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Abstract

Chain-of-thought (CoT) reasoning in vision lan-
guage models (VLMs) is crucial for improv-
ing interpretability and trustworthiness. How-
ever, current training recipes often relying on
datasets dominated by short annotations with
minimal rationales. In this work, we show that
training VLM on short answers leads to poor
generalization on reasoning tasks that require
more detailed explanations. To address this lim-
itation, we propose a two-stage post-training
strategy that extends the usage of short answer
data for enhanced CoT reasoning. First, we
augment short answers with CoT reasoning
generated by GPT-4o, enhancing the VLM’s
CoT capabilities through fine-tuning. Second,
we leverage short answers as outcome rewards
for reinforcement learning. Specifically, short
answers are used as correctness indicators to
construct positive (correct) and negative (in-
correct) pairs from model-generated reasoning
chains. These pairs are then used to calibrate
the model’s reasoning via Direct Preference Op-
timization. Our experiments show significant
improvements in CoT reasoning on benchmark
datasets, along with enhanced generalization to
direct answer prediction. This work provides
a critical data resource for VLM CoT training
and demonstrates the effectiveness of outcome
rewards for multimodal models post-training.

1 Introduction

As VLMs are increasingly applied to more complex
tasks, the ability to generate robust CoT reasoning
becomes essential for improving interpretability
and trustworthiness (Li et al., 2024; Liu et al., 2024;
Chen et al., 2023a; Liu et al., 2023b,a; Bai et al.,
2023). However, current training recipes often rely
on datasets dominated by short answers with lim-
ited rationales, potentially hindering the models’
ability to generalize to tasks requiring comprehen-
sive reasoning. In this work, we critically examine
the effectiveness of short-answer data for reasoning

capabilities and propose augmenting it to enhance
CoT reasoning during supervised fine-tuning (SFT)
and reinforcement learning (RL).

An example in fig. 1 asks for the number of
food items in a bar graph. A human would typi-
cally enumerate the bars and then calculate the total.
However, writing out this enumeration process is
far more cumbersome than simply providing the
short answer of “14.” Consequently, the annotated
training data is predominantly composed of short
answers, with minimal rationale provided. This
raises a critical research question: Does training on
direct prediction implicitly teach the model to per-
form chain-of-thought reasoning to derive correct
answers? Our findings indicate that after training
on 26k direct predictions from ChartQA, the ac-
curacy of direct predictions increased by 2.9 (70.2
to 73.1), while CoT prediction accuracy improved
by only 0.6 points (71.2 to 71.8), with CoT under-
performing direct prediction as a result. This sug-
gests that current training approaches have limited
effectiveness in enhancing CoT reasoning.

We hypothesize that developing CoT reasoning
capabilities requires explicit training on data that
includes detailed reasoning steps. To address the
scarcity of high quality CoT reasoning data, we
propose leveraging datasets with short ground truth
annotations and employing the GPT-4o model to
generate reasoning paths that lead to the correct an-
swer. Our approach encompasses a diverse range of
tasks, utilizing 9 datasets that demand different rea-
soning skills, including common world knowledge
(A-OKVQA (Schwenk et al., 2022)), chart inter-
pretation (ChartQA (Schwenk et al., 2022)), docu-
ment information localization (DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022)),
real-world text extraction (TextVQA (Singh et al.,
2019)), scientific reasoning (AI2D (Kembhavi
et al., 2016), SQA (Lu et al., 2022)), and mathe-
matical reasoning (MathVision (Wang et al., 2024),
G-LLaVA (Gao et al., 2023)). We distilled a total
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Training data with 
Direct Prediction

Q: how many food items are there in the figure? Short Annotated 
Answer

Underlying rationale:
To cound the number for food items, I need to enumerate the items 
on y-axis. The first item is Lamb, followed by Corn, Barley, Rye, Beef 
...
Therefore, the total number is 14. 

Rationale 1 prediction is 13

Rationale 2 prediction is 14 correct answer

wrong answer
Rationale alignment

likely incorrect rationale

likely correct rationale

A. Does VLMs implicitly learn reasoning from direct prediction?

B. Leverage short annotation as outcome reward for reasoning alignment

Generation

Outcome 
judgement

Feedback/
alignment

Figure 1: The upper figure questions whether training exclusively on direct-answer prediction can effectively teach CoT
prediction. In the lower figure, we leverage short annotation as outcome reward for reasoning alignment, allowing the model to
improve with self-generated data.

of 193k CoT examples for SFT and the model,
LLAVA-REASONER-SFT, demonstrates signifi-
cant improvements in VLM chain-of-thought rea-
soning performance.

In the lower part of fig. 1, we propose further
calibrating SFT model reasoning with short answer
for outcome rewards (Sun et al., 2024; Setlur et al.,
2024). Specifically, the model generates multiple
CoT steps to to arrive at a final prediction, which is
then compared against a provided short annotation.
Rationales leading to correct predictions are more
likely to be accurate, while those leading to incor-
rect predictions are less so. By optimizing positive
(likely correct) and negative (likely incorrect) ratio-
nale pairs using DPO, we align the VLM towards
a more accurate reasoning process. The aligned
model, LLAVA-REASONER-DPO, demonstrates
consistent performance improvements across all
domains compared to its SFT counterpart. Addi-
tionally, we find that the DPO model can act as
a strong verifier to assign appropriate rewards for
CoT reasoning, enabling more effective credit as-
signment (Rafailov et al., 2024; Lu et al., 2024).

Our key contributions are as follows:
A. We provide a critical data resource, SHAREGPT-
4O-REASONING, for VLM CoT reasoning, contain-
ing 193k examples spanning various VQA
B. We demonstrate the effectiveness of using out-
come rewards with DPO for VLM, leveraging
model-generated signals without requiring addi-
tional human-labeled reward data.
C. We show that the DPO model serves as a strong
verifier for reasoning, paving the way for more

effective vision-language reward modeling.

2 Related Work

VLM Reasoning Evaluation of the reasoning
capabilities of VLMs includes mathematics (Lu
et al., 2023; Wang et al., 2024), college-level ques-
tions (Yue et al., 2024), and science (Kembhavi
et al., 2016; Lu et al., 2022). Training free meth-
ods introduce scene decomposition (Mitra et al.,
2024) or additional coarse and fine-grained local-
ization (Luan et al., 2024) to improve visual reason-
ing. Training methods (Zhang et al., 2024c; Chen
et al., 2023b; Zhang et al., 2024a; Gao et al., 2023)
focus on step-by-step solutions for math problems
or chart-based calculations, or highlighting bound-
ing box (Shao et al., 2024) for answering the related
questions. In this work, we extend CoT data be-
yond short-answer formats to cover a wider range
of tasks and conduct evaluations on a comprehen-
sive set of benchmark datasets.

VLM/LLM Alignment VLM alignment has uti-
lized preference modeling techniques, such as
DPO (Ouali et al., 2024; Deng et al., 2024; Yu
et al., 2024; Li et al., 2023; Gunjal et al., 2023;
Sun et al., 2023), and PPO (Sun et al., 2023), to
enhance factual accuracy and mitigate hallucina-
tion. For LLMs, prior work (Sun et al., 2024; Setlur
et al., 2024; Lu et al., 2024; Pang et al., 2024; Xie
et al., 2024) has employed RL with outcome re-
wards to improve CoT in mathematical tasks. In
this work, we demonstrate the effectiveness of out-
come rewards for aligning VLMs across a broad
range of reasoning tasks.
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World/Common Sense Knowledge
Question: What are the 
horses being used for?
A. petting B. field work 

C. stomping D. riding

Rationale: In the image, there are two horses 
harnessed together, and they are standing on a field. 
The horses are equipped with harnesses and are 
attached to a piece of farming equipment. The ground 
shows signs of being freshly plowed, indicating that 
the horses are being used to pull the plow and turn 
the soil. Additionally, there are tractors in the 
background, further suggesting an agricultural setting. 
Answer: B. field work

Chart Understanding
Question: Is any of the bar 
less than 10%?

Rationale: The bar chart displays the share of 
respondents' opinions on a certain topic, divided 
by gender (Men and Women). … we look at the 
smallest percentages in each category. The 
smallest percentage is 11% for Men in the "They 
are downplaying the situation" category, and 15% 
for Women in the same category. Both of these 
values are above 10%.
Answer: No

Information Localization in Industrial Document
Question: Which university has the third largest student?
Rationale: ... By examining the heights of the bars, we can 
identify the universities with the largest student bodies: 
- The tallest bar represents Arizona State University. 
- ...
- The third tallest bar represents Penn State University. 
Thus, based on the visual data provided in the bar graph, 
the university with the third largest student body is: 
Answer: Penn State

Math Reasoning

Question: Add up the numbers on the balls. In which bowl is the result biggest?
Rationale: 
**Bowl A**: The balls are numbered 8, 7, 4, and 9.  Sum: 8 + 7 + 4 + 9 = 28 
**Bowl B**: The balls are numbered 4, 6, 7, and 9.  Sum: 4 + 6 + 7 + 9 = 26 
...  
Answer: A

Figure 2: Distillation of examples from various VLM task domains, highlighting the specific reasoning capabilities.

3 Method

Our pipeline consists of three stages: (A) CoT data
distillation from GPT-4o (section 3.1), (B) SFT
with CoT (and direct) data to enable VLM CoT
reasoning (section 3.2), and (C) Outcome reward
RL for CoT reasoning enhancement (section 3.3).

3.1 Reasoning Data Distillation

We leverage VQA datasets with short annotations
to augment them with rationales generated by the
GPT-4o model. We collect 193k visual CoT in-
stances to create the SHAREGPT-4O-REASONING

dataset for community usage. We focus on the fol-
lowing reasoning types as demonstrated in fig. 2:
Real-World Knowledge includes A-OKVQA,
which covers a broad range of commonsense rea-
soning and real-world knowledge for answering
questions.
Chart Understanding includes ChartQA, which
involves tasks like item comparison, counting, and
numerical computation.

Table 1: Statistics of
CoT data from differ-
ent sources.

Dataset Size
A-OKVQA 16.9k
ChartQA 26.0k
SQA 6.1k
AI2D 11.9k
InfoVQA 22.4k
DocVQA 37.3k
TextVQA 29.7k
MathVision 11.0k
G-LLaVA 30.3k
Total 193k

Textual Reasoning
includes DocVQA, In-
foVQA, and TextVQA,
focusing on information
localization and extraction
in industrial documents
and real-world image
comprehension.
Math and Science
includes MathVision,
G-LLaVA, SQA, and
AI2D, focusing on sci-
entific knowledge and
mathematical reasoning.

After distillation, we filtered out examples

whose answer predicted by GPT-4o is different
from ground truth. The data statistics are presented
in table 1, and a comparison of answer lengths is
shown in fig. 3, highlighting that CoT responses
peak around 100 tokens, while direct answers are
typically under 5 tokens. The exact distillation
prompt is provided in appendix B.

100 200 300 400 500
#words

0.0%

0.5%

1.0% histogram of #words in CoT answer

0 5 10 15 20 25 30
#words

0.0%

50.0%

100.0% histogram of #words in direct answer

Figure 3: The distribution of word counts for CoT and
direct answer.

3.2 SFT for CoT Prediction

We choose LLaMA3-LLaVA-NeXT-8B as our
base architecture, whose weight is initialized with
the Open-LLaVA-NeXT weights (Chen and Xing,
2024). To ensure the model handles both direct and
chain-of-thought (CoT) predictions, we implement
two types of prompts during training.
Direct Prediction: For direct prediction tasks, we
use the prompt “Answer the question with a short
answer” for short-answer questions, and “Answer
with the option’s letter from the given choices di-
rectly” for multiple-choice questions.
CoT Prediction: For CoT prediction tasks, we use
the prompt “Generate a reason first and then output
a letter answer” for multiple-choice questions, and
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“Generate a reason first and then output a short
answer” for short-answer questions. In the model’s
response, the rationale is followed by the answer,
which is formatted as “### Answer: ” to enable
answer extraction during evaluation.

3.3 RL for Enhanced Reasoning

To further improve the quality of reasoning chains,
we apply RL using the DPO algorithm to better
align the model’s reasoning process toward more
accurate predictions. The DPO algorithm requires
both positive and negative responses. To generate
these, we use the SFT model as the policy model
(i.e., generator), producing 32 candidate predic-
tions per question (temperature 1.0 for short an-
swer and 1.2 for multiple-choice questions). Each
prediction is compared with the ground truth to
determine its correctness. Following the approach
in (Dubey et al., 2024), we select instances with
an accuracy between 0.25 and 0.85. From these,
we randomly pair positive and negative responses,
creating up to three pairs per question.

Formally, the dataset is denoted as DDPO =
{(V, x, yw, yl)}, where V is the image, x is the
question, yw and yl are the positive and negative
responses. The DPO objective is defined as below:

LDPO (πθ;πref) = −E(V,x,yw,yl)∼DDPO

[

log σ

(
β log

πθ (yw | x,V)
πref (yw | x,V) − β log

πθ (yl | x,V)
πref (yl | x,V)

)]
,

where πθ is the policy model to be optimized and
πref is the base reference model, both models are
initialized with SFT weights. σ is the logistic func-
tion and β is set to 0.1.

4 SFT Experiments for CoT Learning

In this section, we explore how SFT can enhance
VLM reasoning by addressing two key research
questions: (1) Can CoT reasoning be implicitly
learned from short responses? and (2) How effec-
tively can CoT be learned from GPT-4o distilled
data?

Due to space constraints, we provide the SFT ab-
lation in appendix F, the data composition ablation
in appendix G, and SOTA model comparisons in ap-
pendix H. Additionally, we present reject-sampling
finetuning experiments in appendix E with nearly
no CoT distillation with significant improvements
over the baseline models.

193k CoT Distillation

Data Sources:

CoT Data: Direct Data: 193k Direct Data

Format Data: 450 CoT Sample 450 Direct Sample

Additional Math CoT: 16k G-LLaVA QA and Alignment

sample

Model Fine-tuning:

LLaVA-Next+Format 

Pretrain data mix: 2k data sampled from pre-train distribution

LLaVA-Reasoner
-SFT 

LLaVA-Next
+ Direct 

193k CoT Distillation 193k Direct Data
16k G-LLaVA QA and Alignment

2k PT mix

193k CoT Distillation
16k G-LLaVA QA and Alignment

2k PT mix450 Direct SampleLLaVA-Next
+ CoT 

450 Direct Sample450 CoT Sample 2k PT mix

450 CoT Sample 2k PT mix193k Direct Data

①

②

③

④

Figure 4: The upper section displays the data sources
used for the SFT experiments, while the lower section
illustrates the data composition for model training.

4.1 Training Setting

As shown in the upper part of fig. 4, we present
the data composition for SFT. The training data
includes CoT distillation (193k instances) from
table 1 and corresponding short answers (193k).
Additionally, for CoT data, we incorporate 16k
visual math examples from G-LLaVA. To main-
tain general instruction-following capability as the
base model, we include 2k randomly sampled in-
struction data from LLaVA pretraining (Liu et al.,
2024). To ensure the SFT models can handle both
direct and CoT prompts during inference, we sam-
ple a small set of format-aligned data—50 exam-
ples from each of the 9 datasets—resulting in 450
instances.

In the lower part of fig. 4, we outline the
data composition for model training. Specifically,
LLAVA-NEXT-FORMAT (fig. 4 ①) serves as the
baseline model, trained exclusively on format-
aligned data to enforce the desired output format
without learning any task-specific reasoning skills.
In contrast, models in fig. 4 ② and ③ incorporate
either direct or CoT datasets, enabling the model
to be expert in one type of skill as well as follow-
ing the both direct and CoT prompt styles. Finally,
LLAVA-REASONER-SFT (fig. 4 ④) represents the
SFT model trained on both CoT and direct data,
making it to be expert in both types of reasoning.

We use the LLaMA3-LLaVA-NeXT-8B archi-
tecture, initializing the weights with Open-LLaVA-
NeXT. All Supervised Fine-Tuning (SFT) experi-
ments are trained for 1 epoch with a learning rate
of 5e-6 and a batch size of 32. The experiments are
conducted on 8 H100 GPUs.
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Table 2: SFT experiments with data composition in fig. 4: ① format alignment only, ② direct responses only, ③ CoT
responses only and ④ both direct and CoT responses. Inference is performed using both direct and CoT templates.
The best CoT prediction result is highlighted in orange, while the best direct prediction result is marked in blue. The
results demonstrate that combining CoT and direct responses during training leads to the best performance across
both types of prompts. Refer to section 4 for detailed analysis.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista Avg

LLaVA-Next direct 85.8 70.2 75.7 37.7 68.2 71.5 75.4 39.3 65.5
+ Format ① CoT 84.3 71.2 67 34.9 62.2 67.4 74.4 40.3 62.7
LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8 91.5 43.2 71.1
+ Direct ② CoT 85.7 71.8 68.8 38.6 63.6 72.5 85.4 38.6 65.6
LLaVA-Next direct 84.9 71.8 81.2 45.7 72.1 75.3 85 41.9 69.7
+ Cot ③ CoT 85.1 82.2 81.2 49.7 69.9 77 91.3 49.2 73.2
LLaVA-Reasoner direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3 72.8
-SFT ④ CoT 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6 74.4

4.2 Evaluation Setting

We evaluate our method using a range of bench-
mark datasets, including A-OKVQA (Schwenk
et al., 2022), ChartQA (Masry et al.,
2022), DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), TextVQA (Mathew
et al., 2021), AI2D (Kembhavi et al., 2016),
ScienceQA (Lu et al., 2022), and MathVista (Lu
et al., 2023). We also conduct more evaluation on
general datasets OCRBench (Liu et al., 2023c),
MMStar (Chen et al., 2024a), and MMMU (Yue
et al., 2024) in later sections. The evaluation for
A-OKVQA was implemented by us, while for the
other datasets, we follow the evaluation protocols
outlined in VLMEval (Duan et al., 2024).

For CoT evaluation, answers are extracted after
the pattern "###Answer: " before sent to evaluation.
More comparison with LLaMA3-LLaVA-NeXT-
8B model is shown appendix D and evaluation on
GPT-4o is shown in appendix C.

4.3 Can reasoning be implicitly learnt from
direct prediction?

Table 2 presents the performance of the models
introduced in fig. 4. Since LLAVA-NEXT-8B
training data contains very few CoT reasoning ex-
amples, CoT performance of ① lags behind direct
prediction across most tasks. The only improve-
ment is observed in ChartQA and MathVista with a
modest gain of +1.0 in CoT performance, showing
CoT is helpful for calculation related tasks.

When comparing model trained on direct only
data (②) to that trained on format-aligned data (①),
we observe an average gain of +5.6 in direct predic-
tion accuracy (65.5 → 71.1) and a +2.9 improve-
ment in CoT performance (62.7 → 65.6). Sur-
prisingly, closer inspection of CoT performance in

calculation-involved tasks, such as ChartQA and
MathVista, reveals only marginal gains (+0.6 for
ChartQA CoT) or even a performance drop (-1.7
on MathVista), which contrasts with the improve-
ments seen on the two tasks in ①. On text-rich
tasks, positive gains (>1) are observed, with the
most improvement seen in InfoVQA (+3.7). Sig-
nificant gains are also evident in science-related
tasks like AI2D (+5.1) and SQA (+11.0). Despite
these improvements, CoT performance still trails
behind direct prediction overall (CoT: 65.6 vs. di-
rect: 71.1). This result suggests that training on
direct only prediction may not effectively help with
CoT prediction.

4.4 How Effective is CoT Reasoning Data?

When comparing the model trained on CoT-only
data (③) with the one trained on format-aligned
data (①), we observe improvements in both di-
rect and CoT predictions. Direct prediction per-
formance increases by an average of +4.2 (65.5
→ 69.7), while CoT prediction improves signifi-
cantly by +10.5 (62.7 → 73.2). Notably, the CoT
performance of the model ③ surpasses its direct
prediction (73.2 CoT vs. 69.7 direct). Significant
gains are observed in calculation-intensive tasks
like ChartQA and MathVista, with increases of
+11.0 and +8.9 in CoT performance, respectively.
Interestingly, for text-rich tasks such as DocVQA,
InfoVQA, and TextVQA, the direct performance of
model ③ (trained on CoT-only data) outperforms
that of model ② (trained on direct-only data). This
suggests that even for text-heavy tasks, reasoning
processes, such as localizing information in docu-
ments or recognizing text in real-world scenarios,
may benefit from CoT training. The skills learned
from CoT training appear to generalize to direct
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Table 3: DPO experiment with LLAVA-REASONER-SFT as the base policy model. We compare two DPO datasets:
⑤ RLAIF-V (Yu et al., 2024) and ⑥ our preference dataset comprising A-OKVQA, ChartQA, and math. The best
CoT prediction is highlighted in orange. Our DPO dataset shows the better improvements in chain-of-thought
reasoning.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista Avg

LLaVA-Reasoner direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3 72.8
-SFT ④ CoT 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6 74.4
LLaVA-Reasoner direct 85.6 76.1 83.1 50.7 73.3 79.6 91.1 44.1 73.0
-RLAIF ⑤ CoT 86.7 83.0 82.4 50.8 71.4 79.1 92.9 50.8 74.6
LLaVA-Reasoner direct 85.4 76.4 83.1 51.2 73.3 79.4 90.8 44.2 73.0
-DPO-ours ⑥ CoT 87.0 84.2 82.7 52.7 71.5 79.5 92.6 52.1 75.3

prediction as well.
When both CoT and direct data are combined

(④), performance is further enhanced for both pre-
diction types, with an average gain of +7.3 in di-
rect prediction (65.5 → 72.8) and +11.7 in CoT
prediction (62.7 → 74.4). This demonstrates that
combining direct and CoT data yields the best over-
all performance. Interestingly, in model ④, for 3
out of 8 datasets (TextVQA, DocVQA, AI2D), di-
rect prediction outperforms CoT prediction. We
hypothesize that these tasks involve a significant
proportion of concise fact extraction, where gen-
erating long-form CoT responses may not provide
additional benefits or even hurts. Further validation
of this hypothesis will be explored in future work.

5 RL for Enhanced CoT Reasoning

In this section, we demonstrate the effectiveness
of RL in further enhancing CoT reasoning. By
leveraging short-answer feedback (section 3.3),
we construct preference pairs across three do-
mains: A-OKVQA (real-world knowledge rea-
soning), ChartQA (chart interpretation), and math
(MathVision and G-LLaVA). Although additional
DPO data from other datasets could be incorpo-
rated, data scaling and balancing will be addressed
in future work.

For the DPO dataset, we include 24.5k exam-
ples from ChartQA, 18.3k from A-OKVQA, and
22.0k from math domain, totaling 64.8k prefer-
ence data pairs. We train LLAVA-REASONER-
SFT on this dataset using a learning rate of 5e-7,
a batch size of 32, and for 1 epoch. We found an
additional trick to truncate the responses up to 90
tokens to be crucial for DPO training (details in
appendix I). To compare the effectiveness of differ-
ent DPO datasets, we include RLAIF-V (Yu et al.,
2024), which contains 80k DPO pairs representing
the state-of-the-art dataset for aligning VLMs for

reducing hallucinations.

5.1 Can DPO Calibrate Reasoning?

In table 3, we present the results of the DPO model
optimized on top of LLAVA-REASONER-SFT (④).
Model ⑤ uses the SOTA RLAIF-V (Yu et al., 2024)
data, while model ⑥ uses our dataset. We observe
that Model ⑤ shows a slight improvement in both
direct prediction (+0.2) and CoT prediction (+0.2),
whereas model ⑥ demonstrates a greater improve-
ment in CoT prediction (+1.1) with equal gains on
direct prediction. Interestingly, though only 3 out
of 8 datasets are selected to construct DPO pairs,
gains are observed across 7 out of 8 datasets ex-
cept for SQA with a slight decrease (92.9 → 92.6).
These results suggest that DPO dataset constructed
from model-generated rationales can effectively en-
hance reasoning accuracy and show generalization
across tasks.

5.2 DPO as Verifier for Re-ranking CoT
In fig. 5, we present the re-ranking results using the
DPO model as a verifier, following the approach
of (Zhang et al., 2024d; Hosseini et al., 2024; Lu
et al., 2024). The DPO reward score is calculated as
log

πdpo(y|x,V)
πsft(y|x,V) , where V represents the image, x the

question, and y the candidate answer. We explore
two re-ranking strategies: Best-of-N and Weighted
Voting. A Majority Voting (or self-consistency)
baseline is also included for comparison.

When trained with RLAIF-V data (⑤), the DPO
model demonstrates improvements as both a gen-
erator and verifier on A-OKVQA, likely due to
the dataset’s alignment with real-world images,
which matches the nature of A-OKVQA. Interest-
ingly, while model ⑤ does not show improvements
as a generator on ChartQA, it still produces posi-
tive results in best-of-N re-ranking, indicating that
the learned preferences can generalize across do-
mains. However, weighted voting does not lead
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Figure 5: The figures illustrate the performance of the DPO model as a verifier on ChartQA, A-OKVQA, and
MathVista. Compared to the model trained with RLAIF-V, the model trained on our reasoning data pairs consistently
shows improvement in both best-of-N selection and weighted voting.

SFT ④ RLAIF ⑤
Our-
DPO ⑥

OCRBench 62.0 63.7 63.7
MMStar 54.0 53.5 54.1
MMMU 40.1 42.3 42.6
Avg 52.0 53.2 53.5

Table 4: Generalization of DPO models
on OCRBench, MMStar and MMMU.
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Figure 6: DPO verifier performance on the MMMU dataset.

to any improvements, and no significant gains are
observed in re-ranking for MathVision. In contrast,
when trained with reasoning data pairs, LLAVA-
REASONER-DPO (⑥) shows improvements across
both re-ranking metrics, underscoring the effective-
ness of DPO on reasoning data pairs.

5.3 DPO CoT Prediction and Re-ranking
Performance Generalization

In table 4, we present the DPO CoT performance
on OCRBench, MMStar, and MMMU. We observe
that DPO models trained on both RLAIF and our
datasets outperform the SFT baseline, with our
DPO model trained on CoT reasoning pairs achiev-
ing slightly better results.

While the CoT prediction performance across
DPO models is similar, fig. 6 highlights the pro-
nounced effectiveness of our DPO verifier’s gener-
alization on the MMMU dataset, which contains

challenging college-level subject questions. We
provide re-ranking results for multiple-choice prob-
lems from the Dev+Val split (988/1050). The SFT
model with self-consistency shows steady improve-
ments, reaching 45.5% with 64 candidate votes.
LLAVA-REASONER-DPO, trained on reasoning
data pairs, demonstrates strong generalization on
MMMU by excelling in both weighted voting and
best-of-N voting during candidate re-ranking.

In contrast, the DPO model trained on RLAIF-V
(⑤) improves CoT predictions but fails to achieve
gains in re-ranking metrics, indicating its limita-
tions in distinguishing correct from incorrect rea-
soning on more complex data. We hypothesize that,
compared to ChartQA, the reasoning questions in
MMMU are more challenging and span a broader
range of subjects. The RLAIF-V dataset, being pri-
marily focused on the COCO image domain, may
lack sufficient coverage of this diversity, leading to
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Should be “right” side

Should be “Crescent”

Q: Which stage is shown at D?

Q: How many food item is shown in the bar graph?

A1:

A2:

A1:

A2:

Figure 7: Credit assignment of the DPO model on a portion of the responses from the ChartQA and AI2D datasets.
The DPO token-level reward is computed for each token, with the rewards normalized to have a mean of 0. Negative
scores are highlighted in cool colors (blue), while positive scores are highlighted in warm colors (orange). We
observe that the DPO model is particularly sensitive to the first mistakes or hallucinations introduced in the response.

weaker performance in re-ranking. These results
underscore the potential of our approach for gener-
alizing visual language reward models to reasoning
tasks.

5.4 DPO Credit Assignment

While the DPO model is trained on pairwise data,
prior works (Rafailov et al., 2024; Lu et al., 2024)
have shown that DPO policies can learn to predict
token-level rewards from binary preference data.
These experiments primarily focused on math rea-
soning with LLMs. In this work, we provide ex-
amples of credit assignment learned by the VLM
DPO, as shown in fig. 7. The token-level DPO
reward can be expressed as log πdpo(yi|x,V)

πsft(yi|x,V) , where
V represents the image, x the question, and yi the
i-th token in the generated response. This reward
reflects the relative confidence of the DPO model
compared to the SFT model for a given token in a
candidate response.

In fig. 7, negative scores are shown in cool col-
ors, while positive scores are shown in warm colors,
with rewards normalized to a mean of 0. On the
left, we observe that the DPO model is particu-
larly sensitive to errors during chart interpretation
from the ChartQA dataset. For instance, when the

response incorrectly lists “Lamb” as “Beef” in a
chart reading task, the DPO model assigns a highly
negative score to this mistake.

On the right, we present examples from the
AI2D dataset. Here, a hallucination in the response,
such as incorrectly stating that the left side of the
moon is illuminated (the correct answer is the right
side), receives a low score. Additionally, when ex-
ternal knowledge is required to correctly identify
the moon’s phase as “Crescent” instead of “Gib-
bous,” the DPO model penalizes the incorrect “Gib-
bous” answer with a negative score. This indicates
that the DPO model is more sensitive to knowledge-
based errors than the SFT model, explaining its
superior performance on CoT reasoning tasks in
datasets such as AI2D.

6 Conclusion and Release
In this work, we aim to enhance VLM CoT reason-
ing by utilizing short-answer data through 1) CoT
augmentation and 2) outcome-based rewards for
RL. We have released the following contribution
resources: 1) SHAREGPT-4O-REASONING, a CoT
reasoning dataset with 193k examples spanning a
wide range of VQA tasks, 2) SFT and DPO training
code, 3) public model checkpoints, and 3) model
checkpoints, and 4) Evaluation pipeline for both
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the released model and GPT-4o.

7 Limitation

First, we acknowledge that our work builds on ex-
isting techniques, such as data distillation (Zhang
et al., 2024d), VLM SFT (Chen and Xing, 2024),
outcome-based rewards DPO (Sun et al., 2024;
Setlur et al., 2024), with a stronger emphasis on ap-
plication rather than the invention of new methods.
Our contribution is demonstrated through experi-
mental validation rather than the introduction of
novel technology.

Second, our approach relies on industrial-scale
API usage, which may not be accessible to all re-
searchers. We encourage researchers to leverage
our released dataset or create their own using our
provided prompts, subject to resource availability.
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CONTENT OF APPENDIX

In this paper, we aim to enhance chain-of-thought (CoT) reasoning in visual language models. In the
main paper, we have discussed the CoT data distillation, supervised-finetuning (SFT) and reinforcement
learning (Rl) with direct preference optimization (DPO) algorithm. In the appendix, we provide additional
items that offer further insight into each aspect:

A Workflow and Additional Figure;

B SHAREGPT-4O-REASONING Data for VLM CoT Reasoning;

C GPT-4o Evaluation and Prompt Optimization;

D Baseline Evaluation;

E Nearly Zero Data Learning for CoT Reasoning;

F More SFT Ablation Experiments;

G Ablation Tests on Data Composition;

H SOTA Model Comparison;

I More DPO Experiments;

1642



A Workflow and additional figure

GPT-4o

How to get to Tech 
Camps?
Answer: turn right

Rationale:
In the image, we see a directional sign at the 
bottom that points towards "Tech Camps." The sign 
is green with a white border and a white arrow, 
indicating the direction in which one should 
navigate to reach the camps. The arrow on the sign 
is clearly pointing to the right. This suggests that to 
get to Tech Camps, one must follow the direction 
indicated by the right-pointing arrow on the sign.

Generate a 
rationale for the 
answer

SFT

(A) Rationale Distillation Given Short Annotation

Input: {image + question}
Output: {rationale + answer}

Based on the image you provided, the 
sign for “iD Tech Camps” is …

This image shows a sign of …
…

Answer: B

Answer: A

Rationale Predicted answer

(B) SFT with CoT Data

Sample

Rollout Generation (Rationale + Prediction)

(C) Preference Data Construction for DPO
Use the correctness of predicted answer as feedback.
Positive: reasoning that leads to correct answer.
Negative: reasoning that leads to wrong answer

Figure A.1: Workflow diagram showing: a) the use of GPT-4o to generate rationale given short annotations; b)
SFT of open-source VLM for CoT reasoning; c) Build preference dataset for reinforcement learning with DPO to
enhance reasoning.
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B SHAREGPT-4O-REASONING Data for VLM CoT Reasoning

B.1 Prompt for GPT-4o Distillation
Figure B.1 and fig. B.2 illustrate the GPT-4o system (task) prompt and the GPT-4o distillation prompt.
We employ the same prompt across all VQA datasets for data distillation. Specifically, the input to the
prompt consists of an image, a question, and a short answer. The short answer serves as a reference for
GPT-4o to generate a CoT reasoning followed by a final answer after ’### Answer’. We show a few more
examples in the next subsections.

When provided with an image, a question, and a reference answer, generate a chain-of-thought step
that helps derive your own answer.
Your rationale should include detailed visual elements in order to derive the answer.

Figure B.1: GPT-4o system prompt for CoT distillation.

# Objective #
You are provided with an image, a question and a reference answer. Your job is to generate a
rationale that logically derives the answer from the visual clues.

#############

# Question #
{question}

#############

# Reference Answer #
{answer}

#############

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain the visual clues that help to derive the answer.
2. Don't state that the reference answer is correct or consistent to your finding. Your are writing
your own solution.
3. State your own derivation at the end with new line: ### Answer: <your answer>

#############

Figure B.2: GPT-4o prompt for CoT distillation.
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B.2 Filtering Mismatched Annotations in Distillation
In the GPT-4o prompt shown in fig. B.2, we treat the annotation as a reference answer and instruct GPT-4o
to generate its own solution based on that reference. In fig. B.3 and fig. B.4, we illustrate cases where the
GPT-4o-generated solution differs from the annotated answer. Upon human examination, we identified
errors in the annotations. For example, in fig. B.3, there are issues such as incorrect text recognition (e.g.,
“dentist” misidentified as “heart”) and incorrect object identification (e.g., “beer” as “water”). In fig. B.4,
the annotation errors involve incorrect calculations in the left figure and miscounting in the right figure.

To ensure consistency and avoid potential errors, we filtered out examples where the GPT-4o generated
answer differs from the annotated answer. In SHAREGPT-4O-REASONING, we release the SFT CoT data
along with the original distillation and filtered examples for reference.

A-OKVQA Filtered Out Example #1
Question: What part of the body does Dr. Eng work on?
Options: A. heart, B. teeth, C. ears, D. lungs
Annotated Answer: A. heart

GPT-4o Response: 
The image shows a street view with several signs on 
the buildings. One prominent sign reads "DR. EILEEN 
ENG DENTIST" along with the address "207." The word 
"DENTIST" is clearly visible and indicates the profession 
of Dr. Eileen Eng. Dentists are medical professionals 
who specialize in the care of teeth. 

Given this information, it is clear that Dr. Eng works on 
teeth. 

### Answer: B. teeth

A-OKVQA Filtered Out Example #2

GPT-4o Response: 
The image shows a cooler with a glass door, allowing a 
clear view of its contents. The cooler is stocked with 
various bottles and cans. Upon closer inspection, the 
majority of the items inside the cooler appear to be 
bottles with labels and shapes that are typically 
associated with alcoholic beverages, such as beer. The 
bottles have different colors and designs, which are 
common for beer brands. There are no visible signs of 
soda cans, water bottles, or wine bottles. #

## Answer: A. beer

Question: What drink has the owner of this cooler stocked 
up on?
Options: A. beer, B. soda, C. water, D. wine
Annotated Answer: C. water

Figure B.3: An example from the A-OKVQA dataset highlights cases where the annotated answer does not match
the GPT-4o-generated answer. In these cases, the GPT-4o answers are correct, while the annotations contain labeling
errors. In the left figure, the sign reads “dentist” (correctly identified by GPT-4o), and the answer should relate to
‘teeth,’ not ‘heart’ as in the annotation. In the right figure, the fridge contains beer, but the annotation incorrectly
labels it as ‘water.’ Consequently, we filter out instances where the GPT-4o-generated answer does not match the
annotated answers.
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ChartQA Filtered Out Example #1
Question: How much money did "1917" and "Sonic The Hedgehog" earn?
Annotated Answer: 204.41

GPT-4o Response: 
To determine the combined earnings of "1917" and "Sonic The 
Hedgehog," we need to locate the earnings for each movie on the bar 
chart. 

1. The bar labeled "1917" shows earnings of 157.9 million U.S. 
dollars.

2. 2. The bar labeled "Sonic the Hedgehog" shows earnings of 146.06 
million U.S. dollars. 

To find the total earnings, we add these two amounts together: 

157.9 (for "1917") + 146.06 (for "Sonic The Hedgehog") = 303.96

### Answer: 303.96

ChartQA Filtered Out Example #2

GPT-4o Response: 
The bar chart displays the number of terrorist attacks in various 
countries in 2020. Each country is represented by a horizontal bar, with 
the length of the bar corresponding to the number of attacks. 

- Italy has the longest bar, indicating it had the highest number of 
terrorist attacks, with a total of 24 attacks. 

- France follows with the second longest bar, showing 15 attacks. -
Spain is next with 9 attacks. 

- Germany had 6 attacks. - Belgium had 2 attacks. 
- Greece, Netherlands, Czechia, Denmark, Poland, Bulgaria, Finland, 

and Sweden all had 0 attacks, as indicated by the absence of bars for 
these countries. 

From these visual clues, it is clear that the country with the highest 
number of terrorist attacks in 2020 is Italy. 

### Answer: Italy

Question: Which country had the highest number of terrorist attacks in 
2020?
Annotated Answer: Spain

Figure B.4: Filtered examples from the ChartQA dataset are shown. In the left figure, GPT-4o correctly identifies
‘1917’ and ‘Sonic The Hedgehog’ and provides the correct summation, while the annotated answer incorrectly lists
‘204.41’, which is the value for ’Bad Boys for Life’ and is unrelated to the question. In the right figure, GPT-4o
accurately ranks the numbers from highest to lowest, but the annotated answer incorrectly identifies ‘Spain’ as
having the highest value, when it should be the third largest.
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C GPT-4o Evaluation and Prompt Optimization

In this section, we present the prompts used for GPT-4o on benchmark datasets, including both direct and
Chain-of-Thought (CoT) predictions. Similar to the findings in (Borchmann, 2024), we observed that
GPT-4o’s performance is highly sensitive to prompt phrasing. We explored several sets of prompts and
selected the best-performing ones for reporting results. Specifically, we try to align our results with those
reported in (Li et al., 2024; Tong et al., 2024), Claude 3.5 Sonnet for Vision 1, among others.

Prompt Optimization We follow the process outlined in (Borchmann, 2024) to design effective GPT-4o
prompts for the benchmark datasets. A random subset of 200 instances is selected as a development set to
evaluate manually designed prompts. We manually inspect the predicted results and identify issues such
as the model being overly cautious in declining answers, incorrect output formatting, or style mismatches
with the ground truth labels. As an illustrative example, we detail the prompt optimization process using
ChartQA, and apply similar techniques to the other datasets. Finally, we provide the prompts used for
replicating our test results.

Table C.1: Prompt optimization on ChartQA for direct prediction evaluated with relaxed accuracy.

# Prompt
ChartQA
(relaxed

acc)

1 {Question} 2.7

2 {Question}
Answer the question directly.

32.3

3 Answer the question. Do not write a full sentence,
just provide a value.
Question: {Question}

56.4

4 Answer the question with following instruction:
1. Do not write a full sentence, just provide a
value.
2. Don’t include any unit, i.e. 56 instead of 56
meters
Question: {Question}

75.2

5 Answer the question with following instruction:
1. Do not write a full sentence, just provide a
value.
2. Don’t include any unit, i.e. 56 instead of 56
meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question: {Question}

80.3

We apply the prompts described in table C.1 to the development set and compare the predictions with
the ground truth to optimize the prompts. Specifically, when using prompts #1 or #2, GPT-4o often
generates full sentences instead of short answers. While prompt #3 produces a short answer, it often
includes units or special tokens. To address this, we refined the instructions in prompt #4 by specifying
that units should not be included in the final answer. This adjustment improved accuracy from 56.4 to
75.2. We also observed that the ground truth does not contain the % symbol, which could mismatch in
evaluation, and we explicitly include this rule in prompt #5. Finally, we applied the tuned prompt to the
test set, achieving an accuracy of 79.64 reported in table G.3.

1https://www.anthropic.com/news/claude-3-5-sonnet
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Table C.2: Prompt optimization on ChartQA for CoT prediction evaluated with relaxed accuracy.

System Prompt
ChartQA
(relaxed

acc)

When provided with an image and a question, generate
a rationale first and then derive an answer.
Your rationale should include detailed visual elements
in order to derive the answer.

# Prompt
1 Answer the question with following instruction:

1. Generate a rationale first and then derive an
answer.
2. Don’t include any unit, i.e. 56 instead of 56
meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

84.7

2 Prompt #1, removing system prompt 84.1

In table C.2, we first introduce output format instructions to guide GPT-4o in generating the correct
CoT format, which aids in extracting the final answer. We reused the criteria from the direct prediction
prompt to evaluate the results. Additionally, we found that including a system prompt typically leads to a
0.5-point increase in score across datasets, although it does not improve direct answer prediction. We
hypothesize that the system prompt helps GPT-4o adhere more closely to the CoT output format. Finally,
we applied the tuned prompt to the test set, achieving an accuracy of 84.72 reported in table G.3.

Following the prompt optimization steps outlined above, we provide the prompts used to replicate our
GPT-4o test results in the next section.
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C.1 GPT-4o Prompts for Evaluation
Table C.3 and table C.4 provide the optimized prompts for benchmark dataset evaluation. The tuning
process does not garantee the prompt is optimal, but that roughly matches the reported value from previous
papers (Li et al., 2024; Tong et al., 2024), Claude 3.5 Sonnet for Vision 2, among others. We include the
prompts for reference to replicate the GPT-4o results on benchmark datatsets.

Table C.3: Prompts for direct prediction with GPT-4o on benchmark datasets.

Dataset Prompt

A-OKVQA
AI2D
SQA
MMStar

Answer the question. Do not write a full sentence, just
provide a letter choice.
question
{Question}

ChartQA Answer the question with following instruction:
1. Do not write a full sentence, just provide a value.
2. Don’t include any unit, i.e. 56 instead of 56 meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question: {Question}

DocVQA
TextVQA
InfoVQA
OCRBench

Answer the question. Do not write a full sentence, just
provide a value.

Question: {question}

MathVista
MMMU

Answer the question. Do not write a full sentence, just
provide a value or letter choice.
{question}

2https://www.anthropic.com/news/claude-3-5-sonnet
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Table C.4: Prompts for CoT prediction with GPT-4o on benchmark datasets.

Dataset CoT Prompt
system
prompt

When provided with an image and a question, generate a
rationale first and then derive an answer.
Your rationale should include detailed visual elements in
order to derive the answer.

A-OKVQA
AI2D
SQA
MMStar

Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. For your final answer, provide a letter choice.

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

ChartQA Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. Don’t include any unit, i.e. 56 instead of 56 meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
DocVQA
InfoVQA

# Objective #
You are provided with an image, a question. Your job
is to generate a rationale first and then derive an answer.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain
descriptions of visual clue that help to derive the answer.
2. Conclude with ### Answer: <your answer>
3. Your final answer should be a single word or phrase.
4. If possible, copy the answer from document. Don’t add
or remove symbols, units, or titles.

###########

# Output Style #
<rationale>
### Answer: <your answer>

###########

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
TextVQA # Objective #

You are provided with an image, a question. Your job
is to generate a rationale first and then derive an answer.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain
descriptions of visual clue that help to derive the answer.
2. Conclude with ### Answer: <your answer>
3. Your final answer should be a single word or phrase.
4. Output your answer in lower case.

###########

# Output Style #
<rationale>
### Answer: <your answer>

###########

OCRBench Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. Your answer should be a single word or phrase.

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
MathVista
MMMU

# Objective #
You are provided with an image, a question. Your job is
to generate a rationale that logically derives an answer
from the visual clues.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain step
by step logic to derive the answer.
2. Conclude with ### Answer: <your answer>

###########

Example output style:

<rationale>
### Answer: <your answer>

###########
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D Baseline Evaluation

Table D.1: Evaluation of VLM performance on benchmark datasets with direct and CoT inference.

Dataset LLAVA-NEXT-8B LLAVA-NEXT-FORMAT

direct CoT direct CoT

A-OK 85.9 44.5 85.8 84.3
ChartQA 68.6 52.8 70.2 71.2
DocVQA 78.4 57.1 75.7 67.0
InfoVQA 36.6 25.8 37.7 34.9
TextVQA 67.2 41.6 68.2 62.2
AI2D 73.0 70.0 71.5 67.4
SQA 77.4 75.8 75.4 74.4
MathVista 37.3 25.3 39.3 40.3
OCRBench 57.7 59.7 59.1 56.6
MMStar 47.8 45.7 44.7 46.7
MMMU 42.8 37.6 41.8 37.7
Avg 61.2 48.7 60.9 58.4

In this section, we provide evaluation details for our base model, which uses the LLAMA3-LLAVA-
NEXT-8B architecture with weights initialized from OPEN-LLAVA-NEXT. We selected OPEN-LLAVA-
NEXT weights because the data and training pipelines were fully available at the time of model develop-
ment, allowing us to avoid reliance on the unreleased real user interactions referenced in (Liu et al., 2024).
The pretraining data for OPEN-LLAVA-NEXT consists of 1M image-text pairs, sourced from datasets
such as ShareGPT4V, ALLaVA-Instruct-VFLAN-4V, DocVQA, SynDog-EN, ChartQA, DVQA, AI2D,
and GeoQA+.

When evaluating LLAVA-NEXT-8B, we identified several issues, such as the inability to follow the
CoT prompt, refusal to answer questions, and generating irrelevant reasoning. In fig. D.1, we present
randomly sampled examples from LLAVA-NEXT-8B with a temperature setting of 1.0 on a ChartQA
test case. These examples demonstrate the model’s difficulty in adhering to the CoT prompt. In the first
example, the model declines to answer the question. In the second to fourth examples, the model provides
an answer first, followed by an explanation, which doesn’t effectively use thought process to answer the
question. In the final example, the model generates a descriptive response instead of reasoning through
the question, ultimately failing to provide an answer. This illustrates the model’s inconsistent handling of
the prompt structure.

Table D.1 presents the evaluation results for LLAVA-NEXT-8B. For CoT predictions, we use ChatGPT
to extract a letter choice or short answer from the long-form model output, using the prompts shown in
fig. D.2 and fig. D.3. However, due to LLAVA-NEXT-8B ’s inability to accurately follow the CoT format,
its performance is significantly worse compared to direct predictions and our format-aligned model. For
direct prediction, our LLAVA-NEXT-FORMAT has similar performance as that of LLAVA-NEXT-8B.

In fig. D.4, we present the same example trained with our format-aligned data for CoT using only
450 examples. The model successfully follows the CoT format by verbalizing the thought process and
providing a short answer after "### Answer:". This allows us to use a rule-based extractor to retrieve
answers, which also improves CoT performance, as shown in table D.1. However, the example also
demonstrates that, while our data induces the CoT process, the reasoning remains incorrect. Sampling 32
examples using the format in fig. D.4 resulted in 3 correct answers, yielding an accuracy of 9.4% for that
case. As a result, only slight gain is observed on ChartQA for CoT prediction vs. direct prediction.

Based on the above experiments, we report LLAVA-NEXT-8B as the baseline in the paper to avoid the
difficulty in CoT evaluation and answer extraction of LLAMA3-LLAVA-NEXT-8B baseline.
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ChartQA LLaVA-Next-8b CoT Example

Question: How many food item is shown in the bar graph? 
Generate a reason first and then output a short answer.

Sample #1: 
As the bar graph doesn’t contain any numerical data or labels, it's not possible to count the exact number of food 
items depicted in the illustration. For a precise answer, more information or a closer examination of the specific 
items in the image would be necessary. In generating an accurate response, attention should be paid to the visual 
cues and contextual details of the scene, which might hint at the types of food items being presented.

Sample #2: 
The bar graph displays ten different food items. These are arranged from left to right in descending order, with 
the first item being "Lamb." A reason for the descending order could be to represent the decreasing price index 
over time for that particular food item, but this is a common placement for descending bar graphs in general, so 
it's likely for readability of the labels.

Sample #3: 
The bar graph illustrates nine food items, which are Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm 
Oil, and Pork. Each row represents one item, and the length of the horizontal bar corresponds to the commodity 
price index, a measure of food prices relative to their prices in 1900.

Sample #4: 
The bar graph shows eight food items. The reason for generating such a graph is to compare the long-term price 
trends of these food commodities over a century and a half, from 1850 to 2015. The graph is useful for 
understanding the pricing dynamics of these agricultural products, which can affect the economy, food security, 
and consumer affordability. The output reflects the historical price volatility and long-term increase in global food 
commodities, with the most significant increase in the price of grains like corn and barley, indicating their 
importance as staples in global food systems.

Sample #5:
Long-term price indices are a statistical measure of the evolution of the relative cost over time of a basket of 
goods. This particular bar graph is a comparison of the price indices of various food commodities over a century, 
representing an economic measure of the food prices in 1915 as a benchmark for relative price changes. The 
graph illustrates the historical cost of items in the food category, with the largest relative change indicated by the 
longest bars for items such as Lamb, Coffee, and Rice, and the smallest for Sugar and Cocoa.

Figure D.1: Randomly sampled examples from LLAVA-NEXT-8B with temperature=1.0 for a test case in ChartQA
reveal that the model struggles to effectively follow the CoT prompt. In Sample 1, the model refuses to answer the
question. In Samples 2-4, the model generates an answer first, followed by an explanation. In the final sample, the
model produces a description instead of reasoning through the question, without providing an answer.
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You are an AI assistant who will help me to match an answer with several options of a single-choice
question. You are provided with a question, several options, and an answer, and you need to find
which option is most similar to the answer. If the meaning of all options are significantly
different from the answer, output Z. Your should output a single uppercase character in A, B, C, D
(if they are valid options), and Z.
Example 1:
Question: What is the main object in image?
Options: A. teddy bear B. rabbit C. cat D. dog
Answer: a cute teddy bear
Your output: A
Example 2:
Question: What is the main object in image?
Options: A. teddy bear B. rabbit C. cat D. dog
Answer: Spider
Your output: Z
Example 3:
Question: {question}
Options: {options}
Answer: {answer}
Your output:

Figure D.2: ChatGPT answer extraction prompt for multiple-choices questions.

Your goal is to extract a short answer from a chain-of-thought prediction. You are given a question
and model prediction, the image is omitted.
You need to determine the answer from the prediction. If no answer can be derive, output NA.

###### Example 1 ######
### Question:
How many bars are there in the chart?
### Prediction:
The result shows bar graphs ..., counting the bars, there are a total of 8 bars.
### Your output:
8

###### Example 2 ######
### Question:
Determine the date appeared in the document.
### Prediction:
The figure displays a document on financial income ... the date 2008/01/15 appears at body of text.
### Your output:
2008/01/15

###### Your Task ######
### Question:
{question}
### Prediction:
{prediction}
### Your output:

Figure D.3: ChatGPT answer extraction prompt for short answer questions.
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ChartQA CoT Example of our LLaVA-NeXT-Format

Question: How many food item is shown in 
the bar graph? 
Generate a reason first and then output a 
short answer.

Sample #1: 
The bar graph shows the long-term price index in food commodities from 1850 to 2015, measured relative to real 
prices in 1900. Each bar represents a different food item and the lengths of the bars are proportional to the price 
index values. 

1. The y-axis lists various food commodities, such as Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Tea, Peanuts, 
Palm Oil, Pork, Rice, and Cocoa. 

2. Each bar along the x-axis is associated with a specific food item, and they are ordered from left to right. 
Counting each distinct category name along the y-axis, there are 12 different food items shown in the bar 
graph. 

### Answer: 12

Sample #2: 
The bar graph is a visual representation of the long-term price index of various food commodities from 1850 to 
2015. Each bar is associated with a different food item, and the length of the bar represents the relative price 
change in terms of real prices in 1900.

By examining the horizontal axis, we can count the number of food items listed. The categories listed are Lamb, 
Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm Oil, Pork, Rice, Sugar, and Cocoa. 

To determine the number of food items, we need to count these categories. It should be noted that even though 
each bar represents a specific food item, the length of the bar or the dark blue shade at the top may represent 
different items. 

Upon counting the categories, we get the following:
1. 1 - Lamb
2. 1 - Corn
[omit]
13. 1 - Cocoa

Adding these up, we get a total of 13 food categories represented in the bar graph.

### Answer: 13

Figure D.4: Randomly sampled examples from LLAVA-NEXT-FORMAT with a temperature setting of 1.0, evaluated
on the same test case in ChartQA, show that after training on 450 format-aligned data, the model is able to follow
the CoT prompt by verbalizing the thought process and providing a short answer.
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E Nearly Zero Data Learning for CoT Reasoning

Table E.1: We study a self-taught reasoner with minimal CoT data (only 450 format-aligned examples). LLAVA-
NEXT-DIRECT is used as the baseline, and our LLaVA-Next-STaR is trained with a rejection sampling method.
The best CoT predictions are highlighted in orange, and the best direct predictions are highlighted in blue. Our
rejection sampling method outperforms both CoT and direct prediction, with the exception of two data points.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista

LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8 91.5 43.2
+ Direct ② CoT 85.7 71.8 68.8 38.6 63.6 72.5 85.4 38.6
LLaVA-Next direct 85.9 74.6 79.2 47.4 72.1 79.5 92.2 44.4
-STaR CoT 85.9 77.9 75.8 44.0 25.1 76.6 86.8 42.0

In this section, we demonstrate how minimal CoT training data can enhance CoT reasoning capabilities.
Specifically, we use only 450 CoT format-aligned examples alongside all available direct prediction
data, with LLAVA-NEXT-DIRECT as the baseline. We apply rejection sampling fine-tuning (RFT)
following (Sun et al., 2024; Setlur et al., 2024) to train a self-taught chain-of-thought reasoner, denoted
as LLaVA-Next-STaR. From LLAVA-NEXT-DIRECT, we sample 32 CoT examples for each training
instance and select those whose final predictions match the ground truth. Up to three positive examples
are selected per question, resulting in a dataset of 260k RFT examples.

As shown in table E.1, RFT training improves both CoT reasoning and direct predictions overall, with
the exception of two data points. Notably, TextVQA shows a significant drop in CoT performance, which
we will explore further in future work. Notable (>3%) gain is observed on ChartQA, DocVQA, InfoVQA,
AI2D and MathVista, and roughly 1% gain is observed on direct prediction on those datasets as well.

DPO Experiments Prior to the RFT experiments, we conducted DPO experiments on the ChartQA
dataset under the same conditions as described in section 4. However, the improvements were modest,
with a 72.3 (+0.5) gain in CoT prediction and a 74.2 (+0.5) gain in direct prediction. In contrast, RFT
yielded a significant improvement, with 77.9 (+6.1) on CoT prediction and 74.6 (+0.9) on direct prediction.
We hypothesize that for models with relatively weak CoT reasoning capabilities, RFT may be more
effective in enhancing model performance, whereas DPO with preference modeling may be less impactful.
We leave further analysis for future work.
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F SFT Ablation Experiments

Table F.1: SFT Ablation Results: For each dataset, ‘-C’ indicates the inclusion of CoT data for training, and ‘-D’
indicates the inclusion of direct prediction data.

Methods Prompt A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista

LLAVA-NEXT-FORMAT
direct 85.8 70.2 75.7 37.7 68.2 71.5 75.4 39.3

cot 84.3 71.2 67 34.9 62.2 67.4 74.4 40.3

ChartQA-C+D direct 85 74.9 75.8 36.5 68.2 72.2 77.4 42.8
cot 84.4 81.7 69 32.2 63.3 68.6 74.9 41.7

ChartQA-D direct 85.2 73.1 74.6 34.1 67.1 71.5 76.4 40.3
cot 84.3 71.8 62.4 31.8 58 66.3 74 35.5

ChartQA-C direct 85.1 70.8 74.5 35 67.9 71.6 76.9 35.3
cot 84.9 81.4 67.2 32.2 61.5 68.8 76.6 40.1

A-OK-C+D direct 86.2 69.2 75.4 37.7 67.3 70.7 77.5 38.8
cot 84.6 70.2 67.3 36 61.6 67.2 75.8 39.8

A-OK-D direct 85.1 69 75.3 38.5 66.9 72.2 76.1 39.5
cot 84 67.7 66.5 34.8 61.1 68.4 76 39.9

A-OK-C direct 84.4 69.4 75.8 37.4 67.9 69.2 77.3 34.6
cot 84.1 69.2 67.6 35.5 59.4 67.6 74.5 40.6

DocVQA-C+D direct 85.5 69.5 80.7 40.4 68.8 72 77.5 41.1
cot 83.9 70.9 80 40.2 64.1 68.2 73.4 39.3

DocVQA-D direct 85.5 66.5 77 39.1 68.2 70.8 76.3 41.9
cot 83.9 66 66.4 33.7 59.9 64.8 74.5 39.3

DocVQA-C direct 85.2 69.1 79.1 37.5 68.5 72 76.7 33.8
cot 84.4 71.2 78 38.5 63.5 68.5 74.1 38

InfoVQA-C+D direct 85.8 63.4 77.1 47.7 67.6 72.5 78.1 43.6
cot 85.3 65.4 72.6 47.5 62.4 69.4 74.6 37.8

InfoVQA-D direct 85.7 56.7 75 45.4 67 72.5 77.5 42.8
cot 83.7 53 63.5 37.8 58.2 67 75 37

InfoVQA-C direct 85.2 68.3 76.5 42.5 67.8 72.5 78.2 39
cot 83.7 63.4 71.1 46.3 59.9 67.4 74.3 37.6

TextVQA-C+D direct 85.1 69.8 75.5 38.7 73 71.9 76.9 42.6
cot 84.6 68.9 70.5 36.3 70.9 67.6 76.6 36.1

TextVQA-D direct 84.9 68.6 74.5 37.6 71.8 70.8 77 41.7
cot 84.4 63.3 64.2 33.2 64.2 66.1 73.6 38.2

TextVQA-C direct 84.6 69.1 74.6 36.9 71.4 71.9 77.1 36.6
cot 84.7 68.2 69.5 36.9 70.3 67.8 75.1 37.1

SQA-C+D direct 85.7 69 75 38.4 67.3 72.3 90.2 38.7
cot 83.1 71.2 66.5 35.6 58.9 66.9 90.4 40.8

SQA-D direct 84.9 68.1 74.3 37 66.8 72.2 89.2 41.3
cot 83 68.4 67.5 33.8 62.1 68.7 81.9 39.8

SQA-C direct 84 69.3 76 38.3 68.2 71.7 85 39.2
cot 82 69 65.3 34.4 58.3 66.6 88.8 39.4

AI2D-C+D direct 85.2 69.6 75.8 39 67.6 78 78.4 40.1
cot 83.8 70.2 68 35.9 60.7 76.3 76.6 42.1

AI2D-D direct 86.3 69.2 75.1 37.3 67.2 76.8 77.6 39.7
cot 82.7 67.6 66 33.7 61.4 71.7 74.4 38.3

AI2D-C direct 84.4 69.6 75.9 37.7 68.2 75 76.3 39.1
cot 83.1 70.2 65.9 35.6 59.9 75.1 74.5 39.5

math-C+D direct 85.3 68.5 75.5 37.8 67.3 71.7 77.4 42.7
cot 84.4 69.7 64.3 34.2 59.3 68.7 76.3 49

math-C direct 85.2 68.1 75.6 38 67.4 72 77.5 40.5
cot 84.3 70.6 66.2 34.7 59.8 68.2 78.4 45.4

math+ChartQA direct 85.3 70.9 75.7 36.8 67.8 71.7 78.3 41.9
cot 84.1 81.9 67 32.6 60.7 68.3 75.5 49.7

LLAVA-REASONER-SFT direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3
cot 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6

In table F.1, we present additional ablation experiments on SFT across each dataset, using three settings:
direct only, CoT only, and direct + CoT. Additionally, format-aligned data is incorporated during training
to enable the model to follow the specific direct or CoT format during inference.
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G Ablation Tests on Data Composition
Table G.1: Effect of data composition on math reasoning. MV: MathVision, GL: G-LLaVA, MI: MathInstruct, MP:
MathPlus.

Data Config MathVista
(direct/CoT)

format only ① 39.3/40.3
MV 41.0/43.4
MV+GL 43.2/44.9
MV+GL+MP50k 42.3/45.6
MV+GL+MP100k 43.0/44.9
MV+GL+MI50k 43.1/45.0
MV+GL+MI100k 43.7/46.3
MV+GL+AI2D 44.1/46.4
MV+GL+SQA 43.1/47.3
MV+GL+ChartQA 43.2/50.4

Data Composition for Math. In table G.1, we examine the effectiveness of data composition on
MathVista performance. We first include two visual math datasets: MathVision (MV) and G-LLaVA (GL).
Including MV improves CoT performance by +3.1 over format only baseline (fig. 4 ①), while adding GL
yields an additional gain of +1.5. Building on MV+GL, we incorporate several datasets that are potentially
relevant to the task, including two math text-only datasets: MathPlus (MP) and MathInstruct (MI), two
science datasets: SQA and AI2D, and ChartQA. Notably, ChartQA significantly boosts CoT performance
(+5.5), while AI2D and SQA provide positive gains of +0.6 and +1.5, respectively. However, adding the
math text datasets results in minimal improvement. Comparing inclusion of 100k MP vs 50k MP, more
text data does not necessarily lead to better results. Therefore, we decided not to include them in training
LLAVA-REASONER-SFT.

Table G.2: Effect of data composition on science related tasks.

Data Config AI2D SQA
format only ① 67.4 74.4
AI2D 76.3 76.6
SQA 66.9 90.4
AI2D +SQA 76.7 91.2
AI2D +SQA +ChartQA 77.4 91.4

Data Composition for Science Tasks with CoT Prediction. In table G.2, we evaluate the impact
of data composition on science datasets, including AI2D and SQA. Our results show that combining
SQA and AI2D provides additional gains on both datasets, indicating that they are mutually beneficial.
Furthermore, adding ChartQA contributes positively to both datasets, with a notable improvement of +0.7
for AI2D.
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Dataset GPT-4o Grok-1.5V Cambrian LLaVA-Reasoner-SFT LLaVA-R-DPO
direct/cot reported official prompt direct/cot direct/cot

A-OK 89.6/90.1 - 83.1* 85.4/86.2 85.4/87.0
ChartQA 79.6/84.7 76.1 73.3 76.1/83.0 76.4/84.2
DocVQA 90.3/90.8 85.6 77.8 82.9/81.8 83.1/82.7
InfoVQA 72.4/72.8 - 45.7* 50.6/51.6 51.2/52.7
TextVQA 78.1/75.4 78.1 71.7 73.1/71.1 73.3/71.5
AI2D 80.7/81.5 88.3 73.0 79.4/78.5 79.4/79.5
SQA 85.9/87.2 - 80.4 90.4/92.7 90.8/92.6
MathVista 54.8/63.4 52.8 49.0† 44.2/52.1
OCRBench 80.2/79.2 - 62.4 61.6/62.0 62.9/63.7
MMStar 55.1/64.7 - 50.3* 51.6/54.0 51.5/54.1
MMMU 57.8/63.6 53.6 42.7 41.6/40.0 42.4/42.6
Avg (of best) 77.9 - 64.5 68.8 69.5

Table G.3: Performance Comparison of GPT-4o, Grok-1.5V, Cambrian-7b, and our SFT/DPO Model. For Cambrian,
* indicates our replicated results, while others are adapted from (Tong et al., 2024), † indicate CoT prompt used for
evaluation. LLAVA-REASONER-SFT is our SFT model and LLAVA-REASONER-DPO is our DPO model.

H Comparing with SOTA model and GPT-4o

In table G.3, we compare the performance of GPT-4o and a recent state-of-the-art model, Cambrian (Tong
et al., 2024). For GPT-4o, we include both direct and CoT predictions, following the prompt optimization
steps outlined in (Borchmann, 2024), with the prompts detailed in appendix C. For Cambrian, we report
the numbers from (Tong et al., 2024) and replicated the results using the official checkpoint on MMStar,
InfoVQA, and A-OKVQA. Specifically for Cambrian, CoT predictions were used for the MathVista
dataset, while direct predictions were applied for the remaining datasets.

When compared to open-source models, GPT-4o outperforms on nearly all benchmark datasets, with
the exception of SQA. Notably, significant improvements from CoT predictions are observed on tasks
involving calculation or complex reasoning, such as ChartQA, MathVista, MMMU, and MMStar.

Cambrian-7B is trained on a dataset of 7 million open-source instruction-following examples. In
contrast, our model, fine-tuned on fewer than 400k instruction examples, outperforms Cambrian-7B on
most benchmark datasets, underscoring the effectiveness of incorporating CoT data. While we recognize
the challenge of comparing against other models, such as One-Vision (Li et al., 2024), MiniCPM-V (Yao
et al., 2024), X-Composer (Zhang et al., 2024b), and InternVL (Chen et al., 2024b), due to differences
in model architecture, training datasets, and evaluation pipelines, our primary focus is on studying the
effectiveness of CoT learning rather than competing for state-of-the-art performance on visual-language
tasks.
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I Additional DPO Experiments

Table I.1: Truncating response length affects the final performance of DPO. No truncation leads to a decline in
performance, while truncating to 90 tokens empirically yields the best results.

Data/Truncate Len prompting 70 90 110 No Truncate SFT baseline

ChartQA
direct 76.5 76.2 76.7 75.9 76.1
CoT 83.9 84.2 81.8 80.6 83.0

A-OKVQA
direct 85.2 85.2 85.3 85.1 85.4
CoT 86.7 86.9 86.3 85.7 86.2

Truncating Responses for DPO In our initial experiments, we observed that truncating response
length impacts the final performance of DPO. As shown in table I.1, no truncation results in a decline
in performance, while truncating to 90 tokens empirically produces the best results. Consequently, we
applied a 90-token truncation for the DPO experiments.

Table I.2: Comparison of DPO with the RFT method. The upper part of the table presents the SFT baseline and the
DPO model, while the lower part shows the ablation results of RFT trained on each of the A-OK, ChartQA, and
math training datasets, as well as their combined results.

Methods prompting A-OK ChartQA MathVista

SFT baseline
direct 85.4 76.1 44.3
CoT 86.2 83.0 50.6

LLAVA-REASONER-DPO
direct 85.4 76.4 44.2
CoT 87.0 84.2 52.1

A-OKVQA direct 85.1 72.7 37.4
-RFT CoT 87.7 0.0 32.5

A-OKVQA direct 85.8 74.9 41.3
-RFT+Format CoT 86.3 80.2 46.5

ChartQA direct 85.4 75.0 42.6
-RFT CoT 86.7 83.9 52.0

ChartQA direct 85.9 75.8 44.4
-RFT+Format CoT 85.5 83.4 50.6

Math direct 85.3 76.0 32.4
-RFT CoT 86.7 67.3 50.9
Math direct 85.5 76.0 39.6

-RFT+Format CoT 85.5 82.0 50.0
Combined direct 85.3 75.4 37.8

-RFT CoT 85.4 84.4 49.0
Combined direct 85.0 75.5 43.0

-RFT+Format CoT 86.6 83.1 47.1

DPO vs. RFT Following appendix E, we examine the impact of RFT and compare it to the DPO
method.

In table I.2, for A-OKVQA, we observe that training with A-OKVQA RFT alone yields the best
result for A-OKVQA; however, the model’s ability to generate short answers is entirely lost. When
format-aligned data is added, there is a trade-off between performance on A-OKVQA and other datasets.

When the datasets are combined for training, we see improvements only on ChartQA, while performance
on A-OKVQA and MathVista declines. This indicates that balancing RFT across datasets is challenging,
especially when the SFT model already performs relatively well on basic tasks. In contrast, the DPO
model demonstrates consistent gains across datasets, showing better generalization.
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