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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in reasoning
tasks, yet their reliance on static prompt struc-
tures and limited adaptability to complex sce-
narios remains a major challenge. In this paper,
we propose the Deductive and InDuctive(DID)
method, a novel framework that enhances LLM
reasoning by dynamically integrating both de-
ductive and inductive reasoning approaches.
Drawing from cognitive science principles,
DID implements a dual-metric complexity eval-
uation system that combines Littlestone dimen-
sion and information entropy to precisely as-
sess task difficulty and guide decomposition
strategies. DID enables the model to progres-
sively adapt its reasoning pathways based on
problem complexity, mirroring human cogni-
tive processes. We evaluate DID’s effective-
ness across multiple benchmarks, including the
AIW, MR-GSM8K, and our custom Holiday
Puzzle dataset for temporal reasoning. Our
results demonstrate great improvements in rea-
soning quality and solution accuracy - achiev-
ing 70.3% accuracy on AIW (compared to
62.2% for Tree of Thought), while maintaining
lower computational costs.

1 Introduction

Large Language Models (LLMs), such as GPT-
4, have transformed natural language processing
by excelling in tasks such as language transla-
tion, summarization, and question-answering (Ope-
nAI, 2023), particularly in reasoning tasks and
few-shot learning. However, their reliability in
problem-solving remains debatable. While Zhou
et al. (2024) notes that scaling and fine-tuning can
introduce unpredictable errors even in simple tasks,
recent methodologies like Chain of Thought (CoT)
(Wei et al., 2022) have shown substantial improve-
ments in arithmetic and symbolic reasoning tasks

*Equal contribution.
†Corresponding author: lilei@di.ku.dk

(Li et al., 2024). Studies have demonstrated that
LLMs can achieve high accuracy in multi-step rea-
soning when guided by structured approaches like
CoT and self-consistency (Bubeck et al., 2023;
Wang et al., 2022). Additionally, techniques such
as reinforcement learning from human feedback
(RLHF) have proven effective in reducing harmful
or inaccurate outputs (Ouyang et al., 2022; Chris-
tiano et al., 2017).

Despite these advances, LLMs face substantial
challenges with complex and evolving tasks due to
their reliance on static prompt structures and pre-
learned patterns. This limitation manifests in tasks
requiring logical reasoning, such as calculating
family relationships or performing numerical com-
parisons (Nezhurina et al., 2024). Unlike human
problem-solving, which dynamically adjusts strate-
gies based on task complexity through inductive
and deductive reasoning (Sloman, 2009), LLMs
often struggle to adapt their reasoning processes to
novel situations (Marcus, 2020; Hendrycks et al.,
2020).

This adaptability gap becomes particularly ev-
ident in tasks requiring dynamic adjustment or
incremental problem-solving. While existing ap-
proaches like CoT (Wei et al., 2022), Tree-of-
Thought (ToT) (Yao et al., 2024), Temperature-
Tree-of-Thought (T2oT) (Cai et al., 2024), and
Graph-of-Thought (GoT) (Besta et al., 2024) have
made progress through extensive output explo-
ration, they often incur considerable computational
costs. For instance, ToT achieves 62.2% accuracy
on the AIW benchmark but requires substantial out-
put token generation for exploring multiple reason-
ing paths, resulting in higher computational over-
head ($0.0038 per case compared to $0.0022 for
CoT).

To address these challenges, we propose the De-
In-Ductive (DID) method, a novel approach that
enhances LLM reasoning by integrating both in-
ductive and deductive reasoning processes within
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Figure 1: Performance comparison of different reason-
ing approaches (IO, CoT, ToT, and DID) across model
complexity. The x-axis represents an estimated measure
of complexity that considers both model size (following
public estimates from Abacha et al. (2024)) and rea-
soning token cost. The y-axis shows accuracy on the
AIW reasoning benchmark. The relative positioning of
models on the complexity axis is based on their approx-
imate parameter counts and the computational overhead
required for inference.

the prompt construction framework. Unlike pre-
vious methods that focus on expanding output ex-
ploration, DID takes an input-centric approach in-
spired by Test-Time Training techniques, strategi-
cally investing in input structuring to enable more
efficient reasoning. The DID framework incor-
porates two key innovations: problem complex-
ity evaluation and dynamic reasoning adjustment.
For problem complexity evaluation, we introduce
a dual-metric system that considers both the Lit-
tlestone dimension (measuring structural problem
complexity) and information entropy (quantifying
instance problem complexity) of problems, en-
abling precise assessment of task difficulty and
guiding decomposition strategy.

Grounded in cognitive science models of human
reasoning, DID implements a hybrid approach that
mirrors human cognitive strategies. The method
operates in two phases: first, it employs induc-
tive reasoning to derive general rules from specific
instances, progressively increasing problem com-
plexity while maintaining similar Littlestone di-
mension; then, it applies deductive reasoning to
solve particular problems, where the dynamic rea-
soning adjustment mechanism leverages problem
complexity assessment to adaptively control the
reasoning chain length and decomposition granu-
larity.

We validate DID’s effectiveness on established

benchmarks including AIW and MR-GSM8K
(Nezhurina et al., 2024; Zeng et al., 2023), as well
as our custom Holiday Puzzle dataset focusing on
holiday date calculations. As shown in Figure 1,
our empirical results demonstrate notable improve-
ments in both solution accuracy and reasoning qual-
ity, achieving 70.3% accuracy on AIW (compared
to 62.2% for ToT) while maintaining lower compu-
tational costs ($0.0031 vs $0.0038 per case). This
work makes the following key contributions:

• We propose an innovative input-centric ap-
proach to LLM reasoning through the De-In-
Ductive (DID) framework, which differs from
existing output-exploration methods by strate-
gically investing in input structuring. This
approach fundamentally changes how we en-
hance LLM reasoning capabilities, offering a
more efficient alternative to traditional meth-
ods.

• We develop a theoretically grounded complex-
ity evaluation system that combines Little-
stone dimension and information entropy, en-
abling precise assessment of task difficulty
and guiding the dynamic integration of induc-
tive and deductive reasoning processes.

• Through extensive empirical evaluations
across diverse reasoning tasks, we demon-
strate that DID not only achieves superior
accuracy but also maintains lower computa-
tional costs through efficient input utilization,
establishing a new direction for efficient LLM
reasoning enhancement.

2 Related Works

Cognitive Science and Deductive-Inductive Rea-
soning Deductive and inductive reasoning are
essential in cognitive science, with deductive rea-
soning applying general principles to specific cases,
and inductive reasoning generalizing from observa-
tions. Cognitive models view these approaches as
complementary: inductive reasoning generates hy-
potheses, while deductive reasoning tests them (Wa-
son, 1960). This combination enhances problem-
solving, especially in uncertain domains where bal-
ancing exploration and validation is key (Johnson-
Laird, 1983; Tversky and Kahneman, 1974). Well-
structured problems typically favor deductive rea-
soning, whereas ill-structured problems benefit
from inductive reasoning (Funke, 2013). Cogni-
tive science insights have been integrated into neu-
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ral networks, improving generalization (L Griffiths
et al., 2008; Tenenbaum et al., 2011).

LLMs for Reasoning and Prompting Techniques
While LLMs like GPT-4 excel at tasks such as text
generation, they struggle with logical reasoning
and complex deduction (OpenAI, 2023; Nezhu-
rina et al., 2024). Techniques like CoT (Wei et al.,
2022), ToT (Yao et al., 2024), and GoT (Besta et al.,
2024) improve reasoning by structuring problems,
but they require extensive prompt engineering and
lack real-time adaptability. The DID framework
addresses these limitations by dynamically integrat-
ing inductive and deductive reasoning, improving
adaptability and consistency in complex tasks (Mar-
cus, 2020; Gershman et al., 2015).

Recent comprehensive surveys by Gi-
adikiaroglou et al. (2024) and Liu et al. (2023)
provide thorough analyses of LLM reasoning
capabilities in puzzle-solving and mathematical
domains, highlighting both progress and persistent
challenges in structured reasoning tasks. Recent
advances in LLM reasoning capabilities have
explored different approaches to enhancing model
performance at test time. Models like DeepSeek-
R1 (Guo et al., 2025) and o1-ioi (El-Kishky et al.,
2025) achieve impressive results by leveraging
reinforcement learning during pre-training and
extending reasoning paths during inference -
with DeepSeek-R1 reaching 79.8% accuracy on
AIME 2024 through naturally emerged reasoning
behaviors, and o1-ioi employing sophisticated
test-time compute strategies to evaluate multiple
solution candidates.

Recent advancements in improving LLM reason-
ing have explored diverse strategies. While multi-
agent frameworks like Jin et al. (2025) demonstrate
superior performance through collaborative explo-
ration of reasoning paths, they incur increased com-
putational overhead due to multiple model calls.
Other approaches, such as "learning from teaching
regularization" (Jin et al., 2024) and Self-Explore
(Hwang et al., 2024), enhance reasoning by incor-
porating structured examples or fine-grained re-
wards during training. However, these methods
necessitate model fine-tuning or multiple model in-
stances, whereas our DID framework distinguishes
itself by improving reasoning through structured
prompting of a single model instance without addi-
tional training.

Inductive Inference and Online Learning Re-
cent work links inductive inference to online learn-

ing theory. Lu (2024) demonstrate that induc-
tive inference is possible for hypothesis classes
decomposable into countable unions with finite
Littlestone dimension. This result extends clas-
sical induction models, such as Solomonoff’s
(Solomonoff, 1964). The connection between Lit-
tlestone dimension and learning complexity in-
forms the DID framework, suggesting that decom-
posing tasks into simpler components can enhance
learning and generalization.

3 Methodology

3.1 Problem Formalization and Complexity
Evaluation

Most reasoning tasks encountered by LLMs can be
characterized as sequential learning problems with
finite Littlestone dimension. According to recent
theoretical work, a hypothesis class is learnable
through inductive inference if and only if it can be
decomposed into a countable union of classes with
finite Littlestone dimension.

3.1.1 Littlestone Dimension and Beyond
For traditional online learning problems, the Little-
stone dimension d alone sufficiently characterizes
problem difficulty. This dimension quantifies the
intrinsic sequential learning complexity by measur-
ing:

• The minimal depth of decision trees needed
for solving the problem

• The number of key decision points in the rea-
soning process

However, when dealing with Large Language
Models (LLMs), we observe that problems with
identical Littlestone dimensions can exhibit signifi-
cantly different difficulty levels. For example:

Example 1 Alice has 0 brothers and 1 sister. How
many sisters does Alice’s brother have?

Example 2 Alice has 3 brothers and 6 sisters.
How many sisters does Alice’s brother have?

Both problems share the same Littlestone dimen-
sion, as they follow identical reasoning patterns.
However, LLMs consistently perform better on Ex-
ample 1. This discrepancy arises from several theo-
retical considerations:

1. Feature Vector Differences: In LLM’s in-
ternal representations, simpler numerical rela-
tionships create clearer, more distinguishable
feature vectors
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2. Distribution Shift: Larger numbers and more
complex relationships often represent a shift
from the training distribution

3. Information Bottleneck Theory: With in-
creasing problem scale, the extraction of rele-
vant information becomes more challenging
due to the constrained capacity of intermedi-
ate representations

3.1.2 Information Entropy Component
To account for these LLM-specific challenges, we
introduce an information entropy component H
that quantifies:

• The complexity of numerical relationships

• The density of relevant information that needs
to be extracted

• The scale of variables involved in the problem

For a problem instance p with n variables
{x1, ..., xn}, we define its entropy as:

H(p) = log2

(
n∏

i=1

(1 + |xi|)
)

(1)

where |xi| represents the absolute value of each
numerical variable in the problem. Importantly,
only variables that are directly relevant to solving
the problem are included in this calculation. For
instance, in the problem "Alice has 3 brothers and
6 sisters. How many sisters does Alice’s brother
have?", only the number of brothers (3) and sisters
(6) would be considered in the entropy calculation.
This formulation:

• Grows logarithmically with problem scale

• Remains bounded for reasonable problem
sizes

• Captures the intuition that larger numbers and
more variables increase processing difficulty

3.1.3 Problem Complexity Evaluation
The overall complexity of a problem p is then de-
fined as:

C(p) = d ·H(p) (2)

This combined measure allows us to:

1. Distinguish between problems of equal Little-
stone dimension but different scale complex-
ity

2. Better predict LLM performance on reasoning
tasks

3. Guide the decomposition of complex prob-
lems into manageable subproblems

Algorithm 1 Problem Decomposition in DID

Require:
1: Problem p with Littlestone dimension d
2: Problem complexity C(p) = d ·H
3: Step size parameter a ∈ [1, C(p)] controlling

decomposition granularity
Ensure:

4: Sequence of subproblems with increasing com-
plexity

5: function DECOMPOSEPROBLEM(p, d)
6: N ←

⌈
C(p)
a

⌉

7: Initialize subproblems← ∅
8: pbase ← CreateBaseCase(p, d− 2)
9: subproblems.append(pbase)

10: for i← 1 to N do
11: if i < N/2 then
12: dcurrent ← d− 1
13: else
14: dcurrent ← d
15: end if
16: pnext ← IncreaseCplx(pbase, dcurrent)
17: subproblems.append(pnext)
18: pbase ← pnext
19: end for
20: return subproblems
21: end function

Dynamic Reasoning Based on Problem Com-
plexity The Algorithm 1 formalizes our DID
framework’s problem decomposition approach. At
its core, the algorithm dynamically decomposes
complex problems into a sequence of progres-
sively challenging subproblems while managing
both structural complexity (Littlestone dimension)
and information density.

The decomposition process starts by creating a
base case with reduced dimension (d−2), achieved
by setting certain variables to zero. Specifically,
this means eliminating key decision points in the
reasoning chain by simplifying the problem struc-
ture, for example, changing "Alice has 3 brothers
and 6 sisters" to "Alice has 0 sisters and 1 brother"
to reduce the problem’s Littlestone dimension. This
simplification maintains the essential reasoning
structure while reducing the problem’s complex-
ity to its most basic form. From this foundation,
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Figure 2: Comparison of reasoning approaches in LLMs including the IO method, Chain of Thought (CoT)
prompting, Tree of Thought (ToT) prompting, and the De-In-Ductive (DID) framework, highlighting the progression
from direct output generation to dynamic inductive and deductive reasoning for more adaptive problem-solving.

the algorithm iteratively constructs N = ⌈C(p)⌉
subproblems of increasing complexity, where C(p)
represents the overall problem complexity.

The algorithm employs a two-phase strategy in
complexity progression:

• In the first phase (i < N/2), it maintains a re-
duced dimension (d− 1), allowing the model
to establish fundamental patterns and relation-
ships with minimal complexity

• In the second phase (i ≥ N/2), it restores
the full dimension (d), gradually introducing
complete problem complexity while building
upon previously established patterns

This progressive approach mirrors human cog-
nitive processes in problem-solving: starting with
simplified versions, identifying core patterns, and
systematically applying these insights to more com-
plex cases. The IncreaseCplx function imple-
ments this gradual progression by introducing addi-
tional variables and relationships while maintaining
the problem’s fundamental structure.

The algorithm’s dynamic dimension manage-
ment ensures that the model can effectively bal-
ance between pattern recognition (inductive rea-
soning) in simpler cases and rigorous application
(deductive reasoning) in more complex scenarios.
This balance is crucial for maintaining both learn-
ing efficiency and solution accuracy across varying
problem complexities.

3.2 De-In-Ductive (DID) Framework
Figure 2 illustrates the comparison between the IO,
CoT, and DID frameworks. The IO (Input-Output)
Method processes natural language queries by re-
trieving patterns and facts without engaging in it-
erative reasoning. The Chain of Thought (CoT)
Method improves logical reasoning by breaking
down complex problems into sequential steps. Our
proposed De-In-Ductive (DID) Method goes fur-
ther by dynamically integrating inductive and de-
ductive reasoning. By iteratively generating and
testing hypotheses, DID adapts to problem com-
plexities more effectively than static methods like
CoT, optimizing problem-solving by balancing rea-
soning modes in response to task difficulty.

Dynamic Reasoning Based on Problem Com-
plexity Based on the problem complexity C(p),
DID framework adaptively decomposes the prob-
lem and adjusts its reasoning process. For a typical
problem with Littlestone dimension d (usually 3-5),
we decompose it into subproblems:

• Dimension Reduction: We maintain subprob-
lems with dimension d or reduce to d-1 by
fixing certain variables to 0, preserving the
essential reasoning structure while reducing
complexity

• Progressive Complexity: Starting from sim-
ple cases with minimal information density,
we gradually increase complexity by adding
variables and relationships

• Hierarchical Solution: Each subproblem (K)
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is solved using insights from solutions to the
previous subproblem (K − 1), enabling pro-
gressive knowledge accumulation

Inductive Reasoning The inductive component
enables pattern discovery and generalization from
specific instances:

• Pattern Recognition: Starting with simpli-
fied problem instances (reduced Littlestone
dimension d − 2 or d − 1), the model iden-
tifies fundamental patterns and relationships.
This aligns with the theoretical basis that in-
ductive inference is possible when hypothesis
classes have a finite Littlestone dimension.

• Hypothesis Generation: Through progres-
sive exposure to increasingly complex exam-
ples, the model generates and refines hypothe-
ses about the underlying structure of the prob-
lem. Each subproblem serves as a training
instance for pattern recognition.

• Complexity-Guided Learning: The induc-
tive process is guided by the complexity mea-
sure C(p) = d·H , ensuring that pattern recog-
nition proceeds from simpler to more complex
cases while maintaining manageable Little-
stone dimensions.

Deductive Reasoning The deductive component
enables the systematic application of discovered
patterns:

• Rule Application: Once patterns are iden-
tified through induction, the model applies
these rules deductively to solve more com-
plex instances. This leverages the theoretical
guarantee that hypothesis classes with finite
Littlestone dimensions are learnable.

• Verification Process: Each deductive step
serves as a verification mechanism for induc-
tively derived patterns, helping to refine and
validate the model’s understanding.

• Hierarchical Problem Solving: The deduc-
tive process follows the complexity hierarchy
established during induction, ensuring that so-
lutions are built systematically on previously
verified patterns.

The results from deductive applications inform
and refine the inductive pattern recognition process,
creating a continuous learning cycle that enhances

the model’s problem-solving capabilities. A com-
plete step-by-step example of the DID framework
is provided in Appendix B.

Integration with Existing Models The DID
method seamlessly integrates with various LLM
architectures and existing techniques such as CoT
prompting (Wei et al., 2022). Through its struc-
tured framework combining inductive and deduc-
tive reasoning, DID enhances these methods by
providing dynamic reasoning strategies and guided
incremental reasoning, while maintaining compu-
tational efficiency. This approach creates a more
flexible framework for LLMs to address complex
problems without notable overhead.

4 Experiments

4.1 Experimental Setup
Baseline Methods and Models We compare
DID against three baseline prompting methods:

• Input-Output (IO): directly utilizes the LLM
without structured prompting

• Chain of Thought (CoT): breaks down prob-
lems into sequential reasoning steps

• Tree of Thought (ToT): explores multiple rea-
soning paths in a tree structure (T=3)

All methods are evaluated using three representa-
tive models:

• GPT-4o and Claude 3.5 Sonnet: selected as
two leading LLMs from different providers to
demonstrate robustness across model architec-
tures

• GPT-3.5-turbo: included to evaluate method
robustness across different model scales (in
terms of parameter count)

For fair comparison, all model parameters (tem-
perature, top-k sampling, etc.) are maintained at
their default values. Evaluations are conducted in a
zero-shot setting across all methods and models.

4.2 Tasks and Results
Alice Problems The AIW dataset focuses on
evaluating logical reasoning and deduction abilities
through family relationship problems (Nezhurina
et al., 2024). We manually curated 113 unique
problems after removing duplicates and existing
prompts, with results averaging over 20 runs. In
this task, DID demonstrates consistent superiority
across all models:
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Model\Method Alice Problem MR-GSM8K Holiday Puzzle

IO (%) CoT (%) ToT (%) DID (%) CoT (%) ToT (%) DID (%) IO (%) CoT (%) ToT (%) DID (%)

GPT-3.5 Turbo 6.7 8.6 7.2 13.3 68.1 74.0 73.3 0.2 1.4 2.0 5.6
GPT-4o 43.4 55.9 62.2 70.3 85.0 89.1 87.7 7.8 5.2 7.5 15.4
Claude 3.5 Sonnet 74.8 83.7 87.1 89.5 91.3 92.0 92.0 17.4 17.8 24.0 24.5

Table 1: Merged Results for GPT-3.5 Turbo, GPT-4o, and Claude 3.5 Sonnet across Different Tasks (Alice Problem,
MR-GSM8K, Holiday Puzzle)

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

 Each of Alice's brothers has the
same siblings as Alice, excluding
himself. Therefore, each brother

has: 6 sisters (including Alice
herself) 2 brothers (excluding

himself). 

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

In total, there are 9 siblings (3
brothers + 6 sisters)

Alice's brothers have the same
siblings as Alice (except

themselves)

Alice's brothers also have 6 sisters
(these sisters include Alice and her

other 6 sisters).

Alice's brother has 6 sister.

Determine some specific situation.
Start from a simplest version: 0

brother and 1 sister.

Increase the complexity of the
problem: Alice now has one

brother and one sister.

Continue to increase the
complexity of the problem: Alice
has two brothers and two sisters.

Alice's brother has 7 sisters.

Inductive Inference

Deductive Inference

(c) DID(a) IO (b) CoT

The number of sisters each of
Alice's brothers has is 6.

Get a conclusion: When Alice has
1 brother and no sisters, the

brother has 1 sister.

Get a conclusion: When Alice has
1 brother and n sisters, the brother

has n + 1 sisters

Verify and get conclusion: The
number of brothers does not affect
the number of sisters each brother

has.

Figure 3: Comparison of reasoning approaches in LLMs including the IO method, CoT prompting, and the DID
framework, highlighting the progression from direct output generation to dynamic inductive and deductive reasoning
for more adaptive problem-solving.

Task Method Input/Output tokens Cost per case Accuracy (%)

Alice Problem

IO 37/55 $0.0007 43.4
CoT 45/210 $0.0022 55.9
ToT 56/370 $0.0038 62.2
DID 90/290 $0.0031 70.3

MR-GSM8K
CoT 86/1017 $0.0104 85.0
ToT 91/1920 $0.0194 89.1
DID 190/1230 $0.0128 87.7

Holiday Puzzle

IO 87/570 $0.0059 7.8
CoT 96/1330 $0.0135 5.2
ToT 110/2590 $0.0262 7.5
DID 260/1740 $0.0181 15.4

Table 2: GPT-4o Token Usage and Cost Comparison

• GPT-3.5 Turbo: DID (13.3%) significantly
outperforms IO (6.7%), CoT (8.6%), and ToT
(7.2%)

• GPT-4o: DID achieves 70.3% accuracy, sur-
passing IO (43.4%), CoT (55.9%), and ToT
(62.2%)

• Claude 3.5 Sonnet: DID reaches 89.5%,

extending the lead over IO (74.8%), CoT
(83.7%), and ToT (87.1%)

As illustrated in Figure 3, DID progressively guides
LLMs through increasingly complex reasoning
steps for family relationship problems. While tra-
ditional methods often fail by attempting to solve
complex problems directly, DID breaks down the
reasoning process into simpler subproblems, help-
ing the model maintain logical consistency and
avoid common errors. This structured approach
enables LLMs to effectively handle complex rela-
tionship inference tasks.

As shown in Table 2, while DID requires slightly
more input tokens (90 vs 56 for ToT), it main-
tains lower total computational costs ($0.0031 vs
$0.0038) through more efficient output generation.
This demonstrates the effectiveness of our input-
centric approach in balancing performance and ef-
ficiency.
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 This is a holiday arrangement from
September 25, 2023 (Monday) to October

29: Work 4, rest 8, work 7, rest 2, work
5,rest 3, work 4, rest 2. Please tell me how

many days I have rested because of the
holiday, except for the weekend I was

supposed to rest.

Determine some specific situation. Start
from a simplest version: Consider a single

week, from Monday to Sunday. You work 4
days and rest 3 days, with 2 of those resting

days being weekend days (Saturday and
Sunday). Determine how many days you
have rested due to holidays, excluding the

weekends you were supposed to rest.

Get a conclusion: In this
simple case,

Holiday rest days=3−2=1.

Increase the complexity of the problem:
Extend the period to two weeks. You work

8 days and rest 6 days, with 4 of those
resting days being weekend days.

Verify the conclusion on this
case: Holiday rest days = 6 −

4 = 2.
Confirm the conclusion: The

general formula is:
Holiday rest days =

Total rest days −
Weekend rest days.

Holiday rest days = Total rest days −
Weekend rest days = 15 − 10 = 5 days

Inductive Inference

 This is a holiday arrangement from
September 25, 2023 (Monday) to October

29: Work 4, rest 8, work 7, rest 2, work
5,rest 3, work 4, rest 2. Please tell me how

many days I have rested because of the
holiday, except for the weekend I was

supposed to rest.

First, let's break down the holiday
arrangement to identify the periods of work

and rest: 1. September 25 to October 2:
Work 4, rest 8. This includes weekends, so

need to calculate.
2. October 3 to October 11: Work 7, rest 2.

3. October 12 to October 18: Work 5, rest 2.
4. October 19 to October 25: Work 5, rest 2.
5. October 26 to October 29: Work 4, rest 2.

Finally, sum up the extra holiday rest days
calculated:

6 (from September 25 to October 2) + 2
(from October 3 to October 11) + 2 (from

October 12 to October 18) + 2 (from October
19 to October 25) + 0 (from October 26 to

October 29) = 12

 This is a holiday arrangement from
September 25, 2023 (Monday) to

October 29: Work 4, rest 8, work 7,
rest 2, work 5,rest 3, work 4, rest 2.

Please tell me how many days I have
rested because of the holiday, except
for the weekend I was supposed to

rest.

To determine the number of holiday
rest days excluding regular weekends,
we break it down as follows: During

the "Work 4, Rest 8" period from
September 25 to October 6, there are 5

holiday rest days (October 2 to
October 6). In the "Work 7, Rest 2"

period from October 9 to October 17,
there are 2 holiday rest days (October
16 and 17). For the "Work 5, Rest 2"

period from October 18 to October 24,
there are 2 holiday rest days (October
23 and 24). Lastly, during the "Work
5, Rest 3" period from October 25 to
November 1, there are 3 holiday rest
days (October 30 to November 1). In
total, there are 12 holiday rest days (5

from the first period, 2 from the
second, 2 from the third, and 3 from

the fourth).

Next, we need to identify how many of these
rest days overlap with weekends (since those

wouldn't count as extra holiday rest days)

(a) IO (b) CoT (c) DID

Deductive Inference

Figure 4: Comparison of reasoning approaches in LLMs including the IO method, CoT prompting, and the DID
framework, highlighting the progression from direct output generation to dynamic inductive and deductive reasoning
for more adaptive problem-solving.

MR-GSM8K Math Problems MR-GSM8K ex-
tends the GSM8K benchmark with meta-reasoning
tasks (Zeng et al., 2023), requiring models to iden-
tify and explain errors in provided solutions. Re-
sults show consistent performance across models:

• GPT-3.5 Turbo: DID (73.3%) maintains com-
petitive performance against CoT (68.1%) and
ToT (74.0%)

• GPT-4o: DID (87.7%) performs comparably
to CoT (85.0%) and ToT (89.1%)

• Claude 3.5 Sonnet: DID (92.0%) matches the
strong performance of CoT (91.3%) and ToT
(92.0%)

As shown in Table 2, DID achieves this perfor-
mance with lower computational overhead than
ToT ($0.0128 vs $0.0194), despite using more in-
put tokens (190 vs 91). This efficiency gain comes
from reduced output exploration needs.

Holiday Puzzle This custom dataset comprises
20 holiday arrangement problems, testing models’
ability to calculate actual holiday days while ac-
counting for weekends and compensatory work-
days. Detailed information about the dataset con-

struction and representative examples are provided
in Appendix A. Results demonstrate:

• GPT-3.5 Turbo: DID (5.6%) outperforms IO
(0.2%), CoT (1.4%), and ToT (2.0%)

• GPT-4o: DID shows marked improvement
(15.4%) over IO (7.8%), CoT (5.2%), and
ToT (7.5%)

• Claude 3.5 Sonnet: DID (24.5%) maintains
advantage over IO (17.4%), CoT (17.8%), and
ToT (24.0%)

The key to success in this task lies in discovering
and applying the fundamental relationship Holiday
rest days = Total rest days - Weekend rest days. As
shown in Figure 4, baseline methods struggle with
this pattern.

As shown in Table 2, while DID uses more in-
put tokens (260 vs 110 for ToT), its efficient out-
put generation results in lower total costs ($0.0181
vs $0.0262), demonstrating the scalability of our
input-centric approach even in complex temporal
reasoning tasks.
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5 Conclusion

In this work, we introduced the De-In-Ductive
(DID) method, a novel framework that dynamically
integrates inductive and deductive reasoning to en-
hance the adaptability and reasoning capabilities of
LLMs. By leveraging cognitive science principles,
the DID framework allows LLMs to evolve their
problem-solving strategies in response to task com-
plexity, overcoming the rigidity of static prompt
structures. Through extensive empirical validation
on both standard benchmarks and our custom Hol-
iday Puzzle dataset, we demonstrated substantial
improvements in accuracy and reasoning quality,
achieved without excessive computational costs.
The success of DID in improving LLM reasoning
while maintaining computational efficiency sug-
gests promising directions for future research in
making language models more cognitively aligned
and capable of sophisticated reasoning.

6 Limitations

Despite the advances demonstrated by the DID
framework, several important limitations and chal-
lenges remain to be addressed:

Fundamental Architecture Constraints A key
limitation lies in the fundamental architecture of
LLMs. These models, based on next-token predic-
tion, struggle to maintain coherent internal repre-
sentations across multiple reasoning steps. While
attention mechanisms allow reference to previous
tokens, they lack robust cognitive structures for en-
suring logical integrity throughout the reasoning
process. This often leads to unexpected errors even
in seemingly straightforward tasks.

Generalization Challenges While DID shows
strong performance on our evaluated tasks, ensur-
ing consistent generalization to completely unseen
problems remains challenging. The framework’s
effectiveness may vary depending on the nature
and complexity of new tasks, particularly those re-
quiring novel forms of reasoning not encountered
during development.
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A Holiday Puzzle Dataset Details

The Holiday Puzzle dataset was created based on
holiday arrangements in China over the past 10
years, specifically focusing on how special holi-
days (National Day, Spring Festival, Labor Day,
Mid-Autumn Festival, etc.) are rescheduled. In
China, the government employs a unique "work
day adjustment" system to create longer consecu-
tive holiday periods by rearranging working days
and weekends. This practice often involves desig-
nating certain weekends as working days while ex-
tending official holidays, creating complex patterns
where regular weekends are shifted, and compen-
satory workdays are inserted before or after holi-
days. This arrangement, while allowing for longer
holiday periods, makes it challenging to calculate
the actual number of holiday days versus regular
weekend days.
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A.1 Representative Examples
Prompt: This is a holiday arrangement from April
23, 2022 (Saturday) to May 15: rest 1, work 6, rest
5, work 3, rest 1, work 5, rest 2. Please tell me how
many days I have rested because of the holiday,
except for the weekend I was supposed to rest.

Right Answer: 1
Prompt: This is a holiday arrangement from

January 1, 2022 (Saturday) to February 8: rest 3,
work 4, rest 2, work 5, rest 2, work 5, rest 2, work
7, rest 7, rest 2. Please tell me how many days I
have rested because of the holiday, except for the
weekend I was supposed to rest.

Right Answer: 4

B Detailed DID Framework Example

We provide a complete example of the DID frame-
work in action:

Problem: "Alice has 3 brothers and 6 sisters.
How many sisters does Alice’s brother have?"

Step 1: Complexity Evaluation The LLM first
analyzes the problem structure and identifies:

• Littlestone dimension (d): 3 (requiring three
key inferential steps)

• Information entropy: H(p) = log2((1 +
3)(1 + 6)) = log2(28) ≈ 4.8

• Overall complexity: C(p) = d ·H(p) = 3 ·
4.8 ≈ 14.4

Step 2: Problem Decomposition Following Al-
gorithm 1, the problem is decomposed into a se-
quence of progressively complex subproblems:

Inductive Reasoning Phase:

• Example 1 (d-1 Dimension): "Let’s start with
the simplest version of the problem: Alice has
0 sisters and 1 brother. In this case, Alice’s
brother has 1 sister (Alice)."

• Example 2 (d-1 Dimension): "Now, let’s con-
sider a slightly more complex scenario: Alice
has 1 sister and 1 brother. In this case, Alice’s
brother has 2 sisters (Alice and her sister)."

• Example 3 (d Dimension): "Let’s examine
one more scenario: Alice has 2 sisters and
1 brother. In this case, Alice’s brother has 3
sisters (Alice and her two sisters)."

• Pattern Recognition: "From these examples,
we can deduce a general rule: The number of

sisters Alice’s brother has = X + 1, where X
= the number of sisters Alice has. This rule
holds true regardless of the number of brothers
Alice has (Y), because we’re only concerned
about the number of sisters from the brother’s
perspective."

Step 3: Deductive Reasoning "Now I’ll apply
this formula to our original problem: Alice has 6
sisters (X = 6). Therefore, Alice’s brother has X +
1 = 6 + 1 = 7 sisters."

Step 4: Solution Verification "To verify: Al-
ice’s brother has the same siblings as Alice, except
himself.

• Alice has 3 brothers and 6 sisters

• From her brother’s perspective, he has 2 broth-
ers (the other brothers, excluding himself) and
7 sisters (the 6 original sisters plus Alice)

Therefore, Alice’s brother has 7 sisters."
Final Answer: 7
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