
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17370–17390
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

From Sub-Ability Diagnosis to Human-Aligned Generation: Bridging the
Gap for Text Length Control via MARKERGEN

Peiwen Yuan1*, Chuyi Tan1*, Shaoxiong Feng2, Yiwei Li1, Xinglin Wang1

Yueqi Zhang1, Jiayi Shi1, Boyuan Pan2, Yao Hu2, Kan Li1†

1School of Computer Science and Technology, Beijing Institute of Technology
2Xiaohongshu Inc

{peiwenyuan,tanchuyi,liyiwei,wangxinglin,zhangyq,shijiayi,likan}@bit.edu.cn
{shaoxiongfeng2023,whd.thu}@gmail.com {panboyuan,xiahou}@xiaohongshu.com

Abstract

Despite the rapid progress of large language
models (LLMs), their length-controllable text
generation (LCTG) ability remains below ex-
pectations, posing a major limitation for prac-
tical applications. Existing methods mainly fo-
cus on end-to-end training to reinforce adher-
ence to length constraints. However, the lack
of decomposition and targeted enhancement of
LCTG sub-abilities restricts further progress.
To bridge this gap, we conduct a bottom-
up decomposition of LCTG sub-abilities with
human patterns as reference and perform a
detailed error analysis. On this basis, we
propose MARKERGEN, a simple-yet-effective
plug-and-play approach that: (1) mitigates
LLM fundamental deficiencies via external
tool integration; (2) conducts explicit length
modeling with dynamically inserted markers;
(3) employs a three-stage generation scheme
to better align length constraints while main-
taining content quality. Comprehensive exper-
iments demonstrate that MARKERGEN signifi-
cantly improves LCTG across various settings,
exhibiting outstanding effectiveness and gener-
alizability.1.

1 Introduction

As a fundamental attribute of text generation, en-
suring controllability over text length is of great
importance (Liang et al., 2024). Different text
types (e.g., summary, story), user needs (e.g.,
preference for detailed or concise writing), and
external requirements (e.g., social media charac-
ter limits) shape varied length constraints, which
are widely present in real-world scenarios (Zhang
et al., 2023a). With the rapid development of
LLMs, their expanding range of applications has
made length-controllable text generation (LCTG)

*Equal contribution.
†Corresponding author.
1Our code have been released on https://github.com/

chuyi369/MarkerGen.

even more crucial in current era (Foster et al.,
2024; Gu et al., 2024b).

However, the ongoing enhancements in LLM
capabilities have yet to deliver the expected perfor-
mance in LCTG while ensuring semantic integrity
(Foster et al., 2024; Wang et al., 2024; Song et al.,
2024). Yuan et al. (2024) reports that even ad-
vanced LLMs (e.g., GPT-4 Turbo (OpenAI, 2023))
violate the given length constraints almost 50% of
the time. To address this, training-based methods
(Park et al., 2024; Yuan et al., 2024; Jie et al., 2023;
Li et al., 2024b) have been studied to reinforce
LLMs’ adherence to length constraints, yet they
face two key challenges: (1) Limited generaliza-
tion: Since text types are diverse and length con-
straints vary widely (e.g., ranging from an exact
500 words to coarse intervals like 500-600 words
or below 500 words), training-based methods of-
ten fail to generalize effectively across different
settings, as demonstrated in Appendix E.1. (2) In-
ferior controllability: These methods strengthen
LCTG by enforcing implicit length modeling dur-
ing generation in a top-down manner via training,
lacking the decomposition and targeted enhance-
ment of LCTG sub-capabilities, thereby limiting
their progress (Retkowski and Waibel, 2024).

To fill this gap, we take humans as a refer-
ence and conduct a bottom-up decomposition of
sub-capabilities for LCTG. When writing a 500-
word story, humans typically begin by planning
the content and word allocation for each section.
During writing, they continuously track the word
count and compose the text in alignment with the
plan. This process progressively tests four key
abilities: (1) Identifying and splitting the words
correctly. (2) Counting the words precisely. (3)
Planning the word counts of each part to meet the
length constraints. (4) Aligning the generated text
with length constraints while ensuring semantic in-
tegrity.

On this basis, we conduct a decoupled error

17370

https://github.com/chuyi369/MarkerGen
https://github.com/chuyi369/MarkerGen

 A question with precise length constraint.
Please summarize the following text into a summary, ensuring the summary length matches {target_length} words.

For part1:{X} words
For part2:{Y} words
For part3:{Z} words

Plan

GeneratePlanning error

Based on the plan: The
[1word] quick

[2 words] brown
[3 words]

Length
Modeling

Semantic
Modeling

LCTG error

Identifying counting

Identify what
constitutes
a length unit

Identifying error Counting error Aligning error

Accurately
count the

length units

Semantically
constrained

aligning
target length

0. 0%44. 5% 48. 1 % 7. 48%

...
... Relative Attribution

Absolute Attribution

Figure 1: Sub-ability decomposition of LCTG and corresponding error analysis in LLMs.

analysis of LCTG. The experimental results in-
dicate that counting error > identifying error >
aligning error ≫ planning error. This suggests
that deficiencies in fundamental capabilities are
the primary cause of LCTGs inferior performance.
Meanwhile, it further explains why training-based
approaches struggle to enhance LCTG effectively,
as they are unable to provide fine-grained supervi-
sion signals for these fundamental capabilities.

Building upon this, we propose MARKERGEN,
a simple-yet-effective, plug-and-play method for
achieving high-quality LCTG. Specifically, to ad-
dress LLMs’ weaknesses in identifying and count-
ing, we integrate external tokenizer and counter to
track exact length information. To effectively con-
vey these information to LLMs, we design an de-
caying interval insertion strategy that dynamically
injects length markers during the generation pro-
cess, enabling explicit length modeling while min-
imizing disruptions to semantic modeling. Further-
more, to mitigate alignment issues, we propose
a three-stage decoupled generation paradigm that
decouples semantic constraints from length con-
straints, ensuring that length constraints are better
met without compromising content quality.

We conduct experiments with five LLMs on
five benchmarks to validate the generalizability
of MARKERGEN, covering cross-task (summa-
rization, story generation, QA, heuristic gener-
ation), cross-scale (from 10+ to 1000+ words),
cross-lingual (English and Chinese) and cross-
granularity (precise and rough constraints) set-
tings. Experimental results demonstrate that un-
der precise length constraints, MARKERGEN re-

duces length errors by 12.57% compared to base-
lines (with an average absolute error of 5.57%),
while achieving higher quality scores and incur-
ring only 67.6% of the cost. In range-based length
constraints, MARKERGEN achieves a 99% accep-
tance rate, further validating its effectiveness. Fi-
nally, we probe into the working mechanism of
MARKERGEN through attention analysis: shallow
layers primarily handle length modeling through
markers, whereas deeper layers concentrate more
on semantic modeling.

2 Preliminaries

We model the LCTG process of LLMs by drawing
an analogy to human patterns in this task. Specif-
ically, the model first performs content and length
planning based on task requirements and length
constraints. Under this plan, the semantic space
expands progressively at the word level during
generation, accompanied by an implicit counting
process. Meanwhile, length estimation acts as a
real-time constraint, dynamically regulating fur-
ther extension. Ultimately, the model strives to
align the length constraints while preserving se-
mantic integrity. From this perspective, the over-
all LCTG ability of LLMs can be systematically
decomposed in a bottom-up manner into Identi-
fying, Counting, Planning, and Aligning sub-
capabilities (Figure 1). Below we explore LLMs’
mastery of these abilities through detailed error
analysis on TruthfulQA dataset (Lin et al., 2021).

17371

40

30

20

10

Token Identifying Error

Letter Identifying Error

Word Identifying Error

14.94

24.35

 0.19

Qwen2.5-32B-
Instruct

13.48

19.45

 0.00

Llama3.1-70B-
Instruct

 0.00

12.0813.12

GPT-4o

 0.02

11.59

18.97

GPT-4o mini

(a) Identifying error analyses

0

5

10

15

20

25

30

35

GPT-4o

en
C-word

en
C-letter

en (implicit)
C-letter

0

10

20

30

40

50

60

GPT-4o mini

1 2 4 8 16 32 64
0

20

40

60

80

100

120

140

160

Llama-3.1-70B-Instruct

1 2 4 8 16 32 64
0

10

20

30

40

50

60

Qwen2.5-32B-Instruct

en C(
%

)

n

(b) Counting error analyses

Figure 2: Error analyses of fundamental abilities in LCTG across LLMs.

2.1 Identifying Error
Identifying error refers to the misidentification of
fundamental length units (e.g., words), leading to
discrepancies between the models estimated and
actual text length. To systematically analyze this
error, we instruct the model to recognize the length
units of given text one by one. If we define a word
as the length unit, the model should output like:
“The [1 word] quick [2 words] fox [3 words]
...”. On this basis, we calculate the identifying
error rate eI as follows:

eI =
|N1

pred −Ntrue|
Ntrue

(1)

where N1
pred is the models predicted final count

with 1 as count interval, and Ntrue is the actual
count. We subtract the error rate obtained when
replacing each word with the letter “A” (which
barely assess the identifying ability) from eI to fur-
ther eliminate the influence of other potential fac-
tors. We explore the word and token as length unit
respectively, as shown in Figure 2a.

Finding 1. LLMs exhibit notable eI with both
word and token as unit, showcasing their deficien-
cies in fundamental identifying ability.

Finding 2. Word yields lower eI than token, in-
dicating that LLMs conduct length modeling pri-
marily based on semantic perception rather than
decoding mechanics.

2.2 Counting Error
Counting error refers to the inaccurate enumera-
tion of length units in a given sequence, leading to
deviations from the intended length. We analyze
this error by prompting LLMs to count sequences
with varied interval n. The case of n = 1 cor-
responds to identifying error (see §2.1). A larger
n poses a greater challenge for counting accuracy.

Models eP sP ∆E (↓) ∆S (↑)

GPT-4o 0.06 4.28 -5.31 0.05
GPT-4o mini 0.33 3.90 +2.11 0.03
Llama-3.1-70B-Instruct 0.00 3.90 -0.63 0.04
Qwen2.5-32B-Instruct 0.04 4.22 -8.93 0.02

Table 1: eP and sP denote planning error and plan-
ning quality score of LLMs. ∆E and ∆S quantify the
LCTG error reduction and text quality gain from two-
stage generation over one-stage generation.

To decompose counting error from identifying er-
ror, we calculate enC as follows:

enIC =
|Nn

pred −Ntrue|
Ntrue

(2)

enC = enIC − eI (3)

Since LLMs exhibit negligible identifying error
at the letter level (Figure 2a), error of counting
letter serves as a direct measure of pure counting
ability. We also include a commonly used base-
line where the LLMs conduct implicit counting
(directly output the length of the entire given text).
The results are shown in Figure 2b.

Finding 3. Naive implicit counting can lead to
significant errors.

Finding 4. Explicit counting combined with fine-
grained intervals leads to better length modeling.
At smaller n, the error of explicit counting is sig-
nificantly lower than that of implicit counting.

2.3 Planning Error
Planning error refers to the misallocation of word
counts across different sections, leading to a dis-
crepancy from target length. For given query
and precise length constraint Ntarget, we prompt
LLMs to explicitly plan both content and length

17372

Figure 3: Absolute contribution of LCTG sub-capability deficiency on overall LCTG error across LLMs.

for each part of the response. We assess the qual-
ity 2 of the plan sP, and calculate the planning error
rate eP as:

eP =
|Nplan −Ntarget|

Ntarget
(4)

where Nplan denotes the total word count allocated
by the model. Meanwhile, we calculate the reduc-
tion in final length error (∆E) and the improve-
ment in content quality (∆S) achieved by plan-
ning followed by generation compared to direct
generation. The results are shown in Table 1.

Finding 5. LLMs exhibit strong planning abil-
ity. The generated plan effectively meets the
length constraints while achieving a quality score
of around 4, demonstrating well-structured con-
tent allocation.

Finding 6. Planning before generation brings
better results. Compared to direct generation, ex-
ecuting planning and generating sequentially for
decomposition reduces length deviations while en-
hancing semantic quality.

2.4 Aligning Error
Aligning error refers to the discrepancy between
the models perceived length and the target length,
arising from the challenge of maintaining seman-
tic integrity while adhering to length constraints.
We calculate aligning error as follows:

enA =
|Nn

pred −Ntarget|
Ntarget

(5)

where Nn
pred represents the models perceived

length with counting interval n, i.e., the length the
model assumes it has generated. We calculate and
show the enA in Figure 4.

2We use Qwen-Plus (Yang et al., 2024) as the judge with
a scoring range of [1, 5]. See corresponding prompts in Ap-
pendix B.3

Finding 7. Smaller counting intervals introduce
greater aligning error. By closely analyzing cases,
we find that frequent explicit counting interferes
with semantic modeling, causing early termina-
tion of generation and poor alignment. In contrast,
larger length intervals approximate implicit count-
ing, preserving a more natural generation process.

1 2 4 8 16 32 64
n

0

10

20

30

40

50

60

en A
(%

)

GPT-4o
GPT-4o mini
Llama-3.1-70B-Instruct
Qwen2.5-32B-Instruct

Figure 4: Aligning Error across varied length intervals.

2.5 LCTG Error

LCTG error refers to the discrepancy between
the actual length of generated text and the target
length:

E =
|Ntrue −Ntarget|

Ntarget
(6)

As established above, this error is systematically
composed of four components: Identifying Error
(§2.1), Counting Error (§2.2), Planning Error
(§2.3), and Aligning Error (§2.4). To investigate
the key factors influencing LLMs’ LCTG error, we
calculate their absolute contributions ėni under dif-
ferent length interval n as follows:

ėni =
eni

eI + enC + eP + enA
× En, i ∈ [I,C,P,A]

(7)
The results are shown in Figure 3. Further details
can be found in B.

Finding 8. LCTG error is primarily attributed to
fundamental deficiencies in length modeling, fol-

17373

lowing the order of Counting Error > Identify-
ing Error > Aligning Error ≫ Planning Error.
Thus, as counting interval increases, the accumu-
lation of counting errors leads to a corresponding
rise in LCTG error.

3 Methodology

Based on the analyses and findings above, we pro-
pose MARKERGEN, a simple-yet-effective plug-
and-play method to help LLMs attain better LCTG
performance, as shown in Figure 5. This method
consists of two key modules: (1) Auxiliary
Marker Insertion Decoding mechanism, which
explicitly enhances length modeling during gen-
eration; (2) Three-Stage Decoupled Generation
scheme, which decouples length constraints from
semantic content generation to further improve
LCTG performance.

3.1 Auxiliary Marker Insertion Decoding
External Tool Invocation. Our analysis in §2 re-
veals that LLMs exhibit significant identifying and
counting errors, which directly contribute to inac-
curacies in length modeling. To mitigate these fun-
damental deficiencies, we introduce external tok-
enizer and counter for unit recognition and count-
ing, respectively. As Finding 1 indicates that
LLMs perceive words better than tokens, we select
words as the length unit.

Length Information Injection. With precise
length information, we consider feeding it into the
model for length modeling. Since Finding 3 indi-
cates that LLMs’ inherent implicit length model-
ing leads to significant errors and is inconvenient
for incorporating external length information, we
actively insert precise length markers during gen-
eration to enable explicit length modeling:

Len(x) = Counter(Tokenizer(x))

xt+1 =

{
Marker(Len(x≤t)), if S(Len(x≤t), N)

Sampling(P (xt+1|x≤t)), else
(8)

where P (xt+1|x≤t) is the LLM’s probability dis-
tribution for next token, Marker defines the marker
format (e.g., [20 words], we discuss the effects of
varied marker formats in Appendix C.1), S is the
strategy that determines whether to insert a marker
based on current length Len(x) and target length
N . By treating the inserted markers as anchors,
LLMs can continuously adjust the expected length
of content to be generated during the generation
process, thereby reducing the final LCTG error.

Decaying Interval Marker Insertion Strategy.
The most naive insertion strategy involves plac-
ing markers at uniform intervals, which we de-
note as Suni. However, according to Findings
4 and 7, a smaller insertion interval n improves
length modeling but compromises semantic mod-
eling, whereas a larger n exhibits the opposite ef-
fect. Considering this, we propose a strategy Sdec,
where n decays exponentially during the genera-
tion process:

Sdec(x,N) =

{
True, if x ∈ {N − int(2−i ×N)}i∈N
False, else

(9)

Taking N = 200 as an example, the maker will be
inserted behind the 100th, 150th, 175th, ... words.
At the early stage of generation, the model primar-
ily focuses on semantic modeling. As the genera-
tion progresses, it increasingly emphasizes length
control, ultimately leading to a smaller LCTG er-
ror. Consequently, Sdec effectively balances se-
mantic modeling and length modeling.

3.2 Three-Stage Decoupled Generation

Finding 7 validates that aligning error primarily
arises from the inferior semantic modeling, which
causes premature termination of the generation
process. While the planning before generation
scheme alleviates interference in semantic model-
ing by decoupling the planning process (Finding
6), it still entangles length modeling with semantic
modeling. To mitigate this, we introduce a three-
stage decoupled generation scheme to further re-
duce the alignment error and improve the text qual-
ity, as illustrated in Figure 5.

Stage One: Planning. The model generates a
reasonable plan based on the input query and
length constraints, including the content of each
section and the word allocation.

Stage Two: Ensuring Semantic Integrity. The
model focuses on semantic modeling to generate
a high-quality response per the plan without being
strictly required to adhere to length constraints.

Stage Three: Aligning Length Constraints.
Responses generated in stage two are usually of
high quality but may not meet length restrictions.
To refine them, we use these non-compliant re-
sponses as input and apply the Auxiliary Marker
Insertion Decoding mechanism for rewriting. The
rewriting requirements include: (1) Retaining
the high-quality semantic modeling of the input

17374

Length-controllable text generation
 Task types:
summary,story,QA...
 Length constraints:
“concise” or “detailed” “X–Y words” “precise Z words”

Semantic
requirements

Length
constraints

stage
1&2 text

Prompt
Write a high-quality story based on the following
Story Fragment, aiming for approximately
{target_length} words.

Planning:
For Part 1: X words.Introduce...
For Part 2: Y words.Develop...
For Part 3 :Z words.Provide closure ...

Ensuring Semantic Integrity:
The village elder stood before us...
We tried everything to undo the pacts...
our choice hangs precariously in balance.

Rewrite to Align Length Constraints

Prompt
The high-quality story contains{actual_length} words.It exceeds/falls short of the
target length by A words.
In this second stage, your task is to rewrite the high-quality story to meet the
specified length constraints.

Planning Task:
For Part 1: Remove "unexpected" from to shorten slightly...
For Part 2: Combine descriptions of ...
For Part 3 :Condense the message to fit within limits...

Story Generation Task:
The village stood before us ...[1 00 words] ...
We [1 50 words] tried everything to...[1 75 words] ...
In the end, they lived happily [1 97 words] ever after [1 99 words] ! [200 words]

length
constraints

Identifying

Couting

 length marker
insertion interval...

Acceptance Length Discriminator

A high-quaility story that meets the
length requirements well.

token-level

Interval density

100 50 25 12 6 3 1

word-level

✖️ max T times

‘tr’ ‘ied’...‘Ġp’ ‘acts’

...100...150...175......194...197...

‘tried’...‘pacts’

sparse dense

Semantic integrity fine-grained
length control

Plan:\n\n1. Remove \"unexpected\"
from the opening phrase (\"photo-
bombed\") to shorten slightly but
keep essence intact.\n2. Combine
descriptions of Apo Island being a
feeding area and noting intimacy
rarity.\n3. Condense the message
around Earth Day and human-animal
interaction to fit within limits.\n

stage 1

 stage 2

 stage 3

Figure 5: Overview of MARKERGEN.

Benchmarks Ability Tested Length (words)

CNN/DailyMail Summarization 18-165
(Nallapati et al., 2016)
HANNA Story Generation 139-995
(Chhun et al., 2022)
TruthfulQA Question 101-294
(Lin et al., 2021) Answering
HelloBench Heuristic LCTG& 489-1450
(Que et al., 2024) Open-ended QA
GAOKAO History 71-901
(Zhang et al., 2023b) Open-ended QA

Table 2: Benchmarks Introduction.

content. (2) Strictly adhering to the specified
length constraints. In terms of workflow, the
model is required to: (1) Firstly analyze the previ-
ous stage’s response for potential improvements;
(2) If its output does not meet the length con-
straints, it will be regenerated up to T times or
until the constraints are met.

See Appendix F for prompts of each stage.

4 Experiments

We conduct comprehensive experiments to exam-
ine MARKERGEN. Specifically, we validate its ef-
fectiveness in §4.2, analyze its generalizability in
§4.3, explore the impact of its key components in
§4.4, and provide further insights into its mecha-
nism in §4.5. Hyperparameter choices and addi-
tional analyses are provided in Appendix E.

4.1 Experimental Settings

Benchmarks We choose five benchmarks for ex-
periments, where HelloBench includes two sub-
sets, as shown in Table 2. See details in Appendix
D.

Baselines

• Ruler (Li et al., 2024b): A training-based3

method that defines length control templates
to regulate generation at the range level.

• Implicit (Bai et al., 2024): Conduct a plan-
and-generate process without explicit count-
ing. To ensure a fair comparison, the
model generates multiple responses until to-
ken count outperforms MARKERGEN and the
candidate with the smallest LCTG error is se-
lected.

Details We conduct extensive experiments using
Qwen2.5 series (Qwen2.5-7B/14B/32B-Instruct)
(Yang et al., 2024) and the Llama3.1 series (Llama-
3.1-8B/70B-Instruct) (Dubey et al., 2024), with
sampling temperature as 0.5. We experiment un-
der coarse-grained length constraints on the Open-
ended QA subset of HelloBench and assess the
LCTG error rate under precise length constraints
on other benchmarks, following Eq. (6). To eval-
uate the text quality, we use GPT-4o mini (Hurst

3Ruler is the only training-based baseline for which we
can find that releases the code and training set.

17375

Benchmarks Methods

Qwen2.5 Series Llama3.1 Series

Costs7B 14B 32B 8B 70B

E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

CNN/DailyMail
Implicit 30.31 3.04 12.54 3.15 11.05 3.21 15.12 3.04 11.07 3.09 1.30× δ

MARKERGEN 9.92 3.07 6.06 3.16 4.82 3.25 3.36 3.18 3.18 3.36 δ

HANNA
Implicit 28.55 3.47 14.86 3.55 12.03 3.67 16.68 3.54 10.44 3.61 2.37× δ

MARKERGEN 8.49 3.50 5.22 3.55 3.57 3.72 2.98 3.60 2.58 3.63 δ

TruthfulQA
Implicit 16.7 4.29 17.9 4.44 8.7 4.45 7.21 4.22 7.64 4.46 1.75× δ

MARKERGEN 9.08 4.33 7.59 4.43 4.48 4.54 3.82 4.25 2.80 4.48 δ

Heuristic Generation
Implicit 35.69 3.42 21.34 3.80 12.02 3.80 21.91 3.72 27.89 3.74 1.06× δ

MARKERGEN 8.51 4.13 6.35 4.00 5.34 4.14 6.03 4.03 5.03 3.98 δ

Table 3: Overall Performance of MARKERGEN on Various Benchmarks. E denotes LCTG error rate (%) and S
denotes the text quality ([1, 5]) given by LLM judge. δ denotes the token cost of MARKERGEN under each setting.

Model Methods

Target Length Scales

Costs100 200 300 400

E (↓) S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

Qwen2.5-7B-Instruct Implicit 30.97 3.45 22.91 3.53 26.12 3.28 29.63 3.08 1.26× δ
MARKERGEN 8.26 3.92 9.06 4.00 7.67 3.75 5.10 3.55 δ

Model Methods

Length Constraint Types

Costs<100 100-150 160-200 >500

Er (↓) S (↑) Er (↓) S (↑) Er (↓) S (↑) Er (↓) S (↑)

Qwen2.5-7B-Instruct Implicit 7.50 3.47 63.00 4.03 66.00 4.06 29.50 2.65 1.07× δ
MARKERGEN 0.00 3.94 0.50 4.50 3.00 4.53 0.00 3.13 δ

Table 4: Experiments with varied length scales and constraint types on Open-ended QA subset of HelloBench.

et al., 2024) as the judge, with a calibration al-
gorithm to mitigate the length bias (Zheng et al.,
2023) (See details in Appendix E). For precise con-
straints, we set the length of ground truth response
as desired target length. We run each setting for
three times and report the average results.

4.2 Main Results

As shown in Table 3, the commonly used two-
stage implicit counting baseline results in a sub-
stantial LCTG error rate E of 18.32% on average,
even if the best response is chosen across multi-
ple attempts. This intuitively demonstrates the im-
pact of the inherent limitations of LLM’s LCTG
sub-capability. The training-based baseline Ruler,
as observed in our preliminary experiments (Ap-
pendix E.1), benefits from training on test sets
that matches the training domain, while performs
poorly on our evaluated benchmarks, highlighting
its limited generalizability. In comparison, under
strict length constraints, MARKERGEN achieves
an absolute reduction of 12.57% in E relative to
the implicit baseline, bringing the final error down

to just 5.57%. In terms of text quality, by de-
coupling length modeling and semantic modeling
during the generation process and employing the
decaying insertion strategy to minimize the dam-
age caused by length constraints to semantic in-
tegrity, MARKERGEN achieves a higher S in av-
erage. Meanwhile, this performance is achieved
with only 64% of the tokens used by the baseline.

4.3 Generalizability

Across LLMs and Tasks. Table 3 demonstrates
the strong generalizability of MARKERGEN to
LLMs and generation tasks.

Across Length Scale. Table 3 also shows
MARKERGENs strong performance across bench-
marks with varying length scale (18-1450). To fur-
ther investigate, we analyze progressively increas-
ing the target length from 100 to 400. The results
in Table 4 show a declining trend in MARKER-
GENs error rate, which can be attributed to the aux-
iliary marker insertion decoding mechanism that
prevents error accumulation from implicit model-
ing.

17376

[10 words]

[20 words]

[30 words]

[35 words]

Figure 6: Attention matrices of the first (left) and last (right) layers.

Variants
Marker Insertion Interval n

1 4 16 32 64 Decaying

E (↓) S (↑) E (↓) S (↑) E S (↑) E (↓) S (↑) E (↓) S (↑) E (↓) S (↑)

w/o Tool 15.53 4.28 32.50 4.29 34.64 4.46 32.50 4.48 20.44 4.58 – –
Two Stage 3.10 4.03 1.49 4.03 4.04 4.20 3.26 4.23 3.93 4.32 2.66 4.28
Three Stage 4.84 4.28 4.20 4.29 4.89 4.45 5.45 4.48 5.18 4.57 4.48 4.54

Table 5: Ablation studies on key components.

Across Constraint Types. In addition to exact
length constraints, users may impose range-based
limits. We evaluate Er

4, the proportion of re-
sponses violating these constraints. Table 4 shows
that MARKERGEN maintains an Er below 3% in
all cases, significantly lower than the baseline.

Across Lingual. We further validate the effec-
tiveness of MARKERGEN in Chinese setting on
GAOKAO benchmark, as shown in Table 8.

4.4 Ablation Studies

In this section, we validate the effectiveness of
each module in MARKERGEN with Qwen2.5-32B-
Instruct on TruthfulQA, as shown in Table 5.

Tool Invocation. When the model is required to
insert markers independently without relying on
an external tokenizer and counter, its fundamen-
tal limitations lead to a significant increase in the
error rate, exceeding 15%.

Decaying Interval Marker Insertion. When
using a fixed marker insertion interval n, since
length control is inversely proportional to n, while
semantic modeling is directly proportional to n
(which induces alignment errors), we observe un-
stable LCTG error rate. In contrast, by adopting

4Er = 1− |{Ntrue|Nmin
target≤Ntrue≤Nmax

target}|
Ntotal

.

a sparse-to-dense insertion approach, the Decay-
ing Interval Marker Insertion strategy ensures ex-
plicit length modeling while maximizing semantic
integrity, leading to lower E and superior S.

Three-Stage Decoupled Generation. The intro-
duction of explicit length markers in the two-stage
scheme leads to a substantial reduction in LCTG
error relative to the implicit baseline (8.7 → 2.66).
However, this scheme places greater emphasis on
length modeling, which consequently diminishes
text quality (4.45 → 4.28). In comparison, the
three-stage scheme achieves a better balance by
decoupling semantic and length modeling, thereby
improving both length control and text quality.

4.5 Working Mechanism of MARKERGEN

To better understand how LLMs leverage the in-
serted length markers in MARKERGEN, we visual-
ize the attention matrices of the first and last layers
of Llama-3.1-8b-Instruct (Figure 6). In the shal-
low layers, the attention distribution reveals a clear
focus on the length information represented by the
length markers (in the red box). As the model pro-
gresses to the deeper layers, attention shifts from
the length information to the adjacent semantic
content (in the orange box). This pattern demon-
strates that at shallow layers, the model uses mark-
ers to establish length modeling and encode pre-

17377

cise length information. At deeper layers, it relies
on this length information for semantic modeling,
producing tokens that align with the length con-
straints while maintaining semantic integrity.

Conclusions

To improve the performance of LLMs in length-
controllable text generation, we conduct a bottom-
up error analysis of relevant sub-abilities. The re-
sults reveal that deficiencies in identifying, count-
ing, and aligning are key limitations. To fill this
gap, we propose MARKERGEN, which leverages
external tools to compensate for fundamental de-
ficiencies. Additionally, it introduces Decaying
Interval Marker Insertion Strategy to facilitate ex-
plicit length modeling and employs Three-Stage
Decoupled Generation mechanism to balance se-
mantic coherence and length control. Comprehen-
sive experiments demonstrate the strong general-
izability and effectiveness of MARKERGEN in en-
hancing length control and preserving semantic in-
tegrity.

Limitations

In this work, we conduct a bottom-up sub-
capability analysis in the LCTG ability and pro-
pose the MARKERGEN method, achieving strong
LCTG performance. One major limitation of
MARKERGEN is that it is currently only appli-
cable to open-source models and cannot yet be
used with closed-source models. To address this,
we will release our code, allowing closed-source
model providers interested in adapting MARKER-
GEN to benefit from our method in enhancing
LCTG performance.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for
our data collection. We confirm that the datasets
we used did not contain any harmful content and
was consistent with their intended use (research).
We have cited the datasets and relevant works used
in this study.

Acknowledgments

This work is supported by Beijing Natural Science
Foundation (No.4222037, L181010).

References
Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi

Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi
Li. 2024. Longwriter: Unleashing 10,000+ word
generation from long context llms. arXiv preprint
arXiv:2408.07055.

Bradley Butcher, Michael O’Keefe, and James Titch-
ener. 2024. Precise length control in large language
models. arXiv preprint arXiv:2412.11937.

Yingshan Chang and Yonatan Bisk. 2024. Language
models need inductive biases to count inductively.
arXiv preprint arXiv:2405.20131.

Cyril Chhun, Pierre Colombo, Chloé Clavel, and
Fabian M Suchanek. 2022. Of human criteria and
automatic metrics: A benchmark of the evaluation of
story generation. arXiv preprint arXiv:2208.11646.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalu-
ators. arXiv preprint arXiv:2404.04475.

Kiannah Foster, Andrew Johansson, Elizabeth
Williams, Daniel Petrovic, and Nicholas Kovalenko.
2024. A token-agnostic approach to controlling
generated text length in large language models.

Google. 2024. Gemini 2.0 Flash. https://deepmind.
google/technologies/gemini/flash/.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang
Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al.
2024a. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Yuxuan Gu, Wenjie Wang, Xiaocheng Feng, Weihong
Zhong, Kun Zhu, Lei Huang, Tat-Seng Chua, and
Bing Qin. 2024b. Length controlled generation for
black-box llms. arXiv preprint arXiv:2412.14656.

Chenyang Huang, Hao Zhou, Cameron Jen, Kangjie
Zheng, Osmar R ZaÃ ane, and Lili Mou. 2025. A
decoding algorithm for length-control summariza-
tion based on directed acyclic transformers. arXiv
preprint arXiv:2502.04535.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang,
and Qun Liu. 2023. Prompt-based length controlled
generation with reinforcement learning. CoRR,
abs/2308.12030.

17378

https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://doi.org/10.48550/ARXIV.2308.12030
https://doi.org/10.48550/ARXIV.2308.12030

Juseon-Do Juseon-Do, Hidetaka Kamigaito, Manabu
Okumura, and Jingun Kwon. 2024. Instructcmp:
Length control in sentence compression through
instruction-based large language models. In Find-
ings of the Association for Computational Linguis-
tics ACL 2024, pages 8980–8996.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2024. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimoham-
mad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao
Wu, et al. 2024a. From generation to judgment: Op-
portunities and challenges of llm-as-a-judge. arXiv
preprint arXiv:2411.16594.

Jiaming Li, Lei Zhang, Yunshui Li, Ziqiang Liu, Yuelin
Bai, Run Luo, Longze Chen, and Min Yang. 2024b.
Ruler: A model-agnostic method to control gener-
ated length for large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, Miami, Florida, USA, Novem-
ber 12-16, 2024, pages 3042–3059. Association for
Computational Linguistics.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao
Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, and Zhiyu Li. 2024. Con-
trollable text generation for large language models:
A survey. CoRR, abs/2408.12599.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. CoRR, abs/2109.07958.

Sangjun Moon, Jingun Kwon, Hidetaka Kamigaito,
Manabu Okumura, et al. Length representations in
large language models.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou. 2016.
Sequence-to-sequence rnns for text summarization.
CoRR, abs/1602.06023.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Ryan Park, Rafael Rafailov, Stefano Ermon, and
Chelsea Finn. 2024. Disentangling length from qual-
ity in direct preference optimization. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 4998–5017. Association for
Computational Linguistics.

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou,
Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
Zekun Moore Wang, Jian Yang, Ge Zhang, et al.
2024. Hellobench: Evaluating long text genera-
tion capabilities of large language models. arXiv
preprint arXiv:2409.16191.

Fabian Retkowski and Alexander Waibel. 2024. Zero-
shot strategies for length-controllable summariza-
tion. arXiv preprint arXiv:2501.00233.

Seoha Song, Junhyun Lee, and Hyeonmok Ko.
2024. Hansel: Output length controlling frame-
work for large language models. arXiv preprint
arXiv:2412.14033.

Zekun Wang, Feiyu Duan, Yibo Zhang, Wangchunshu
Zhou, Ke Xu, Wenhao Huang, and Jie Fu. 2024. Po-
sitionid: Llms can control lengths, copy and paste
with explicit positional awareness. arXiv preprint
arXiv:2410.07035.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin
Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. 2025. Llm-powered
benchmark factory: Reliable, generic, and efficient.
arXiv preprint arXiv:2502.01683.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jason Weston, and Jing Xu.
2024. Following length constraints in instructions.
CoRR, abs/2406.17744.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2023a. A survey of control-
lable text generation using transformer-based pre-
trained language models. ACM Computing Surveys,
56(3):1–37.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2023b. Evaluating the
performance of large language models on gaokao
benchmark. arXiv preprint arXiv:2305.12474.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

17379

https://aclanthology.org/2024.findings-emnlp.172
https://aclanthology.org/2024.findings-emnlp.172
https://doi.org/10.48550/ARXIV.2408.12599
https://doi.org/10.48550/ARXIV.2408.12599
https://doi.org/10.48550/ARXIV.2408.12599
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/1602.06023
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.297
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.297
https://doi.org/10.48550/ARXIV.2406.17744
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

A Related Work

LCTG Methods Text length is a fundamental
aspect of natural language that carries semantic
information, making LCTG a task of balancing
length and semantic constraints. Achieving pre-
cise length control remains a challenge for LLMs
due to limitations in their architecture, such as po-
sition encoding (Butcher et al., 2024; Kazemnejad
et al., 2024; Chang and Bisk, 2024) and decoding
mechanisms(Huang et al., 2025). Consequently,
existing methods focus on injecting length infor-
mation to help LLMs model length accurately,
which can be categorized into training-based and
inference-based approaches.

Training-based methods inject varying levels
of length signals during fine-tuning or reinforce-
ment learning. For instance, Jie et al. (2023);
Li et al. (2024b) use prompt templates to teach
LLMs the mapping between length and textual
content, while Song et al. (2024); Wang et al.
(2024) design fine-grained datasets to guide cor-
rect length modeling. Other methods, like Yuan
et al. (2024); Jie et al. (2023), utilize reward func-
tions to align length preferences during training.
While effective in certain scenarios, these meth-
ods suffer from limited generalization across di-
verse LCTG tasks, including varying length con-
straints and instructions.Inference-based methods
adjust inputs multiple times during generation to
inject, such as through prompt-based Automated
Revisions and Sample Filtering (Retkowski and
Waibel, 2024; Juseon-Do et al., 2024), or length-
controlled importance sampling during decoding
(Gu et al., 2024b). Although these approaches can
better generalize length alignment, they still strug-
gle with achieving precise control.

While both approaches enhance LCTG, they of-
ten apply a top-down strategy that lacks deep un-
derstanding and targeted enhancement of LCTG
sub-capabilities. This limits progress in meeting
length constraints accurately. Furthermore, many
methods neglect semantic constraints, and inject-
ing length information may degrade text quality.
Therefore, we propose MARKERGEN to bridge
this gap for precise length control and preserving
semantic integrity.

B Detailed Sub-ability Error analyses in
LCTG

B.1 Identifying Error
Identifying error refers to the misidentification of
fundamental length units. To systematically ana-
lyze this error, we design a counting experiment
in which the model is prompted to sequentially rec-
ognize and accumulate length units, then compare
its predicted count with the ground truth. Exper-
imental results confirm that in the one-by-one ac-
cumulation setting, counting errors do not occur,
meaning that the final length error entirely arises
from identifying error (as shown in Figure 7).

B.2 Counting Error
Counting error refers to the inaccurate enumera-
tion of units in a given sequence, leading to de-
viations from the intended length. Therefore, in
the setting where n > 1 in the counting experi-
ment, the final counting result error is caused by
both identifying error and counting error. In this
case, counting error can be decoupled by resolv-
ing identifying errors in the accumulation process,
where errors result from the accumulation step.We
also conducted the same counting experiment as in
Section 2.2 on the CNN/DailyMail summarization
dataset, as shown in Figures 8.

From the figure, we can further validate the
same conclusions as in Findings 1, 2, 3, and 4 in
Section 2, revealing that the length errors in the
generated results of the LCTG task stem from sig-
nificant errors in the LLM’s perception and model-
ing of length.

B.3 Planning Error
Planning error refers to the misallocation of word
counts across different sections, leading to a dis-
crepancy from target length.The planning ability
of LLMs encompasses not only length planning
but also semantic planning. To effectively assess
the quality of LLMs semantic planning, we use
Qwen-Plus (Yang et al., 2024) as the judge, with
a scoring range of [1, 5]. The specific evaluation
prompt is as follows:

You are tasked with evaluating the qual-
ity of a generated answer plan for a
TruthfulQA question. The evaluation
should focus on the truthfulness, logical
coherence, and adherence to the given
prompt and instructions. Rate the an-
swer plan on a 5-point scale as follows:

17380

Word
Dictionary

Word Definition
A word is defined as any standalone word, number, or symbol,
including punctuation and special symbols.

The [1 words] quick [2 words] brown [3 words] fox [4 words] jumps [5 words] over [6 words]
3 [7 words] lazy [8 words] dogs [9 words] , [10 words] running [11 words] swiftly [12 words]
across [13 words] the [14 words] park [15 words] .[16 words] ###16

couting......
dogs is a word

...
8+1 = 9

...

identify accumulate

The [1 words] quick [2 words] brown [3 words] fox [4 words] jumps [5 words] over [6 words]
3 [7 words] lazy [8 words] dogs,[9 words] running [10 words] swiftly [11 words] across [12
words] the [13 words] park. [14 words] ###14

Figure 7: Schematic diagram of counting experiment under the condition of n = 1

• 5: Outstanding - The plan is
highly truthful, logically coherent,
and perfectly adheres to the prompt
and instructions.

• 4: Very Good - The plan is mostly
truthful and coherent, with only mi-
nor issues in details or adherence to
instructions.

• 3: Good - The plan is acceptable
but has noticeable shortcomings in
truthfulness or coherence.

• 2: Poor - The plan has significant
issues in truthfulness or logical co-
herence and does not adequately
follow the instructions.

• 1: Unacceptable - The plan is
largely untruthful, incoherent, or
fails to follow the prompt instruc-
tions entirely.

Please provide the overall score in the
following format: ###score X

Question:

+ prompt

Generated Answer Plan:

+ generated_plan

Evaluate the answer plan based on the
above criteria.

Since the LCTG task requires meeting both
length and semantic constraints, utilizing the

LLM’s superior planning ability for explicit plan-
ning before generation, as opposed to direct gen-
eration, helps to clearly define the modeling space
for length and the semantic extension range. This
not only contributes to improved text generation
quality but also reduces length errors.

B.4 Aligning Error

Aligning error refers to the discrepancy between
the models perceived length and the target length,
arising from the challenge of maintaining se-
mantic integrity while adhering to length con-
straints.As shown in Figure 4, aside from Finding
7, we observe significant differences in aligning
error across models. Qwen2.5-32B-Instruct and
GPT-4o mini exhibit larger alignment errors un-
der fine-grained length modeling. As discussed
in Section 2, length estimation acts as a real-time
constraint, dynamically regulating further exten-
sion. Ultimately, the model strives to align the
length constraints while preserving semantic in-
tegrity. High-frequency length perception updates
pose greater challenges for the natural expansion
of the semantic space, which explains why some
models with weaker robustness in semantic expan-
sion show significant alignment errors. These er-
rors become a primary source of LCTG inaccura-
cies (as shown in Figure 9). This further empha-
sizes that LCTG is a task of balancing length and
semantic constraints.

17381

 Qwen2.5-72B-Instruct

 Llama3.1-70B-Instruct

 Qwen2.5-32B-Instruct

 Llama3.1-8B-Instruct

 Qwen2.5-72B-Instruct
Qwen2.5-72B-Instruct (Implicit)

 Llama3.1-70B-Instruct
Llama3.1-70B-Instruct (Implicit)

 Qwen2.5-32B-Instruct
Qwen2.5-32B-Instruct (Implicit)

 Llama3.1-8B-Instruct
Llama3.1-8B-Instruct (Implicit)

Figure 8: Error analyses of fundamental abilities in LCTG on CNN/DailyMail.

Figure 9: Absolute contribution of LCTG sub-
capability deficiency of GPT 4o-mini.

B.5 LCTG Error

Based on the above decomposition of sub-abilities
in LCTG and the corresponding error analysis, we
can clearly quantify the contribution of each de-
coupled error to the final LCTG error. As shown
in Figure 1, the quantification results in the right
figure represent the average values of four mod-
els under various n conditions. The conclusion
we can draw is that the primary cause of signif-
icant length errors in current mainstream LLMs
on LCTG tasks is the lack of bottom-up identifi-
cation and counting capabilities required for accu-
rate length modeling.

C Exploration of Interval Marker
Insertion Strategy Variants

C.1 Length Marker Forms

We explored the impact of different forms of
length marker insertion on performance, such as
the number of words generated "[k]", the semantic
marker "[k words]", and the remaining words to be
generated "[Ntarget - k]" (remaining words). As
shown in Table 6, we used Llama-3.1-8B-Instruct

on the CNN/DailyMail dataset to investigate the
effects of various marker forms under multiple
n conditions on generation error and text qual-
ity. The results show that using a semantic length
marker representing the number of words gener-
ated achieved the best performance in both length
error and text quality.

Marker Form E (↓) S (↑)

[k] 18.28 3.10
[k words] 15.74 3.14
[Ntarget − k] 27.92 3.09

Table 6: Comparison of Length Marker Forms and
Their Performance

D Detailed Benchmarks Introduction
The benchmarks used in our experiments are as
follows:

• CNN/DailyMail(Nallapati et al., 2016): A
summarization dataset of news articles, with
500 randomly sampled items. (18-165
words)

• HANNA(Chhun et al., 2022): A long-form
story generation dataset with 200 selected
items. (139-995 words)

• TruthfulQA(Lin et al., 2021): A bench-
mark for factual accuracy in open-domain
QA. (101-294 words)

• HelloBench(Que et al., 2024): A long-text
generation benchmark. We selected subsets
from heuristic text generation (e.g., argumen-
tative and roleplaying writing, covering five
types) and open-ended QA (spanning ten do-
mains). (489-1450 words)

17382

• GAOKAO-Bench(Zhang et al., 2023b): A
benchmark collected from the Chinese col-
lege entrance examination (GAOKAO). We
selected the 2010-2022 History Open-ended
Questions subset. (71-901 words)

E Detailed Experimental Results

E.1 Performance and Generalization Study
of Training-based Methods

To investigate the performance and generaliza-
tion of training-based methods in diverse, real-
world LCTG task scenarios, we selected Ruler, a
training-based method that defines length control
templates to regulate generation at the range level.
This choice is based on the fact that Ruler is the
only training-based baseline for which the code
and training set are publicly available. We fol-
lowed the exact setup provided in the repository
and verified the correctness of our replication by
achieving significant performance improvements
on the given test set, as shown in Table 7.

The test set of Ruler adopts two custom evalu-
ation metrics: Precise Match (PM) and Flexible
Match (FM). PM requires the output length to fall
within a narrow target interval, while FM allows a
broader tolerance range. The metrics are defined
as:

PM =
1

N

N∑

i=1

1
(
lbPTLi

< L(ci) ≤ ubPTLi

)

FM =
1

N

N∑

i=1

1
(
lbFTLi

< L(ci) ≤ ubFTLi

)

where L(ci) is the length of the i-th generated
output, and TLi denotes the corresponding target
length.

Next, we tested the trained model, referred to as
Llama-3.1-8B-Instruct-ruler, across four selected
benchmarks with varying tasks, length scales, and
instructions, under cost-alignment conditions. The
experimental results revealed substantial errors
and a decline in text quality, even when compared
to the implicit method’s results without training
(as shown in Table 3). This finding demonstrates
the limited generalization capability of the method,
highlighting its struggle to cope with the complex-
ity and diversity of real-world LCTG scenarios.

E.2 Length Bias Correction in
LLMs-as-a-Judge

It has been demonstrated that LLMs-as-a-judge ex-
hibit a noticeable length bias (Li et al., 2024a; Gu
et al., 2024a). To evaluate the quality of generated
text objectively and accurately for LCTG tasks, it
is essential to correct for this length bias. We adopt
the length-controlled AlpacaEval (Dubois et al.,
2024) and Yuan et al. (2025).

To derive unbiased judge scores, we use a Mul-
tiple Regression model. Specifically, we set the
judge score as the dependent variable, with the
generator categories as dummy variables, and the
length of the generated text as a covariate. The
model is formulated as follows:

f(i) = β0+βM ·C(Method)+βm·C(Model)+βl·Length+ϵ
(10)

Where f(i) denotes the judge score for the gen-
erated text Gi, C(Method) and C(model) are cate-
gorical variables representing the method and the
model used, respectively, and Length is the actual
length of the generated text. The coefficients βM,
βm, and βl are used to adjust the raw judge score
f(i), effectively removing length bias by setting
it to zero. These adjusted scores, free from length
bias, serve as the metrics for faithfulness and align-
ment.

E.3 Win-rate and LLM-as-Judge Based
Evaluation

To provide a more robust and trustworthy eval-
uation of generation quality, we complement
our main evaluation protocol with a win-rate-
based assessment and multi-LLM judgment anal-
ysis. Specifically, we adopt the pairwise eval-
uation framework from AlpacaEval 2.0 (Dubois
et al., 2024), using GPT-4o-mini as the automatic
judge. The generated outputs from the Implicit
baseline and our proposed MARKERGEN method
are compared against reference model Gemini-
2.0 Flash(Google, 2024) across four benchmarks.
As shown in Table 9, MARKERGEN consistently
achieves higher win rates across most configu-
rations, verifying the effectiveness of the Three-
Stage Decoupled Generation in improving re-
sponse quality.

To further confirm the reliability of using LLMs
as judges, we conducted a human agreement study.
We randomly sampled 200 pairwise comparisons
and observed a strong Spearman’s correlation co-

17383

TLG dataset

benchmark Method Models PM (↑) FM (↑)

TLG dataset before training Llama-3.1-8B-Instruct 5.55 10.20
RULER Llama-3.1-8B-Instruct-ruler 41.75 55.10

Precise Length Constraint Benchmarks

Benchmarks Methods Models E (↓) S (↑)

CNN/DailyMail Ruler Llama-3.1-8B-Instruct-ruler 78.21 3.10
MARKERGEN Llama-3.1-8B-Instruct 3.36 3.18

HANNA Ruler Llama-3.1-8B-Instruct-ruler 68.21 2.87
MARKERGEN Llama-3.1-8B-Instruct 2.98 3.60

TruthfulQA Ruler Llama-3.1-8B-Instruct-ruler 44.93 3.27
MARKERGEN Llama-3.1-8B-Instruct 3.82 4.25

Heuristic Generation Ruler Llama-3.1-8B-Instruct-ruler 66.17 2.94
MARKERGEN Llama-3.1-8B-Instruct 6.03 4.03

Table 7: Evaluation of the training-based method RULER on its own test set and four generalization benchmarks.

Figure 10: Attention Entropy across layers.

Methods Models E (↓) S (↑)

Implicit Qwen2.5-14B-Instruct 27.41 3.47
MARKERGEN Qwen2.5-14B-Instruct 7.71 3.55

Table 8: GAOKAO-History Chinese Dataset Results

efficient of 0.8794 between GPT-4o-mini judg-
ments and human annotations, indicating high con-
sistency.

In addition, we report point-wise quality scores
evaluated by three different LLMs: GPT-4o,
Gemini-2.0-Flash (thinking-exp), and GPT-4o-
mini. Tables 10, 11, 12, and 13 summarize
these results across the CNN/DailyMail, HANNA,
TruthfulQA, and Heuristic Generation bench-
marks, respectively. Each table reports the av-
erage score (Savg), variance (σ2), and model

sizes. MARKERGEN consistently improves av-
erage scores across all model sizes and datasets,
while maintaining comparable or lower variance,
further reinforcing its robustness and generaliz-
ability.

E.4 Enhanced Ablation Study

To provide a more comprehensive validation of our
method, we extend the original component abla-
tion study (Table 5) by evaluating additional com-
binations of stages. This enhanced analysis is mo-
tivated by the need to isolate and quantify the in-
dividual and joint effects of the key stages, as sug-
gested in the review. Table 14 presents results in
terms of error score (E ↓), LLM-evaluated quality
score (S ↑), and cost (relative to baseline, δ).

As shown in Table 14, the removal of any in-

17384

Model Series Size Method CNN/DailyMail HANNA TruthfulQA Heuristic Gen.

Qwen2.5

32B Implicit 15.80% 6.50% 28.25% 1.63%
MARKERGEN 16.43% 23.00% 36.91% 5.69%

14B Implicit 9.40% 7.04% 28.87% 1.63%
MARKERGEN 11.60% 11.00% 24.12% 3.25%

7B Implicit 4.20% 1.51% 23.24% 0.00%
MARKERGEN 14.80% 16.67% 25.62% 4.07%

Llama3.1

70B Implicit 7.40% 2.50% 33.81% 0.00%
MARKERGEN 9.02% 6.03% 30.31% 1.63%

8B Implicit 12.27% 3.02% 19.90% 0.00%
MARKERGEN 10.69% 4.15% 20.52% 0.00%

Table 9: Win rates (%) of Implicit baseline and MARKERGEN compared against Gemini-2.0 Flash using GPT-4o-
mini as judge across four benchmarks. Higher win rates indicate better generation quality.

Model Series Size Method S_4o S_gemini S_4omini S_avg σ2

Qwen2.5

32B Implicit 3.02 3.64 3.21 3.29 0.067
MARKERGEN 3.05 3.67 3.25 3.32 0.066

14B Implicit 2.92 3.55 3.15 3.21 0.099
MARKERGEN 2.93 3.58 3.16 3.22 0.092

7B Implicit 2.68 3.39 3.04 3.04 0.125
MARKERGEN 2.83 3.45 3.07 3.12 0.092

Llama3.1

70B Implicit 2.84 3.55 3.09 3.16 0.109
MARKERGEN 3.08 3.69 3.36 3.38 0.068

8B Implicit 2.81 3.37 3.04 3.07 0.067
MARKERGEN 2.78 3.38 3.18 3.11 0.074

Table 10: Evaluation scores of MARKERGEN and Implicit baseline on CNN/DailyMail benchmark using three
judges (GPT-4o, Gemini-2.0 Flash, GPT-4o-mini).

dividual stage leads to a significant increase in er-
ror or a drop in quality. Notably, the two-stage
variant (1+2) achieves the lowest error (2.66) with
a relatively low cost (0.79δ), confirming its effec-
tiveness and efficiency. Meanwhile, the full three-
stage setup offers a balanced trade-off, delivering
strong performance with moderate cost. These re-
sults reinforce the necessity of each stage and val-
idate our full method design.

E.5 Residual Length Error Analysis in
MARKERGEN

This subsection focuses on analyzing the resid-
ual length errors in the MARKERGEN framework.
Building upon the sub-decomposition of LCTG er-
rors presented in Section 2, we eliminate identify-
ing and counting errors through Auxiliary Length
Marker Insertion Decoding 3.1. Moreover, by
employing the Three-Stage Decoupled Generation
strategy 3.2, we effectively reduce aligning errors,
thus improving the robustness of all models in se-
mantic expansion under precise length modeling
with explicit length markers. This approach en-
sures semantic integrity while enhancing text gen-

eration quality through a clearer, more in-depth
analysis of LLMs LCTG sub-capabilities. Ulti-
mately, residual LCTG errors are primarily driven
by minimal aligning errors.

E.6 Cross-layer Attention Analysis from the
MARKERGEN Perspective

In this section, we perform a cross-layer atten-
tion analysis from the MARKERGEN perspective.
By examining attention patterns across different
layers of the model, we aim to gain a better un-
derstanding of how length and semantic informa-
tion are processed at various stages of generation,
providing insights into improving the accuracy of
LCTG tasks.

Combining the analyses from Figures 6, 10, 11,
12, and 13, we infer that in the shallow layers, at-
tention is primarily focused on the length informa-
tion represented by the length markers. This sug-
gests that the models early stages prioritize pro-
cessing and understanding the input length. The
higher entropy in these layers indicates that the
model needs to integrate various details and infor-
mation to effectively comprehend the input. As the

17385

Model Series Size Method S_4o S_gemini S_4omini S_avg σ2

Qwen2.5

32B Implicit 3.20 3.73 3.67 3.53 0.056
MARKERGEN 3.29 3.75 3.72 3.59 0.044

14B Implicit 3.15 3.61 3.55 3.44 0.041
MARKERGEN 3.16 3.61 3.55 3.44 0.039

7B Implicit 3.09 3.31 3.47 3.29 0.024
MARKERGEN 3.12 3.36 3.50 3.33 0.024

Llama3.1

70B Implicit 3.18 3.66 3.61 3.48 0.047
MARKERGEN 3.25 3.74 3.63 3.54 0.044

8B Implicit 3.13 3.45 3.54 3.37 0.030
MARKERGEN 3.19 3.50 3.60 3.43 0.031

Table 11: Evaluation scores of MARKERGEN and Implicit baseline on HANNA benchmark using three judges
(GPT-4o, Gemini-2.0 Flash, GPT-4o-mini).

Model Series Size Method S_4o S_gemini S_4omini S_avg σ2

Qwen2.5

32B Implicit 4.56 3.94 4.45 4.32 0.073
MARKERGEN 4.63 4.09 4.54 4.42 0.055

14B Implicit 4.47 3.95 4.44 4.29 0.056
MARKERGEN 4.44 3.93 4.43 4.27 0.058

7B Implicit 4.24 3.72 4.29 4.09 0.066
MARKERGEN 4.34 3.83 4.33 4.17 0.056

Llama3.1

70B Implicit 4.53 4.09 4.46 4.36 0.038
MARKERGEN 4.59 4.14 4.48 4.40 0.038

8B Implicit 4.20 3.62 4.22 4.01 0.076
MARKERGEN 4.19 3.62 4.25 4.02 0.080

Table 12: Evaluation scores of MARKERGEN and Implicit baseline on TruthfulQA benchmark using three judges
(GPT-4o, Gemini-2.0 Flash, GPT-4o-mini).

model progresses to deeper layers, attention shifts
from the length information to the adjacent seman-
tic content. The lower entropy in these layers in-
dicates that the model refines its focus, extracting
key features and generating more relevant output.

This pattern of attention distribution aligns with
the findings from (Moon et al.), which emphasize
that length modeling in the early layers serves as
a foundation for semantic processing in the later
layers. Our analysis further supports the notion
that LCTG tasks depend on a dynamic interaction
between length control and semantic generation,
where early layers focus on length constraints and
deeper layers prioritize semantic coherence.

F Prompt for Three-Stage Decoupled
Generation

The following three prompts correspond to the
three stages of our proposed method. We present
here the actual prompt templates used in the Truth-
fulQA task as representative examples: Stage One
for planning (Figure 14), Stage Two for semantic
integrity (Figure 15), and Stage Three for length-

constrained rewriting (Figure 16).

17386

Model Series Size Method S_4o S_gemini S_4omini S_avg σ2

Qwen2.5

32B Implicit 4.53 4.14 3.80 4.16 0.089
MARKERGEN 4.64 4.22 4.14 4.33 0.049

14B Implicit 4.42 3.98 3.80 4.07 0.068
MARKERGEN 4.46 4.07 4.00 4.18 0.040

7B Implicit 3.97 3.70 3.42 3.69 0.050
MARKERGEN 4.52 4.15 4.13 4.26 0.031

Llama3.1

70B Implicit 4.47 3.98 3.74 4.07 0.093
MARKERGEN 4.54 4.08 3.98 4.20 0.058

8B Implicit 4.21 3.89 3.72 3.94 0.041
MARKERGEN 4.47 4.04 4.03 4.18 0.042

Table 13: Evaluation scores of MARKERGEN and Implicit baseline on Heuristic Generation benchmark using three
judges (GPT-4o, Gemini-2.0 Flash, GPT-4o-mini).

Variant Components Interval E (↓) S (↑) Cost

Baseline (0) Direct Generation 64 30.27 4.51 δ

w/o Tool (1) Plan + Generation 64 27.58 4.60 1.05δ
Decaying 20.44 4.58 1.56δ

w Tool (2) Insertion Strategy 64 5.96 4.27 0.79δ
Decaying 3.58 4.27 0.69δ

w/o Tool (w decouple) (3) Decoupled Generation 64 26.11 4.53 1.20δ
Decaying 22.87 4.52 1.11δ

Two Stage (1+2) Plan + Insertion Strategy 64 3.93 4.32 0.84δ
Decaying 2.66 4.28 0.79δ

w/o Tool (w plan & decouple) (1+3) Plan + Decoupled Generation 64 25.89 4.63 1.56δ
Decaying 23.19 4.60 1.51δ

w Tool (w/o plan & w decouple) (2+3) Insertion + Decoupled Generation Decaying 5.11 4.50 1.10δ
Three Stage (1+2+3) Plan + Insertion + Decoupled Gen. Decaying 4.48 4.54 1.46δ

Table 14: Extended ablation study analyzing the impact of different components combinations. δ: cost relative to
baseline.

Figure 11: Attention Matrices of the first layers with Insertion Interval n = 4

17387

Figure 12: Attention Matrices of the first layers with Insertion Interval n = 8

Figure 13: Attention Matrices of the first layers with Insertion Interval is Decaying

17388

Stage One Prompt: Planning

Length Definition. A word is defined as any standalone word, number, or symbol, including punc-
tuation and special symbols.
You are tasked with generating a high-quality and truthful answer to the following question, aiming
for approximately {target_length} words.
Your answer must be factually accurate, free from any false information or hallucinations. Ensure
that all statements can be supported by reliable sources.
Planning Task:

• Understand the question: Comprehend what is being asked.

• Research and gather facts: Collect accurate and relevant information.

• Organize the response: Structure the answer logically.

• Ensure completeness: Address all aspects of the question.

• Maintain accuracy and relevance: Avoid unnecessary digressions.

After planning, generate the answer based on this structure, maintaining logical consistency and
factual accuracy.

Figure 14: Stage One Prompt: Planning

Stage Two Prompt: Semantic Integrity

Answer generation task:
Generate a comprehensive and precise answer to the question based on the plan, ensuring clarity,
coherence, and factual accuracy.
The answer should be approximately {target_length} words in length.
A word is defined as any standalone word, number, or symbol, including punctuation and special
symbols.
Only the answer text should be output; do not add any extra comments, notes, or explanations.
The answer should start with “Answer generation task:” and follow the format specified below.
Place “###end” at the absolute end of the answer to mark its completion.

Question: “{prompt}”

Figure 15: Stage Two Prompt: Ensuring Semantic Integrity

17389

Stage Three Prompt: Length-Constrained Rewriting

Task Description:

1. In the first stage, we generated a high-quality answer without strict length control.

2. In this second stage, your task is to rewrite the high-quality answer to meet the specified length
constraints.

Rewriting Requirements:

• Preserve core meaning, accuracy, and factual correctness.

• Match the target length of {target_length} words as closely as possible.

• Shorten or expand while maintaining clarity and integrity.

• Insert or remove detail as needed without altering facts.

• Output only the answer; no commentary or explanation.

Length Definition: A word is defined as any standalone word, number, or symbol, including punc-
tuation and special symbols.
Length Feedback: The high-quality answer contains {actual_length} words. It exceeds or
falls short of the target length by {abs(length_difference)} words.
Answer generation task:
After planning the adjustments, rewrite the answer in one go, adhering to the planned structure and
word count.
Do not truncate unfinished sentences just to match the target.
Insert length markers during generation:
Start with larger intervals, then reduce spacing for detailed content. Markers should be numbered
and evenly placed.
Example (Target length: 70 words):

Answer generation task: The golden light of the setting sun bathed the city streets in a
warm glow, [16 words] casting long shadows as people rushed home after a busy day. The
streets buzzed with [32 words] activity, cars honking, and pedestrians chatting. Amid the
hustle, a young couple [48 words] walked hand in hand, lost in conversation [56 words].
The sound of [60 words] their laughter mingled with [64 words] the noise [66 words] of
the [68 words] city [69 words]. [70 words] ###end

Final Prompt Input:

{task_description}
{rewrite_requirements}
{length_definition}
The Question is {prompt}
First stage High-quality answer: {generated_answer}
{length_feedback}
{answer generation task}

Figure 16: Stage Three Prompt: Length-Constrained Rewriting

17390

