
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16754–16779
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RetroLLM: Empowering Large Language Models to Retrieve Fine-grained
Evidence within Generation

Xiaoxi Li1, Jiajie Jin1, Yujia Zhou2, Yongkang Wu3, Zhonghua Li3,
Qi Ye3, Zhicheng Dou1,4*

1Gaoling School of Artificial Intelligence, Renmin University of China
2Tsinghua University 3Huawei Poisson Lab

4Beijing Key Laboratory of Research on Large Models and Intelligent Governance
{xiaoxi_li, dou}@ruc.edu.cn

Abstract
Large language models (LLMs) exhibit remark-
able generative capabilities but often suffer
from hallucinations. Retrieval-augmented gen-
eration (RAG) offers an effective solution by
incorporating external knowledge, but exist-
ing methods still face several limitations: ad-
ditional deployment costs of separate retriev-
ers, redundant input tokens from retrieved text
chunks, and the lack of joint optimization of re-
trieval and generation. To address these issues,
we propose RetroLLM, a unified framework
that integrates retrieval and generation into a
single, auto-regressive process, enabling LLMs
to directly generate fine-grained evidence from
the corpus with constrained decoding. More-
over, to mitigate false pruning in the process of
constrained evidence generation, we introduce
(1) hierarchical FM-Index constraints, which
generate corpus-constrained clues to identify a
subset of relevant documents before evidence
generation, reducing irrelevant decoding space;
and (2) a forward-looking constrained decod-
ing strategy, which considers the relevance of
future sequences to improve evidence accuracy.
Extensive experiments on five open-domain
QA datasets demonstrate RetroLLM’s superior
performance across both in-domain and out-of-
domain tasks. The code is available at https:
//github.com/sunnynexus/RetroLLM.

1 Introduction

Large language models (LLMs) exhibit remarkable
capabilities and are widely applied in various do-
mains (Zhao et al., 2023; Zhu et al., 2023; Qiao
et al., 2024). However, due to their reliance on
model internal memory, they often struggle with
long-tail or newly updated knowledge, leading to
the issue of “hallucinations” (Huang et al., 2023).
To address this, retrieval-augmented generation
(RAG) has emerged as a promising solution. By in-
tegrating the retrieval of external knowledge, RAG

*Correpsonding author.

enables models to access up-to-date and factual in-
formation, enhancing the accuracy and reliability
of their responses (Lewis et al., 2020; Gao et al.,
2024).

Existing RAG methods typically rely on a sepa-
rate dense retriever to fetch top-k text chunks for
LLMs to generate answers, as shown in Figure 1(a).
However, these methods face several limitations:
(1) Maintaining a separate retriever increases de-
ployment costs (Zhang et al., 2024a); (2) Retrieved
documents often contain redundant information,
consuming vast input tokens and distracting the
model’s attention from key information (Jiang et al.,
2023b); (3) The fixed granularity and number of
retrieved text chunks limits flexibility of RAG sys-
tems (Qian et al., 2024); and (4) Retrievers rely
on standalone document indices, hindering joint
optimization with generators. Since retrieval and
generation are inherently interconnected, jointly
learning these tasks can enhance the overall perfor-
mance of RAG systems (Li et al., 2024c). Thus, we
aim to develop a unified framework that seamlessly
integrates retrieval and generation processes.

Recently, generative retrieval (GR) has emerged
as a promising approach that leverages generative
models to directly generate document identifiers
(DocIDs), eliminating the need for document in-
dices and making it possible for joint optimiza-
tion (Li et al., 2024b; Tay et al., 2022; Li et al.,
2024c,a). However, existing GR methods still re-
quire mapping the generated DocIDs back to the
document content before these can be used by
LLMs for answer generation, as depicted in Fig-
ure 1(b). This step disrupts the seamless integration
of retrieval and generation processes.

To address the above limitations, we propose
RetroLLM, which empowers LLMs to generate
factual evidence from knowledge sources and a fi-
nal answer within a unified, auto-regressive decod-
ing process, as shown in Figure 1(c). RetroLLM
enables the model to autonomously decide how

16754

https://github.com/sunnynexus/RetroLLM
https://github.com/sunnynexus/RetroLLM

Generative
Retriever

Prefix
Constraints

DocIDs

Question

Generate
DocIDs

Documents

concat
Docs

map

map

(b) Generative Retrieval-based RAG (c) Ours: RetroLLM(a) Traditional RAG

Dense
Retriever LLMD-Vectors

Question

Vector
Matching

Documents

Answer

＋
concat

Docs

map

encode
RetroLLM

Prefix
Constraints

Question

Fine-grained
Evidences

Answer

Docs

Full-text
Substrings

Max Inner
Product

Q-Vector

LLM

Answer

＋

A
u

to
-reg

ressive G
en

era
te

Figure 1: Comparison of retrieval-augmented generation frameworks. (a) Traditional RAG uses a dense retriever
for document matching, while (b) generative RAG relies on constrained DocID generation. Both require feeding
retrieved document text into the LLM for answer generation. (c) Our RetroLLM unifies retrieval and generation in a
single auto-regressive decoding process, leveraging FM-Index constraints to retrieve fine-grained evidence.

much evidence to retrieve and when to generate the
final response, eliminating the need for a separate
embedding model and enhancing the flexibility of
the RAG system. Furthermore, RetroLLM achieves
joint optimization of retrieval and generation, facil-
itating a deeper understanding of their relationships
and improving overall performance.

To achieve this, a simple approach is to apply
constrained beam search based on FM-Index to
generate factual evidence contained in corpus (Jain
et al., 2024). However, the prefix-constrained ap-
proach suffers from a severe false pruning prob-
lem, where correct evidence sequences are often
pruned due to errors in early decoding steps (Zhang
et al., 2023). While initial prefixes may appear
relevant, subsequent decoded sequences often re-
veal that they are grounded in irrelevant documents,
leading to failure in generating relevant evidence.
This issue arises from two main challenges: (1)
Large corpora result in a vast number of prefix
choices during early constrained decoding steps,
making it difficult to choose the correct one; (2)
It is also difficult to predict the relevance of sub-
sequent sequences based solely on a short prefix.
(See Appendix B for details)

To address these challenges, we propose two key
strategies: (1) We construct a hierarchical FM-
Index, which first enables the LLM to generate
corpus-constrained clues to identify a subset of
candidate documents. Evidence is then generated
under the constraints of this subset’s FM-Index, sig-
nificantly reducing the irrelevant decoding space,
especially in the early steps. (2) For evidence gener-
ation, we introduce forward-looking constrained
decoding, which utilizes the clues and the docu-
ment FM-Indexes to identify future windows in
the candidate documents. A relevance model then
scores these windows, guiding the generation of

relevant evidence with future window relevance.
We conduct extensive experiments on five open-

domain QA datasets, testing both in-domain and
out-of-domain tasks, different base LLMs, and pa-
rameter sizes. Our results demonstrate the superior
performance of RetroLLM compared to traditional
RAG and complex RAG strategies.

The main contributions of this paper are: (1)
We propose RetroLLM, a unified framework that
unifies retrieval and generation into a single auto-
regressive process, eliminating the need for a sep-
arate retriever and enabling joint optimization of
RAG tasks. (2) To reduce irrelevant decoding paths
in constrained evidence generation, we propose hi-
erarchical FM-Index constraints and first predict
clues with corpus FM-Index constraints to iden-
tify a document subset. (3) We introduce forward-
looking constrained decoding, which identifies can-
didate windows based on clues and leverages future
window relevance scores to guide the model in gen-
erating relevant evidence.

2 Preliminary

2.1 Task Formulation

Retrieval-augmented generation (RAG) leverages
external knowledge sources to enhance the accu-
racy of language model generations. In this work,
we formulate RAG within a generative framework.
We divide the task into two sub-problems:

Constrained Evidence Generation: This in-
volves retrieving relevant evidence from a large
corpus in a generative manner with pre-built con-
straints. Formally, let C be the corpus of documents
and q be the input query. The constrained evidence
generation process can be formulated as:

P (e|q, C) =
∏Te

t=1
P (et|e<t, q, Ic), (1)

16755

5 9 13 17 21 25 29
First n Tokens Sequence

0.2

0.3

0.4

0.5

0.6
R

el
ev

an
ce

 S
co

re
Corpus FM-Index

Doc FM-Index

Labeled

(a) Sequence Relevance

1 5 10
Beam Size

0.0

0.1

0.2

0.3

0.4

0.5

A
ns

w
er

 in
 G

en
er

at
io

n Corpus FM-Index

Doc FM-Index

(b) Overall Accuracy

Figure 2: Empirical Study on false pruning problem
in constrained evidence generation, comparing corpus-
level and document-level FM-Index approaches. The
relevance score is calculated by bge-reranker-large.

where e is the generated evidence sequence with
length Te, e<t is the tokens generated before posi-
tion t, and Ic = FM-Index(C) represents the FM-
Index built on corpus C.

Answer Generation: Based on the retrieved
evidence, the language model continues to generate
the final answer, which can be expressed as:

P (a|q, e) =
∏Ta

t=1
P (at|a<t, q, e), (2)

where a is the generated answer with length Ta and
a<t denotes the tokens generated before position t.

2.2 Empirical Study
To enable language models to generate evidence in
a knowledge corpus, a natural approach is to apply
FM-Index constraints over the entire corpus. How-
ever, our preliminary experiments reveal a critical
limitation: while the initially generated evidence
sequence usually appears relevant, later generated
tokens often reveal that it has been grounded to
irrelevant documents under FM-Index constraints,
resulting in incorrect evidence prediction. This
phenomenon is known as false pruning, where rel-
evant sequences are eliminated prematurely during
beam search (Detailed analysis in Appendix B).

To quantify this issue, we conducted an empir-
ical study. Figure 2(a) illustrates how the rele-
vance between query and generated evidence prefix
changes during decoding. The results show that
compared to labeled evidence sequences, the prefix
relevance under corpus FM-Index constraints ex-
periences a significant decline, particularly severe
within the first 13 tokens. When we restrict the
FM-Index constraints to only relevant documents,
this degradation is substantially reduced and evi-
dence generation accuracy improves over different
beam sizes (Figure 2(b)). This finding suggests that

constraining the search space to a curated subset
of relevant documents effectively mitigates false
pruning, guiding the development of our strategies.

3 RetroLLM: Retrieval in Generation

In this section, we introduce RetroLLM, a uni-
fied LLM for RAG via auto-regressive decoding.
The decoding process includes a clue and evidence
stage for retrieval and an answer generation stage.

3.1 Hierarchical FM-Index Constraints

Before model generation, we construct hierarchi-
cal FM-Indexes for different levels of constraints
for clue and evidence generation stages, including:
(1) a corpus-level global FM-Index Ic built from
the entire corpus: Ic = FM-Index(C); and (2) a
document-level FM-Index manager Id built for
each document: Id = FM-Index(d) : d ∈ C. The
global index Ic is primarily used during the clue
generation stage to ensure generated phrases exist
in the corpus, while document-level indexes Id are
employed during evidence generation to constrain
outputs to specific document d.

3.2 Clue Generation and Document Scoring

As discussed in Section 2.2, generating evidence
with relevant document FM-Indexes could reduce
the decoding paths and enhance accuracy. There-
fore, we propose that the LLM first predict key
phrases, or “clues,” that are likely to appear in rele-
vant documents to retrieve subsets of documents.

Clue Generation. Given a query q, we first gen-
erate a set of clues Cgen under corpus FM-Index
constraints to predict key topics of relevant doc-
uments. For each clue ci ∈ Cgen, its generation
probability can be formulated as:

P (ci|q, c<i, Ic) =
∏Ti

t=1
P (ci,t|ci,<t, q, c<i, Ic)

(3)
where ci,t represents the t-th token of the i-th clue,
ci,<t represents all previously generated tokens for
the i-th clue, Ic is the corpus-level FM-Index, and
Ti is the length of the i-th clue. Clues are gener-
ated between the special tokens <|clue|> and <|/clue|> ,
separated by the special token <|sep|> .

With the predicted clues, we can obtain the ap-
pearance frequency CF(ci) of clue ci in the cor-
pus based on the corpus FM-Index, along with
DF(ci) which is the document frequency, and
TF(ci, d) which is the term frequency in document
d. Drawing inspiration from TF-IDF (Robertson

16756

(b) Hierarchical FM-Index Constraints (c) Forward-Looking Constrained Evidence Generation

Corpus

Documents

Global
FM-Index

Doc-level
FM-Index

Candidate Documents

(a) Overall Process of RetroLLM: Retrieval within Generation via Hierarchical Constraints

Large Language
Model Question: who

got the first nobel
prize in physics? Sparse Lexical

Expansion

#1 Clue Stage: Global FM-Index Constrain (b) #2 Evidence Stage: Forward-Looking FM-Index Constrain (c)

Generated
Clues

Auxiliary
Clues

Relevance
Scoring

Candidate
Documents

#3 Generation Stage: No Constrain

Extract CluesAuto-regressive Generate
Candidate Document Selection

Get Doc-level FM-Index (b)
#1 Clues Generation

<|clue|> Nobel Prize <|sep|> Physics <|/clue|> <|evidence|> The Nobel Prize in Physics is a yearly award … <|sep|> The first Nobel Prize in
Physics was awarded to physicist Wilhelm Röntgen … <|/evidence|> The answer is Wilhelm Röntgen.

#2
#1 #2

Evidences Generation
Retrieval Unit (Iterable)

#3 Response Generation

Initialize

Initialize

Prefix Sequence

Prefix Sequence

DocID Subset
Allowed Next Tokens

Allowed Next Tokens

Clue
Words

Evidence
Prefix

Locate
Clues

Extract
Windows

Compute Future Windows

Check Window
Allowance

Pre-build

Pre-build

Document text
Clue words
Future window

Future-Window
Allowed Tokens

Figure 3: Overview of the RetroLLM Framework, which retrieves fine-grained evidence through a hierarchical,
forward-looking FM-Index constrained generation process. During generation, the model autonomously determines
whether to generate additional evidence or provide the final answer, based on the sufficiency of the current context.

and Zaragoza, 2009), we assign higher weights to
clues that appear less frequently in the corpus and
are present in fewer documents. For a document d,
we calculate the relevance score as:

Sgen(d) =
∑|Cgen|

i=1
wi · f(ci, d), (4)

where wi is the weight of the i-th clue, defined as:

wi = log
N

CF(ci)
+ log

N

DF(ci)
, (5)

and f(ci, d) scores the document d for clue ci:

f(ci, d) = log(1 + TF(ci, d)), (6)

where N is the total number of documents. Based
on Equation (4), we form the ranking list R1(d)
by selecting the top-kgen documents from those
containing at least one c ∈ Cgen.

Auxiliary Clues. Although the generated clues
could locate relevant documents, they typically con-
tain only 1-3 key phrases, which may limit com-
prehensive document recall. To enhance retrieval
robustness, we obtain auxiliary clues by employing
a sparse lexical model flex that takes query q as
input and assigns importance weights to each word
in its vocabulary Vlex:

wlex(v) = flex(q) : v ∈ Vlex. (7)

Subsequently, we select the top-kaux words from
Vlex as auxiliary clues set Caux. Now we form a

combined clue set Call = Cgen ∪ Caux. Additionally,
we obtain a document ranking list R2(d) consisting
of the top-klex documents retrieved by flex.

Rank Fusion. The final candidate documents
are determined by combining the ranking lists from
both generated and expanded clues using weighted
reciprocal rank fusion, which can be expressed as:

S(d) = w1

∑

r∈R1(d)

1

r
+ w2

∑

r∈R2(d)

1

r
, (8)

where w1 and w2 are the respective weights for
R1(d) and R2(d), 1

r represents the reciprocal rank
score. Finally, the top-k ranked documents form
the candidate set Dc for evidence generation.

3.3 Forward-Looking Constrained Evidence
Generation

Now we have candidate documents, but a key chal-
lenge still remains: the model cannot foresee the
relevance of future sequences when predicting the
current token, making it difficult to decode tokens
that lead to correct evidence sequences. To address
this challenge, we propose a forward-looking con-
strained decoding strategy that enables the model
to be aware of future sequence relevance.

Our strategy consists of three key components:
(1) locating potential future windows that contain
query-relevant information, (2) scoring the rele-
vance of these windows, and (3) adjusting decoding
logits based on future relevance. Given a candidate

16757

document set Dc, IDc is its FM-Indexes, the evi-
dence generation process can be formulated as:

P (ei|q, e<i, Call, IDc) =
∏Ti

t=1
P (ei,t|ei,<t, q, e<i, Call, IDc ,W),

(9)

where ei represents the i-th evidence sequence, Call
contains the generated clues, and Winfo encapsu-
lates future window information.

Locate Future Windows. First, we identify
window sequences containing clues Call in the can-
didate document set Dc, as these contexts typically
exhibit high relevance to the query. We obtain all
future window sequences Wraw through document-
specific FM-Indexes:

Wraw =
⋃

d∈Dc

⋃

c∈Call

Ext(Id,Loc(Id, c), lw). (10)

Here, Loc(Id, c) locates clue positions in docu-
ment d’s FM-Index Id, and Ext(Id, pc, lw) extracts
sequences of length lw around these positions. We
then merge overlapping windows from Wraw to cre-
ate the candidate future window set W , with each
merged window not exceeding length lmax.

Future Window Relevance. We employ a
reranker model frel to efficiently evaluate the rel-
evance between each future window w ∈ W and
the query q:

Sw(w) = frel(q, w) : w ∈ W. (11)

Now for each w ∈ W , we have its document source
d, position pc, and relevance score Sw(w).

Logits Adjustment. During decoding, we adjust
token logits to favor sequences from highly relevant
future windows. At each step, for allowed tokens
Vallowed determined by FM-Index constraints, we
locate each token’s positions Pt and identify its
corresponding future windows Wt. The adjusted
logits are computed as:

l̃(t) =




l(t) + λ · max

w∈Wt

Sw(w), if t ∈ Vallowed

−∞, otherwise
(12)

where l(t) is the original logits and λ controls the
weight of future relevance. With logits adjustment,
the token probability in Equation (9) is then com-
puted as P (ei,t|...) = softmax(l̃(t)).

The evidence generation process continues until
sufficient information is collected, controlled by
special tokens: <|evidence|> begins evidence gener-
ation stage, <|sep|> triggers the next evidence gen-
eration under constraints, while <|/evidence|> signals
completion and transitions to free generation.

3.4 Answer Generation
With the relevant evidences E generated, the model
proceeds to generate the final answer to the original
query q, which can be formulated as:

P (a|q, Cgen, E) =
∏Ta

t=1
P (at|a<t, q, Cgen, E),

(13)
where a is the generated answer sequence of length
Ta, at is the token at position t in the answer, a<t

denotes generated tokens before position t.

3.5 Training of RetroLLM
Since RetroLLM’s entire RAG process is one-pass
and auto-regressive, we can construct target se-
quences for supervised fine-tuning to achieve joint
learning of retrieval and generation tasks.

Training Data Construction. We simulate the
model’s inference process to construct training data.
For each QA pair (q, a), we: (1) Use a sparse re-
triever to obtain clues Caux and retrieve relevant doc-
uments. (2) Locate sentences containing c ∈ Caux
within the documents. (3) Apply a reranker to
select the top-ke relevant evidences. (4) Identify
evidences that both contain the answer a and are
confirmed by an LLM to genuinely answer the
query q. (5) Select the top-k evidences up to the
first relevant one. (6) For target clues, we utilize an
LLM to extract key entities from the query and rel-
evant evidences. An example of the output format
is illustrated in Figure 3, and additional details are
provided in Appendix D.3.2.

Model Optimization. Since evidence is typ-
ically longer compared to clues and answer, we
mask out 80% of the tokens in the middle of each
target evidence. We employ the standard next token
prediction loss as follows:

L = −
∑Tc+Te

t=1
logP (xt|x<t, q; θ)

− γ
∑Ta

t=1
logP (yt|y<t, x, q; θ),

(14)

where θ represents the parameters of RetroLLM,
x and y represent the target sequence of clues +
evidences and answer respectively, and γ is the
weight for the answer loss.

4 Experimental Settings

4.1 Datasets and Evaluation Metrics
We conduct experiments on five open-domain
QA datasets, including single-hop QA:
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi

16758

Table 1: Overall performance on open-domain QA datasets, including single-hop and multi-hop QA tasks. The best
results are in bold and the second are underlined. Results from non-proprietary models are in gray color.

In-domain Datasets Out-of-domain Datasets

Method NQ TriviaQA HotpotQA PopQA 2WIKI

Acc F1 Tok Acc F1 Tok Acc F1 Tok Acc F1 Tok Acc F1 Tok

Direct Generation
Llama3-8B 27.6 30.1 50 56.1 60.2 52 21.2 26.5 56 24.2 26.4 43 20.9 24.3 54
Mistral-7B 30.4 25.2 57 58.8 58.6 57 27.0 23.6 65 25.8 25.2 45 36.5 18.7 58
Qwen2.5-7B 21.8 21.3 52 45.1 48.1 54 21.3 27.5 57 17.1 18.7 45 22.4 28.1 53
ChatGPT - - - 77.0 52.9 - 33.8 24.0 - 26.6 13.2 - 38.0 21.3 -

Retrieval-augmented Generation
Naive RAG 52.4 41.1 919 69.3 65.9 915 37.8 35.8 960 47.7 38.6 944 38.7 21.7 1000
REPLUG 41.6 41.2 903 65.4 66.5 939 27.8 31.7 965 38.2 37.0 921 24.5 20.8 1007
FLARE 46.8 45.4 1515 67.6 68.9 1418 36.9 34.8 1715 52.4 41.5 1461 34.4 35.2 1795
Self-RAG 41.8 45.2 1203 64.1 53.4 1267 32.1 29.6 1354 39.7 32.7 1236 30.3 25.7 1272
IRCoT 49.6 45.9 1598 66.0 66.1 1715 37.3 41.5 1842 59.8 45.6 1667 29.4 32.4 1707
Iter-RetGen 51.7 48.4 3002 71.0 69.9 2461 37.2 39.0 2545 51.7 47.5 2509 29.2 21.5 2669
Adaptive-RAG 50.5 46.6 946 65.1 65.6 958 37.1 39.1 2080 58.3 40.4 1681 32.1 28.4 2580

Retrieval within Generation
RetroLLM (Ours) 61.6 49.8 302 74.3 72.8 287 61.9 47.2 607 65.7 43.0 355 48.9 36.2 661

et al., 2017), PopQA (Mallen et al., 2023), and
multi-hop QA: HotpotQA (Yang et al., 2018),
2WikiMultiHopQA (2WIKI) (Ho et al., 2020). See
Appendix C for detailed statistics. For evaluation
metrics, we use Accuracy (Acc), F1 score, and
token count (Tok) to assess the quality of generated
answers as well as the total number of input and
output tokens consumed by LLMs.

4.2 Baselines
The baseline methods include two types: (1) Di-
rect generation: This includes open-source models
Llama3-8B (Dubey et al., 2024), Mistral-7B (Jiang
et al., 2023a), and Qwen2.5-7B (Yang et al., 2024),
and the non-proprietary model ChatGPT (OpenAI,
2022) with results taken from (Zhang et al., 2024b).
(2) Retrieval-augmented generation: This includes
Naive RAG method and several complex RAG
methods, including REPLUG (Shi et al., 2023),
Self-RAG (Asai et al., 2024), IRCoT (Trivedi
et al., 2023), Iter-RetGen (Shao et al., 2023), and
Adaptive-RAG (Jeong et al., 2024). For a fair
comparison, all RAG baselines use the E5-base-
en (Wang et al., 2022a) retriever, and all LLMs are
instruction-tuned with 7B or 8B parameters.

4.3 Implementation Details
Our knowledge source is based on the Wikipedia
dump from December 20, 2018, in alignment with
DPR (Karpukhin et al., 2020). We use Mistral-7B-
Instruct as Backbone LLM. We limit the maximum

number of evidence for single-hop and multi-hop
QA to 5 and 10, respectively. We set w1 and w2

to 1 and 2, respectively, and λ to 100. For effi-
cient model training, we employ LoRA (Hu et al.,
2022), setting training epochs to 3 and γ to 2. We
use SPLADE-v3 (Lassance et al., 2024) for clue
expansion and use BGE-reranker-base (Xiao et al.,
2024) as the scoring model for window sequences.
We implement FM-Index based on the sdsl-lite li-
brary (Gog et al., 2014). (Details in Appendix D)

4.4 Experimental Results
Overall Performance We evaluate RetroLLM’s
overall downstream performance using NQ, Triv-
iaQA, and HotpotQA for in-domain tasks, and
PopQA and 2WIKI for out-of-domain tasks. The
results are presented in Table 1. We find that: (1)
RAG methods generally outperform direct genera-
tion methods (except for ChatGPT), highlighting
the knowledge-intensive nature of these tasks that
need retrieval augmentation. (2) RetroLLM out-
performs RAG methods across both in-domain
and out-of-domain tasks. This highlights the
effectiveness of our unified RAG framework in
mastering both evidence retrieval and answer gen-
eration, while also demonstrating strong general-
ization capabilities to unfamiliar domains, which
is a crucial and challenging aspect for existing
generative retrieval methods. (3) RetroLLM sig-
nificantly reduces token consumption (“Tok”)
across all datasets compared to RAG meth-

16759

Table 2: Analysis of retrieval performance of RetroLLM,
compared with sparse, dense, and generative retrieval
methods. We report average performance on three
single-hop and two multi-hop QA datasets.

Method
Single-hop QA Multi-hop QA

R@1 R@5 Num R@1 R@5 Num

BM25 37.8 56.3 5 26.9 43.1 5
SPLADE-v3 50.6 69.7 5 27.5 42.9 5
E5 54.3 74.3 5 26.9 45.9 5
BGE 53.3 72.8 5 27.4 46.8 5
Naive Constrain 15.7 31.7 5 10.6 20.3 5
RetroLLM 56.6 67.9 3.29 29.3 49.6 4.24

ods. On average, we use approximately 2.1x
fewer tokens than Naive RAG and 6x fewer
than Iter-RetGen. This efficiency is attributed to
RetroLLM’s capability to retrieve fine-grained ev-
idence and dynamically decide the amount of re-
trieved evidence.

Analysis of Retrieval Performance We also
analyze the retrieval performance of RetroLLM
compared to sparse and dense retrieval baselines,
as shown in Table 2. (1) For single-hop QA
tasks, RetroLLM demonstrates superior accuracy
on R@1, thanks to the design of clues and future
windows, which help precisely locate the relevant
evidence. However, the R@5 is lower than strong
baselines like E5, as it employs flexible retrieval
and uses fewer passages on average (3.29 vs. 5 for
baselines). (2) For multi-hop QA tasks, RetroLLM
shows superior accuracy compared to all other
methods for both R@1 and R@5, while utilizing a
smaller average number of 4.24 retrieved passages.
(3) Notably, the naive generative retrieval method
using constrained beam search performs poorly on
all metrics, validating the severity of false pruning.

Ablation Study Table 3 presents the results of
the ablation study, evaluating the effectiveness of
each component of RetroLLM. It can be observed
that: (1) Removing the future window, clue gener-
ation, and clue expansion all lead to performance
degradation, demonstrating the effectiveness of
these specially designed components, as they play
an important role in alleviating the false pruning
problem in the prefix constraint-based method. (2)
Adopting the most basic constrained evidence gen-
eration method results in the lowest performance,
even lower than without constraints, demonstrat-
ing the severity of false pruning. (3) Without con-
straints, while the model avoids the false pruning

1 3 5 7 9 11 13 15
Parameters (B)

52

54

56

58

60

62

64

A
cc

ur
ac

y

Llama3 Series

Qwen2.5 Series

Mistral Series

(a) Parameters vs. Accuracy

1 3 5 7 9 11 13 15
Parameters (B)

30

35

40

45

50

55

F1

Llama3 Series

Qwen2.5 Series

Mistral Series

(b) Parameters vs. F1

Figure 4: Impact of performance with different base
LLMs, reporting average performance on five datasets.

Table 3: Ablation Studies of RetroLLM, considering
in-domain and out-of-domain performance.

Method
In-domain Out-of-domain

Acc F1 Acc F1

RetroLLM 66.0 56.6 57.3 39.6

w/o Future Window 44.3 43.2 40.9 33.8
w/o Clue Generation 60.6 52.1 56.4 38.1
w/o Clue Expansion 49.6 45.1 44.1 35.4
w/ Naive Constraints 27.2 28.0 21.8 20.7
w/o Constraints 41.6 43.0 31.6 28.1

problem, its performance still notably decreases
due to the inability to utilize external knowledge.

Impact of Different Base LLMs To evaluate the
performance of RetroLLM using different back-
bone LLMs with varying parameter sizes, we con-
ducted experiments using the Mistral, Llama3, and
Qwen2.5 series, with parameters ranging from 1B
to 14B. The results are shown in Figure 4. We
observe that: (1) As the parameter size increases,
RetroLLM’s performance steadily improves, align-
ing with the scaling law; (2) There are slight per-
formance differences across the different models
(Mistral, Llama3, Qwen2.5).Nonetheless, all mod-
els confirm the effectiveness of RetroLLM.

Impact of Generated Evidence Quantity Since
RetroLLM can dynamically determine the number
of evidence to retrieve, we investigated the effect
of different maximum retrieval quantities on per-
formance, with results shown in Figure 5. When
retrieving up to 1-5 evidence, performance contin-
ues to improve as the number of retrieved pieces in-
creases, suggesting that more evidence contributes
to stronger performance in these tasks. However,
for multi-hop QA, performance stabilizes around
6 evidence, as more evidence can bring in both
useful and distracting information, thereby limiting

16760

1 2 3 4 5
Max Evidence Num

45

50

55

60

65

70
Pe

rf
or

m
an

ce
Acc

F1

(a) Single-hop QA

2 4 6 8 10
Max Evidence Num

35

40

45

50

55

60

Pe
rf

or
m

an
ce

Acc

F1

(b) Multi-hop QA

Figure 5: Impact on maximum number of generated
evidence, reporting average performance on single-hop
and multi-hop QA tasks.

further performance gains.

Analysis of Efficiency We also evaluated the ef-
ficiency of RetroLLM, considering query latency,
token count, and overall performance (see Table 4).
We found that: (1) Latency: RetroLLM is slightly
slower than Naive RAG but significantly faster than
other more complex RAG methods. (2) Token
Count: RetroLLM requires fewer input tokens as
it processes only the query, unlike baselines that
include retrieved passages. While output tokens
are slightly higher due to fine-grained generated
evidence. The total token count is significantly re-
duced due to more precise retrieval granularity. (3)
Performance: RetroLLM achieves better results,
providing an improved cost-efficiency balance.

5 Related Work

Retrieval-augmented Generation Retrieval-
augmented generation (RAG) improves generation
quality by incorporating relevant context from
external knowledge bases, which typically employ
a separate dense retriever (Gao et al., 2024;
Tan et al., 2024b; Jin et al., 2024b; Dong et al.,
2024a; Cheng et al., 2025; Tan et al., 2024a;
Jin et al., 2025). Based on training approaches,
current RAG systems fall into three categories:
(1) Directly prompt of generative models with
retrieved context (Press et al., 2023; Trivedi et al.,
2023; Li et al., 2025a); (2) Separately training
of retriever and/or generator (Karpukhin et al.,
2020; Asai et al., 2024; Dong et al., 2025b, 2024b;
Zhu et al., 2024; Dong et al., 2024c; Li et al.,
2025b; Dong et al., 2025a); and (3) Jointly training
of retriever and generator (Lewis et al., 2020;
Singh et al., 2021). However, joint training faces
challenges due to the architectural differences
between retrieval and generation, as well as

Table 4: Efficiency Analysis of RetroLLM, comparing
query latency, number of tokens and performance (# P).

Method
Latency (ms) Token Num # P

Retr Gen Total In Out Total F1

Naive RAG 54 528 582 902 17 919 41.1
SelfRAG 89 3180 3269 1096 107 1203 45.2
Iter-RetGen 274 2058 2332 2963 39 3002 48.4
IRCoT 83 1759 1842 1535 63 1598 46.6
RetroLLM - - 786 18 297 315 49.8

the need for updating document indices during
training. Some approaches aim to unify dense
retrieval and generation within a single model,
including GritLM (Muennighoff et al., 2024) and
OneGen (Zhang et al., 2024a). However, GritLM
operates as two distinct models with separate
attention mechanisms that share parameters, while
OneGen still relies on retrieving passage chunks as
input for subsequent generation.

Generative Retrieval Generative retrieval (GR)
retrieves by directly generating document identi-
fiers (DocIDs) without the need for traditional doc-
ument indices (Metzler et al., 2021). Research in
this area focuses on: (1) DocID design, including
numeric-based DocIDs (Tay et al., 2022; Wang
et al., 2022b; Jin et al., 2023; Zeng et al., 2023) and
text-based DocIDs (Cao et al., 2021; Bevilacqua
et al., 2022; Chen et al., 2022; Li et al., 2023b); (2)
DocID memorization strategies, including pseudo-
query data augmentation (Zhuang et al., 2022),
incorporating ranking feedback (Li et al., 2023a;
Tang et al., 2024), and learnable DocIDs (Sun et al.,
2023; Yang et al., 2023). However, these methods
mainly focus on optimizing retrieval tasks, with-
out considering their connections with downstream
tasks. Even though UniGen (Li et al., 2024c) and
CorpusLM (Li et al., 2024a) address downstream
tasks, they still require mapping the generated Do-
cIDs to the corresponding documents before feed-
ing them into the generator. While RICHES (Jain
et al., 2024) attempts to streamline this process, but
fails to solve the false pruning issue, which leads
to suboptimal downstream task performance.

6 Conclusion

This paper introduces RetroLLM, a unified LLM
that seamlessly integrates retrieval and generation
by generating evidence from a corpus with FM-
Index constraints. This approach eliminates the
need for separate retrievers and reduces redundant

16761

input. To improve evidence accuracy, we proposed
hierarchical FM-Index constraints and a forward-
looking decoding strategy, helping the model focus
on relevant information. Experiments show that
RetroLLM outperforms existing methods on open-
domain QA tasks, marking a step towards a new
era of generative retrieval-augmented generation.

7 Limitations

While RetroLLM demonstrates strong performance
across various open-domain QA scenarios, it has
several limitations that present opportunities for
future research:

(1) To improve the robustness of the model-
generated clues, we still need to perform clue
expansion to ensure the system’s superior perfor-
mance, as discussed in Section 4.4. This prevents
a fully end-to-end optimization of the RAG task.
Future work could focus on designing mechanisms
that eliminate this need, enabling complete end-to-
end RAG optimization.

(2) In terms of efficiency, RetroLLM outper-
forms most complex RAG methods in query la-
tency. However, it is slightly slower than Naive
RAG, as the generated evidence results in more
output tokens despite being fine-grained and short.
Drawing on the concept of speculative decod-
ing (Leviathan et al., 2023; Xia et al., 2023), fu-
ture improvements could involve using a smaller
language model during the constrained evidence
generation phase and switching to a larger model
during answer generation. This approach could
enhance RetroLLM’s efficiency, comprehensively
surpassing existing RAG methods in both perfor-
mance, latency, and flexibility.

(3) RetroLLM currently only considers the unifi-
cation of evidence retrieval and final answer gen-
eration. It would be worth exploring the incorpo-
ration of more model reasoning processes within
RetroLLM’s single generation step, such as query
intent analysis, question decomposition, retrieval
necessity assessment, retrieved evidence relevance
judgment, and answer generation with source cita-
tions. This integration would contribute to building
a more comprehensive, unified RAG system with
just a single LLM.

Acknowledgement

This work was supported by Beijing Mu-
nicipal Science and Technology Project No.
Z231100010323009, National Science and Tech-

nology Major Project No. 2022ZD0120103, Na-
tional Natural Science Foundation of China No.
62272467, Beijing Natural Science Foundation No.
L233008, and the fund for building world-class
universities (disciplines) of Renmin University of
China. The work was partially done at the Engineer-
ing Research Center of Next-Generation Intelligent
Search and Recommendation, MOE.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

David M. Beazley. 1996. SWIG: an easy to use tool for
integrating scripting languages with C and C++. In
Fourth Annual USENIX Tcl/Tk Workshop 1996, Mon-
terey, California, USA, July 10-13, 1996. USENIX
Association.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick S. H.
Lewis, Scott Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generating
substrings as document identifiers. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu,
Yixing Fan, and Xueqi Cheng. 2022. Corpusbrain:
Pre-train a generative retrieval model for knowledge-
intensive language tasks. In Proceedings of the 31st
ACM International Conference on Information &
Knowledge Management, Atlanta, GA, USA, October
17-21, 2022, pages 191–200. ACM.

Yiruo Cheng, Kelong Mao, Ziliang Zhao, Guanting
Dong, Hongjin Qian, Yongkang Wu, Tetsuya Sakai,
Ji-Rong Wen, and Zhicheng Dou. 2025. CORAL:
benchmarking multi-turn conversational retrieval-
augmented generation. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2025,
Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pages 1308–1330. Association for Computa-
tional Linguistics.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin,
Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. 2025a. Tool-
star: Empowering llm-brained multi-tool reasoner via
reinforcement learning. Preprint, arXiv:2505.16410.

16762

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1145/3511808.3557271
https://doi.org/10.1145/3511808.3557271
https://doi.org/10.1145/3511808.3557271
https://aclanthology.org/2025.findings-naacl.72/
https://aclanthology.org/2025.findings-naacl.72/
https://aclanthology.org/2025.findings-naacl.72/
https://arxiv.org/abs/2505.16410
https://arxiv.org/abs/2505.16410
https://arxiv.org/abs/2505.16410

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2025b. Self-play with execution feedback: Improv-
ing instruction-following capabilities of large lan-
guage models. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Guanting Dong, Xiaoshuai Song, Yutao Zhu, Runqi
Qiao, Zhicheng Dou, and Ji-Rong Wen. 2024a. To-
ward general instruction-following alignment for
retrieval-augmented generation. arXiv preprint
arXiv:2410.09584.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024b. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 177–198. Association for Computational
Linguistics.

Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen
Wang, Zhicheng Dou, and Ji-Rong Wen. 2024c. Un-
derstand what LLM needs: Dual preference align-
ment for retrieval-augmented generation. CoRR,
abs/2406.18676.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Paolo Ferragina and Giovanni Manzini. 2000. Oppor-
tunistic data structures with applications. In 41st
Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 390–398. IEEE Com-
puter Society.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language models: A
survey. Preprint, arXiv:2312.10997.

Simon Gog, Timo Beller, Alistair Moffat, and Matthias
Petri. 2014. From theory to practice: Plug and play
with succinct data structures. In 13th International
Symposium on Experimental Algorithms, (SEA 2014),
pages 326–337.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A multi-hop
QA dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 6609–6625. International Committee on
Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR, abs/2311.05232.

Palak Jain, Livio Baldini Soares, and Tom Kwiatkowski.
2024. From RAG to RICHES: retrieval interlaced
with sequence generation. CoRR, abs/2407.00361.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 7036–7050. Association for Com-
putational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023a. Mistral
7b. CoRR, abs/2310.06825.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. LLMLingua: Compress-
ing prompts for accelerated inference of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358–13376. Association for Com-
putational Linguistics.

Bowen Jin, Hansi Zeng, Guoyin Wang, Xiusi Chen,
Tianxin Wei, Ruirui Li, Zhengyang Wang, Zheng
Li, Yang Li, Hanqing Lu, et al. 2023. Lan-
guage models as semantic indexers. arXiv preprint
arXiv:2310.07815.

Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yu-
tao Zhu, Yongkang Wu, Zhonghua Li, Qi Ye, and
Zhicheng Dou. 2025. Hierarchical document refine-
ment for long-context retrieval-augmented genera-
tion. Preprint, arXiv:2505.10413.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024a. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. CoRR, abs/2405.13576.

Jiajie Jin, Yutao Zhu, Yujia Zhou, and Zhicheng Dou.
2024b. BIDER: bridging knowledge inconsistency
for efficient retrieval-augmented llms via key support-
ing evidence. CoRR, abs/2402.12174.

16763

https://openreview.net/forum?id=cRR0oDFEBC
https://openreview.net/forum?id=cRR0oDFEBC
https://openreview.net/forum?id=cRR0oDFEBC
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.48550/ARXIV.2406.18676
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2407.00361
https://doi.org/10.48550/ARXIV.2407.00361
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://arxiv.org/abs/2505.10413
https://arxiv.org/abs/2505.10413
https://arxiv.org/abs/2505.10413
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174
https://doi.org/10.48550/ARXIV.2402.12174

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL, pages 1601–1611, Vancouver, Canada.
Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In EMNLP, pages 6769–
6781.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Carlos Lassance, Hervé Déjean, Thibault Formal, and
Stéphane Clinchant. 2024. Splade-v3: New baselines
for SPLADE. CoRR, abs/2403.06789.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274–19286.
PMLR.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025a. Search-o1: Agentic search-enhanced
large reasoning models. CoRR, abs/2501.05366.

Xiaoxi Li, Zhicheng Dou, Yujia Zhou, and Fangchao
Liu. 2024a. Corpuslm: Towards a unified language
model on corpus for knowledge-intensive tasks. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 26–37. ACM.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu-
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng
Dou. 2025b. Webthinker: Empowering large rea-
soning models with deep research capability. CoRR,
abs/2504.21776.

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian
Zhang, Yutao Zhu, and Zhicheng Dou. 2024b. From
matching to generation: A survey on generative in-
formation retrieval. CoRR, abs/2404.14851.

Xiaoxi Li, Yujia Zhou, and Zhicheng Dou. 2024c. Uni-
gen: A unified generative framework for retrieval
and question answering with large language mod-
els. In Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 8688–
8696. AAAI Press.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wen-
jie Li. 2023a. Learning to rank in generative retrieval.
CoRR, abs/2306.15222.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wen-
jie Li. 2023b. Multiview identifiers enhanced gen-
erative retrieval. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 6636–6648. Associa-
tion for Computational Linguistics.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 9802–9822. Association for
Computational Linguistics.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: making domain experts
out of dilettantes. In ACM SIGIR Forum, volume 55,
pages 1–27. ACM New York, NY, USA.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. CoRR, abs/2402.09906.

OpenAI. 2022. Introducing chatgpt.
https://openai.com/blog/chatgpt.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, and
Zhicheng Dou. 2024. Grounding language model
with chunking-free in-context retrieval. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 1298–1311. Association for Computa-
tional Linguistics.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu,
Chong Sun, Xiaoshuai Song, Zhuoma Gongque,
Shanglin Lei, Zhe Wei, Miaoxuan Zhang, Runfeng
Qiao, Yifan Zhang, Xiao Zong, Yida Xu, Muxi

16764

https://doi.org/10.48550/ARXIV.2403.06789
https://doi.org/10.48550/ARXIV.2403.06789
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.1145/3626772.3657778
https://doi.org/10.1145/3626772.3657778
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2404.14851
https://doi.org/10.48550/ARXIV.2404.14851
https://doi.org/10.48550/ARXIV.2404.14851
https://doi.org/10.1609/AAAI.V38I8.28714
https://doi.org/10.1609/AAAI.V38I8.28714
https://doi.org/10.1609/AAAI.V38I8.28714
https://doi.org/10.1609/AAAI.V38I8.28714
https://doi.org/10.48550/ARXIV.2306.15222
https://doi.org/10.18653/V1/2023.ACL-LONG.366
https://doi.org/10.18653/V1/2023.ACL-LONG.366
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.48550/ARXIV.2402.09906
https://doi.org/10.48550/ARXIV.2402.09906
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/V1/2024.ACL-LONG.71
https://doi.org/10.18653/V1/2024.ACL-LONG.71

Diao, Zhimin Bao, Chen Li, and Honggang Zhang.
2024. We-math: Does your large multimodal model
achieve human-like mathematical reasoning? CoRR,
abs/2407.01284.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Michael Schindler. 1997. A fast block-sorting algo-
rithm for lossless data compression. In Proc. Data
Compression Conf, volume 469. Citeseer.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. Preprint,
arXiv:2305.15294.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Devendra Singh, Siva Reddy, Will Hamilton, Chris
Dyer, and Dani Yogatama. 2021. End-to-end train-
ing of multi-document reader and retriever for open-
domain question answering. Advances in Neural
Information Processing Systems, 34:25968–25981.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,
Dawei Yin, Maarten de Rijke, and Zhaochun Ren.
2023. Learning to tokenize for generative retrieval.
CoRR, abs/2304.04171.

Jiejun Tan, Zhicheng Dou, Wen Wang, Mang Wang,
Weipeng Chen, and Ji-Rong Wen. 2024a. Html-
rag: Html is better than plain text for modeling re-
trieved knowledge in rag systems. arXiv preprint
arXiv:2411.02959.

Jiejun Tan, Zhicheng Dou, Yutao Zhu, Peidong Guo,
Kun Fang, and Ji-Rong Wen. 2024b. Small models,
big insights: Leveraging slim proxy models to decide
when and what to retrieve for llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 4420–4436. Association for Computational
Linguistics.

Yubao Tang, Ruqing Zhang, Jiafeng Guo, Maarten
de Rijke, Wei Chen, and Xueqi Cheng. 2024. List-
wise generative retrieval models via a sequential
learning process. ACM Transactions on Information
Systems.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Prakash Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as
a differentiable search index. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
10014–10037. Association for Computational Lin-
guistics.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022a. Text embeddings by
weakly-supervised contrastive pre-training. CoRR,
abs/2212.03533.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, and Mao Yang. 2022b. A
neural corpus indexer for document retrieval. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerating
seq2seq generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Singa-
pore, December 6-10, 2023, pages 3909–3925. Asso-
ciation for Computational Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 641–649. ACM.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. CoRR, abs/2407.10671.

Tianchi Yang, Minghui Song, Zihan Zhang, Haizhen
Huang, Weiwei Deng, Feng Sun, and Qi Zhang.
2023. Auto search indexer for end-to-end document

16765

https://doi.org/10.48550/ARXIV.2407.01284
https://doi.org/10.48550/ARXIV.2407.01284
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.48550/ARXIV.2304.04171
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.48550/ARXIV.2212.03533
https://doi.org/10.48550/ARXIV.2212.03533
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://aclanthology.org/2023.findings-emnlp.464

retrieval. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 6955–6970. Association
for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In EMNLP, pages 2369–2380, Brussels, Belgium.
Association for Computational Linguistics.

Hansi Zeng, Chen Luo, Bowen Jin, Sheikh Muham-
mad Sarwar, Tianxin Wei, and Hamed Zamani. 2023.
Scalable and effective generative information re-
trieval. CoRR, abs/2311.09134.

Hansi Zeng, Chen Luo, and Hamed Zamani. 2024. Plan-
ning ahead in generative retrieval: Guiding autore-
gressive generation through simultaneous decoding.
arXiv preprint arXiv:2404.14600.

Jintian Zhang, Cheng Peng, Mengshu Sun, Xiang
Chen, Lei Liang, Zhiqiang Zhang, Jun Zhou, Huajun
Chen, and Ningyu Zhang. 2024a. Onegen: Efficient
one-pass unified generation and retrieval for llms.
Preprint, arXiv:2409.05152.

Peitian Zhang, Zheng Liu, Yujia Zhou, Zhicheng Dou,
and Zhao Cao. 2023. Term-sets can be strong doc-
ument identifiers for auto-regressive search engines.
CoRR, abs/2305.13859.

Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun
Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei Ye,
Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang,
and Qingsong Wen. 2024b. RAGLAB: A modular
and research-oriented unified framework for retrieval-
augmented generation. CoRR, abs/2408.11381.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Yutao Zhu, Zhaoheng Huang, Zhicheng Dou, and Ji-
Rong Wen. 2024. One token can help! learn-
ing scalable and pluggable virtual tokens for
retrieval-augmented large language models. CoRR,
abs/2405.19670.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. 2023. Large language models for infor-
mation retrieval: A survey. CoRR, abs/2308.07107.

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei,
Ming Gong, Guido Zuccon, and Daxin Jiang. 2022.
Bridging the gap between indexing and retrieval for
differentiable search index with query generation.
CoRR, abs/2206.10128.

16766

https://aclanthology.org/2023.findings-emnlp.464
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.48550/ARXIV.2311.09134
https://doi.org/10.48550/ARXIV.2311.09134
https://arxiv.org/abs/2409.05152
https://arxiv.org/abs/2409.05152
https://doi.org/10.48550/ARXIV.2305.13859
https://doi.org/10.48550/ARXIV.2305.13859
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2408.11381
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2405.19670
https://doi.org/10.48550/ARXIV.2405.19670
https://doi.org/10.48550/ARXIV.2405.19670
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2206.10128
https://doi.org/10.48550/ARXIV.2206.10128

Appendix

A The FM-Index 15
A.1 Data Structure . 15
A.2 Supporting Functions . 15
A.3 Examples . 16

B False Pruning in Constrained Decoding 16
B.1 What is False Pruning? . 16
B.2 What Causes False Pruning? . 17
B.3 How to Mitigate False Pruning? . 17

C Datasets 17
C.1 Details of Datasets . 17
C.2 Statistics . 17

D Implementation Details 18
D.1 Implementation Details for Baselines . 18
D.2 Implementation Details for Naive Constrained Generation 18
D.3 Implementation Details for RetroLLM . 18

D.3.1 FM-Index Building . 18
D.3.2 Training . 18
D.3.3 Inference . 19

E Additional Experimental Results 19
E.1 Analysis of Retrieval Performance . 20
E.2 Impact of Different Base Models . 20
E.3 Impact of Generated Evidence Quantity . 21
E.4 Analysis of Pre-processing Efficiency . 21
E.5 Performance Comparison with Compression-based RAG Methods 21

F Case Study 21
F.1 Examples from RetroLLM . 21
F.2 Comparing RetroLLM with Naive Beam Search Method 22

16767

A The FM-Index

The FM-Index (Ferragina and Manzini, 2000),
which stands for Full-text index in Minute space,
is a space-efficient data structure designed for in-
dexing large text corpora, combining the Burrows-
Wheeler Transform (BWT) and run-length encod-
ing. It enables fast substring searching while
providing substantial compression, making it par-
ticularly useful in applications such as prefix-
constrained decoding.

A.1 Data Structure

The FM-Index is based on the Burrows-Wheeler
Transform (BWT) (Schindler, 1997). The BWT of
a string S is computed by sorting all cyclic rota-
tions of S lexicographically and then taking the last
column of the sorted rotations. This transformation
rearranges the characters of the string in a way that
enhances its compressibility, which is key to the
FM-Index’s space efficiency.

Formally, for a string S = S1S2 . . . Sn, the
BWT, denoted as BWT(S), is obtained by sort-
ing the cyclic rotations of S lexicographically and
taking the last character of each rotation. Let R(S)
denote the set of all cyclic rotations of S, sorted in
lexicographical order:

R(S) = {σ1, σ2, . . . , σn} (15)

where σi denotes the i-th rotation of S. The BWT
of S is then the string formed by the last characters
of these sorted rotations:

BWT(S) = (σ1[n], σ2[n], . . . , σn[n]) (16)

The FM-Index stores only two columns from the
BWT matrix: the first (F) and last (L) columns.
These columns capture the relative order of the
characters in all cyclic rotations of S. More pre-
cisely: - The first column (F) contains the sorted
characters of the text S. - The last column (L)
contains the last character of each of the cyclic
rotations of S.

Additionally, to enable efficient searching, the
FM-Index uses additional data structures, such as
the Wavelet Tree, to store the L column efficiently.
This allows for fast rank and select operations,
which are essential for searching.

A.2 Supporting Functions

Backward Search The core feature of the FM-
Index is the backward search, which allows for

efficient substring searching. Given a substring
P = p1p2 . . . pk, the backward search locates all
occurrences of P in the original string by iteratively
searching through the first (F) and last (L) columns.

The backward search proceeds by iterating
through each character of P from right to left. Ini-
tially, the search interval spans the entire text S,
represented as the BWT matrix. In each step, we
examine the current character pi of the pattern and
update the search interval by examining the corre-
sponding entries in the F and L columns. Specif-
ically: (1). We find all occurrences of pi in the
last column (L). (2). We update the search range
in the first column (F) to include only the rows
corresponding to the occurrences of pi.

This process is repeated for each character of
the pattern, refining the search interval until all
occurrences of the substring are found.

The time complexity of the backward search is
O(k log |V |), where k is the length of the pattern
P and |V | is the size of the alphabet. This is be-
cause each iteration of the search takes O(log |V |)
time, and there are k iterations corresponding to
the length of the pattern.

Count The occurrence count function, denoted as
occ(P), counts how many times a pattern P occurs
in the original text. The occurrence count is closely
related to the backward search. After performing
a backward search for a pattern P , the occurrence
count is simply the size of the resulting search
interval. This interval represents all occurrences of
P in the text.

Since computing the occurrence count requires
performing a backward search, the time complexity
of this operation is also O(k log |V |), where k is
the length of the pattern and |V | is the size of the
alphabet.

Locate The locate function, denoted as
locate(P), returns the positions in the original
text where the pattern P occurs. This function
works by using the results of the backward search
to determine the positions of the occurrences.
Specifically, once the search interval is determined
through backward search, the locate function maps
the rows of the interval back to positions in the
original text. This mapping is achieved by using
the F column, which contains the sorted characters
of the text.

The time complexity of the locate function is
O(k log |V |), as it involves performing a backward
search for the pattern P .

16768

Extract Given the start and end positions of a
substring in the BWT matrix, the extract text func-
tion reconstructs the corresponding text substring.
The process works by tracing the positions of the
characters in the substring through the F and L
columns in reverse order. Starting from the end
position, the algorithm follows the reverse of the
backward search to find the characters in the sub-
string and reconstruct the text.

This operation runs in O(k), where k is the
length of the substring to be extracted. The reason
for this is that we need to perform k steps to extract
a substring of length k, with each step involving
simple lookups in the F and L columns.

A.3 Examples

To better understand how the FM-Index works, let
us examine a concrete example using the string
S = "banana$", where $ serves as the end-of-
string marker. The first step in constructing the FM-
Index is to generate the Burrows-Wheeler Trans-
form. This is accomplished by creating all possi-
ble cyclic rotations of the input string and sorting
them lexicographically. For our example string,
the sorted rotations form a matrix where each row
represents one rotation:

Sorted Rotations F Col. L Col.
$banana $ a
a$banan a n
ana$ban a n
anana$b a b
banana$ b $
na$bana n a
nana$ba n a

The Burrows-Wheeler Transform of S is then ob-
tained as the last column L: BWT(S) = "annb$aa".
The FM-Index maintains this last column L along
with the first column F = "$aaabnn", which con-
tains the lexicographically sorted characters of S.
These two columns, combined with auxiliary data
structures for efficient rank and select operations,
form the core of the FM-Index.

Given a pattern such as P = "ana", we can per-
form a backward search from right to left. Starting
with the last character ’a’, we determine its occur-
rence range in the F column using the cumulative
count C[a] = 1 (since only ’$’ precedes ’a’). The
rank of ’a’ up to position 7 in L is 3, updating the
search interval to [2, 4]. Next, processing the char-
acter ’n’, with C[n] = 5, we find that the rank of

’n’ up to position 4 in L is 2, refining the search
interval to [6, 7]. Finally, processing the first char-
acter ’a’, we use C[a] = 1 and find that the rank
of ’a’ up to position 7 in L is 3, resulting in a final
search interval of [3, 4].

Upon identifying the final search interval [3, 4]
in the L column, we examine the corresponding
characters, which are ’n’ and ’b’. These characters
represent the ones that precede the pattern "ana"
in the original string S. Mapping these to the po-
sitions in the F column reveals that the possible
characters following "ana" in S are ’n’ and ’$’.
Specifically, in "banana$", the substring "ana" is
followed by ’n’ in the first occurrence and by ’$’
in the second occurrence. Therefore, the backward
search correctly identifies ’n’ and ’$’ as the allow-
able next characters after the prefix "ana", validat-
ing the FM-Index derivation process.

B False Pruning in Constrained Decoding

In Section 2.2, we conducted empirical studies re-
vealing that false pruning is a significant issue in
constrained decoding. This section delves deeper
into understanding this problem.

B.1 What is False Pruning?

False pruning occurs when the search process in-
correctly eliminates branches that could contain
the optimal solution, preventing the algorithm from
identifying the true best outcome. Specifically, in
prefix-constrained decoding for language models,
false pruning involves incorrectly discarding can-
didate tokens that meet the prefix constraint but
might contribute to the optimal solution (Zhang
et al., 2023).

Consider the question: “What is the capital
of France?” The correct evidence in the corpus
is “The capital city of France is Paris.”
During decoding with the prefix constraint “The
capital”, if the model selects “of” instead of
“city”, a critical issue arises. Suppose the cor-
pus lacks direct statements like “The capital of
France” but includes irrelevant examples such as
“The capital of America”. In this scenario, even
though the path starting with “The capital of”
could potentially lead to the correct answer about
Paris, the model is constrained by the corpus to de-
code only irrelevant evidence like “The capital
of America is Washington D.C.”.

This situation exemplifies false pruning: the cor-
rect solution path is erroneously removed during

16769

beam search or sampling, despite being valid un-
der the prefix constraint. This happens because
intermediate token choices steer the model toward
contexts where it cannot effectively retrieve the
target information about France’s capital. Such
failures illustrate how the local, token-by-token na-
ture of decoding can clash with prefix constraints,
causing the model to follow suboptimal paths and
ultimately fail to generate the correct evidence.

B.2 What Causes False Pruning?

For auto-regressive decoding models, false pruning
arises primarily due to two factors:

Excessive Prefix Choices: In large corpora, can-
didate sequences present a vast number of prefix
options initially. The model can generate nearly
any short prefix it wants, making it challenging to
predict the correct one.

Limited Future Awareness: Even with fewer
prefix choices, the model cannot anticipate future
content beyond the current token decision. This
limitation makes it difficult to select tokens that
lead to the correct evidence.

B.3 How to Mitigate False Pruning?

Addressing the root causes of false pruning in-
volves implementing strategies that either narrow
the prefix choices or enhance the model’s foresight
during decoding.

Reducing Prefix Choices: One effective
method is to limit the number of prefix options.
Our approach employs clue generation to identify
a relevant subset of documents, followed by de-
coding evidence within this constrained set. This
reduction significantly decreases the prefix choices,
mitigating the risk of false pruning.

Enhancing Future Relevance Awareness: An-
other strategy is to provide the model with infor-
mation about the relevance of future sequences. In
our method, we identify the clue’s position within
the document and utilize the surrounding text as
future windows. By guiding the language model to
generate relevant evidence based on these windows
and their relevance scores, we improve the model’s
ability to connect to the target information.

Set-Based Decoding: Some generative re-
trieval methods adopt set-based decoding strate-
gies (Zhang et al., 2023; Zeng et al., 2024), which
bypass the issues inherent in auto-regressive de-
coding by directly generating sets of terms. These
methods are suitable for retrieval tasks that involve

Table 5: Detailed statistics of datasets and retrieval cor-
pus utilized in our experiments.

Task Dataset # Train # Test

Single-hop QA NQ 79,168 3,610
Single-hop QA TriviaQA 78,785 11,313
Single-hop QA PopQA / 14,267
Multi-hop QA HotpotQA 90,447 7,405
Multi-hop QA 2WIKI / 12,576

Retrieval Corpus # Passages # Documents

Wikipedia 21,015,324 3,232,907

decoding document identifiers to fetch correspond-
ing documents. However, they are not applicable to
our evidence generation task, where the goal is to
generate meaningful evidence directly rather than
retrieve identifiers.

C Datasets

C.1 Details of Datasets

In our experiments, we utilize a variety of question
answering (QA) datasets to evaluate both single-
hop and multi-hop reasoning capabilities. For
single-hop QA, we employ the Natural Questions
(NQ) (Kwiatkowski et al., 2019) dataset, TriviaQA
(Joshi et al., 2017), and PopQA (Mallen et al.,
2023), which provide a diverse range of factual
questions requiring straightforward retrieval and
answer extraction. For multi-hop QA, we use Hot-
potQA (Yang et al., 2018), which necessitates rea-
soning across multiple documents, and 2WIKI (Ho
et al., 2020), a dataset designed to test more com-
plex multi-hop reasoning scenarios. These datasets
are selected to cover a broad spectrum of QA chal-
lenges, ensuring a comprehensive evaluation of the
model’s retrieval and reasoning capability.

C.2 Statistics

Table 5 presents detailed statistics of the datasets
and the retrieval corpus used in our study. For
single-hop QA tasks, NQ consists of 79,168 train-
ing samples and 3,610 test samples, while Trivi-
aQA has 78,785 training samples and 11,313 test
samples. PopQA is used solely for testing, with
14,267 samples. In the multi-hop QA category,
HotpotQA includes 90,447 training samples and
7,405 test samples, and 2WIKI provides 12,576
test samples without a training set. The retrieval
corpus comprises the Wikipedia dataset, contain-
ing 21,015,324 passages and 3,232,907 documents.
These statistics highlight the extensive scale of our

16770

experimental setup, facilitating robust training and
evaluation of our models.

D Implementation Details

D.1 Implementation Details for Baselines

All RAG baselines are implemented based on
the FlashRAG framework, which is an open-
source retrieval-augmented generation toolkit (Jin
et al., 2024a). For Self-RAG (Asai et al.,
2024), we use the trained selfrag-llama2-7B
checkpoint. For all other baselines, we use
Mistral-7B-Instruct as the backbone model,
aligning with our RetroLLM. All hyper-parameter
configurations are set to default in FlashRAG.

D.2 Implementation Details for Naive
Constrained Generation

For the naive approach to constrained beam
evidence generation, we set num_beams = 5,
num_beam_groups = 5, and diversity_penalty
= 1.0 for constrained beam search. The
num_beam_groups and diversity_penalty pa-
rameters are crucial; without setting these two pa-
rameters, the sequences generated by each beam
would be highly similar, leading to a significant
decrease in evidence accuracy. These parameters
ensure diversity among the multiple generated se-
quences and sort the beam_size generated evi-
dences from high to low according to the gener-
ation probability of the language model, so that
more relevant evidence can be ranked ahead.

For cases where an answer needs to be generated,
we continue to freely generate the answer without
constraint after each beam, and the final answer
given is the answer generated after the top-1 se-
quence. The specific input and output formats are
shown in F.

D.3 Implementation Details for RetroLLM

The implementation of RetroLLM mainly includes
FM-Index building, training, and inference. All
experiments are conducted on 8 NVIDIA A800-
80GB GPUs and an Intel(R) Xeon(R) Platinum
8358 CPU @ 2.60GHz with 64 cores.

D.3.1 FM-Index Building
We implement the FM-Index data structure based
on the SDSL-lite (Succinct Data Structure Library)
framework (Gog et al., 2014), which is an efficient
C++ template library specifically designed for im-
plementing compressed data structures. We then

implemented the functionalities used in this paper
at the C++ level, including prefix locating, finding
allowed next tokens, counting occurrences, extract-
ing sequences, etc. We also built and stored an FM-
Index Manager on the C++ side to map given Do-
cIDs to their corresponding document FM-Indexes.
To allow Python code to call these C++ implemen-
tations, we used the SWIG (Simplified Wrapper
and Interface Generator) tool (Beazley, 1996).

D.3.2 Training

Training Data Construction The data construc-
tion approach simulates the model’s inference pro-
cess. For each labeled QA pair (q, a), we first
utilize a sparse retriever SPLADE-v3 (Lassance
et al., 2024) to obtain top-8 clues Cexp and retrieve
top-20 documents. We then locate the sentences
containing these clues within the documents, fol-
lowed by employing a reranker to obtain the top-ke
relevant evidences Erel, where ke is set to 5 for
single-hop QA and 10 for multi-hop QA tasks.
Next, we examine whether the labeled answer a
is contained within each evidence e to determine
if the evidence can address the original query q.
To further ensure labeling accuracy, we employ
a Llama3.1-70B-Instruct (Dubey et al., 2024)
model to judge whether each e ∈ Erel can gen-
uinely answer the query q. We consider an evi-
dence e relevant only if it both contains a and is
labeled as relevant by the LLM. Subsequently, we
select the top-k ≤ ke evidences where the k-th
evidence is the first relevant e. For target clues,
we utilize Llama3.1-70B-Instruct to extract key
entities from the query and relevant evidences to
construct target clues Cgen. This process yields the
training pair (q, Cgen, E , a), with the target format
illustrated in Figure 3 and Appendix F.

Model Optimization As described in Sec-
tion 3.5, we use a standard sequence-to-sequence
loss to train the model. For efficient model train-
ing, we employ LoRA (Hu et al., 2022), setting
lora_r to 16 and lora_alpha to 64. We set train-
ing epochs to 3 and γ to 2. Since evidence gener-
ation is performed under constraints, most of the
middle tokens in evidence generation have limited
choices under the constraints of the FM-Index; the
crucial parts are the first few tokens at the begin-
ning of the evidence and the tokens at the end that
decide to finish the evidence. Therefore, we set the
middle 80% tokens of each evidence not to partici-
pate in training, so that the model training focuses

16771

Table 6: Detailed retrieval performance on five open-domain QA datasets, comparing sparse, dense, and generative
approaches. The best results are highlighted in Bold.

In-domain Datasets Out-of-domain Datasets

Method NQ TriviaQA HotpotQA PopQA 2WIKI

R@1 R@5 Num R@1 R@5 Num R@1 R@5 Num R@1 R@5 Num R@1 R@5 Num

Sparse Retrieval
BM25 24.1 46.2 5 49.6 68.5 5 31.2 48.7 5 39.6 54.3 5 22.6 37.5 5
SPLADE-v3 45.4 68.0 5 58.8 75.9 5 32.9 45.3 5 47.6 65.2 5 22.2 40.6 5

Dense Retrieval
E5 55.7 77.3 5 61.6 77.8 5 32.3 52.0 5 51.7 70.9 5 21.6 39.8 5
BGE 50.3 73.6 5 58.7 75.1 5 33.7 54.7 5 50.8 69.6 5 21.1 38.9 5

Generative Retrieval
Naive Constrain 13.1 26.9 5 23.0 46.9 5 11.8 21.6 5 10.9 21.2 5 9.4 19.0 5
RetroLLM 51.6 62.5 3.20 61.1 71.0 2.80 35.6 57.3 3.86 57.0 70.1 4.07 23.0 41.8 4.40

Table 7: Detailed performance comparison of RetroLLM using various base models, including the Llama3 series,
Qwen-2.5 series, and Mistral series, with parameter sizes ranging from 1B to 14B. All base models we used are the
instruction-tuned versions. The best results are highlighted in Bold.

In-domain Datasets Out-of-domain Datasets

Base Model NQ TriviaQA HotpotQA PopQA 2WIKI

Acc F1 Tok Acc F1 Tok Acc F1 Tok Acc F1 Tok Acc F1 Tok

Llama3 Series
Llama3.2-1B 54.4 35.8 260 64.4 52.9 288 58.8 33.5 573 63.3 32.9 344 44.5 28.5 583
Llama3.2-3B 58.9 45.4 278 67.8 62.1 267 61.3 37.8 609 64.7 40.4 338 47.3 32.2 632
Llama3-8B 59.2 46.4 306 72.7 69.3 256 62.2 47.4 575 65.2 41.4 338 48.7 36.1 668

Qwen2.5 Series
Qwen2.5-1.5B 50.1 34.3 200 57.2 51.2 170 57.0 32.6 539 59.5 32.6 286 47.5 26.3 650
Qwen2.5-3B 52.1 36.8 236 61.4 56.3 212 60.6 34.1 628 64.0 34.8 336 48.1 30.6 694
Qwen2.5-7B 54.9 42.3 230 64.5 62.4 196 61.9 42.0 549 62.8 37.1 313 48.7 32.5 634
Qwen2.5-14B 58.6 50.6 225 72.8 69.5 186 62.6 45.9 568 64.3 40.8 343 51.3 36.9 687

Mistral Series
Mistral-7B 61.6 49.8 302 74.3 72.8 287 61.9 47.2 607 65.7 43.0 355 48.9 36.2 661

more on the key parts. Since we added special
tokens to represent the start, separation, and end
operations of clue and evidence generation, in the
model parameters trained, besides the parameters
trained by LoRA, we also added the embeddings
corresponding to the new tokens to effectively learn
the generation of new tokens.

D.3.3 Inference

As illustrated in Figure 3, RetroLLM includes the
following three stages. In the clue generation stage,
RetroLLM first generates clues with corpus-level
FM-Index constraints. The format of this part is
“<|clue|> c1 <|sep|> c2 <|sep|> ... <|/clue|>”.
During clue generation, we simultaneously expand
clues with the sparse lexical and expansion model
SPLADE-v3 (Lassance et al., 2024). We set the
number of expanded clues to 8 and the maximum

number of generated clues to 5.
In the evidence generation stage, evidence is

generated based on document-level FM-Index con-
straints and future window relevance. The for-
mat of this part is “<|evidence|> e1 <|sep|> e2
<|sep|> ... <|/evidence|>”. We limit the maxi-
mum number of generated evidence for single-hop
and multi-hop QA to 5 and 10, respectively. We set
w1 and w2 to 1 and 2, respectively, and λ to 100.

In the answer generation stage, no constraints
are added during the final answer generation.

E Additional Experimental Results

This section presents detailed experimental results
and analysis, including retrieval performance, the
impact of RetroLLM performance with different
base models and generated evidence quantity.

16772

Table 8: Detailed performance with different numbers of generated evidence.

In-domain Datasets Out-of-domain Datasets

Num NQ TriviaQA HotpotQA PopQA 2WIKI

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

1 42.2 40.5 59.3 61.6 50.6 44.2 43.9 40.9 35.1 31.3
2 50.6 42.3 66.3 65.9 59.8 43.8 52.8 45.9 39.8 34.6
3 54.4 42.5 69.3 67.2 61.9 43.0 55.7 45.5 42.1 34.5
4 56.7 43.1 70.9 67.6 64.6 41.0 57.7 45.7 43.9 34.8
5 61.5 49.4 74.6 72.9 66.8 43.0 59.4 46.8 45.9 36.6
6 61.7 49.5 74.6 73.0 67.4 42.8 60.1 47.1 47.9 37.1
7 61.7 49.5 74.6 72.9 67.6 42.5 60.8 47.0 48.4 36.5
8 61.7 49.5 74.6 72.9 68.0 42.7 61.2 46.9 48.6 37.2
9 61.7 49.5 74.6 72.9 68.0 42.7 61.6 47.1 48.7 37.0

10 61.7 49.5 74.6 72.9 68.5 42.7 61.9 47.1 48.9 36.2

E.1 Analysis of Retrieval Performance

We analyze the retrieval performance of RetroLLM
compared to sparse and dense retrieval baselines,
as discussed in Section 4.4. The results are shown
in Table 6

(1) For single-hop QA tasks, RetroLLM demon-
strates superior accuracy on R@1, thanks to the
design of clues and future windows, which help
precisely locate the relevant evidence. For instance,
on the PopQA dataset, RetroLLM achieves an R@1
of 57.0%, surpassing the best dense retriever E5,
which attains 51.7%. Additionally, RetroLLM uses
fewer passages on average (2.80 for TriviaQA and
3.20 for NQ) compared to the fixed number of 5
in baseline methods, indicating more efficient re-
trieval.

(2) For multi-hop QA tasks, RetroLLM shows
superior accuracy compared to all other methods
for both R@1 and R@5, while utilizing a smaller
average number of retrieved passages. Specifically,
on HotpotQA, RetroLLM achieves an R@1 of
35.6%, outperforming E5’s 32.3% and SPLADE-
v3’s 32.9%. On the 2WIKI dataset, RetroLLM
attains an R@1 of 23.0%, higher than E5’s 21.6%,
demonstrating its effectiveness in multi-hop re-
trieval scenarios while using only 4.40 passages
on average versus the baseline’s 5.

(3) Notably, the naive generative retrieval
method using constrained beam search performs
poorly on all metrics, further validating the sever-
ity of false pruning, as discussed in Section 2.2.
For example, on the NQ dataset, the naive method
achieves an R@1 of only 13.1%, significantly
lower than RetroLLM’s 51.6%. Similarly, on Triv-
iaQA, it attains an R@1 of 23.0% compared to
RetroLLM’s 61.1%, highlighting the substantial

performance gap and the advantages of our ap-
proach.

E.2 Impact of Different Base Models

To evaluate the performance of RetroLLM using
different backbone LLMs with varying parameter
sizes, we conducted experiments using the Mistral,
Llama3, and Qwen2.5 series, with parameters rang-
ing from 1B to 14B, as discussed in Section 4.4.
The results are shown in Figure 7. We observe that:

(1) As the parameter size increases,
RetroLLM’s performance steadily improves,
aligning with the scaling law. For example,
within the Llama3 series, the accuracy on the
NQ dataset rises from 54.4% for Llama3.2-1B to
59.2% for Llama3-8B. Similarly, the F1 score on
TriviaQA improves from 52.9% to 69.3%. In the
Qwen2.5 series, the accuracy on NQ increases
from 50.1% for Qwen2.5-1.5B to 58.6% for
Qwen2.5-14B, and the F1 score climbs from 34.3%
to 50.6%. This consistent enhancement across
different model sizes indicates that larger base
models contribute to better retrieval performance
in RetroLLM.

(2) There are slight performance differences
across the different models (Mistral, Llama3,
Qwen2.5), with Mistral generally outperforming
Llama3, which in turn outperforms Qwen2.5.
Specifically, Mistral-7B achieves the highest accu-
racy on several datasets, such as 61.6% on NQ and
74.3% on TriviaQA, surpassing both Llama3-8B
and Qwen2.5-14B. On the PopQA dataset, Mistral-
7B attains an accuracy of 65.7%, compared to
65.2% for Llama3-8B and 64.3% for Qwen2.5-
14B. Despite these variations, all models confirm
the effectiveness of RetroLLM, as even smaller

16773

Table 9: Comparison of pre-processing efficiency be-
tween RetroLLM and dense retriever E5-Base.

Method Index
Method

Total
Storage

Building
Time

Plain Text - 12.7 GB -
E5-Base Dense Emb. 60.1 GB 7.57 h
RetroLLM FM-Index 20.7 GB 5.39 h

models like Qwen2.5-1.5B achieve reasonable per-
formance (e.g., 50.1% accuracy on NQ and 57.2%
on TriviaQA), demonstrating that RetroLLM is ro-
bust across different base models and parameter
sizes.

E.3 Impact of Generated Evidence Quantity

Since RetroLLM can dynamically determine the
number of evidence to retrieve, we investigated
the effect of different maximum retrieval quantities
on performance, as discussed in Section 4.4. The
results are shown in Table 8. We observe that:

(1) When retrieving up to 1-5 evidence, per-
formance continues to improve as the number of
retrieved pieces increases, suggesting that more
evidence contributes to stronger performance in
these tasks. For instance, on the NQ dataset, the ac-
curacy improves from 42.2% when retrieving only
one piece of evidence to 61.5% with five pieces.
Similarly, the accuracy on TriviaQA rises from
59.3% to 74.6% as the number increases from one
to five. This trend indicates that accessing more
evidence enables RetroLLM to retrieve relevant
information more effectively, enhancing answer
accuracy.

(2) However, for multi-hop QA, performance
stabilizes around 6 evidence, as more evidence
can bring in both useful and distracting infor-
mation, thereby limiting further performance
gains. Specifically, on the HotpotQA dataset, the
accuracy increases from 50.6% with one piece of
evidence to 67.4% with six pieces, but additional
evidence beyond this point yields diminishing re-
turns (e.g., 68.5% accuracy at ten pieces). This
suggests that while some additional evidence is
beneficial, too much can introduce noise that coun-
teracts the benefits, highlighting the importance of
a balanced retrieval strategy.

E.4 Analysis of Pre-processing Efficiency

We conducted experiments to compare the pre-
processing efficiency between RetroLLM and E5-
Base, including index building time and total stor-

Table 10: Performance comparison with compression-
based RAG methods, reporting Accuracy metric.

Method NQ TQA Hotpot PopQA 2WIKI

LongLLMLingua 50.8 71.1 38.5 57.7 31.9
RECOMP-abs 51.8 68.2 37.8 64.2 32.2
Selective-Context 49.0 67.4 34.6 51.0 25.8
RetroLLM 61.6 74.3 61.9 65.7 48.9

age. For E5-Base, we used an NVIDIA A800-
80GB GPU, while for RetroLLM, we used an In-
tel(R) Xeon(R) Platinum 1304 8358 CPU. The ex-
perimental results are as follows:

As shown in the results in Table 9, RetroLLM’s
pre-processing is more efficient than E5-Base
in both index building time and total stor-
age, demonstrating RetroLLM’s superior pre-
processing efficiency. Moreover, building FM-
Index does not require GPU resources and can be
efficiently constructed using CPUs only.

E.5 Performance Comparison with
Compression-based RAG Methods

We compared the performance of RetroLLM with
several common compression methods, includ-
ing LongLLMLingua, RECOMP-abstractive, and
Selective-Context. Our implementation is based
on the FlashRAG toolkit, with consistent parame-
ter settings, and uses Wikipedia as the corpus, the
same as RetroLLM. The experimental results are
as follows:

As shown in Table 10, RetroLLM significantly
outperforms other compression methods, indi-
cating that RetroLLM is more effective than
methods that first retrieve long contexts before
compression, thanks to the hierarchical FM-Index,
clue prediction, and forward-looking constrained
evidence generation mechanisms.

F Case Study

This section presents examples from RetroLLM
and compares them with outputs from a naive con-
strained beam search method. These examples il-
lustrate the detailed workings of our method and
highlight the shortcomings of the naive approach.

F.1 Examples from RetroLLM
Tables 11 and 12 display examples from single-hop
and multi-hop question-answering (QA) datasets,
respectively. The overall process of RetroLLM
consists of two main stages: clue generation and
evidence generation.

16774

In the clue generation stage, RetroLLM iden-
tifies key terms or phrases related to the question,
encapsulated within the <|clue|> and <|/clue|> tokens,
separated by <|sep|> token. These clues serve to
focus the model’s attention on pertinent concepts
or entities that are crucial for answering the ques-
tion. For instance, in Example #1 from the NQ
Dataset (Table 11), the clue generated is “The Star,”
which directly relates to the movie mentioned in
the question.

Following clue generation, the evidence genera-
tion stage involves retrieving relevant information
from the knowledge corpus, guided by the previ-
ously identified clues. The retrieved evidence is en-
closed within the <|evidence|> and <|/evidence|> tokens.
This evidence often comprises multiple snippets
of information, separated by <|sep|> token, which
collectively support the final answer. For example,
in Example #1 from the HotpotQA Dataset (Ta-
ble 12), the model generates evidence about “Old
and in the Way” and “Owsley Stanley,” providing
a coherent chain of information that leads to the
correct answer.

F.2 Comparing RetroLLM with Naive Beam
Search Method

Tables 13 and 14 compare the outputs of the naive
constrained beam search method with those of
RetroLLM for a question from the NQ Dataset.
The naive method attempts to generate evidence
under corpus-level FM-Index constraints, but this
approach leads to several issues.

The beams generated by the naive method con-
tain evidence that is largely irrelevant or incoher-
ent. Although some initial phrases may appear
related to the question, the continuation often devi-
ates significantly, producing sentences that do not
contribute to answering the question correctly. For
instance, the naive method incorrectly identifies
“Roger Maris,” “1903,” and “Jonathan Elliot” as
answers to the question “who got the first nobel
prize in physics?” These incorrect answers result
from the model’s inability to maintain topic coher-
ence under the stringent corpus-level constraints, a
phenomenon known as the false pruning problem
discussed in Section 2.2 and Appendix B.

In contrast, RetroLLM addresses this issue by
first generating clues to narrow down the relevant
document subset and then performing forward-
looking constrained evidence generation within this
subset. This method reduces false pruning and en-
hances the accuracy of evidence retrieval.

16775

Table 11: Examples from RetroLLM on single-hop QA datasets, with special tokens used in the clue and evidence
generation stages highlighted in orange box and blue box , respectively. All generated evidence is from Wikipedia.

Example #1 from NQ Dataset

Question:
when does the movie the star come out?
Labeled Answer:
["November 17, 2017"]

Results by RetroLLM

Model Input:
Question: when does the movie the star come out?
Your Response:

Model Output:
<|clue|> The Star <|/clue|> <|evidence|> the film, then titled "The Lamb", was given an official release date of December 8, 2017.

On June 20, 2016, it was announced that Brian Henson and Lisa Henson from the Jim Henson Company would be executive
producers for the film, now titled "The Star", making it the first Henson-produced film for Sony since "The Adventures of
Elmo in Grouchland" in 1999. <|sep|> The film’s title was changed from the working title "Dog Years", in a mutual decision
between the filmmakers and A24 (who made the suggestion). It was released on February 22, 2018, through DirecTV Cinema
before being released in a limited release and through video on demand on March 30, 2018. <|sep|> Chenoweth, Tracy
Morgan, Tyler Perry, and Oprah Winfrey. The film was released by Columbia Pictures through its parental label Sony Pictures
Entertainment on November 17, 2017 in the United States. The film received mixed reviews and grossed over $62 million
worldwide. <|/evidence|> The answer is November 17, 2017.

Example #2 from TriviaQA Dataset

Question:
Who was the man behind The Chipmunks?
Labeled Answer:
["David Seville"]

Results by RetroLLM

Model Input:
Question: Who was the man behind The Chipmunks?
Your Response:

Model Output:
<|clue|> The Chipmunks <|/clue|> <|evidence|> 1972), better known by the stage name David Seville, was an American singer-

songwriter and actor, best known for creating the novelty musical group The Chipmunks (now better known as "Alvin and
the Chipmunks"). Initially a stage and film actor, he rose to prominence in 1958 with the songs "Witch Doctor" and "The
Chipmunk Song (Christmas Don’t Be Late)", which both became "Billboard" number-one singles. <|/evidence|> The answer is
David Seville.

Example #3 from PopQA Dataset

Question:
What is Carsten Carlsen’s occupation?
Labeled Answer:
["pianist", "composer"]

Results by RetroLLM

Model Input:
Question: What is Carsten Carlsen’s occupation?
Your Response:

Model Output:
<|clue|> Carlsen <|/clue|> <|evidence|> Carsten Carlsen (5 June 1892 – 28 August 1961) was a Norwegian pianist and composer.

Carsten Marensius Carlsen was born in Oslo, Norway. His parents were Anton Carlsen (1862–1943) and Louise Larsen
(1876–1957). <|sep|> Carlsen has directed more than 25 films, 19 for which he wrote the screenplay. In 2006, he received the
Golden Swan Lifetime Achievement Award at the Copenhagen International Film Festival. Carlsen was born on 4 June 1927
in Aalborg, Denmark. <|/evidence|> The answer is pianist and composer.

16776

Table 12: Examples from RetroLLM on multi-hop QA datasets, with special tokens used in the clue and evidence
generation stages highlighted in orange box and blue box , respectively. All generated evidence is from Wikipedia.

Example #1 from HotpotQA Dataset

Question:
Which American audio engineer and clandestine chemist, who was a key figure in the San Francisco Bay Area hippie
movement during the 1960s recorded the album "Old and in the Way?"
Labeled Answer:
["Owsley Stanley"]

Results by RetroLLM

Model Input:
Question: Which American audio engineer and clandestine chemist, who was a key figure in the San Francisco Bay Area
hippie movement during the 1960s recorded the album "Old and in the Way?"
Your Response:

Model Output:
<|clue|> Old and in the Way <|sep|> Owsley Stanley <|/clue|> <|evidence|> Owsley Stanley III (January 19, 1935 – March 12,

2011) was an American audio engineer and clandestine chemist. He was a key figure in the San Francisco Bay Area hippie
movement during the 1960s and played a pivotal role in the decade’s counterculture. <|sep|> Old & In the Way (album) Old
& In the Way is the self-titled first album by the bluegrass band Old & In the Way. It was recorded 8 October 1973 at The
Boarding House in San Francisco by Owsley Stanley and Vickie Babcock. <|sep|> The 1960s, elements of the expanding
Beat movement were incorporated into the hippie and larger counterculture movements. Neal Cassady, as the driver for Ken
Kesey’s bus Furthur, was the primary bridge between these two generations. Ginsberg’s work also became an integral element
of early 1960s hippie culture. <|sep|> In San Francisco, including Quicksilver Messenger Service, Jefferson Airplane, early
Jefferson Starship, Old & In the Way, Janis Joplin, Big Brother and the Holding Company, Taj Mahal, Santana, Miles Davis,
The Flying Burrito Brothers, Jimi Hendrix, Johnny Cash, and Blue Cheer. <|/evidence|> The answer is Owsley Stanley.

Example #2 from 2WikiMultiHopQA Dataset

Question:
Where was the director of film Ronnie Rocket born?
Labeled Answer:
["Missoula", "Missoula, Montana"]

Results by RetroLLM

Model Input:
Question: Where was the director of film Ronnie Rocket born?
Your Response:

Model Output:
<|clue|> Ronnie Rocket <|/clue|> <|evidence|> Ronnie Rocket is an unfinished film project written by David Lynch, who also

intended to direct it. Begun after the success of Lynch’s 1977 film "Eraserhead", "Ronnie Rocket" was shelved after Lynch felt
he would be unable to find financial backing for the project. <|sep|> The script to the AFI, but they rejected it as they felt the
planned 45-minute runtime was too long for such a figurative, nonlinear script. After the success of "Eraserhead", Lynch
decided to focus on the screenplay of his second film, entitled "Ronnie Rocket", which he also wanted to direct. <|sep|> He
can use to produce music or cause destruction. The boy names himself Ronnie Rocket and becomes a rock star, befriending
a tap-dancer named Electra-Cute. The film was to make use of several themes that have since become recurring elements
within David Lynch’s works, with a write-up for "The A.V. <|sep|> Dave Dennison, Max and Dani Dennison’s father, in
Disney’s "Hocus Pocus". Rocket was born in Bangor, Maine, the son of Mary Aurelia (Fogler) and Sumner Abbott "Ham"
Claverie. <|sep|> In 2008, Refn co-founded the Copenhagen-based production company Space Rocket Nation. Refn was
born in Copenhagen, Denmark, and raised partly in New York, United States. Refn’s parents are Danish film director and
editor Anders Refn and cinematographer Vibeke Winding. <|sep|> The two realized that "Ronnie Rocket" was unlikely to find
sufficient financing to be produced, Lynch asked to see some already-written scripts to work from for his next film instead.
Cornfeld found four scripts he felt Lynch would be interested in, but on hearing the name of the first, the director decided his
next project would be "The Elephant Man". <|sep|> His next film, settling on what would become 1980’s "The Elephant Man".
"Ronnie Rocket" was to feature many of the elements which have since come to be seen as Lynch’s hallmarks; including
industrial art direction, 1950s popular culture and physical deformity. <|sep|> He shared with Billy Williams. Taylor was born
in Hampstead, London and entered the film industry in his late teens working for Gainsborough Pictures at Lime Grove in
Shepherds Bush. Taylor’s first film was as a clapper boy on "The Young Mr Pitt" (1942). <|sep|> In his films have earned
them a reputation as works that "disturb, offend or mystify" general audiences. Although born in Missoula, Montana, Lynch
spent his youth traveling across the United States due to his father Donald’s job for the Department of Agriculture; as a result,
Lynch attended school across several states. <|/evidence|> The answer is Missoula, Montana.

16777

Table 13: An example comparing outputs from RetroLLM and the naive constrained beam search method. Special
tokens used during the clue and evidence generation stages are highlighted in orange boxes and blue boxes , respectively.
Content colored in green indicates correct (or partially correct) answers, whereas content colored in red indicates
incorrect answers. All generated evidence is from Wikipedia.

Example #1 from NQ Dataset

Question:
who got the first nobel prize in physics?
Labeled Answer:
["Wilhelm Conrad Röntgen"]

Results by RetroLLM

Model Input:
Question: who got the first nobel prize in physics?
Your Response:

Model Output:
<|clue|> Nobel Prize <|sep|> Physics <|/clue|> <|evidence|> the others being the Nobel Prize in Chemistry, Nobel Prize in

Literature, Nobel Peace Prize, and Nobel Prize in Physiology or Medicine. The first Nobel Prize in Physics was awarded to
physicist Wilhelm Röntgen in recognition of the extraordinary services he rendered by the discovery of the remarkable rays
(or X-rays). <|/evidence|> The answer is Wilhelm Röntgen.

Results by Naive Constrained Beam Search

Model Input:
Question: who got the first nobel prize in physics?
Your Response:

Model Output (beam_size = 5):
Beam 1: <|evidence|> in 1901, the first year of play for the American League. The modern-era record for lowest batting
average for a player that qualified for the batting title is .197 by roger maris in 1962. <|/evidence|> The answer is Roger Maris.
Beam 2: <|evidence|> the first physics and chemistry laboratory in a Danish school in 1903, the inclusion of housekeeping in
the curriculum, and the first girls’ school to include carpentry in the curriculum in 1904. <|/evidence|> The answer is 1903.
Beam 3: <|evidence|> william johnson Jonathan Elliot (historian) Jonathan Elliot (17842̆0131846) was a 19th-century
<|/evidence|> The answer is Jonathan Elliot.

Beam 4: <|evidence|> the first physics Nobel prize winner born in an Arab country. In 2015, Cohen-Tannoudji signed the
M̈ainau Declaration 2015ẅhich calls for a boycott of israel. <|/evidence|> The answer is Cohen - Tannoudji.
Beam 5: <|evidence|> the first prize was awarded in 2004. He was the sixth of the seven children in the Shaw family, and was
nicknamed Uncle Six (L̈uk Sook)̈. <|/evidence|> The answer is He was the sixth of the seven children in the Shaw family.

16778

Table 14: An example comparing outputs from RetroLLM and the naive constrained beam search method. Special
tokens used during the clue and evidence generation stages are highlighted in orange boxes and blue boxes , respectively.
Content colored in green indicates correct answers, whereas content colored in red indicates incorrect answers. All
generated evidence is from Wikipedia.

Example #2 from TriviaQA Dataset

Question:
Who was the man behind The Chipmunks?
Labeled Answer:
["David Seville"]

Results by RetroLLM

Model Input:
Question: Who was the man behind The Chipmunks?
Your Response:

Model Output:
<|clue|> The Chipmunks <|/clue|> <|evidence|> known by the stage name David Seville, was an American singer-songwriter and

actor, best known for creating the novelty musical group The Chipmunks (now better known as "Alvin and the Chipmunks").
Initially a stage and film actor, he rose to prominence in 1958 with the songs "Witch Doctor" and "The Chipmunk Song
(Christmas Don’t Be Late)," which both became "Billboard" number-one singles. <|/evidence|> The answer is David Seville.

Results by Naive Constrained Beam Search

Model Input:
Question: Who was the man behind The Chipmunks?
Your Response:

Model Output (beam_size = 5):
Beam 1: <|evidence|> david was optioned to the Triple-A Richmond Braves to start the 1992 season. He made his major league
debut for the Braves on <|/evidence|> The answer is David.
Beam 2: <|evidence|> the chipmunks’ speech was created by speeding up sound clips of normal speech. In a number of the
shorts that followed, many of these same sound clips were reused, but the chipmunks’ voices were created by using a higher
pitch on the original recordings. <|/evidence|> The answer is Ross Bagdasarian.
Beam 3: <|evidence|> alvinophilia is a partialism in which a man or woman is attracted to the human navel. According to a
study, it is a moderately prevalent fetish among men, and less so among women. <|/evidence|> The answer is Alvin.
Beam 4: <|evidence|> the chipmunks are also mostly supplemental prey but are considered more easily caught than tree
squirrels, considering that they are more habitual terrestrial foragers. <|/evidence|> The answer is Alvin.
Beam 5: <|evidence|> the chipmunks are also mostly supplemental prey but are considered more easily caught than tree
squirrels, considering that they are more habitual terrestrial foragers. <|/evidence|> The answer is Tree Squirrels.

16779

