 Experiments

In this section, we evaluate our method through
comprehensive experiments on multiple theorem-
proving benchmarks.

5.1 Experimental Setup

Training Data and Configuration We use Le-
anDojo Benchmark 4* as our training dataset.
The training process involves fine-tuning a Pythia-
2.8B† (Biderman et al., 2023) model for 3 epochs.
Detailed hyperparameters and training configura-
tions are provided in Appendix A.1.

Evaluation Protocol We conduct comprehen-
sive evaluations across four benchmark datasets:
miniF2F (test/valid)‡ and ProofNet (test/valid)§.
Our evaluation employs two complementary strate-
gies: best-first search and single-pass sampling, to

*Yang, K. (2023). LeanDojo Benchmark (v1) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.8016386

†https://huggingface.co/EleutherAI/pythia-2.
8b

‡https://huggingface.co/datasets/cat-searcher/
minif2f-lean4

§https://huggingface.co/datasets/UDACA/
proofnet-lean4

demonstrate the robustness of our method (detailed
algorithms in Appendix A.2).

For both strategies, we define the computation
budget as K × T , where T indicates the number
of expansion iterations, which is set to 100 across
all our experiments, and K = N × S. For the best-
first search, N represents the number of parallel
search attempts and S denotes the number of tactics
generated per expansion. For single-pass sampling,
N represents the total number of sampling attempts
per problem, while S is fixed to 1 as only one tactic
is attempted at each expanded node. The search
process employs parallel sampling with fixed time
constraints per theorem. In the following sections,
we use K to denote the product of N and S for
simplicity.

Our method is a general-purpose fine-tuning
technique that can be applied to any formal
theorem-proving system. For empirical validation,
we chose LLMSTEP (Welleck and Saha, 2023) as
our primary baseline, which provides full access
to its model, dataset, and hyperparameters, ensur-
ing complete reproducibility of our comparative
analysis.

5.2 Main Results
We present a comparative analysis of our method
against the baseline, highlighting its performance
and advancements.

Metrics We evaluate our method using two key
metrics: pass@K accuracy and proof complexity.
The pass@K metric measures the model’s ability
to generate a valid proof within K sampling at-
tempts, where K = N × S represents the total
number of tactic samples considered during this
iteration of proof search.

For proof conciseness analysis, we measure the
number of proof steps required to solve the goals.
Let Tcom be the set of theorems successfully proved
by both methods with different proof lengths. For
each theorem t ∈ Tcom, we define its proof com-
plexity as:

C(t,m) = |pt,m| (4)

where pt,m is the proof generated for theorem
t using method m, and |pt,m| denotes the number
of proof steps. We then compute the average com-
plexity ratio:

Ravg =
1

|Tcom|
∑

t∈Tcom

C(t, ours)
C(t, baseline)

(5)
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Figure 2: Performance comparison between our method and baseline at K = 64. Left: Pass rate comparison across
miniF2F (test/valid) and ProofNet (test/valid) datasets. Best-first search (BFS) consistently outperforms single-pass
sampling (SPS), with our method further enhancing BFS performance. Solid bars represent our method while
transparent bars represent the baseline. Right: Proof complexity ratio (Ravg), where values below 1.0 (dashed line)
indicate more concise proofs. Our method with BFS achieves consistent complexity reductions across all datasets.

Table 1: Results on miniF2F test set with best-first
search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 14.75 14.34 - - - -
2 18.44 17.62 - - - -
4 22.54 23.36 - - - -
8 26.23 26.23 2.00 1.86 0.93 11.67
16 29.10 28.28 2.11 1.50 0.71 13.24
32 29.51 31.15 1.89 1.67 0.88 12.50
64 29.51 31.56 2.10 1.60 0.76 8.11

Table 2: Results on miniF2F validation set with best-
first search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 12.70 13.52 - - - -
2 15.16 14.75 - - - -
4 20.49 23.77 - - - -
8 27.05 29.51 2.83 2.67 0.94 9.68
16 31.15 33.20 2.89 1.89 0.65 13.89
32 31.56 34.02 3.11 2.00 0.64 12.00
64 31.56 34.02 3.11 2.00 0.64 12.68

This metric provides a direct measure of our
method’s proof conciseness, where Ravg < 1 indi-
cates that our method generally produces shorter
proofs. Note that we only consider theorems where
both methods succeed but generate proofs of
different lengths, as this provides a meaningful
comparison of the proof conciseness. We also re-
port Diff. (%), which indicates the percentage of
such theorems among all theorems that both meth-
ods successfully prove, reflecting how often the
methods differ in their proof strategies.

Table 3: Results on miniF2F test set with single-pass
sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 9.84 18.44 - - - -
2 12.30 20.90 - - - -
4 16.80 24.18 - - - -
8 19.63 25.00 1.95 1.86 0.95 51.16
16 20.49 26.23 1.85 1.92 1.04 26.00
32 23.36 26.64 1.83 1.78 0.97 15.38
64 23.36 27.87 2.00 1.85 0.93 23.21

Table 4: Results on miniF2F validation set with single-
pass sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 9.43 14.75 - - - -
2 12.30 15.16 - - - -
4 16.80 20.08 - - - -
8 18.03 21.13 2.33 1.73 0.74 37.50
16 18.44 24.59 1.95 1.89 0.97 43.18
32 20.08 25.41 1.92 1.92 1.00 27.66
64 21.72 26.64 2.12 2.38 1.12 16.33

Overview Figure 2 presents a comprehensive
evaluation of our method across miniF2F (test/-
valid) and ProofNet (test/valid) datasets at K = 64.
The results demonstrate that best-first search (BFS)
is the superior search strategy across all datasets,
consistently outperforming single-pass sampling
(SPS). When combined with our hierarchical at-
tention mechanism, BFS achieves even stronger
results. For example, on the miniF2F test set, our
method improves the pass rate by 2.05% while
reducing proof complexity by 23.81%. Similar im-
provements are observed on the ProofNet test set,
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with a 1.69% increase in pass rate and a 16.50% re-
duction in proof complexity. Notably, our method
also significantly improves SPS performance, par-
ticularly on the miniF2F dataset where we observe
pass rate improvements of 4.51% and 4.92% on
test and valid sets respectively.

Results on miniF2F Tables 1-4 present compre-
hensive results on the miniF2F benchmark. With
best-first search, our method achieves consistent
improvements in pass rates at higher computation
budgets, reaching 31.56% on test set (vs. baseline’s
29.51%) and 34.02% on validation set (vs. base-
line’s 31.56%). The performance gain becomes
more pronounced as the computation budget in-
creases, particularly when K exceeds 16.

Single-pass sampling results also demonstrate
the effectiveness of our method, achieving 27.87%
and 26.64% pass rates on test and validation sets
respectively at K = 64, compared to baseline’s
23.36% and 21.72%. This represents substantial
improvements of 4.51% and 4.92% respectively.

For proof conciseness evaluation, we focus on
higher computation budget scenarios (K ≥ 8)
where sufficient successful proofs are available
for reliable complexity comparison. At K = 64,
our method demonstrates significant advantages
in proof conciseness with the search strategy, re-
ducing the average proof length from 3.11 to 2.00
steps (Ravg = 0.64) on the validation set and from
2.10 to 1.60 steps (Ravg = 0.76) on the test set.
The reliability of these complexity metrics is sup-
ported by a substantial proportion of comparable
cases (Diff.), where both methods succeed but with
different proof lengths. For instance, at K = 64
with best-first search, these comparable cases con-
stitute 8.11% and 12.68% of all successful proofs
for test and validation sets respectively, providing
a meaningful sample size for complexity compari-
son. Similar reliability is observed in single-pass
sampling, where Diff. reaches 23.21% and 16.33%,
ensuring the robustness of the reported complexity
improvements.

Results on ProofNet Tables 5-8 present the re-
sults on ProofNet benchmark. With best-first
search strategy, our method achieves consistent
improvements in PASS rates at higher computation
budgets, reaching 15.25% on test set (vs. base-
line’s 13.56%) and 11.86% on validation set (vs.
baseline’s 10.17%) at K = 64.

Single-pass sampling results also demonstrate
the effectiveness of our method. On the test set,

Table 5: Results on ProofNet test set with best-first
search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 11.86 11.86 - - - -
32 13.56 14.69 1.83 1.83 1.00 28.57
64 13.56 15.25 2.00 1.67 0.84 26.09

Table 6: Results on ProofNet validation set with best-
first search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 9.04 10.73 - - - -
32 9.04 10.73 2.00 1.00 0.50 12.50
64 10.17 11.86 2.00 1.00 0.50 18.75

our method shows consistent improvements across
computation budgets, achieving 14.12% at K = 64
compared to baseline’s 13.56%, with improve-
ments ranging from 1.70% to 2.63%. On the valida-
tion set, while performance is initially comparable
at K = 16 (both 7.34%), our method shows im-
provement at higher computation budgets, reaching
9.04% at K = 64 compared to baseline’s 8.47%.

For proof conciseness evaluation at K = 64,
our method demonstrates significant advantages
across all settings. With the search strategy, the
average proof length decreases from 2.00 to 1.67
steps (Ravg = 0.84) on the test set and from 2.00
to 1.00 steps (Ravg = 0.50) on the validation set,
based on 26.09% and 18.75% of differing proofs
respectively. The single-pass sampling shows simi-
lar improvements with Ravg = 0.75 on the test set
across 21.74% of differing cases.

5.3 Visualization and Analysis of Attention
Patterns

The attention distribution analysis shown in Fig-
ure 3 demonstrates that our mechanism success-
fully implements and maintains the designed infor-
mation flow structure (Equation 1) throughout the
model. Our analysis reveals several key findings
across both constrained and unconstrained layers:

5.3.1 Implementation of Limited Flow
Constraint

Our approach enforces the limited flow constraint
by minimizing attention flows from higher to lower
levels across all layers. In constrained layers (Fig-
ure 3, left), this is evidenced by the near-zero per-
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Figure 3: Attention distribution analysis in different layers. Left: Hierarchy-constrained layers (where αl ̸= 0).
Right: Unconstrained layers (where αl = 0). This visualization is derived from averaging attention patterns across
all evaluation samples on the LeanDojo Benchmark 4 test set. The x-axis represents different hierarchical levels,
while the y-axis shows the percentage of attention scores, combining both cases where the level’s tokens serve as
source (ti) and target (tj). Blue and green bars represent the baseline and our method respectively, with different
transparency levels indicating different attention flow types based on the relationship between source level(ti) and
target level(tj).

Table 7: Results on ProofNet test set with single-pass
sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 9.60 11.30 - - - -
32 10.17 12.80 2.00 2.00 1.00 31.25
64 13.56 14.12 2.40 1.80 0.75 21.74

Table 8: Results on ProofNet validation set with single-
pass sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 7.34 7.34 - - - -
32 8.47 7.34 1.50 1.50 1.00 18.18
64 8.47 9.04 1.50 1.50 1.00 30.77

centages of level(ti) > level(tj) attention across
all hierarchical levels, compared to the baseline’s
substantial invalid flows ranging from 5.5% to
27.8%. Remarkably, this pattern persists in un-
constrained layers (Figure 3, right), where invalid
flows remain minimal (ranging from 0.5% to 3.2%
across different levels), demonstrating the robust-
ness of our hierarchical structure.

5.3.2 Effectiveness of Guided Flow Design
Our method successfully implements and main-
tains the guided flow design throughout the model.
In constrained layers, the goal level effectively in-
tegrates information from lower levels with 68.7%

upward attention while restricting reverse flows to
just 0.2%. Type and instance levels receive sub-
stantial guided information flow from lower lev-
els (77.7% and 71.0% respectively), demonstrating
strong hierarchical information propagation. This
pattern strengthens in unconstrained layers, where
the goal level receives even stronger attention from
lower levels (84.5%), and type and instance levels
maintain robust upward attention flows (89.0% and
81.5% respectively).

5.3.3 Global Impact on Model Behavior
The consistency of hierarchical patterns between
constrained and unconstrained layers is particularly
significant, indicating that our method induces a
global, coherent hierarchical information process-
ing framework. Rather than merely responding to
external constraints, the model appears to have in-
ternalized the hierarchical structure, as evidenced
by the preservation of desired attention patterns
in unconstrained layers. This seamless continu-
ation of attention patterns throughout the model
architecture suggests that our hierarchical attention
mechanism effectively shapes the model’s overall
information processing strategy, establishing a sta-
ble and consistent hierarchical flow structure.

6 Conclusion

We introduced Hierarchical Attention, a regular-
ization method that aligns transformer attention
with mathematical reasoning structures through a
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five-level hierarchy. Our approach balances struc-
tured information flow with the flexibility needed
for complex proofs through layer-wise adaptation.
Experimental results show improved proof suc-
cess rates and conciseness across multiple bench-
marks, while attention pattern analysis confirms
the method’s effectiveness in helping models in-
ternalize mathematical hierarchies. The consistent
improvements demonstrate a promising direction
for bridging neural language models and mathemat-
ical reasoning.

Limitations

Our approach has three main limitations: (1) the
hierarchy definition is specific to Lean’s seman-
tics and may require adaptation for other proof
languages, (2) the fixed hierarchy structure may
limit dynamic reasoning patterns, and (3) data con-
straints prevented evaluation on advanced mod-
els like DeepSeek-Prover (Xin et al., 2024) and
InternLM-Math (Ying et al., 2024b). Future work
could explore adaptive hierarchies and the cross-
domain generalization.

Ethical Considerations

Our work focuses on improving theorem proving
through Hierarchical Attention while addressing
several ethical considerations. We use publicly
available datasets, including LeanDojo Benchmark
4 under the MIT license¶, and strictly follow data
usage policies. While mathematical content is gen-
erally objective, we acknowledge potential biases
in theorem selection and proof styles. Our method,
though designed for positive applications, should
be used with human oversight as it could poten-
tially generate misleading proofs. To promote trans-
parency and reproducibility, we will release our
code and models with appropriate licenses and us-
age guidelines.
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A Appendix

A.1 Training Details
We use Pythia-2.8B|| as our base model. The train-
ing data is sourced from LeanDojo Benchmark 4
**, which consists of 169,530 samples for training
and 3,606 samples for validation.

We train the model for 3 epochs on 8 NVIDIA
A800 GPUs using DeepSpeed†† with ZeRO-3 opti-
mization, taking approximately 40 hours. The train-
ing uses a per-device batch size of 2 with gradient
accumulation steps of 2, resulting in an effective
batch size of 32. We adopt a learning rate of 1e-5
with a cosine decay schedule and 3% warmup ratio.
The training process employs FP16 precision with-
out weight decay, and ZeRO-3 is configured with
parameter and optimizer state partitioning across
GPUs. For reproducibility, we set the random seed
to 42 across all experiments.

During training, we evaluate the model every
500 steps and save checkpoints at the same fre-
quency, maintaining the 3 most recent checkpoints.
The best model is selected based on validation per-
formance at the end of training. The training objec-
tive combines the standard cross-entropy loss with
our hierarchical flow loss. Table 9 shows the spe-
cific hyperparameters (λ and L) used for different
evaluation sets.

Table 9: Hyperparameters for different evaluation sets.

Dataset λ L

miniF2F (test) 0.1 4
miniF2F (valid) 0.1 16
ProofNet (test) 0.2 16
ProofNet (valid) 0.2 4

A.2 Evaluation algorithm
We implement two evaluation algorithms for theo-
rem proving: best-first search and single-pass sam-
pling. Both algorithms share the same computation
budget K × T , where T = 100 is the maximum
expansion steps.

Best-First Search maintains a priority
queue of states ranked by trajectory score∑i−1

j=0 log p(aj |sj). For each expansion, it selects
the highest-scoring state si, generates S candidate

||https://huggingface.co/EleutherAI/pythia-2.
8b

**Yang, K. (2023). LeanDojo Benchmark (v1) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.8016386

††https://github.com/microsoft/DeepSpeed

tactics, and creates new states by applying valid
tactics. The search succeeds when reaching a state
with no remaining goals within N expansions.

Single-Pass Sampling runs K parallel proof at-
tempts. Each attempt samples tactics sequentially
until finding a valid one or reaching the attempt
limit. A proof succeeds if it completes within N
valid tactics. This approach simplifies the search
process by setting S = 1 and focusing on trajectory
sampling rather than state ranking.

A.3 Ablation Studies

A.3.1 Layer-wise Adaptation Mechanism

To validate the effectiveness of our layer-wise adap-
tation mechanism (αl = 1− l/L), we conduct abla-
tion studies on miniF2F and ProofNet benchmarks
using best-first search with K = 64. The results
are shown in Table 10.

Table 10: Ablation study results on miniF2F and
ProofNet benchmarks with best-first search (K = 64).

Method
miniF2F ProofNet

Test Valid Test Valid

PASS (baseline) 29.51 31.56 13.56 10.17
PASS (w/o adaptation) 30.74 32.34 14.69 11.30
PASS (w/ adaptation) 31.56 34.02 15.25 11.86

Ravg (w/o adaptation) 0.53 0.82 0.69 0.50
Ravg (w/ adaptation) 0.76 0.64 0.84 0.50
Diff.(w/o adaptation) (%) 9.86 11.27 22.73 18.75
Diff.(w/ adaptation) (%) 8.11 12.68 26.09 18.75

The results demonstrate an interesting trade-off
in our layer-wise adaptation mechanism. Without
adaptation, where hierarchical constraints are ap-
plied uniformly across layers, the model achieves
better proof complexity ratios across three bench-
marks but lower pass rates. This suggests that grad-
ually reducing the constraint strength in deeper lay-
ers through layer-wise adaptation (αl = 1− l/L)
helps achieve better proof success rates at the cost
of slightly longer proofs. The superior pass rates
across all benchmarks validate that our adaptive
approach effectively enhances the model’s theorem
proving capabilities while maintaining reasonable
proof complexity. Notably, even without layer-wise
adaptation, our hierarchical attention mechanism
still outperforms the baseline substantially in both
pass rates and proof complexity, demonstrating the
effectiveness of our basic hierarchical structure de-
sign.
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A.3.2 Hierarchical Structure Variants
To explore the impact of different hierarchical struc-
tures, we conducted ablation experiments compar-
ing the fine-grained structure (with all five levels
T0−T4) against a coarse-grained variant where lev-
els T1−T3 are merged into a single level. Table 11
shows the results with best-first search (K = 64).
On the miniF2F benchmark, the coarse-grained

Table 11: Comparison of hierarchical structure variants
on miniF2F and ProofNet benchmarks.

Method
miniF2F ProofNet

Test Valid Test Valid

PASS (baseline) 29.51 31.56 13.56 10.17
PASS (coarse-grained) 30.33 32.38 14.12 11.30
PASS (fine-grained) 31.56 34.02 15.25 11.86

Ravg (coarse-grained) 0.67 0.82 0.73 1.26
Ravg (fine-grained) 0.76 0.64 0.84 0.50
Diff.(coarse-grained) (%) 8.33 11.43 26.32 21.43
Diff.(fine-grained) (%) 8.11 12.68 26.09 18.75

variant achieves better proof complexity ratios
(Ravg) on the test set (0.67 vs 0.76), while the fine-
grained structure achieves better complexity on the
validation set (0.64 vs 0.82). More importantly,
the fine-grained approach delivers superior pass
rates across both test and validation sets. Similar
patterns are observed in the ProofNet benchmark.
These results demonstrate that distinguishing be-
tween different reasoning elements (case analysis,
type declarations, and instances) is beneficial for
overall theorem-proving performance, with mixed
effects on proof complexity. The fine-grained struc-
ture provides the model with more detailed infor-
mation about the relationships between different
elements in the proof state, enabling more accurate
reasoning and higher success rates.

A.4 Explicit Level Tags Baseline
To further evaluate the effectiveness of different
structural representation methods, we implemented
a baseline that uses explicit level tags. This experi-
ment was designed to compare two fundamentally
different approaches to representing structure: di-
rectly adding explicit tags in the input data versus
implicitly guiding hierarchical information flow
through attention mechanisms. In this baseline, we
modified the input format to include explicit tags
indicating the hierarchical level of each component:

{
Input: "<context>...</context>...
<type>...</type>...

<instance>...</instance>...
<goal>...</goal>...",

}

Table 12 shows the results with best-first search
(K = 64). The explicit tags approach significantly

Table 12: Comparison between baseline, explicit tags
approach, and our method with best-first search (K =
64).

Method
miniF2F ProofNet

Test Valid Test Valid

PASS (baseline) 29.51 31.56 13.56 10.17
PASS (explicit tags) 21.88 16.80 9.04 7.34
PASS (ours) 31.56 34.02 15.25 11.86

Ravg (explicit tags) 2.01 1.78 1.30 2.00
Ravg (ours) 0.76 0.64 0.84 0.50
Diff.(explicit tags) (%) 24.44 17.50 40.00 18.18
Diff.(ours) (%) 8.11 12.68 26.09 18.75

underperformed both the baseline and our method
across all datasets. These results indicate that sim-
ply annotating data with explicit level tags is in-
effective and potentially detrimental for theorem
proving.

A.5 Input Parsing Algorithm

To implement our hierarchical structure, we de-
veloped a rule-based parsing algorithm that iden-
tifies different structural components in theorem
text, as shown in Algorithm 2. This lightweight
pattern-matching approach identifies key mathe-
matical components through syntactic indicators:
goal statements (containing turnstile ⊢), case anal-
ysis statements (starting with "case"), type declara-
tions (containing "Type" and colon), and instance
definitions (containing colon but neither "Type"
nor turnstile). The parser maintains context across
multi-line statements by inheriting the level of pre-
vious lines when appropriate, ensuring accurate
hierarchical structure capture with minimal compu-
tational overhead.

A.6 Case Studies

To demonstrate the effectiveness of our hierarchical
attention mechanism in generating concise proofs,
we present three representative examples from
different mathematical domains in the miniF2F
dataset.

These examples showcase how our hierarchical
attention mechanism improves proof generation
across different mathematical domains. In Table 13,
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Algorithm 2: Hierarchical Structure Pars-
ing
Input: Theorem text
Output: Hierarchical level information
Initialize empty segments list;

/* Initialize context level */
Add context tokens to segments with level
context;

Extract Lean4 code block between context;
current← context;

/* Process text line by line */
for each line in Lean4 code do

/* Determine hierarchical level
*/

if line contains ⊢ then
current← goal;

else if line starts with case then
current← case;

else if line contains Type and : then
current← type;

else if line contains : but not Type or ⊢
then
current← instance;

else
Maintain current for continued
lines;

Record segment with position and level;

return Hierarchical level information;

our model directly combines the function defini-
tion with the given value, eliminating the need for
intermediate expansion. Table 14 demonstrates
improved pattern recognition, where our model
directly applies the appropriate modular multipli-
cation rule instead of decomposing the operation
into addition. Table 15 shows enhanced tactic un-
derstanding, combining function expansion with
field simplification in a single step. The consistent
reduction in proof steps across these diverse exam-
ples demonstrates how our hierarchical attention
mechanism enables better mathematical reasoning.

Lean4 Statement

theorem mathd_algebra_148 (c : Real) (f : Real -> Real)

(h0 : ∀ x, f x = c * x^3 - 9 * x + 3)

(h1 : f 2 = 9) : c = 3

Baseline Proof

rw [h0] at h1 -- Substitute f(2) with its definition

linarith -- Solve the resulting equation c * 8 - 18 + 3 = 9

Our Proof

linarith only [h0 2, h1] -- Directly solve using h0 applied to 2 and h1

Table 13: Case Study 1: Basic Algebra Problem

Lean4 Statement

theorem mathd_numbertheory_185 (n : Nat)

(h0 : n % 5 = 3) : 2 * n % 5 = 1

Baseline Proof

rw [two_mul] -- Convert 2 * n to n + n

rw [Nat.add_mod, h0] -- Apply modular addition: (3 + 3) % 5 = 1

Our Proof

rw [Nat.mul_mod, h0] -- Apply modular multiplication: 2 * 3 % 5 = 1

Table 14: Case Study 2: Number Theory Problem

Lean4 Statement

theorem amc12a_2016_p3 (f : Real -> Real -> Real)

(h0 : ∀ x, ∀ (y) (_ : y != 0),

f x y = x - y * Int.floor (x / y)) :

f (3/8) (-(2/5)) = -(1/40)

Baseline Proof

simp [h0] -- Expand function definition

field_simp [two_ne_zero] -- Simplify rational expressions

norm_cast -- Convert between types

Our Proof

field_simp [h0] -- Combine function expansion and field simplification

norm_cast -- Convert between types

Table 15: Case Study 3: Advanced Algebra Problem
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