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Abstract

We examine LLM representations of gender for
first names in various occupational contexts to
study how occupations and the gender percep-
tion of first names in LLMs influence each other
mutually. We find that LLMs’ first-name gen-
der representations correlate with real-world
gender statistics associated with the name, and
are influenced by the co-occurrence of stereo-
typically feminine or masculine occupations.
Additionally, we study the influence of first-
name gender representations on LLMs in a
downstream occupation prediction task and
their potential as an internal metric to identify
extrinsic model biases. While feminine first-
name embeddings often raise the probabilities
for female-dominated jobs (and vice versa for
male-dominated jobs), reliably using these in-
ternal gender representations for bias detection
remains challenging.

1 Introduction

Gender-occupation stereotypes have long been a
challenge to address in language technology sys-
tems (Rudinger et al., 2018; Zhao et al., 2018a; Ro-
manov et al., 2019; Sun et al., 2019; Sheng et al.,
2019; Ju et al., 2024; Wan and Chang, 2024). As
first names are often used as proxies for gender,
society may develop expectations and stereotypes
about occupational roles associated with gender-
revealing names. Social science research demon-
strates that such stereotypes can cause harm in ed-
ucation (Harari and McDavid, 1973; Pozo-García
et al., 2020) and employment (Smith et al., 2005),
as individuals receive disparate treatment based
solely on their feminine or masculine first names,
even when all other factors are held constant.

With the advent of large language mod-
els (LLMs; Achiam et al., 2023; Team et al., 2023;
Jiang et al., 2023; Dubey et al., 2024), prior stud-
ies have shown some of them exhibit human-like
biases and leverage gender stereotypes about first

Is Jody male or female?
FemaleMale

Jody is a nurse.
Is Jody male or female? FemaleMale

Jody is a comedian.
Is Jody male or female? FemaleMale

Figure 1: We derive first-name gender representations
in LLMs by projecting their contextualized embeddings
onto an approximated gender direction. We find that
these representations shift with the occupational context,
e.g., “nurse” (90.9% female) increases femininity, while
“comedian” (21.1% female) skews masculinity. We also
examine how these gender representations correlate with
biased behavior in downstream occupation prediction.

names (Eloundou et al., 2025) when making hiring
decisions (An et al., 2024; Nghiem et al., 2024;
Wilson and Caliskan, 2024), writing recommen-
dation letters (Wan et al., 2023), and generating
predictions about romantic relationships from dia-
logues (Sancheti et al., 2024). In particular, gender-
occupation stereotypes are a well studied research
topic (Kotek et al., 2023; Veldanda et al., 2023;
Wang et al., 2024; Leong and Sung, 2024; Zhang
et al., 2025). However, existing work mostly takes
a black-box approach, providing limited insights
into the potential causes of model behavior that
mimics human-like gender stereotypes associated
with first names, leaving the why and how as open
questions. We address this gap by examining mod-
els’ internal representations of gender. While prior
work has studied the gender information encoded in
embeddings (Bolukbasi et al., 2016; Caliskan et al.,
2017; Basta et al., 2019), we establish connections
between models’ internal gender representations
and their biased behavior in a downstream task as-
sociated with first names, demonstrating the mutual
influence between occupation and LLM represen-
tation of gender for first names.

To explain the model’s biased behavior, we con-
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duct a systematic study of the internal gender rep-
resentations of first names in LLMs across occupa-
tional contexts, as illustrated in Fig. 1. We obtain
the first-name gender representations by projecting
their respective contextualized embeddings onto an
approximated gender direction, computed by adapt-
ing an existing gender direction algorithm (Boluk-
basi et al., 2016; Basta et al., 2019) to open-source
LLMs with thorough validation (§ 3). Our ob-
servations show: (a) that these internal represen-
tations reveal the gender assumptions made by
LLMs about first names, which align with real-
world statistics (§ 4.1); and (b) that the gender
representations can be sensitive to the contextual
information about occupation (§ 4.2). Furthermore,
in the downstream task of occupation prediction
from biographies (De-Arteaga et al., 2019), we per-
form a series of counterfactual name-replacement
experiments using a fixed set of contexts (including
biographies of both female and male individuals)
to isolate the influence of different first names. Our
results, based on over 12 million prompts across
four LLMs, show that LLMs achieve higher true
positive rates for gender-biased occupations when
the gender associated with a first name aligns with
the bias. Our analysis highlights the internal trends
between first-name representations and occupation
prediction in LLMs that may explain this biased
behavior, albeit with limited correlation (§ 5).

While most studies focus on the binary gender
association of first names for simplicity (Maudslay
et al., 2019; Wang et al., 2022; Wan et al., 2023),
our paper enhances the interpretability of LLMs’
representations of first names across varying de-
grees of femininity by including gender-ambiguous
names, further enriching the observations from You
et al. (2024). However, we recognize that our anal-
ysis does not cover all gender identities.

2 Related Work

We situate our work within the literature, connect-
ing our contributions to related studies.

Biases in Embeddings Research shows that
both static and contextualized embeddings encode
human-like biases, including gender and occupa-
tion stereotypes (Bolukbasi et al., 2016; Zhao et al.,
2018b; Gonen and Goldberg, 2019; May et al.,
2019; Zhao et al., 2019; Basta et al., 2019; Dev
et al., 2021; Kaneko and Bollegala, 2021; Kaneko
et al., 2022). These insights motivate our study of
first-name gender representation in LLMs and its

link to LLM behavior in a downstream task.

Gender Representation in Embeddings Boluk-
basi et al. (2016) proposed identifying a gen-
der subspace in static word embeddings, such
as Word2Vec (Mikolov et al., 2013), using gen-
dered word pairs (e.g., “she”–“he”) and defining
the gender direction as the top principal compo-
nent of their embedding differences. This approx-
imation enables projection-based debiasing algo-
rithms (Bolukbasi et al., 2016; Dev and Phillips,
2019; Wang et al., 2020; An et al., 2022) to reduce
gender bias. Similar methods have been applied
to contextualized embeddings (Peters et al., 2018;
Devlin et al., 2019) using principal components
to approximate the gender subspace (Zhao et al.,
2019; Basta et al., 2019; Liang et al., 2020). We
adopt this approach to analyze gender representa-
tion in first-name embeddings in LLMs.

First Names and Demographic Attributes De-
spite limitations in associating names with demo-
graphic attributes (Gautam et al., 2024), names are
commonly used as proxies for gender, race/eth-
nicity, and nationality (Greenwald et al., 1998;
Bertrand and Mullainathan, 2004; Caliskan et al.,
2017; Baumler and Rudinger, 2022; An et al., 2023;
Sandoval et al., 2023; Acquaye et al., 2024; Zhang
et al., 2024). This usage reflects a strong associa-
tion between names and demographic factors, both
in reality and in model representations. We verify
the correlation between LLMs’ first-name gender
representations and real-world statistics, and ex-
plore how these representations vary with context.

Name Artifacts In addition to demographic at-
tributes, language models treat names based on
factors like frequency (Wolfe and Caliskan, 2021),
tokenization length (An and Rudinger, 2023), and
associations with prominent entities (Shwartz et al.,
2020). While we acknowledge these artifacts, this
paper focuses on LLM representations of gender
for first names and their mutual influence on occu-
pation mentions or predictions.

3 Gender Direction in LLMs

To study gender representation in first names, we
derive a vector approximating the female-male di-
rection using an existing gender direction approx-
imation algorithm (Bolukbasi et al., 2016; Basta
et al., 2019; Liang et al., 2020). We evaluate the
quality of gender direction approximation, with
a binary classification task inspired by You et al.
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Figure 2: The percentage of variance explained in the principal components as a result of applying PCA to the
differences between gendered (or random) word embeddings from various models. These results indicate that the
first PC primarily captures the gender subspace in the respective LLM embedding space.

(2024), predicting the gender associated with first
names from their LLM representations. While this
task may raise ethical concerns, discussed in detail
in the ethical considerations section, it validates the
approximated gender direction well captures the
gender concept in first name representations.

We examine four open-source LLMs on Hug-
ging Face: Llama-3.1-8B-Instruct (Dubey
et al., 2024), Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023), OLMo-7B-0724-hf (Groeneveld et al.,
2024), and Phi-3.5-mini-instruct (3.8B; Ab-
din et al., 2024). We select these four LLMs in our
paper because they are open-sourced, allowing us
to study their internal embeddings. Additionally,
theses popular models come from different orga-
nizations, which likely represent differing training
methodologies. Using these models enables us to
demonstrate the generalizability of our findings.

3.1 Gender Direction Approximation

To identify the female-male gender direction g⃗
in LLMs, we first find a gender subspace V =
{v⃗1, v⃗2, . . . , v⃗k} with k orthogonal vectors v⃗i ob-
tained from principal component analysis (PCA),

V = PCAk




d⋃

j=1

⋃

w⃗∈Gj

(w⃗ − c⃗j)


 (1)

where w⃗ is the average contextualized embedding
of a word from the set of d pairs of gendered words
G (d = 9 in our implementation), and Gj is the jth
pair (e.g., “she” and “he”). The center of one pair
of embeddings is given by c⃗j =

1
2

∑
w⃗∈Gj

w⃗. The
hyperparameter k is empirically determined based
on the explained variance ratios. In our paper, we
choose k = 1 and obtain a gender direction.

Gendered Words G We use the same set of gen-
dered words as Bolukbasi et al. (2016), excluding
“Mary” and “John.” This exclusion is intended to
avoid using first names in gender direction approx-

imation, thereby minimizing the risk of overfitting
in our first-name representation analysis. Table 3
in the appendix displays these gendered words.

Average Embeddings w⃗ Following Basta et al.
(2019), we compute the average contextualized em-
beddings of gendered words. From the English
Wikipedia corpus,1 we extract 3, 000 sentences
containing each gendered word and create counter-
factuals by swapping every word with its counter-
part. For repeated gendered words w1, w2, . . . , wn

in a sentence, embeddings of wi are averaged as
w⃗ = 1

n

∑n
i=1 w⃗i. If a word wi is multiply tok-

enized in the form as wi = (t1, t2, . . . , tm), then
w⃗i =

1
m

∑m
j=1 t⃗j . Finally, we average embeddings

across 6, 000 contexts and compute pairwise differ-
ences to obtain the difference matrix.

PCA Results Upon applying PCA to the differ-
ence matrix, we find that the first principal compo-
nent (PC) explains a significantly higher percentage
of variance compared to the others, and this trend
holds across all four models in our study, as shown
in Fig. 2a through Fig. 2d. In contrast, the PCA re-
sults of a random difference matrix obtained from
10 pairs of random words (Table 3 in appendix A)
from Llama-3.1-8B show a more gradual change
in the percentage variance explained across the PCs,
as shown in Fig. 2e. Hence, we reach a similar con-
clusion as Bolukbasi et al. (2016) and Basta et al.
(2019) that the first PC mostly captures the gender
subspace in the embedding space of recent LLMs.
For Mistral-7B, however, the notion of gender
seems to be better captured with the top two PCs.
Next, we need a method to determine which PCs
to include as the approximated gender direction.

3.2 Gender Direction Evaluation
The fact that the first principal component (PC) for
each model explains a relatively large proportion of

1https://huggingface.co/datasets/wikimedia/
wikipedia/tree/main/20231101.en
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variance (ranging from 32−42% in Fig. 2) implies
that most information about gender is contained in
the subspace corresponding to the first PC. How-
ever, we directly measure the gender information
captured in these subspaces via a binary gender
prediction task. A good gender direction approx-
imation should preserve the female-male gender
information encoded in the original embeddings.

We train classification models using either
(1) the contextualized first-name embeddings or
(2) their dot product with the approximated gen-
der direction. We collect first names with varying
femininity levels and compute their average contex-
tualized embeddings through counterfactual substi-
tution in a fixed set contexts. Then, we compare
classification performance using these embeddings
versus their projections onto the gender direction
to assess the quality of the gender direction.

We note that the purpose of this binary classifi-
cation task is not to predict the gender identities of
individuals in the real world. Rather, the purpose
is to confirm that any gender information already
present in a model’s contextualized embeddings
of first names is preserved after projection onto
the extracted one-dimensional subspace. In other
words, the classification task serves as validation
that the learned subspace is a reasonable proxy for a
model’s internal representation of gender, enabling
the subsequent analyses we perform in this paper.

First Names Following Sancheti et al. (2024),
we sample first names associated with two gen-
ders (female and male) and four races/ethnicities
(White, Black, Hispanic, and Asian) from the So-
cial Security Application2 (SSA) dataset and a U.S.
voter registration dataset (Rosenman et al., 2023).
We select 470 names with varying degrees of femi-
ninity based on the percentage of the female pop-
ulation linked to each name in the SSA dataset.
Names are categorized into 10 buckets according
to their female distribution percentages (Table 4 in
appendix). Due to high thresholds for race/ethnic-
ity distribution (90%) and frequency (200), fewer
gender-ambiguous names are sampled. These first
names are also used in the subsequent analysis. For
the binary classification, we label the names as ei-
ther “Female” or “Male” based on a 50% threshold.

Contextualized First-Name Embeddings from
Wikipedia Contexts To minimize contextual in-
fluence in obtaining first-name embeddings, we

2https://www.ssa.gov/oact/babynames/

compute average name representations over a fixed
set of contexts. We randomly select 24 names
(see appendix B), evenly distributed across four
races/ethnicities and two genders, and retrieve
10 sentences for each name from the English
Wikipedia corpus. Average contextualized embed-
dings are obtained by counterfactually replacing
the original name with each of the 470 first names.

We use n⃗wiki to denote a contextualized embed-
ding for a first name obtained in this setup. These
embeddings, or their dot product with the gender
direction g⃗, are used as input features to the binary
classification models. We use 70% of the embed-
dings for training and the remaining 30% for vali-
dation, both sampled evenly across demographics.

Binary Gender Classification In this task, we
train classification models (logistic regression and
Naive Bayes respectively) to predict the gender
associated with a first name. We consider two
types of input features. The first setup uses the
contextualized embedding of a first name from the
Wikipedia contexts as the input feature. This setup
serves as a baseline in the evaluation of gender di-
rection approximation quality. The second setup
uses the dot product between the contextualized
first-name embedding and the gender direction g⃗
approximated using the algorithm in § 3.1 as the
input feature. We note that the dot product between
two vectors, u⃗ · v⃗, is linearly correlated with the pro-
jection of u⃗ onto v⃗, resulting in equivalent or highly
similar feature representations for the classification
task. We hypothesize that the binary gender predic-
tion accuracy would be similar in both setups if the
approximated gender direction effectively captures
the concept of gender in first name representations.

Combinations of PCs We consider three com-
binations of principal components (PCs) as the
approximation of the gender direction. (1) g⃗1st:
Gender direction is represented by the first PC cor-
responding to the largest variance explained ratio.
(2) g⃗2nd: Gender direction is represented by the
second PC corresponding to the second largest vari-
ance explained ratio. (3) g⃗avg: Gender direction is
represented by the average of the first two PCs.

Evaluation Results We report the binary classifi-
cation accuracy in Table. 1. We observe that, in line
with prior studies (An et al., 2023; Sancheti et al.,
2024; You et al., 2024), the original first-name em-
beddings n⃗wiki effectively indicate the stereotyp-
ical gender associated with the names. This is
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Logistic Regression
n⃗wiki DOT (n⃗wiki, g⃗1st) DOT (n⃗wiki, g⃗2nd) DOT (n⃗wiki, g⃗avg) DOT (n⃗wiki, random)

Llama-3.1-8B 75.46 ± 3.19 75.18 ± 2.62 50.78 ± 5.47 63.97 ± 3.28 47.09 ± 3.85
Mistral-7B 74.04 ± 1.46 67.80 ± 2.18 58.44 ± 2.56 51.77 ± 2.01 55.18 ± 1.82
OLMo-7B 76.60 ± 1.10 80.57 ± 1.32 55.46 ± 3.89 63.26 ± 2.67 56.03 ± 2.10
Phi-3.5-mini 65.67 ± 4.86 70.64 ± 1.83 49.08 ± 1.98 55.60 ± 3.37 55.60 ± 2.04

Naive Bayes
n⃗wiki DOT (n⃗wiki, g⃗1st) DOT (n⃗wiki, g⃗2nd) DOT (n⃗wiki, g⃗avg) DOT (n⃗wiki, random)

Llama-3.1-8B 73.62 ± 2.74 74.33 ± 2.63 51.49 ± 1.39 62.84 ± 2.27 49.65 ± 3.50
Mistral-7B 71.21 ± 1.83 64.82 ± 1.32 50.92 ± 1.82 51.35 ± 3.00 55.18 ± 1.13
OLMo-7B 71.91 ± 1.65 80.28 ± 1.92 56.03 ± 3.23 65.11 ± 4.40 59.43 ± 4.43
Phi-3.5-mini 61.99 ± 3.25 67.94 ± 2.17 51.63 ± 1.38 57.02 ± 2.27 54.18 ± 2.79

Table 1: Accuracy (%) and standard deviation of two classification models for the task of binary gender prediction
using various features from the contextualized first-name embeddings. Results are averaged over five runs with
different random train-validation splits, with the best accuracy highlighted in bold. Using the dot product between
the first-name embedding and the first principal component (g⃗1st) as input features yields comparable or even
improved performance in this task. This observation suggests that g⃗1st is a good gender direction approximation.

evidenced by all setups using n⃗wiki as input achiev-
ing approximately 60 − 75% accuracy, which is
significantly higher than the random baseline.

Using the dot product between n⃗wiki and g⃗1st as
input largely maintains or improves classification
accuracy, indicating g⃗1st effectively conveys the
gender direction for first-name embeddings. In
contrast, the second PC and the average of two
PCs fail to preserve accuracy, suggesting they are
ineffective approximations of the gender direction.

We note that neither PC improves performance
over the original setup for Mistral-7B, which
aligns with the observation shown in Fig. 2b, where
the top PC does not exhibit a notably high variance
explained ratio. Nonetheless, g⃗1st generally pre-
serves the models’ performance for Mistral-7B
name embeddings. For consistency, we choose to
use the first PC g⃗1st as the gender direction approx-
imation g⃗ for all LLMs in the following analysis.

4 LLM Representations of Gender in
First Name Embeddings

With a validated gender direction, we show a corre-
lation between the model’s representation of gender
associated with a name and its real-world gender
distribution. We then examine how gender repre-
sentation varies with mentions of stereotypically
feminine or masculine occupations in the context.

4.1 Correlating LLM Representations of
Gender with Real-World Statistics

We hypothesize that the model encodes the per-
ceived gender of a first name in alignment with

real-world gender distributions, as a result of its
training on natural corpora that mirror these corre-
lations. To validate this hypothesis, we study the
correlations between three variables.

% Female in Real-World Distribution We use
the gender distribution associated with first names
in the SSA dataset to calculate the percentage of
the female population for each first name. Because
there are more strongly gender-indicative names
than gender-neutral names (i.e., more names in the
0−2% bucket than in the 25−50% bucket, shown
in Table 4 in appendix), we transform each bucket
into one of ten linearly divided buckets (e.g., 0−2%
is mapped to 0− 10%, 2− 5% is mapped to 10−
20%, and so on) to smooth the data distribution.

DOT(n⃗wiki, g⃗) We reuse the contextualized first-
name embeddings n⃗wiki obtained from the set of
Wikipedia sentences (§ 3.2) and compute their dot
product with the gender direction g⃗. This quantity
indicates the degree of femininity (or masculinity)
of a first name in the model’s representation.

Pprior(Female) To obtain the gender probability
from the actual response of an LLM, we prompt
the model with the context “Question: Is {NAME}
male or female? Answer: NAME is ” and retrieve
the logits for the tokens “male” and “female,” re-
spectively. The “{NAME}” placeholder is instanti-
ated with each of the 470 first names. We take the
softmax of the two gender logits and use the prob-
ability for “female” as the model’s prior gender
probability of a name, denoted as Pprior(Female).
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Figure 3: Scatter plot between each pair of the three variables studied in § 4.1 and their Pearson correlation. We
observe statistically significant linear correlations between each pair of the variables studied. Both the model’s prior
gender probability and the embedding associated with a name reflect the real-world gender distribution.

Observations In Fig. 3 and Fig. 7 (appendix), we
observe strong (and statistically significant) linear
correlations between each pair of the three vari-
ables for all LLMs studied. We verify that both the
model’s prior probability of the gender associated
with a name and its first-name embeddings reflect
the real-world gender distribution. Furthermore,
the prior gender probability also linearly correlates
with the degree of femininity in the first-name em-
beddings. We note that, without loss of generality,
all gender directions in the four LLMs have been
aligned to use the positive direction to denote the
female gender for intuitive visualization.

4.2 LLM Representations of Gender are
Influenced by Occupational Contexts

We investigate whether a model’s gender represen-
tation of a first name changes under the influence
of different occupational contexts.

Prompt 4.1: Gender Prediction

Question: {NAME} is {ARTICLE} {OCC.}. Is {NAME} male or female?
Answer: {NAME} is . . .

Setup To investigate whether the model’s gender
probability changes from Pprior(Female) when an
occupation is mentioned, we construct sentences
using the prompt template 4.1. The placeholders
are replaced with a first name, “a” or “an,” and an
actual occupation, respectively. We then retrieve
the logits for “male” and “female” tokens, convert-
ing them to probabilities via a softmax function.
This design choice of converting a subset of to-
ken logits to probabilities is inspired by Duarte
et al. (2024). This approach allows us to capture a
continuous distribution of gender probabilities for
different first names for our following analysis.

Occupations We use the 28 occupations with
varying gender dominance from Bias in Bios (De-
Arteaga et al., 2019). Gender domination of oc-
cupations are approximated by the percentage of

female biographies in Bias in Bios, which is con-
structed by scraping real-world biographies that
reflect the gender breakdown of an occupation. In
addition, we introduce another non-stereotypical
baseline (Belém et al., 2024), in which no gender-
related language (i.e., stereotypically female or
male occupations) is present, in order to illustrate
how occupational contexts cause changes in the
gender representation of first names. This non-
stereotypical baseline is implemented by using the
string “person” to fill the occupation placeholder.

Metrics We compute each first name’s gender
probability obtained from the prompt containing an
occupation (including the non-stereotypical base-
line “person”) and compare it with Pprior(Female)
to measure changes in the model’s gender percep-
tion. Meanwhile, we also retrieve the first-name
embeddings n⃗temp before and after “{OCC.}” (i.e.,
the embeddings for the first and second occurrence
of “{NAME}”). We find their respective dot prod-
uct with the gender direction, DOT(n⃗temp, g⃗), and
analyze the change between them. We expect to
see a more feminine representation of a first name
(higher probability for the “female” token and more
positive dot product with g⃗) if the occupation in the
context is female-dominated, and vice versa.

LLM Representations of Gender Shift with
Contexts We present DOT(n⃗temp, g⃗) before and
after the occupation mention and Pprior(Female)
with and without the occupation in Fig. 4. We
show the similar visualizations for OLMo-7B and
Phi-3.5-mini in Fig. 8 in the appendix. Across
the four LLMs in our study, we find a consistent
trend that, within each gender bucket along the hor-
izontal axis, stereotypically feminine occupations
lead to more positive dot products with the gender
direction, whereas stereotypically masculine occu-
pations cause the names in the same gender bucket
to have more negative dot products. This translates
to higher predicted probability of the “female” to-
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Figure 4: (Left of each subfigure) Change of the dot product between the name embedding from a template
sentence n⃗temp and the gender direction g⃗ before and after the mention of an occupation. (Right of each subfigure)
Change of the output probability of the token “female” with and without mentioning an occupation. “% Female
Name” is the real-world gender distribution of a name (§ 4.1). “% Female Bios” is the percentage of biographies of
female individuals in De-Arteaga et al. (2019), which mirrors the gender breakdown of an occupation in real life.
The violet star indicates the non-stereotypical baseline where the occupation placeholder is replaced with the string
“person.” We observe that the gender representation of first names generally shifts with occupational contexts, where,
within each gender bucket along the horizontal axis, stereotypically female jobs lead to a more positive dot product
along the gender direction and a higher predicted probability for the female gender. We also see that the results for
strongly masculine or feminine names are less affected by occupation than those for gender-ambiguous names.

ken with the mention of a stereotypically feminine
occupation, and vice versa.

We find that, except for OLMo-7B, LLMs tend to
maintain their perceived gender associated with
a name in comparison with Pprior(Female) for
strongly feminine or masculine names, even with
varying occupational contexts. Hence, the re-
sults for strongly feminine or masculine names are
less affected by occupation than those for gender-
ambiguous names.

5 LLM Representations of Gender
Influence Model Occupation Prediction

We study the influence of LLM representations of
gender in a downstream occupation prediction task.
We demonstrate that gender representations in first-
name embeddings can indicate biased behavior in
LLMs for the high-stakes task of occupation pre-
diction, despite some inconsistencies.

5.1 Biased Behavior of LLMs
To show that LLMs reinforce gender-occupation
stereotypes, we conduct zero-shot prompting ex-
periments to predict occupation from biographies.
We pose this as a multi-class classification task
over a set of predefined occupations. We compute
occupation probabilities by applying softmax to
the logits of occupation tokens and consider the

highest probability as the LLM’s prediction.

Prompt 5.1: Occupation Prediction

Read the description about {NAME} below and predict their occupation.
{BIO}
What’s {NAME}’s occupation? Output an occupation only. No preambles.
No explanations.

Setup We use the Bias in Bios dataset (De-
Arteaga et al., 2019) that contains biographies of
individuals across 28 occupations. For each occu-
pation, we randomly sample 135 female and male
biographies respectively. As all names and gen-
dered pronouns are redacted in the biographies, we
replace the name placeholder with one of the 470
first names from § 3.2 and use the prompt tem-
plate 5.1 to ask an LLM to predict the occupation.
This prompt choice follows Sancheti et al. (2024),
who conducted prompt tuning before selecting their
final design for a similar classification task. In total,
we prompt each LLM 3, 553, 200 times to assess
biases in occupation prediction.

Bias Coefficient Following De-Arteaga et al.
(2019), we use true positive rate (TPR) to measure
prediction gaps between female and male names.
For each occupation, we compute TPR of a name
by substituting the name into the same set of 270
biographies. The scatter plots of TPR often show
a linear trend between the femininity of a name
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Figure 5: (a) and (c): Llama-3.1-8B shows higher TPR for masculine names in the male-dominated occupation
“pastor” but lower TPR in the female-dominated occupation “dietitian.” The Pearson correlation in these plots
represents the Bias Coefficients. (b) and (d): In Llama-3.1-8B, a more masculine first name increases the
probability of “pastor” while feminine names have higher probabilities for “dietitian,” partly explaining the TPR
gap. The Spearman correlation represents the Internal Coefficients (defined in § 5.2). Red dashed and black dotted
lines show values when the first name is anonymized as “X.”

Biography Label Name % Female Prediction

Being a sports enthusiast, [NAME] was inspired by God to combine _ passions of writing, sports, and Christ into a daily devotional that would
encourage others to match their passion for Christ with their passion for their favorite team. [NAME]’s books, titled Daily Devotions for Die-Hard
Fans and Daily Devotions for Die-Hard Kids, offer fans a unique mix of a true sports story connected to a daily reflection about God and their faith.
The intent is to encourage the sports lover in a day-to-day walk with Christ through a devotion that is factual, Bible-based, and fun to read. Have fun.
Have faith. Go God!

pastor

Luis 0.53 pastor
Logan 7.37 pastor
Jerre 43.70 pastor
Alejandra 99.00 journalist
Khadijah 99.90 journalist
Margarete 100.00 journalist

[NAME] lives in Long Island, NY where [NAME]’s works in foodservice and corporate wellness while also managing a virtual nutrition coaching
practice. [NAME] specializes in intuitive eating and health at every size with a focus on sports nutrition. [NAME]’s blogs at KHNutrition.com where
_ loves to share about food, fitness and more recently, _ journey with pregnancy and becoming a new mom.

dietitian

Duc 0.00 personal trainer
Hunter 5.02 personal trainer
Dakota 29.73 personal trainer
Ivory 59.32 dietitian
Laquinta 97.82 dietitian
Bonnie 98.78 dietitian

Table 2: Example predictions from Llama-3.1-8B for two biographies with different substitutions of first names
replacing the “[NAME]” placeholder for pastor (a male-dominated occupation) and dietitian (a female-dominated
occupation). The model tends to make incorrect predictions when the perceived gender of a first name contradicts
the stereotypical gender associated with the occupation. Correct predictions are blue, and incorrect ones are red.

and the model’s performance, revealing a TPR gap
between feminine and masculine names. The bias
coefficient, defined as the Pearson correlation of
scatter points, reflects the strength of the linear
relationship between the associated femininity of
a name and the model’s performance. A value
near 0 with a large p suggests that the stereotypical
gender of a name does not correlate with model
performance, showing similar performance across
genders. A significantly positive value indicates a
higher TPR for feminine names, and vice versa.

Gender Bias in Occupation Predictions We re-
port the results in Fig. 5. We observe a negative
(−0.55) and positive (0.68) bias coefficient, respec-
tively in Fig. 5a and Fig. 5c, for Llama-3.1-8B.
Feminine names tend to receive higher TPR for
“dietitian” (92.80% female) while masculine names
generally have higher TPR for “pastor” (24.09%
female). Hence, the model achieves higher TPR
when a first name’s perceived gender aligns with
the occupation’s stereotypical gender, reinforcing
gender-occupation stereotypes. All biased occu-
pation predictions are shown in Fig. 6 (middle
columns) with †, indicating a statistically signif-

icant Pearson correlation (P < 0.001). In §5.2, we
investigate LLM’s internal gender representations
to offer potential explanations to the observed bias.

Examples of Predictions We present a few ex-
ample predictions from Llama-3.1-8B in Table 2.
Given the same biography with different first-
name substitutions, the model tends to misclassify
strongly feminine names for the male-dominated
occupation pastor and masculine names for the
female-dominated occupation dietitian. While
these are anecdotal examples from two biographies
and a small subset of first names, the next sec-
tion examines the broader trend between the inter-
nal gender representation of first names and the
model’s extrinsic biased behavior.

5.2 Gender Representation Partially Explains
the Biased Behavior

We analyze internal first-name representations and
intermediate LLMs outputs (occupation token log-
its) to explore their correlation. If gender repre-
sentation correlates with occupation logits, it may
partly explain the observed extrinsic model biases.

We retrieve the contextualized embedding of
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Figure 6: Percentage of female biographies, Bias Coefficient (sorted in descending order), and the Spearman
correlation between DOT (n⃗bios,g) and the predicted probability for each occupation, defined as the “Internal
Coefficient.” The bias coefficient and internal coefficient are moderately correlated, despite some inconsistencies.
Notations: †: p < 0.001. ∗: p < 0.005. All p values are corrected using the Holm–Bonferroni method.

the last occurrence of a first name in the prompt
and compute its dot product with g⃗, yielding
DOT(n⃗bios, g), averaged across 270 contexts for
each occupation. We also compute the averaged
predicted probability of the ground-truth occupa-
tion token. We plot these two variables in Fig. 5b
and Fig. 5d for “pastor” and “dietitian.” The figures
show that a more masculine representation (more
negative dot product) increases the probability for
“pastor” but decreases it for “dietitian,” consistent
with the model’s behavior in Fig. 5a and Fig. 5c. Al-
though the correlation between DOT(n⃗bios, g) and
P (occupation) appears linear, the ranking is more
important, so we compute Spearman’s correlation
as the Internal Coefficient.

In Fig. 6, we show the internal coefficients for
all occupations in two LLMs, with similar results
for the other two LLMs in appendix C. The two
coefficients are moderately correlated (Spearman’s
correlation is 0.61 for Llama-3.1-8B and 0.76 for
Mistral-7B, both p < 0.001), suggesting that
what we observe internally in the model has some
correlation with the extrinsic biased behavior.

However, in Fig. 6, the internal coefficient some-

times fails to capture biased extrinsic behavior (e.g.,
“nurse” and “journalist”) and occasionally produces
false positives (e.g., “physician” and accountant”).
These limitations highlight the challenges of using
gender representation for bias prediction, echoing
earlier findings that intrinsic and extrinsic metrics
do not necessarily align with each other (Goldfarb-
Tarrant et al., 2021; Cao et al., 2022).

6 Conclusion

In this paper, we approximate and rigorously eval-
uate a gender direction in state-of-the-art LLMs.
Using a validated gender direction, we analyze the
femininity of first-name embeddings in both con-
trolled and real-world contexts. We find that the
gender representation of first names interacts with
stereotypical occupations in context, sometimes
revealing model bias in downstream tasks. How-
ever, the noisy correlation between the model’s
internal gender representation in first-name embed-
dings and its extrinsic biased behavior underlines
the need for more robust methods to detect bias
using internal gender representations.
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Limitations

Underrepresentation of Gender Identities Fol-
lowing the seminal work of Bolukbasi et al. (2016),
we approximate a female-male gender direction in
the embedding space of LLMs. While we have in-
cluded gender-ambiguous first names in our study,
the gender direction approximation may underrep-
resent gender identities beyond this binary defini-
tion. We acknowledge this limitation and leave the
inclusion of additional gender identities in embed-
ding analysis for future work.

Limited Coverage of Demographic Identities
Our selection of first names from the available
data sources (SSA and Rosenman et al. (2023))
is limited to two genders and four races/ethnicities
within the U.S. context. Unfortunately, many de-
mographic identities could not be included due to
insufficient data availability. Collecting additional
first names that represent other genders, races, and
ethnicities is essential for a more comprehensive
study of first-name representations in LLMs, al-
though it remains a challenging task. Various other
demographic attributes, such as age, nationality,
and religion, could also be studied (Parrish et al.,
2022; Hou et al., 2025). However, we find it infea-
sible to obtain sufficient data sources to use first
names as proxies for these demographic attributes.

Under-Exploration of Model Size The size of a
language model may significantly affect its perfor-
mance and the extent of biases it exhibits (Tal et al.,
2022; Srivastava et al., 2022), influencing both rep-
resentational and allocational harm (Barocas et al.,
2017; Crawford, 2017; Blodgett et al., 2020). How-
ever, due to resource constraints, our experiments –
totaling over 12 million input prompts – were con-
ducted exclusively on smaller-sized LLMs. While
these findings provide some insights, they leave
open the question of whether similar patterns and
biases persist or intensify in larger models. Future
research could address this gap by investigating the
relationship between model size and bias, particu-
larly to determine if the trends observed here scale
consistently across larger models.

Lack of Mitigation Solutions While our results
highlight biased behavior of LLMs in predicting
occupations from biographies toward first names
associated with different genders, we do not pro-
pose immediate solutions to mitigate these biases.
Instead, our paper focuses on the interpretability
of the models’ internal gender representations in

first-name embeddings and their correlation with
the models’ extrinsic behavior. Nonetheless, bias
mitigation remains a critical research direction.

Ethics Statement

Perceived Gender and Self-Identifications The
task of predicting a person’s gender from their
name may raise ethical concerns. Gender iden-
tity is defined by the HRC Foundation3 as “one’s
innermost concept of self as male, female, a blend
of both, or neither – how individuals perceive them-
selves and what they call themselves. One’s gender
identity can be the same or different from their sex
assigned at birth.” While we introduce the binary
gender classification task as a test of the gender
direction approximation, we strongly discourage
using predicted gender to oversimplify the diverse
gender identities associated with a name. Our fur-
ther analysis reveals the model’s representation of
the perceived gender associated with a first name
in various occupational contexts, but this percep-
tion may differ from an individual’s self-identified
gender. The discrepancy between perceived and
self-identified gender can lead to disrespect and
misunderstandings. While there is no easy or uni-
versal solution to the over-generalization of gender
in first-name embeddings from LLMs, we argue
that we must strive to build inclusive technologies
that minimize such harm. Notable efforts include
those by Cao and Daumé III (2020); Baumler and
Rudinger (2022); Piergentili et al. (2023, 2024);
Bartl and Leavy (2024), among others. Our paper
contributes to understanding internal gender repre-
sentations in LLMs, paving the way for the devel-
opment of gender-inclusive language technologies.

Gender-Occupation Stereotype Due to imbal-
ances in the gender breakdown of many occupa-
tions, the corpora on which models are trained can
inherit these gender-occupation biases, leading to
the development of gender-occupation stereotypes
in the models’ downstream behavior. Our obser-
vations show that LLMs continue to rely on the
over-generalization of gender-occupation correla-
tions when making predictions. Ongoing efforts are
needed to address this biased behavior in LLMs.
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A Gendered Words

We display the lists of gendered words and random
words in Table 3. These words are used to approxi-
mate a female-male gender direction and a random
direction in LLMs, respectively.

B First Names

In Table 4, we present the breakdown of the de-
mographic statistics for the first names used in our
study. In addition, the 24 names (which is a sub-
set of the sampled names) we used to obtain the
contexts for averaged first-name embedding com-
putation are:

• Female: Carie (White), Marybeth (White),
Darci (White), Khadijah (Black), Yashica
(Black), Tamiko (Black), Miguelina (His-
panic), Agueda (Hispanic), Betzaida (His-
panic), Quynh (Asian), Huong (Asian), Thuy
(Asian);

• Male: Jerad (White), Zoltan (White), Ben-
jamen (White), Cedric (Black), Trayvon
(Black), Demarco (Black), Osvaldo (His-
panic), Luis (Hispanic), Rigoberto (Hispanic),
Dong (Asian), Huy (Asian), Khoa (Asian).

C Additional Results

We present the additional experimental results for
OLMo-7B and Phi-3.5-mini in Fig. 7 and Fig. 8.
The experiment details are described in § 4.1
and § 4.2 respectively.

For the comparison between Bias Coefficient
and Internal Coefficient (§ 5.2), we show the re-
sults for OLMo-7B and Phi-3.5-mini in Fig. 9.
Consistent with the results discussed in § 5.2, the
internal coefficients also correlate with the bias
coefficients for these two LLMs, showing a Spear-
man’s correlation of 0.86 for OLMo-7B and 0.90 for
Phi-3.5-mini, with p < 0.001 in both cases.

D Models

We list the source of each model that has been used
in this paper. All model usage is consistent with
their respective intended use.

• Llama-3.1-8B-Instruct
Model is available at https://huggingface.
co/meta-llama/Llama-3.1-8B-Instruct.
Llama 3.1 is intended for commercial and
research use in multiple languages with a
Llama 3.1 Community License Agreement.)

• Mistral-7B-Instruct-v0.3
Model is available at https://huggingface.
co/mistralai/Mistral-7B-Instruct-v0.
3. Mistral-7B comes with an Apache 2.0
License that allows redistribution of the work
or derivative works.

• OLMo-7B-0724-hf
Model is available at https://huggingface.
co/allenai/OLMo-7B-0724-hf. OLMo-7B
also comes with an Apache 2.0 License that
allows redistribution of the work or derivative
works.

• Phi-3.5-mini-instruct
Model is available at https://huggingface.
co/microsoft/Phi-3.5-mini-instruct.
The model is intended for commercial and
research use in multiple languages with an
MIT license.

Each model is run on an NVIDIA RTX A5000
GPU. Due to the large scale of our empirical study,
which includes 470 first names and biographies
across 28 occupations, the total computational time
amounts to approximately 2, 000 GPU hours.
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Female she her woman herself daughter mother gal girl female Mary
Male he his man himself son father guy boy male John

Random 1 book sun ice tree flower river house dog car mountain
Random 2 vase elephant xylophone jungle umbrella pencil kite notebook guitar zebra

Table 3: Gendered words for finding a female-male gender direction and a random direction in the embedding space.

% Female 0-2 2-5 5-10 10-25 25-50 50-75 75-90 90-95 95-98 98-100 Total

White 30 21 8 5 6 10 9 13 17 30 149
Black 30 9 14 18 6 12 8 10 27 30 164
Hispanic 30 1 0 1 0 0 1 0 4 30 67
Asian 14 2 5 4 11 7 11 3 6 27 90

Total 104 33 27 28 23 29 29 26 54 117 470

Table 4: The distribution of sampled first names by percentage of female from real-world statistics for each
race/ethnicity in our study.
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Figure 7: Additional results for OLMo-7B and Phi-3.5-mini. Scatter plot between each pair of the three variables
studied in § 4.1 and their Pearson correlation.
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Figure 8: Additional results for OLMo-7B and Phi-3.5-mini. (Left of each subfigure) Change of the dot product
between the name embedding from a template sentence n⃗temp and the gender direction g⃗ before and after the mention
of an occupation. (Right of each subfigure) Change of the output probability of the token “female” with and without
mentioning an occupation.
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Figure 9: Additional results for OLMo-7B and Phi-3.5-min from the experiments described in § 5.2. The plots show
the percentage of female biographies, Bias Coefficient (sorted in descending order), and the Spearman correlation
between DOT (n⃗bios,g) and the predicted probability for each occupation, defined as the “Internal Coefficient.”
Notations: †: p < 0.001. ∗: p < 0.005. All p values are corrected using the Holm–Bonferroni method.
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