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Abstract

Large language models (LLMs) have demon-
strated impressive instruction following capa-
bilities, while still struggling to accurately man-
age the length of the generated text, which is
a fundamental requirement in many real-world
applications. Existing length control methods
involve fine-tuning the parameters of LLMs,
which is inefficient and suboptimal for practi-
cal use. In this paper, we propose a novel itera-
tive sampling framework for text length control,
integrating the Metropolis-Hastings algorithm
with an importance sampling acceleration strat-
egy. This framework efficiently and reliably
regulates LLMs to generate length-constrained
text without modifying the underlying param-
eters, thereby preserving the original capabili-
ties of LLMs. Experimental results demonstrate
that our framework achieves almost 100% suc-
cess rates of length control on LLAMA3.1 for
tasks such as length-controlled abstractive sum-
marization and length-constrained instruction
following, with minimal additional computa-
tional overhead. This also highlights the signif-
icant potential of our method for precise length
control across a broader range of applications,
without compromising the versatility of LLMs.

1 Introduction

Recent advancement of pre-trained large language
models (LLMs) has significantly improved the per-
formance of various natural language processing
tasks (Vaswani, 2017; Devlin, 2018; Brown, 2020).
LLMs such as GPT-4 (Achiam et al., 2023) and
LLAMA (Touvron et al., 2023a,b; Dubey et al.,
2024) exhibit exceptional capabilities to follow in-
structions (Ouyang et al., 2022), allowing them to
generate text aligning closely with user intentions.
Applications such as dialogue generation (Yi et al.,
2024), code completion (Jiang et al., 2024), and
reasoning (Plaat et al., 2024) have benefited greatly
from these advances, establishing LLMs as the core
component in building general Al systems.

dcscts@nus.edu.sg

Despite the strong generative capability, LLMs
still struggle to precisely manage the length of gen-
erated text (Wang et al., 2024; Huang et al., 2024;
Li et al., 2024), due to inherent architectural lim-
itations such as subword tokenization (Sennrich,
2015; Devlin, 2018) and autoregressive decoding
(Sutskever, 2014; Vaswani, 2017; Brown, 2020).
This issue is critical because length control is a
fundamental requirement in many real-world appli-
cations. For example, summarization tasks often
require outputs of specific lengths to balance infor-
mativeness and conciseness (Fan et al., 2017; Liu
et al., 2018, 2022; Jie et al., 2024). In addition,
LiLM-based chatbots favor longer responses due to
the length bias introduced in pairwise preference
optimization (Singhal et al., 2023), which under-
mines the fairness of model evaluation (Dubois
et al., 2024a; Yuan et al., 2024) and degrades the
user experience in practical conversations.

To address the issue of length control, various
methods have been proposed, including fine-tuning
based on specifically designed length instructions
(Yuan et al., 2024; Wang et al., 2024; Li et al., 2024)
and reinforcement learning with length feedback
(Stiennon et al., 2020; Jie et al., 2024). However,
we argue that it is necessary to design length control
methods tailored for black-box LLMs for the fol-
lowing reasons: (1) Fine-tuning LLMs specifically
for length control requires extensive computational
resources and can degrade their general-purpose
utility (Lin et al., 2024). Worse still, not all LLMs
are open source. The fine-tuning methods cannot
be applied to black-box LLMs. (2) Length control
has been actually considered in the instruction tun-
ing phase of LLMs (Wang et al., 2022; Taori et al.,
2023). As such, a superior and more efficient so-
lution is to activate the inherent length-following
capabilities within LLMs rather than undertaking a
costly retraining process.

We propose a novel framework for black-box
LLMs that operates length control without the need

16878

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16878—16895

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



for parameter training. The length controlled gener-
ation can be viewed as sampling from a target distri-
bution, which is influenced simultaneously by the
length constraint and language probability. How-
ever, it is intractable to directly sample from this
distribution, and we utilize an iterative sampling
framework called Metropolis-Hastings (Metropolis
et al., 1953; Hastings, 1970), which is a classic
and prevalent Markov chain Monte Carlo (MCMC)
method specially suited for this complex scenario.
In detail, our framework initiates from the original
output of LLM and iteratively produces candidate
outputs conditioned on the previous ones via a pro-
posal distribution. The acceptance or rejection of
these candidates is determined by their comparative
advantage over previous candidates, which is quan-
tified as an acceptance distribution that involves:
the alignment with the target length, the generative
probability density of the LLM, and the probabil-
ity density of the proposal distribution. Further-
more, we leverage importance sampling (Kahn and
Marshall, 1953; Owen and Zhou, 2000) in the pro-
posal distribution to accelerate the iteration process,
where candidates with lengths closer to the desired
target are more likely to be sampled. We treat the
LLM as an immutable component, enabling the in-
tegration of effective length control mechanisms
across the broadest possible spectrum of LLMs.

We assess the effectiveness of our method on

several tasks, including the abstract text summa-
rization task with precise length control and the
instruction following task with maximum length
constraint. Experimental results demonstrate that
our black-box approach significantly improves ex-
isting LLMs in length control and achieves the state-
of-the-art performance without compromising the
quality of generated contents. Specifically, in the
case of the LLAMA3.1 model (Dubey et al., 2024),
our method achieves success rates close to 100%
of the length control in only five iterations at most,
highlighting its efficiency and practicality. Our
contributions are summarized as follows:

1. We propose a novel framework for black-
box LLMs, offering more flexible and general
length control compared to existing methods.

2. We introduce an innovative integration of the
classic Metropolis-Hastings algorithm with
modern LLMs, thereby enhancing the effi-
ciency and precision of length control.

3. We achieve remarkable length control perfor-
mance in advanced LLMs, showcasing the ro-
bustness and effectiveness of our framework.

2 Related Work

2.1 Instruction Following

L1Ms are endowed with powerful instruction fol-
lowing capabilities in the supervised fine-tuning
stage (Ouyang et al., 2022; Zhou et al., 2024). De-
spite being able to understand human instructions
and handle a broad spectrum of tasks, LLMs still
leave a large room for improvement in their instruc-
tion following capabilities (Liu et al., 2023). In
addition to training stronger instruction following
capabilities (Rafailov et al., 2024b,a), it is also im-
portant to better utilize and activate the power of
LLMs (Wei et al., 2022; Yao et al., 2023).

2.2 Length Control

Controlling the output length is a crucial skill in
text generation, particularly for tasks where lengths
vary significantly. Early length controllable gener-
ation methods focus on the abstractive summariza-
tion task. For example, some methods discretize
lengths into bins with specialized tokens (Fan et al.,
2017), introduce length constraint factors to convo-
lutional blocks (Liu et al., 2018), or optimize out-
put quality through minimum risk training (Makino
et al., 2019). In addition, length control signals can
be incorporated in positional encodings (Takase
and Okazaki, 2019), attention units (Yu et al., 2021;
Liu et al., 2022), and natural language instructions
(Yuan et al., 2024; Wang et al., 2024; Jie et al.,
2024; Li et al., 2024). These methods require the
length training, which is inefficient when applied
to LLMs and has the potential to damage general
abilities. Recent instruction-based control schemes
(Juseon-Do et al., 2024) can alleviate these issues
but still fail to achieve precise control. In contrast,
our framework effectively enhances LLM’s ability
to enable more precise text generation.

3 Methodology

3.1 Overall Framework: Metropolis-Hastings

As illustrated in Figure 1, we introduce how to ap-
ply the Metropolis-Hastings framework (Metropo-
lis et al., 1953; Hastings, 1970) to the length con-
trol scenario. Given the probability distribution of
LLMs P(y|z) and the score of length constraint
f(y), our target distribution 7 (y|x) is derived as:
r(ylz) = f(y)P(y|z) 7 0
[ fy)Pylz)dy
where x is the human instruction and y is the re-
sponse of the target LLM. We cannot directly sam-
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Figure 1: The overall sampling process of our Metropolis-Hastings framework. The iteration starts by sampling an
initial state from the distribution of LLM yo ~ P(y|x), and ends at y7, which maximizes the target combination of
length constraints and probability densities 7(y|z) o f(y)P(y|x). During each iteration, a new candidate content y;
is generated based on the previous one y;_; via the proposal distribution p(y;|y;—1, ). The generated candidate y;
will be either accepted or rejected considering the degree to which the target objectives are satisfied. We enhance the
original proposal distribution by incorporating length constraints, yielding the importance distribution ¢(y;|y;—1, x),
which increases the acceptance rate of candidates and significantly improves the iteration efficiency.

ple y from the target distribution 7(y|z) because:
(1) f(y) is a deterministic function designed to
evaluate length constraints, rather than a probabil-
ity distribution, which is not suitable for sampling;
and (2) the integral of the normalization constant
Z = [ f(y)P(y|z)dy is intractable.

The Markov chain Monte Carlo algorithms can
handle the problem by starting from an initial state
yo ~ P(y|z), iteratively generating a collection
of states [y1, . .., yn] with a transition distribution
P(yi|lyi-1, ), and approaching the target distri-

n
bution 7(y|z) = lm P(yolz) [] P(yi|yi-1, ).
Therefore, y,, can be considered as sampled from
the target distribution 7(y|z) when n — oc.

The Metropolis-Hastings algorithm designs the
transition probability as a combination of two steps:

P(yilyi-1, ) = p(yilyi-1, ©) Ayi-1 = vi), Q)

where p(y;|yi-1,x) is the proposal distribution that
generates a new candidate y; given the previous
one y;_1. The acceptance distribution A(y;-1 — ;)
provides the probability of accepting the proposed
candidate y;. To ensure convergence, 7(y|z) must
be the unique stationary distribution of the Markov
chain. Thus the Metropolis-Hastings algorithm fur-
ther requires the transition probability P (y;|yi-1, z)

to fulfill the detailed balance condition, which is a
sufficient condition for the stationary distribution,

7 (yi-1l2) P(Yilyi-1, ) = 7 (yi|l2) P(yi-1lyi, ©)-
(3)
Based on eqgs. (2) and (3), the acceptance distribu-
tion is derived to satisfy the following constraint:

Alyir = yi) _ 7(wil2)p(yialyi, ©)
Alyi = yirr)  7(Wir|2)p(ilyi-1, @)
_ [ Plyil2)p(yialyi, ©)

fi) P(yialo)p(yilyir, @)’

where the normalization constant Z cancels, mak-

ing subsequent calculations convenient. In addi-

tion, the most popular choice of A(y;-1 — ¥;) in
Metropolis-Hastings that satisfies eq. (4) is:

“)

. T (i) P(yilz)p(yi-1lyi, ©)
min (1’ f(yi1>P<yurx>p<yi|y“,x>) - O

The sampling process of Metropolis-Hastings is
illustrated in algorithm 1. During each iteration
loop, a new candidate y; is generated from the pre-
vious one y;-1. Whether to accept or reject the
new candidate is determined by the acceptance dis-
tribution A(y;-1 — y;), where the randomness is
achieved with a uniform distribution u ~ ¢/(0, 1).

In the black-box setting where direct access
to the internal probability outputs of LLM is not
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Algorithm 1 Metropolis-Hastings Algorithm

1: Initialize the start state yo ~ P(y|x)
2: fori =0tondo
3: Propose: y; ~ p(yi|yi-1,x)

4: Calculate: A(y;-1— 1Y) /Il eq. (5)
5. Randomize: v ~ U(0,1)

6: if u > A(y;-1 —y;) then

7: Yi = Yi-1 /l Reject
8: end if /I else Accept
9: end for

10: Return y,

available, the following key components of the
Metropolis-Hastings algorithm require careful and
specialized designs: (1) the length constraint score
f(y) (8§3.2), which serves as a quantitative metric
to assess the degree to which the generated sam-
ples adhere to predefined length requirements; (2)
the probability distribution of LLM P(y|z) (§3.3),
which estimates the likelihood of the LLM gener-
ating the specific sample y; and (3) the proposal
distribution p(y;|y;-1, ) (§3.4), which requires tai-
lored construction to effectively generate candidate
samples and efficiently explore the solution space,
ensuring adherence to the length constraint while
achieving sufficiently high generation quality.

3.2 Length Constraint Score f(y)

Given a word counter Len(-), such as the NLTK
word tokenization function (Bird et al., 2009), the
deviation of the LLM generated contents y from
the target length ¢ can be quantitatively measured
using the Manhattan distance, which is:

P(y,€) = |Len(y) — {. (6)

Considering the target of our sampling process,
the combination of f(y)P(y|z), we observe a re-
semblance to the constrained optimization problem,
where log f(y) can be interpreted as a constraint
and log P(y|x) serves as an objective to be maxi-
mized. Our target is similar to a Lagrangian func-
tion f(y)P(y|x) o log P(y|x) + Alog f(y) with
the Lagrange multiplier A = 1. Furthermore, our
sampling process can be seen as analogous to exte-
rior optimization, where the proposed candidates y;
are always unable to satisfy the constraints during
each iteration prior to the termination of the loop.
Therefore, the constraint function f(y) needs to
incentivize candidates that approximate the length
constraint, and terminate the iterations with a sig-
nificantly large reward when the length constraint

is satisfied. Thus our length constraint score is de-
fined as follows. For an exact target length ¢ > 0:

1
fly) = 5.0 ©)
For an interval of target length [¢1, (5]
1
RN
fly) = +oo, Li<y<ty, (8
1
ZNE N

where 0 < ¢1 < 5 < +00 and ¢5 can be +00.

3.3 Probability Distribution of LLM P(y|x)

We can obtain the responses generated by black-
box LLMs such as GPT-4 (Achiam et al., 2023),
i.e., sampling from their distributions y ~ P(y|z),

LUSER]: Answer the following instruction
using {¢} words or less: {z}

[ASSISTANT]: Answer: {yo}

which is easily accomplished with a simple instruc-
tion. However, we are unable to access their inter-
nal parameters or underlying probability distribu-
tions. Consequently, it is intractable to verify the
probability density P(y|z) of specific samples y.
To address this issue, we employ the LL.M-as-a-
Judge approach (Chiang et al., 2023; Zheng et al.,
2023; Dubois et al., 2024b) as a solution. Lever-
aging the advanced understanding, reasoning, and
mathematical capabilities of the model, we require
LLMs to score samples generated by themselves,
thus implicitly estimating their probability density
distributions. Besides, we predefine a series of per-
spectives to unify the scoring mode for our tasks.
For the abstractive summarization task, we mea-
sure the information coverage, linguistic fluency,
conciseness, logical coherence, and faithfulness
of the generated summaries. For instruction fol-
lowing, we measure the response with helpfulness,
relevance, accuracy, depth, creativity, and level of
detail. Denoting the score function as ¢(y|z), we
get the estimated probability distribution as:
_ oyle)
PR = T Slody ®
Similarly to the eq. (4), we can cancel the calcu-
lation of the normalization constant [ ¢(y|x)dy.
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Since the eq. (4) requires the calculation of the
ratio P(y;|z) + P(yi-1|x), where y; and y;_1 are
both sampled from the target LLM, we can further
refine the scoring function by employing a pairwise
comparison function ®(y;, y;-1|z) that

P(yi|z) P(yi|x)
P(yi1lz) o(yi-1lx)’

where the pairwise score can discern subtle differ-
ences between the sample pair (y;, y;-1) at adjacent
iteration steps. In addition, the pairwise function
will produce scores with less fluctuation than the
absolute one ¢(y|z) (Zheng et al., 2023).

(I)(yzayz 1‘$) (10)

3.4 Proposal Distribution p(y;|y;-1, z)

The proposal distribution p(y;|yi-1, x) plays a piv-
otal role, as it directly influences the efficiency and
quality of the sampling process. Since the prob-
ability distribution of LLM, P(y|x), is estimated
by itself (§3.3), requiring LLMs to further approxi-
mate the probability density of the proposal distri-
bution p(y;|yi-1, ) not only introduces additional
complexity, but also amplifies the estimation er-
rors. Therefore, we impose a symmetry constraint
(Chib and Greenberg, 1995; Haario et al., 2001)
on the design of the proposal distribution, which is
q(Yilyi-1,®) = q(yi-1|yi, x). And the acceptance
distribution A(y;-1 —v;) (eq. (5)) reduces to

min (L f(yzl)P(yzﬂiE)) 7

when current result is better than the previous one,
we directly accept it. Otherwise, we accept with a
probability equal to its ratio, enabling expansion
of the sampling space. Therefore, we design time-
unbiased instructions to make LLM satisfy the sym-
metry constraints as much as possible. The detailed
prompt template for LLMs is as follows:

(an

[USER]: Answer the following instruction
using {¢} words or less: {z}

[ASSISTANT]: Answer: {y; -1}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANT]: Answer: {y;}

where y; and y;_; are equivalent and interchange-
able in the semantics of this template.

However, this preliminary Metropolis-Hastings
framework, constructed with the current proposal
function p(y;|y;-1, ), is not efficient due to fol-
lowing reasons. (1) Intuitively, when generating
new candidates, the length signal remains the initial
one ("using £ words or less'). Without introducing
updated length signals, LLM may remain trapped
in its own errors, unable to converge to improved
solutions. (2) From a theoretical perspective, the
sampling efficiency and quality will be maximized
when the proposal function p(y;|y;-1,x) aligns
closely with the target distribution 7(y|z) (Gel-
man et al., 1997). This means that the sampling
efficiency decreases as this discrepancy increases.

Therefore, we apply the importance sampling
strategy (Kahn and Marshall, 1953; Owen and
Zhou, 2000) to improve the proposal distribution.
We define an importance distribution ¢(y;|y;-1, x)
that complies with length constraints, serving as a
replacement for the proposal distribution to facili-
tate accelerated sampling. Equations (5) and (11)
can be further derived when y; ~ q(yi|yi-1, x):

p (yz yi-1, @ )
=4l )

ilyirz) <1 m>

f( z) (yzya;)
7 f(yz‘-1)P(yZ-_1|x)> ’ (12)

A(yz 1Y

<min (1

% <1 and eq. (11) becomes an up-

per bound of A(y;-1 — y;). By simply replac-
ing line 3 in algorithm 1 with y; ~ q(y;|yi-1|x)
and calculating the acceptance rate with the upper
bound eq. (12), we can significantly accelerate the
sampling process. Although calculating this upper
bound may lead to higher acceptance rates, poten-
tially compromising generation quality, the remark-
able capabilities of LLMs fortunately mitigate this
risk to an almost negligible level. In addition, the
detailed template for the importance distribution is:

where

[USER]: Answer the following instruction
using {¢} words or less: {z}

[ASSISTANT]: Answer: {y;-1}

LUSER]: The generated answer is too (long /
short) at {Len(y)} words.

Please (delete / add) {Z(y, ¢)} words appro-
priately based on the previous response:

[ASSISTANT]: Answer: {y;}
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Models Samplers | Acct [ L1, [ L2| [ RouGe-1/2/3 | BERTSCORE-P/R/F
; INST 41% | 1142 [ 1520 [ 0.37/0.13/0.24 0.89/0.88/0.89
LLAMA2 | Cwmp 4.5% 8.58 | 11.22 | 0.37/0.13/0.24 0.89/0.88/0.88
! OURS 81.6% 0.24 0.64 | 0.36/0.12/0.24 0.88/0.88/0.88
! INST 3.2% 8.64 | 10.83 | 0.33/0.10/0.21 0.88/0.88/0.88
QWEN2.5 | Cwmp 4.1% 839 | 10.54 | 0.33/0.10/0.21 0.88/0.88/0.88
! OURS 86.4% 0.18 0.72 | 0.33/0.10/0.21 0.88/0.88/0.88
! INST 9.1% 478 6.10 | 0.39/0.14/0.25 0.89/0.89/0.89
LLAMA3 | Cwmp 9.8% 4.53 594 || 0.39/0.14/0.25 0.89/0.89/0.89
! OURS 78.6% 0.29 0.66 | 0.38/0.14/0.25 0.89/0.89/0.89
! INST 7.7% 3.88 510 || 0.38/0.13/0.24 0.89/0.88/0.89
LLAMA3.1 | Cwmp 10.8% 3.83 514 || 0.38/0.13/0.24 0.89/0.88/0.89
! OURs || 100.0% 0.00 0.00 || 0.38/0.13/0.24 0.88/0.88/0.88
! INST 5.1% 829 [ 13.69 | 0.36/0.12/0.23 0.88/0.88/0.88
GPT-3.5 | Cwmp 32.5% 175 435 | 0.36/0.12/0.23 0.88/0.88/0.88
! OURS 95.0% 0.14 L1l || 0.36/0.12/0.23 0.88/0.88/0.88
: INST 15.7% 2.10 2.67 || 0.36/0.12/0.23 0.88/0.88/0.88
GpT-4 ; Cwmp 35.3% 1.43 1.99 || 0.36/0.12/0.23 0.88/0.88/0.88
! OURs 99.2% 0.01 012 | 0.36/0.12/0.23 0.88/0.88/0.88

Table 1: Results of the length control on the CNN/DailyMail dataset. INST is the baseline response with length-
guided instructions. CMP is the InstructCMP baseline. OURS represents our iterative sampling framework.

It should be noted that our method can perform
parallel sampling as long as the corresponding LLM
supports it, further improving the control efficiency.

4 Experiments

4.1 Experimental Setup

Datasets For exact length control, we utilize the
CNN/DailyMail dataset (CNNDM, Nallapati et al.
(2016)), where the length instruction £ is extracted
from the references. For length-interval control, we
use the Alpaca-Eval-LI (ALPACA) and MT-Bench-
LI (MTBENCH) datasets (Yuan et al., 2024), which
are derived from the Alpaca-Eval dataset (Dubois
et al., 2024b) and the MT-Bench dataset (Zheng
et al., 2023). The length interval instructions are
already provided in the dataset, where ¢; = 0 and
{5 is the length of the reference response. For CN-
NDM, we randomly choose 1000 samples from
the 3.0 version of the test set, since the instruction
following task contains 1042 samples (802 from
ALPACA and 240 from MTBENCH).

LLMs We evaluate the effectiveness of our frame-
work in the latest LLMs, including Llama-2-7B
(LLAMA2, Touvron et al. (2023b), Qwen-2.5-
7B (QWEN2.5, Team (2024)), Llama-3/3.1-8B
(LLAMA3/3.1, Dubey et al. (2024)), and GPT-
3.5/4 (Achiam et al., 2023). For white-box LLMs
like LLAMA, we use them as black-box models,
where the maximum iteration trial is 5 with a beam
size of 16. For black-box models based on APIs
like GPT-4, we set the maximum iteration trial as

Models Samp. | Acct[ L1} [ L2] [[WIN.}

ALPACA-EVAL-LI

INST || 91.6%
CMP || 95.3%
' OURS | 99.8%
. INST || 37.2%
. CmP|[82.4%
' OURS ||99.2%

MT-BENCH-LI
INST
Cmp

OURS
INST
Cmp

OURS

71.6%
71.9%
76.7%
30.2%
69.5%
92.0%

2.47
0.79
0.06
21.38
1.43
0.02

15.64
7.18
1.69

37.61
4.92
0.17

|
|
LLAMA3.1 |

GPT-4

35.2%
38.8%
42.9%
27.4%
41.8%
63.7%

80.4%
90.1%
98.8%
54.7%
84.0%
98.8%

10.15
2.12
0.73

13.99
1.69
0.05

60.71
10.37
7.12
29.16
6.13
0.41

|
|
LLamA3.1 |
|

|
GrT1-4 :
|

Table 2: Results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset.

15 without parallel sampling. We compare with
two baselines: naive instructions and InstructCMP
(Juseon-Do et al., 2024), which designs specialized
instructions for length compression.

Evaluation Metrics We use several metrics to
estimate the effect of the length control. ACCuracy
measures the ratio of generated contents that are
fully in accordance with the length constraint.
Given N generated contents, L1 measures the
average Manhattan distance >y | Len(y) — ¢
and L2 measures the average Euclidean distance

\/ + >y | Len(y) — ¢|2. For quality evaluation of
the summary task, we use the classic score ROUGE
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Models  [[WINT[ TIE [LOSE] [ KaPPAT
QWEN2.5 |/69.5% |10.0% | 20.5% 0.57
LLaMA3.1|[59.0%(12.5% | 30.5% 0.48

Table 3: Human Evaluation: OURS vs INST.

Trials | Acct [L1)] L2| [[ROUGE-(1/2/L)

LLAMA3.1
0 7.7%|3.88| 5.10| 0.38/0.13/0.24
1 86.4%(0.18| 0.55| 0.38/0.13/0.24
2 99.2%10.04| 0.28 | 0.38/0.13/0.24
3 99.8%(0.01| 0.03| 0.38/0.13/0.24
4 100.0%|0.00| 0.00 || 0.38/0.13/0.24
5 100.0%0.00| 0.00 || 0.38/0.13/0.24

Table 4: Analysis of the iteration trial on the CNNDM
dataset, where the beam size is 16.

(Lin, 2004), BERTSCORE (Zhang* et al., 2020)
and human evaluation. For instruction following
tasks, we use the length-instructed WiNrate (Yuan
et al., 2024), where responses are compared pair-
wise with baselines. The winner is determined by
both the quality of the responses provided by LLM-
as-a-Judge (Zheng et al., 2023), and the adherence
to the length constraints. If the response exceeds
the length constraint, it is automatically lost.

4.2 Main Results

The detailed comparisons between the baselines
and our framework are demonstrated in Tables 1
and 2. Table 1 presents the results of length con-
trol experiments conducted on the CNN/DailyMail
dataset. Our method demonstrates significant im-
provements over the baseline instruction meth-
ods across all models and length-related metrics.
Specifically, we achieve near-perfect or perfect
accuracy (Acc), with values exceeding 95% for
the most advanced LLMs (LLAMA3.1, GPT-3.5,
and GPT-4), while the baselines struggle with ac-
curacy values below 36%. Furthermore, our ap-
proach exhibits substantially lower errors of L1
and L2, indicating precise adherence to the target
lengths. For example, on LLAMA3.1, our frame-
work achieves an accuracy of 100%, demonstrat-
ing flawless length control. Similarly, we attain a
99.2% accuracy on GPT-4, reducing the L1 and
L2 errors to 0.01 and 0.12, respectively. Beyond
the significant improvement in length control, our
method introduces almost no degradation in gen-
eration quality, where ROUGE and BERTSCORE
remain almost the same to baselines.

Table 2 evaluates the performance of our method

Beams | Acct [L1]| L2| [ROUGE-(1/2/L)

LLAMA3.1
0 7.7%3.88| 5.10| 0.38/0.13/0.24
1 93.3%(0.14| 0.88| 0.37/0.13/0.24
2 98.9%(0.02| 0.12| 0.37/0.13/0.24
4 99.7%(0.01| 0.05| 0.38/0.14/0.25
8 100.0% |0.00| 0.00 0.38/0.13/0.24
16 100.0%0.00| 0.00 || 0.38/0.13/0.24

Table 5: Analysis of the beam size on the CNNDM
dataset, where the iteration trial is 5.

Samp. [ Acct[L1][L2] | ROUGE-(1/2/L)

INST | 7.7%]3.88[5.10 0.38/0.13/0.24
RAND | 38.8%[1.18|1.85 || 0.38/0.14/0.24
MH  ||40.2%|1.47|3.20 | 0.36/0.13/0.23
MH-+Is | 93.3%(0.14]0.88 || 0.37/0.13/0.24

Table 6: Ablation study of LLAMA3.1 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

on Alpaca-Eval-LI and MT-Bench-LI datasets. Al-
though these two datasets are relatively easier com-
pared to the exact length control task, the perfor-
mance improvement (with an accuracy increase of
at least 4.5%) brought about by our method com-
pared to the baselines is significant, confirming the
consistent superiority of our framework across dif-
ferent benchmarks. In addition, the LLM judged
pairwise WiNrate of our approach improves. These
results highlight the effectiveness of our iterative
sampling framework in achieving robust and accu-
rate length control across diverse LLMs.

Table 3 is the human evaluation on CNNDM
with three human and three LLM annotators. Each
evaluator is presented with the article and the paired
summaries of two methods (OURS and INST). They
are asked to assign the win, tie, or lose for each
pair based on the informativeness and conciseness
of each summary. We randomly select 100 cases
for each method and shuffle their demonstrated
positions. It is observed that our method shows a
significant advantage over the baseline. Beisdes,
the human and LLM evaluations are highly aligned,
as evidenced by strong kappa correlations.

4.3 Analyses

We analyze the hyperparameters of our framework,
the number of iteration trials and the beam size,
which are illustrated in Tables 4 and 5. Both hy-
perparameters are used to expand and explore the
sampling space, with larger iteration trials demand-
ing greater time overhead and larger beam sizes in-
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Task  Samp. [stees| | Acct [L1][L2]

' RAND | 18.6 || 95.3%0.06]0.35

C\NDM | MH | 17.1 || 96.0%0.34|1.85
'MH+Is| 2.4 |100.0% | 0.00 |0.00

' RAND | 0.6 [ 98.0%[0.21]1.71

ALPACA : MH 0.9 95.3%10.32|2.67
'MH+Is| 0.1 |100.0% |0.00|0.00

' RAND | 3.0 || 97.9%0.33]3.26
MTBENCH: MH 3.3 96.7%0.4214.88
'MH+Is| 0.8 | 99.5%0.06|0.85

Table 7: Convergence steps on LLAMA3.1.

curring higher space costs. As the sampling space
reduces, the influence of length control progres-
sively decreases. In particular, this reduction is
non-linear, with the rate of decline accelerating sig-
nificantly. Besides, comparing the two tables, we
can observe that the number of iteration trials con-
tributes more to the control effect than the beam
size. With a smaller sampling space of 2 beams
x 5 trials, the accuracy (98.9%) outperforms the
situation with 16 beams x 1 trial (86.4%).

4.4 Ablation Study

Table 6 presents an ablation study evaluating the
performance of different sampling strategies for
LLAMA3.1 on the CNN/DailyMail dataset. We
examine four sampling strategies: (1) INST is the
instruction following baseline without iterations;
(2) RAND extends the baseline to resample at each
iteration and retains the best one; (3) MH is our
initial version of the Metropolis-Hastings frame-
work that resamples with the proposal distribution
y ~ p(yilyi—1,x) during each iteration; and (4)
MH+IS is our complete method which replaces the
proposal distribution with the importance distribu-
tion q(yi|yi—1,z). We set the beam size to 1, be-
cause sampling a batch of initial states yo ~ P(y|z)
is actually the RAND method and we want to elimi-
nate this influence. Experimental results show that
with the powerful instruction following capabilities
of LLMs, random sampling of more candidates can
achieve good control effects. However, the origi-
nal Metropolis-Hastings method does not make the
process more efficient and is sometimes even worse
than random sampling. By replacing the proposal
distribution with an importance sampling strategy,
our method achieves significant improvements.

4.5 Convergence Study

Furthermore, we analyze the accurate convergence
speed of different sampling methods in Tables 7

Task  Samp. [stees| [ Acct[L1][ L2]

' RAND | 2.6 [93.8%0.06] 0.29

CNNDM | MH 2.5 191.4%0.09| 0.58
'MH+Is| 1.0 |98.0%|0.02| 0.14

' RanD | 2.5 [[77.3%[2.52] 6.54

ALPACA : MH 3.0 [93.6%3.02| 8.67
'MH+Is| 0.4 98.2%0.09| 0.81

i RAND | 1.3 [[83.7%[2.57| 7.89
MTBENCH: MH 1.8 [78.3%|4.09|14.71
'MH+Is| 0.1 99.8%|0.01| 0.09

Table 8: Convergence steps on GPT-4.

and 8. We set the beam size to 1 as in section 4.4
and the maximum iteration step for each case is
100 for LLAMA3.1 and 15 for GPT-4. We report
the average iteration STEPS required to satisfy the
length constraints, which excludes the first sam-
pling step yo ~ P(y|x). We observe that differ-
ent models have different convergence steps for
different tasks. In general, precise length control
tasks are more difficult and require more iterations.
Even so, we achieve an almost perfect control ef-
fect with only 2.4 iteration steps on average for
LLAMA3.1. We even only need an average of 0.1
iterations for LLAMA3.1 to perform perfect control
on the Alpaca-Eval-LI dataset. For GPT-4, we only
need 1.0 iterations at most on average to obtain
good control results. Therefore, our framework can
achieve extremely effective length control perfor-
mance with acceptable time overhead.

5 Conclusion

We propose a novel length controllable sampling
framework for black-box models and verify the
effectiveness with experiments and analyses. Our
study confirms that an almost perfect length con-
trol can be achieved on LLMs, which is of great
significance to improve their instruction following
ability. In addition, although our framework per-
forms well, its sampling efficiency and generation
effect are affected by the capabilities of LLM it-
self. Fortunately, with the rapid development of
LLMs, this concern will gradually disappear. Its
worth noting that we do not directly compare with
the length training methods, because (1) the black-
box models are not trainable, and (2) the training
methods are based on specific datasets and possess
some data bias, which is contrary to the objective
of a more generalized length control. We hope to
explore more efficient and general length control
schemes in our future studies.
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Limitations

Despite the promising results demonstrated in our
experiments, our method has some limitations that
merit further discussion:

Inference Overhead:

Our approach introduces additional inference
overhead due to the iterative nature of the method.
Although the experimental results show that satis-
factory results can often be achieved in 2 iterations
for advanced models such as LLAMA3.1. However,
more iteration steps are required for more difficult
scenarios or weaker LLMs. This additional compu-
tational cost may present challenges for large-scale
batch generation tasks where inference speed is
critical. Future research could explore optimiza-
tion techniques to reduce the number of iterations
required or design lightweight variants to better
suit the high-throughput applications.

Dependency on Instruction Following Abilities:
The performance of our method is highly depen-
dent on the instruction following capabilities of
the underlying model. For state-of-the-art LLMs
such as LLAMA3.1 and GPT-4, fewer iterations
are typically sufficient to achieve satisfactory re-
sults. However, when applied to models with less
robust instruction-following abilities, the number
of iterations required may increase significantly,
potentially affecting efficiency. Addressing this
limitation could involve developing methods to en-
hance instruction alignment for less capable models
or incorporating external mechanisms to mitigate
the dependency on instruction following abilities.

Considering our experiments, the limitations are:

Baselines:

We do not directly compare with training meth-
ods for length control because: (1) our frame-
work is dedicated to black-box LLMs, which is
not trainable; (2) length instructions have already
been incorporated in the supervised fine-tuning
stage of LLMs, which means LLMs themselves are
length trainable baselines; (3) the training methods
are based on specific datasets and possess some
data bias, which is contrary to the objective of a
more generalized length control; and (4) large-scale
training of length instructions on LLMs such as
LLAMA3.1 requires a lot of computing resources
that we cannot currently afford.

Models:

Currently, we only test the most widely used
LiLMs. Due to the limitations of computing re-
sources and costs, we are unable to test white-box
models with larger parameters (such as 70B), nor
can we afford the test of other API-based black-box
LLMs on a large scale.

Ethics Statement

This research focuses on controlling the output
length of L1LMs to address practical usability and
fairness concerns in various applications, such as
summarization, dialogue systems, and content gen-
eration. By enabling precise length control, this
work aims to enhance user experience, ensure rele-
vance, and reduce unintended biases introduced by
excessively verbose or overly concise outputs.

We recognize the potential ethical risks associ-
ated with the misuse of controlled generation, such
as the creation of misleading or harmful content
tailored to specific lengths. To mitigate such risks,
our methodology emphasizes transparency, repro-
ducibility, and alignment with ethical guidelines
in Al development. Additionally, we advocate for
integrating robust content moderation mechanisms
in downstream applications to safeguard against
unintended consequences.

This research was conducted following estab-
lished ethical standards, ensuring that the datasets
used respect privacy and are free of harmful biases
to the best of our ability. Future work will further
explore the societal implications of this technology,
ensuring its responsible and equitable deployment.
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Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. A Prompt Templates
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International ~ A.1 Initial States

Conference on Learning Representations. . .. )
For the abstractive summarization task with exact

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan  length constraints, we randomly choose an exam-
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,  ple (z,, 4., £.) from the training set as an one-shot

Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. .
Judging llm-as-a-judge with mt-bench and chatbot demonstration for LLMs, because the chat LLMs

arena. Advances in Neural Information Processing ~ are not specifically trained for the output mode of
Systems, 36:46595-46623. summary tasks. The detailed template is:

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping

Yu, Lili Yu, et al. 2024. Lima: Less is more for align- .
ment. Advances in Neural Information Processing [SYSTEM]: You are a powerful abstractive

Systems, 36. summarizer.
[USER]: Document: {z.}
Based on the previous document, provide a
high-quality summary in exactly {/.} words:

[ASSISTANT]: Summary: {y.}

[USER]: Document: {x}
Based on the previous document, provide a
high-quality summary in exactly {¢} words:

[ASSISTANT]: Summary: {yo}

For instruction following tasks with length inter-
vals, we directly use zero-shot with the template:

LUSER]: Answer the following instruction
using {¢} words or less: {z}

[ASSISTANT]: Answer: {yo}

A.2 Probability Densities of Current States

We demonstrate the detailed {Criteria} of eval-
uation for different tasks. For abstractive summa-
rization: we score the generated summaries in 5
dimensions on a scale of 1-10.

1. Information Coverage: Does the summary in-
clude the most important and critical informa-
tion from the document?

2. Linguistic Fluency: Are the sentences in the
summary fluent, natural, and grammatically cor-
rect?

3. Conciseness: Does the summary avoid redun-
dancy while retaining key information?

4. Logical Coherence: Is the summary well-
structured with clear and logical flow?
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5. Faithfulness: Does the summary accurately re-
flect the facts in the original document without
adding false or misleading information?

The evaluation {Criteria} for the general in-
struction following task is of 6 dimensions:

1. Helpfulness: Does the response directly ad-
dress the instruction and provide meaningful
assistance?

2. Relevance: Does the response stay on topic and
avoid unnecessary or unrelated information?

3. Accuracy: Is the information in the response
factually correct and free of errors?

4. Depth: Does the response demonstrate a deep
understanding of the topic, including nuanced
explanations where relevant?

5. Creativity: Does the response display original-
ity, creativity, or a unique approach to address-
ing the instruction?

6. Level of Detail: Is the response sufficiently
detailed, providing comprehensive and thorough
explanations where necessary?

Following the setting of MT-Bench, we set a
special evaluation {Criteria} for math-related in-
struction following tasks such as reasoning, math
and coding, which is described below.

1. Correctness: Is the answer logically sound, fac-
tually accurate, and free from errors?

2. Helpfulness: Does the response directly ad-
dress the instruction and provide meaningful
assistance?

3. Clarity: Is the response well-structured and
easy to understand?

4. Efficiency: Does the response provide an opti-
mal solution without unnecessary complexity?

5. Completeness: Does the response fully cover
the instruction’s requirements and edge cases?

6. Robustness: Can the response handle ambigu-
ity or complexity in the instruction?

We formalize the output to facilitate the extrac-
tion of key information, where the { Format} is
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#### Response 1:

1. Information Coverage:: [Score]/10

2. Linguistic Fluency: [Score]/10
**Qverall Score:** [Total Score]/50

#### Response 2:

1. Information Coverage:: [Score]/10

2. Linguistic Fluency: [Score]/10
**Qverall Score:** [Total Score]/50

### Conclusion:

- **Better Response:** [Response 1/Re-
sponse 2].

- **Score Ratio (Response 1 + Response
2):** [Ratio, rounded to two decimal places].

We calculate the eq. (10) via

P(yi|z) ~ ¢ (yilz)
P(yialz) — #(yia|z) (13)
_ Score of Response 1

~ Score of Response 2°

Therefore, the prompt templates for estimating the
target probability density are:

[SYSTEM]: You are a powerful evaluator for
abstractive summarization.

[USER]: I need to compare and evaluate the
quality of two summaries generated for a
given document. Please provide a quantita-
tive assessment of their performance based
on the criteria below.

Document: {z}

Summary 1: {y;}

Summary 2: {y;_1}

Evaluation Criteria (each scored on a scale
of 1-10, with 10 being the best): {Criteria}
Instructions:

* Score each summary based on the above
criteria.

* Calculate an overall score for each sum-
mary as the sum of all criteria scores (maxi-
mum 50).

* Conclude by identifying which summary
is better overall.

* Calculate a score ratio of Summary 1 to
Summary 2 (Summary 1 Score - Summary
2 Score).

Output Format: { Format}



where we force LLMs to score the responses of the
adjacent steps generated by itself. By extracting
the score ratio from { Format}, we can estimate
the fraction of the target distribution.

For instruction following tasks, we use the pair-
wise template derived from the Alpaca-Eval, which
emphasizes that the length of the generated content
and the position of the presentation should not be a
bias in scoring.

[SYSTEM]: You are a highly efficient assis-
tant, who evaluates and selects the best large
language model (LLMs) based on the quality
of their responses to a given instruction.
This process will be used to create a leader-
board reflecting the most accurate and
human-preferred answers.

[USER]: I require a leaderboard for various
large language models. I’ll provide you with
an instruction given to these models and their
corresponding responses. Your task is to as-
sess these responses, provide a quantitative
assessment of their performance based on
the criteria below, and select the model that
produces the best output from a human per-
spective. Avoid any position biases and en-
sure that the order in which the responses
were presented does not influence your deci-
sion.

Instruction: {z}

Response 1: {y; }

Response 2: {y;—_1}

Tasks:

* Score each response based on the above
criteria.

* Calculate an overall score for each response
as the sum of all criteria scores (maximum
60).

* Conclude by identifying which response is
better overall.

* Calculate a score ratio of Response 1 to
Response 2 (Response 1 Score + Response
2 Score).

Output Format: { Format}

A.3 Propose New States

Proposal Distribution For the abstractive sum-
marization task, the prompt template for sampling
from the proposal distribution p(y;|y;-1, x) is:

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: {z}

Based on the previous document, provide a
high-quality summary in exactly {¢} words:

[ASSISTANT]: Summary: {y;—1}

[USER]: Please generate a new summary
based on the previous one:

[ASSISTANT]: Summary: {y;}

The template for instruction following task is:

[USER]: Answer the following instruction
using {/} words or less. \n\n {x}

[ASSISTANT]: Answer:\n{y;_1}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANTI: Answer: \n {y;}

Importance Distribution We split the impor-
tance distribution into two segments. When the can-
didate length is far from the target length 2(y, ¢) >
3, we use a looser objective so that LLMs can
have more opportunities for semantic organization,
which is beneficial for the quality of generation.
The template for abstractive summarization is:

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {z} \n\n Based
on the previous document, provide a high-
quality summary in exactly {¢} words:

[ASSISTANT]: Summary: \n {y;_1}

[USER]: The generated summary is too
(long / short) at {Len(y)} words.

Please improve it to be exactly {¢} words
by (focusing on the core ideas and removing
some redundant details / adding some details
and maintaining clarity and relevance):

[ASSISTANTI: Summary: \n {y;}
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The prompt template for instruction following is:

[USER]: Answer the following instruction
using {¢} words or less. \n\n {z}

[ASSISTANT]: Answer: \n {y;_1}

[USER]: The generated answer is too long
at {Len(y)} words. Please improve it to be
exactly {¢} words or less by focusing on the
core contents and removing any unhelpful,
irrelevant, or inaccurate parts:

[ASSISTANT]: Answer: \n {y;}

When the candidate length is close to the target
length 2(y,¢) < 3, we force an accurate length
control such that LLMs are required to add or delete
an exact number of words. The prompt template
for abstractive summarization is:

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {z} \n\n Based
on the previous document, provide a high-
quality summary in exactly {¢} words:

[ASSISTANT]: Summary: \n {y;—1}

[USER]: Please (delete / add) {Z2(y,¢)}
words appropriately based on the previous
summary:

[ASSISTANT]: Summary: \n {y;}

The prompt template for instruction following is:

[USER]: Answer the following instruction
using {¢} words or less. \n\n {z}

[ASSISTANT]: Answer: \n {y;_1}

[USER]: The generated answer is too long
at {Len(y)} words. Please delete {Z(y, ¢) }
words appropriately based on the previous
response:

[ASSISTANT]: Answer: \n {y;}

Models H Top-K \ Top-P \ Temp. \ Rep.

QWEN2.5 20 0.8 0.7 1.05
LLAMA2 50 0.9 0.6 1.00
LLAMA3 50 0.9 0.6 1.00
LLAMA3.1 50 0.9 0.6 1.00

Table 9: Generation configurations of LLMs.

Models | WINT| TIE |LOSE] [ KAPPAT
QWEN2.5 (| 71.0%[12.0% | 17.0% 0.61
LLAMA3.1{[58.0% | 14.0% | 28.0% 0.53

Table 10: Human Evaluation: OURS vs INST. (three
human evaluators)

B Experimental Details

Our experiments are implemented on the Hugging-
face Transformers package'. All LLMs we used
are the chat version trained with supervised fine
tuning, where LLAMA2 and QWEN2.5 have 7B pa-
rameters while LLAMA3 and LLAMA3.1 have 8B
parameters. The generation configurations of each
model are set by default, as demonstrated in Table 9.
There is no training stage of our framework, and the
inference is performed on an NVIDIA A100 80GB
GPU with a random seed of 0. For the CNN/Daily
Mail dataset, we randomly choose 1000 samples
from the 3.0 version of the test set, since the instruc-
tion following task contains 1042 samples (802
from Alpaca-Eval-LI and 240 from MT-Bench-LI).

We conduct a human evaluation involving three
Ph.D. students with expertise in natural language
processing and IELTS scores of at least 6.5. Each
evaluator is presented with the article and the paired
summaries of two methods (OURS and INST). They
are tasked with assigning a score for each pair as a
win, tie, or lose based on the informativeness and
conciseness of each summary. We randomly shuf-
fle the demonstrated position of summaries from
different samplers and the evaluators are blinded
to the identity of the samplers to prevent bias. We
randomly select 100 cases for each model on CN-
NDM. To compensate for the inability to hire na-
tive English-speaking evaluators, we further lever-
age state-of-the-art English-oriented LLMs as ad-
ditional evaluators, which are GPT-4o-latest, Meta-
Llama-3.1-405B-Instruct, and claude-3.5-sonnet-
20241022. These models have been extensively
validated in numerous studies, demonstrating per-

"https://github.com/huggingface/transformers
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Models [[WINT| TIE |LOSE| | KAPPAT
QWEN2.5 ||68.0% | 8.0% | 24.0% 0.68
LLAMA3.1 ([56.0% | 11.0%| 33.0% || 0.59

Table 11: Human Evaluation: OURS vs INST. (three
LLM evaluators)

Models  [|[WINT| TIE |LoSE| | KAPPAT
QWEN2.5 |[69.5%(10.0% | 20.5% 0.57
LLAMA3.1 ([59.0% | 12.5% | 30.5% 0.48

Table 12: Human Evaluation: OURS vs INST. (three
human and three LLM evaluators)

formance that exceeds human evaluators in vari-
ous NLP tasks. By incorporating both human and
Al-based assessments, we ensure a more compre-
hensive and reliable evaluation of summary quality.
The results and kappa correlations among three hu-
man evaluators, three LLM evaluators, and three
human and three LLM evaluators are demonstrated
in Tables 10 to 12. We can observe that the human
evaluations are highly aligned with the LLM anno-
tations, with strong kappa correlations. Our method
shows a significant advantage over the instruction
baseline considering the informativeness and con-
ciseness of the summaries. This improvement is
not in line with the ROUGE score. Because the
ROUGE score calculates the correlation between
the generated summaries and the reference sum-
maries, and the zero-shot / one-shot LLMs share a
totally different distribution compared to the refer-
ences. Therefore, our method can improve both the
accuracy of length control and the quality of gen-
erated contents. In addition, the slight decrease in
the ROUGE score of our method can be explained
by the fact that ROUGE is a recall score and it is
easy for longer contents to have a higher score. The
prompt used for LLM evaluators are as follows.

C Analyses

Full results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset are
demonstrated in Table 15. We demonstrate the
hyperparameter analyses in Tables 16 and 17. Sim-
ilar to the observation in §4.3, the marginal effect
of LLAMA3 as the sampling space grows is be-
tween QWEN2.5 and LLAMA3.1. For ablation
studies in QWEN2.5 (Table 14) and LLAMA3 (Ta-
ble 13), our sampling framework outperforms other
methods. However, since the instruction following

[SYSTEM]: Please act as an impartial judge
and evaluate the quality of the summaries
provided by two Al assistants to the
document displayed below.

You should choose the assistant that summa-
rizes the document more informative and
concise.

Your evaluation should also consider factors
such as the information coverage, linguistic
fluency, conciseness, logical coherence, and
faithfulness.

Begin your evaluation by comparing the two
summaries and provide a short explanation.
Avoid any position biases and ensure that
the order in which the summaries were
presented does not influence your decision.

Do not allow the length of the summaries to
influence your evaluation.

Do not favor certain names of the assistants.
Be as objective as possible.

After providing your brief explanation,
output your final verdict by strictly following
this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[C]]"
for a tie.

Document: article

Assistant A’s Answer: summary 1

Assistant B’s Answer: summary?2

capabilities of these models are not as powerful
as LLAMA3.1, their improvement may not be as
significant.

D Generated Cases

The generated cases of LLAMA3.1 on the Alpaca-
Eval-LI dataset are demonstrated in Table 18.
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Trials || Acct [L1]| L2] | ROUGE-(1/2/L)
Samp. | Acct|L1][ L2] [|[ROUGE-(1/2/L) QWENZS

79.1%(0.29| 1.16 0.33/0.10/0.21
5 | 86.4%0.18| 0.72] 0.33/0.10/0.21

LLAMA3

0 9.1%|4.78| 6.10| 0.39/0.14/0.25
48.3%10.98| 1.80| 0.38/0.14/0.24
64.8% (0.58 | 1.05| 0.38/0.13/0.24
68.4%(0.44| 0.85| 0.38/0.13/0.24
72.3%0.36| 0.75| 0.38/0.14/0.25
5 78.6%(0.29| 0.66 || 0.38/0.14/0.25

=W N =

Table 13: Ablation study of LLAMA3 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

Samp. || Acct|L1]| L2] [ROUGE-(1/2/L)
INST 3.2%(8.64|10.83 | 0.33/0.10/0.21
RAND |[17.7%[3.54| 5.23| 0.33/0.10/0.21
MH  ||14.1%|4.73| 7.65| 0.32/0.10/0.21
MH+Is || 24.6% [2.41| 4.02 | 0.33/0.10/0.21

B~ W N =

LrLamMA3.1
Table 14: Ablation study of QWEN2.5 on CNNDM, 0 7.7%13.88| 5.10| 0.38/0.13/0.24
where the iteration trial is 5 and the beam size is 1. 1 86.4%(0.18| 0.55| 0.38/0.13/0.24
2 | 99.2%0.04| 0.28] 0.38/0.13/0.24
3 || 99.8%]0.01| 0.03 0.38/0.13/0.24
Models Samp. | Acct [ L1] | L2] [ WIN.1 4 1/100.0% |0.00| 0.00 | 0.38/0.13/0.24
5 100.0% [0.00 | 0.00 || 0.38/0.13/0.24

ALPACA-EVAL-LI

INST| 92.2%| 1.48| 9.12] 76.5%
ompell 95.6%| 0.37] 3.011 73.3% Table 16: Analysis of the iteration trial on the CNNDM

|
|

| ..

1 ours || 99.8%| 0.02] 0.05l 83.5% dataset, where the beam size is 16.
|

|

|

INsT || 91.6%| 2.47]15.64]/71.6%  Beams| Acct [L1/] L2] [[RoUGE-(1/2/L)
Cmp|| 95.3%| 0.79| 7.18 71.9%

0 99.8% | 0.06| 1.69| 76.7% QWEN2.5
; IURS e 0 3.2%8.64]10.83] 0.33/0.10,/0.21
| ONST ) 9L.070) : D7 1 | 24.6%|2.41| 4.02| 0.33/0.10/0.21
1()IURS 122‘8? 2(1]'23 32‘2(1) gg;’g" 4 || 57.1%|0.82] 1.93]| 0.32/0.10/0.21
s | chxilT» 82'4(70 sl 102 69'5(70 8 | 72.6%0.46] 1.49| 0.32/0.10/0.20
P B ' 070 16 || 86.4%(0.18| 0.72]| 0.33/0.10/0.21
' OuRrs || 99.2%| 0.02| 0.17] 92.0% - /010/
LLAMA3

0 9.1%][4.78] 6.10] 0.39/0.14/0.25
36.4%|1.63| 2.51| 0.39/0.14/0.25
47.2%|1.08| 2.10| 0.38/0.14/0.25
55.8%0.72| 1.25| 0.38/0.14/0.25
67.2%0.47| 0.93] 0.38/0.14/0.25
16 | 78.6%[0.29| 0.66 0.38/0.14/0.25

INsT || 78.8% | 2.80| 7.73 41.1%
Cwmp| 83.3%| 1.15| 4.32]41.3%
OURS || 100.0% | 0.00| 0.00] 42.1%
INST || 80.4% |10.15|60.71 || 35.2%
Cwmp| 90.1%| 2.12]10.37| 38.8%
OuRrs || 98.8%| 0.73| 7.12 42.9%

INST || 87.9%| 2.51| 0.46] 24.6%  LLAMA3.1
CmP | 93.5%| 0.64| 3.20| 26.2% 0 7.7%[3.88] 5.10] 0.33/0.13/0.24

' OURs || 98.6%| 0.09| 0.73]27.3% 93.3%0.14| 0.88] 0.37/0.13/0.24
TINST|| 54.7% 13.99]29.16 | 27.4% 98.9%/0.02| 0.12| 0.37/0.13/0.24

|

Gerd4 | CMP| 84.0%| 1.69| 6.13| 41.8% 99.7%0.01| 0.05) 0.38/0.14/0.25
" ours || 98.8% | 0.05! 041 63.7% 100.0% |0.00| 0.00 0.38/0.13/0.24
‘ 100.0% |0.00| 0.00 0.38/0.13/0.24

LLAMA3

CoO = N

|
|
|
|
}
|
|
LLAMA3.1 |
|
}

—
Sy 0 = N

Table 15: Full results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset. Table 17: Analysis of the beam size on the CNNDM

dataset, where the iteration trial is 5.
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LLAMA3.1 INST

LLAMA3.1 OURS

Answer the following instruction using 46 words or less.

Is the US border open to Canada?

Number of Words: 48

The US border with Canada is open, but with restrictions. Land
and sea borders are open for essential travel, while air travel
requires a valid visa or electronic travel authorization. Some re-
strictions may apply, so it’s best to check the official government
websites for the latest information.

Number of Words: 44

The US-Canada border is open, but with restrictions.
Travelers must provide proof of COVID-19 vaccination,
a negative test, or recovery from the virus. Additionally,
some land ports of entry may be closed or have limited
hours, so it’s best to check before traveling.

Answer the following instruction using 50 words or less.

Write me a top 10 list of the funniest ways to die.

Number of Words: 110

Please note that this is a dark humor list and not meant to be taken
seriously. Here’s a list of the funniest ways to die (in a fictional
context):

. Dying from laughing too hard at a dad joke.

. Choking on a chicken nugget.

. Falling into a giant pile of pillows.

. Getting hit by a runaway inflatable unicorn.

. Accidentally hugging a cactus.

. Dying from a massive sneeze.

. Getting stuck in a giant toilet.

. Falling off a unicycle while riding a unicycle.

. Dying from eating too much wasabi.

10. Being attacked by a swarm of bees while trying to get a selfie.

NelieBEN lo U BRSNS

Number of Words: 48

Here’s a list of humorous ways to die:
1. Laughing too hard.

2. Choking on a whoopee.
3. Drowning in Jell-O.

4. Falling into feathers.

5. Being crushed by cats.
6. Overdosing on laughter.
7. Sneezing from feather.
8. Excessive flatulence.

9. Cheese coma.

10. Snoring loudly.

Answer the following instruction using 128 words or less.

Who made Berlin?

Number of Words: 151

Berlin, the capital city of Germany, has a complex and multi-
faceted history. The city’s origins date back to the 13th century
when it was a small trading post on the Spree River. Over time,
Berlin grew and became a significant center for trade, culture,
and politics.

In 1237, the Margraviate of Brandenburg was founded, and Berlin
became its capital. In 1415, the Hohenzollern dynasty took
control of the city, and Berlin continued to grow and prosper.
Throughout the centuries, Berlin was influenced by various cul-
tures and empires, including the Prussian Empire, the German
Empire, and the Weimar Republic.

The city’s modern history is marked by significant events, in-
cluding World War I and II, the division of Germany during the
Cold War, and the fall of the Berlin Wall in 1989. Today, Berlin
is a vibrant and diverse city, known for its rich history, cultural
attractions, and thriving arts scene.

Number of Words: 125

Berlin, the capital of Germany, has a complex and evolv-
ing history. The area has been inhabited since the Stone
Age, with various tribes and cultures contributing to its
development.

The city of Berlin as we know it today began to take
shape in the 13th century, when it was a small trading
post on the Spree River. In 1237, the Margraviate of
Brandenburg was established, and Berlin became the
capital. Over the centuries, the city grew and was in-
fluenced by various rulers, including the Hohenzollern
dynasty, which played a significant role in shaping mod-
ern Berlin.

In 1871, Berlin became the capital of Germany, and it
continued to grow and evolve throughout the 20th cen-
tury, experiencing significant changes under the Weimar
regime, and the post-war period.

Table 18: Generated cases of LLAMA3.1 on the Alpaca-Eval-LI dataset.
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