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Abstract

This work explores sequential model editing
in large language models (LLMs), a critical
task that involves modifying internal knowl-
edge within LLMs continuously through multi-
round editing, each incorporating updates or
corrections to adjust the model’s outputs with-
out the need for costly retraining. Existing
model editing methods, especially those that al-
ter model parameters, typically focus on single-
round editing and often face significant chal-
lenges in sequential model editing-most no-
tably issues of model forgetting and failure. To
address these challenges, we introduce a new
model editing method, namely Neuron-level
Sequential Editing (NSE), tailored for support-
ing sequential model editing. Specifically, we
optimize the target layer’s hidden states using
the model’s original weights to prevent model
failure. Furthermore, we iteratively select neu-
rons in multiple layers for editing based on their
activation values to mitigate model forgetting.
Our empirical experiments demonstrate that
NSE significantly outperforms current modify-
ing parameters model editing methods, mark-
ing a substantial advancement in the field of se-
quential model editing. Our code is released on
https://github.com/jianghoucheng/NSE.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in storing extensive factual
knowledge during pre-training and recalling this
information during inference (Brown et al., 2020;
Petroni et al., 2019; Roberts et al., 2020). However,
as real-world knowledge continuously evolves, the
information within these models can become out-
dated or incorrect (Cao et al., 2021; Mitchell et al.,
2022a; Fang et al., 2025). Retraining LLMs to in-
corporate new information is often prohibitively
costly (Mitchell et al., 2022b; Meng et al., 2022).
Consequently, recent years have witnessed a surge
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in model editing methods focusing on modifying
specific knowledge without the complete retraining
process. Specifically, they first identify the cru-
cial layers for the target knowledge by calculating
their casual effect on output. Then, by updating
the weights of these layers, they manipulate the
hidden states of these layers to modify the final
output, allowing LLMs to seamlessly adapt to dy-
namic real-world information (Meng et al., 2023;
Hartvigsen et al., 2023).

Although current direct model editing methods
are effective for single-round modifications, real-
world applications require a continuous learning
process where models must retain previous edits
during subsequent modifications (Yao et al., 2023).
This has led to the concept of sequential model
editing, which requires the performance of multiple
consecutive edits on models. However, current
direct model editing methods pose significant risks
in this context (Meng et al., 2022, 2023). The
primary risk is model forgetting, where cumulative
changes in parameters from consecutive edits cause
the model to forget previously modified knowledge,
thus degrading overall performance (Gupta et al.,
2024a). For example, as illustrated in Figure 1
(a), after editing the model with new knowledge
about “The cat”, the LLM forgets previously edited
knowledge about “The latest Olympic”.

Furthermore, the second risk is model failure,
where excessive edits impair the model’s ability
to generate coherent text. Worse still, this im-
pairment can potentially lead to model collapse,
characterized by producing irrelevant, repetitive,
or non-sensical text, as illustrated in Figure 1 (a).
In view of this, recent research, such as memory-
based methods (Mitchell et al., 2022b; Hartvigsen
et al., 2023), has attempted to address these chal-
lenges by preserving the LLM parameters after
each edit. However, the increasing storage require-
ments as the number of edits grows significantly
limit the practicality of these methods.
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Figure 1: Example of sequential editing. (a) shows model forgetting and model failure issues in sequential editing
using ROME/MEMIT, while (b) shows the accurate editing capabilities of our method without such issues.

To tackle these challenges, we introduce a
new model editing method, termed Neuron-level
Sequential Editing (NSE). Specifically, to address
the model failure, NSE uses weights rewinding for
value computation by preserving the model’s origi-
nal weights as a significant reference when manip-
ulating the hidden states of the crucial layers. This
process can effectively mitigate the impairment of
previous knowledge accumulated over various ed-
its. Furthermore, to address model forgetting, NSE
selectively collects “influential neurons” to update
weights by sorting neuron activation within the cru-
cial layers, rather than updating all weights in the
critical layers as in previous work (Meng et al.,
2022, 2023). This selective modification maxi-
mizes the protection of model functionality from
degradation. Additionally, for large-scale LLMs
containing numerous neurons, an iterative multi-
layer editing is introduced to streamline the neuron
selection process, enabling NSE to achieve massive
knowledge updates effectively in a single editing.

Through theoretical analysis and extensive ex-
periments conducted on GPT2-XL (1.5B) (Radford
et al., 2019), GPT-J (6B) (Wang and Komatsuzaki,
2021), and Llama3 (8B), we validate the effective-
ness and efficiency of our NSE. Compared to cur-
rent model editing methods ( e.g., MEND (Mitchell
et al., 2022a), ROME (Meng et al., 2022), MEMIT
(Meng et al., 2023) and GRACE (Hartvigsen et al.,
2023)), NSE shows substantial improvements with
respect to five commonly used metrics such as
specificity and consistency.

2 Preliminary

2.1 Autoregressive Language Model

An autoregressive language model predicts the next
token in a sequence based on the tokens that have
come before it. Given a L layer transformer model

and an input sequence x = (x0, x1, . . . , xT ), the
model aims to predict the next token in the se-
quence. The probability of the next token xt+1 is
given by:

P(xt+1 | x0, x1, . . . , xt) =
Softmax(Weh

N
t ),

(1)

where We represents embedding matrix, and hN
t

represents the final hidden state at the topmost layer
N . The hidden state hl

t at layer l is calculated as:

hl
t(x) = hl−1

t (x) + al
t(x) + vl

t(x),

al
t = attnl(hl−1

0 ,hl−1
1 , . . . ,hl−1

t ),

vl
t = W l

outσ(W
l
inγ(h

l−1
t + al

t)),

(2)

where alt represents the output of the attention
block and vl

t represents the output of the FFN
layer. W l

in and W l
out are weight matrices, σ is

a non-linear activation function, and γ represents
the layer norm.

2.2 Previous Model Editing Method
Sequential model editing refines a pre-trained
model fθ0 through multiple updates, each in-
corporating new facts (s, r, o), such as s =
“The latest Olympic”, r = “was held in”, o =
“Paris”. After each edit, the updated model fθt
is optimized to produce the correct outputs for the
current edit set Deditt while maintaining the pre-
cision of previous tasks, ensuring both adaptation
to new information and preservation of previous
performance.

Following current work (Meng et al., 2022,
2023), we treat the weights of the Transformer’s
(Vaswani et al., 2017) FFN layer as a linear associa-
tive memory. That is, linear operations within the
FFN layer can be viewed as key-value storage for
information retrieval (Kohonen, 1972; Anderson,
1972).
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Given the weights W l
in of the l-th FFN layer

when prompted by (si, ri), we identify the acti-
vation output of the last subject token S as the
key kl

i. In the following, this key kl
i is processed

through the output weights W l
out, producing the

value vl
i. In the context of sequential model edit-

ing, we start with an initial set of key-value as-
sociations for knowledge facts stored in the l-th
FFN layer, denoted respectively by K0 = {ki}ni=1

and V0 = {vi}ni=1. In the following, our objective
is to introduce new key value associations m, de-
noted as K1 = {ki}n+m

i=n+1 and V1 = {vi}n+m
i=n+1,

while retaining all existing associations unchanged.
Drawing on prior work (Meng et al., 2023), the
optimization objective is as follows:

∆∗ = argmin
∆

(∥(W +∆)K1 − V1∥2

+ ∥(W +∆)K0 − V0∥2),
(3)

where W represents the weights of Wout in the
target FFN layer, ∆ denotes the update to W , and
V1 can be directly trained using the fine-tuning
loss predicted by the model through backpropaga-
tion. Since K0 and V0 represent the knowledge re-
tained in LLM, we can express this relationship as
WK0 = V0. Therefore, we can obtain the closed-
form solution of Eqn. 3 using the least squares
method (Lang, 2012):

∆∗ = RKT
1

(
K0K

T
0 +K1K

T
1

)−1
, (4)

where R = V1 −WK1. Furthermore, MEMIT
focuses on editing a specific set of layers denoted
as R = {l∗ − |R| + 1, . . . , l∗}. The required the
weight update ∆l for layer l ∈ R is expressed as:

∆l = RlK l
1
T
(
K l

0K
l
0
T
+K l

1K
l
1
T
)−1

, (5)

where Rl = Rl∗

l∗−l+1 . These modifications are im-
plemented sequentially, starting from the lower lay-
ers and progressing to the upper layers.

3 Methodology

In this section, we introduce NSE, a method
adapted for sequential model editing, as illustrated
in Figure 2. Initially, we identify the values com-
putation method in Section 3.1. Subsequently, in
Section 3.2, we detail the editing method that selec-
tively filters certain neurons for the corresponding
parameter updates. Finally, in Section 3.3, we intro-
duce the approach of iterative multi-layer editing.

3.1 Weights Rewinding for Value
Computation

First, our primary goal is to find a hidden vector
that encodes the new association (si, ri, oi) and re-
places the value vl

i in the l-th layer as described in
Section 2.2. In practical implementation, as shown
in Figure 2 (a), we optimize δi through gradient de-
scent by maximizing the probability that the model
outputs oi to compute zi = hl

i + δi, where hl
i de-

notes the hidden state of the LLM in layer l. And
the value vi

l can be calculated as vi
l+ = δi. In

the process of sequential editing, we observed that
using the updated model parameters fθt to calcu-
late zi after each edit leads to significant model
degradation over multiple edit rounds. This indi-
cates that the cumulative parameter updates from
each editing round can lead to a change in value
computation. In contrast, using the original model
parameters fθ0 to compute zi effectively prevents
this issue. Hence, we propose a weight rewinding
method for the value computation, which is based
on the initial model weights fθ0 to ensure that zi is
computed using fθ0 for each edit. The optimization
objective is as follows:

δ∗i = argmin
δi

− logPfθ0 (h
l
i+δi)

[oi | (si, ri)] ,

zi = hl
i + δ∗i ,

(6)
where fθ0(h

l
i+ = δi) represents the original

model with hl
i updated to hl

i + δi. Subsequently,
the value vi

l can be updated to vi
l+ = zi − hl

i,
which will be used to support subsequent model ed-
its. Note that when calculating zi using the original
model parameters fθ0 , it is sufficient to save only
the weight matrix Wout that needs to be updated,
rather than storing the entire model parameters and
we use the original weights only during the compu-
tation of zi.

3.2 Neuron-level Weights Updating

In Section 3.1, we primarily discussed the method
to calculate zi to replace the value in the target
layer. In this section, we will specifically elaborate
on how to utilize the computed value for weight
updates at the neuron level, as shown in Figure 2
(b).

Based on previous work, it is established that
neurons in FFN contain abundant information (Dai
et al., 2022; Wang et al., 2022; Schwettmann et al.,
2023a; Pan et al., 2023; Wu et al., 2023). Hence,
we selectively optimize a subset of neurons rather

16680



Figure 2: Overview of sequential model editing with NSE. (a) describes the process of weights rewinding for value
computation. (b) illustrates the neuron selection and neuron-level weights update. (c) shows the process of iterative
multi-layer editing.

than alter the entire weight matrix for each edit.
Specifically, for a given knowledge fact (si, ri, oi),
we use the activation values ki of the neurons and
compute scores Qi = |ki|. Neurons are ranked
based on these scores, and a subset is chosen such
that the cumulative score of selected neurons sur-
passes a predetermined percentage p of the total
score:

I = argmin
I⊆{1,...,N}

|I|

s.t.
∑

j∈I
Qij ≥ p×

N∑

j=1

Qij ,
(7)

where Qij represents the score of the j-th neuron,
I is the set of indices for selected neurons. Here-
after, we introduce how to update W (i.e., Wout)
using the selected neuron set I. For clarity, we
decompose W into two submatrices along the row
dimension: Ŵ (rows indexed by I) and W̃ (re-
maining rows), with corresponding decomposition
of the knowledge matrix K = [K̂, K̃] along the
column dimension. Let ∆̂ denote the update sub-
matrix for Ŵ . Our objective is to modify only Ŵ
while keeping W̃ unchanged, which aligns with
the optimization goal in Eqn. 3. The original output
can be expressed as:

V = K̂Ŵ + K̃W̃ . (8)

Since K̃W̃ remains fixed during editing, we refor-
mulate Eqn. 3 by focusing on the editable compo-
nent:

∆̂∗ = argmin
∆̂

(
∥∥∥(Ŵ + ∆̂)K̂1 − V1

∥∥∥
2

+
∥∥∥(Ŵ + ∆̂)K̂0 − V0

∥∥∥
2
),

(9)

where K̂0 and K̂1 are submatrices of K0 and K1

indexed by I. This reformulation explicitly decou-
ples the editable (Ŵ ) and fixed (W̃ ) components.
The optimal solution is:

∆̂∗ = R̂K̂⊤
1 Ĉ−1, (10)

where R̂ = V1 − Ŵ K̂1 and Ĉ = K̂0K̂
⊤
0 +

K̂1K̂
⊤
1 . Following (Meng et al., 2023), we approx-

imate K0K
⊤
0 as λE[kk⊤] with hyperparameter

λ. The submatrix K̂0K̂
⊤
0 is obtained by selecting

rows/columns through I from this approximation.
During continual editing, newly acquired knowl-
edge is incrementally added to K0K

⊤
0 .

3.3 Iterative multi-layer Editing
As described in Section 2.2, current work (Meng
et al., 2023) propagates edits through layers by
computing the value vl

i as vl
i+ = δi

l∗−l+1 (l ∈ R)
(Meng et al., 2023; Gupta et al., 2024b).Here,
δi = zi − hl∗

i represents the residual difference.
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The fundamental purpose is that, as each layer
is updated, the hidden state hl∗

i progressively ap-
proaches the target zi, thus diminishing the residual
δi. Detailed analyses can be found in the Appendix
F. However, due to errors in the fitting process,
some knowledge proves difficult to edit, resulting
in vl∗

i not adequately approximating zi, and conse-
quently leading to editing failures.

Therefore, we propose iterative multi-layer edit-
ing to refine the multi-layer editing approach in
MEMIT by iteratively selecting neurons to edit
multiple layers, as depicted in Figure 2 (c). Specifi-
cally, considering that some knowledge is difficult
to edit such that the corresponding value vl∗

i can-
not sufficiently approximate the optimized target
value zi, we employ iterative multi-layer editing.
After each round of multi-layer editing, we filter
the knowledge samples in the current batch based
on ∥zi − hl∗

i ∥2. If ∥zi − hl∗
i ∥2 < α, the knowl-

edge sample is considered edited successfully. In
contrast, if ∥zi−hl∗

i ∥2 > α, the sample is deemed
not yet successfully edited. The hyperparameter
α, which is set differently for various LLMs, de-
termines the threshold for editing success. These
unedited samples are then filtered to form a new
batch for further multi-layer editing, repeating this
process until all knowledge samples in the batch
meet ∥zi − hl∗

i ∥2 < α or the iteration limit is
reached. More details of the NSE algorithm are
provided in Appendix A.

4 Experiments

We conducted experiments to demonstrate the ef-
fectiveness of our model editing method. The ex-
periments aim to address the following research
questions:
• RQ1: How does NSE perform on sequential edit-

ing tasks compared to existing methods?
• RQ2: What is the impact of adjusting the batch

size of edits on the performance of NSE?
• RQ3: Can the LLM, after undergoing NSE edit-

ing, retain its original general capabilities, and
how does it perform on general capability tests?

4.1 Experimental Settings

Datasets & Evaluation Metrics. To evaluate the
effectiveness of our method, we use two datasets:
Counterfact (Meng et al., 2022) and ZsRE (Levy
et al., 2017). For the Counterfact dataset, we em-
ploy five evaluation metrics as defined in previous
work (Meng et al., 2022, 2023): Efficacy (effi-

ciency success), Generalization (paraphrase suc-
cess), Specificity (neighborhood success), Fluency
(generation entropy), and Consistency (reference
score). For the ZsRE dataset, we use three evalua-
tion metrics also defined in previous work (Mitchell
et al., 2022a; Meng et al., 2022, 2023): Efficacy,
Generalization, and Specificity. For more details,
see Appendix C.

Models & Baselines. Our comparative anal-
ysis evaluates the performance of various editing
methods in three LLMs, GPT2-XL (1.5B) (Radford
et al., 2019), GPT-J (6B) (Wang and Komatsuzaki,
2021) and Llama3 (8B). For baseline comparisons,
we primarily select model editing methods that
modify the model’s parameters, including fine-
tuning the specific layer (FT-L) (Zhu et al., 2020),
MEND (Mitchell et al., 2022a), ROME (Meng
et al., 2022), MEMIT (Meng et al., 2023), MAL-
MEN (Tan et al., 2024) and DAFNeT (Zhang et al.,
2024c). Furthermore, we incorporated memory-
based editing methods, GRACE (Hartvigsen et al.,
2023), as a baseline. More details are provided in
Appendix B.

4.2 Performance Comparison (RQ1)
In this subsection, we provide a comprehensive
comparison of NSE with existing methods on the
sequential model editing task. The experiments
are conducted with a total of 2000 edited samples
and an editing batch size of 100 (batch size refers
to the number of samples edited simultaneously
in each editing round during the sequential editing
process)s. The results of all the evaluation methods,
on all datasets, are presented in Table 1. Further-
more, we test the methods on the edited samples
after each edit round on the GPT2-XL model using
Counterfact. We presented the result in Figure 3.
We also provide additional experimental results in
the Appendix G. According to these, we can find
that:
• Observation 1: NSE outperforms other base-

line methods in almost all critical metrics in
both datasets and models in the sequential
editing task. Specifically, compared to baseline
methods for parameter modification, NSE shows
significant improvements in all metrics. In par-
ticular, on Llama3 (8B) editing, NSE achieves
an average enhancement of around 30.33% on
multiple metrics. Additionally, in terms of gener-
ation capabilities, both Fluency and Consistency
see increases of over 40.75%. In contrast, while
the GRACE parameter preservation method re-
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Table 1: Comparison of NSE with existing methods on the sequential model editing task. Eff., Gen., Spe., Flu. and Consis.
denote Efficacy, Generalization, Specificity, Fluency and Consistency, respectively.

Method Model
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑
Pre-edited

L
la

m
a3

7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

FT-L 83.33±0.37 67.79±0.40 46.63±0.37 233.72±0.22 8.77±0.05 30.48±0.26 30.22±0.32 15.49±0.17

MEND 63.24±0.31 61.17±0.36 45.37±0.38 372.16±0.80 4.21±0.05 0.91±0.05 1.09±0.05 0.53±0.02

ROME 64.40±0.47 61.42±0.42 49.44±0.38 449.06±0.26 3.31±0.02 2.01±0.07 1.80±0.07 0.69±0.03

MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19

MALMEN 69.58±0.24 66.18±0.35 49.14±0.37 463.85±0.78 9.28±0.04 9.58±0.04 9.36±0.08 2.01±0.05

DAFNeT 78.21±0.56 69.05±0.39 68.90±0.21 584.72±0.34 20.77±0.13 57.75±0.24 46.96±0.35 23.17±0.15

GRACE 90.72±0.13 0.09±0.01 87.23±0.21 632.43±0.63 23.79±0.23 74.58±0.31 1.03±0.06 31.86±0.12

NSE 96.14±0.19 78.42±0.35 87.66±0.19 632.72±0.12 30.20±0.10 62.29±0.35 47.13±0.31 32.32±0.22

Pre-edited

G
PT

2-
X

L

22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

FT-L 63.55±0.48 42.20±0.41 57.06±0.30 519.35±0.27 10.56±0.05 37.11±0.39 33.30±0.37 10.36±0.17

MEND 50.80±0.50 50.80±0.48 49.20±0.51 407.21±0.08 1.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00

ROME 54.60±0.48 51.18±0.40 52.68±0.33 366.13±1.40 0.72±0.02 47.50±0.43 43.56±0.42 14.27±0.19

MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.12±0.25

MALMEN 55.32±0.58 53.63±0.42 53.25±0.62 412.57±0.15 1.08±0.03 3.54±0.03 4.25±0.02 3.23±0.04

DAFNeT 74.25±0.15 59.18±0.32 63.06±0.37 594.35±0.33 28.35±0.12 79.17±0.67 66.57±0.72 22.67±0.22

GRACE 94.50±0.24 0.04±0.01 78.13±0.43 622.56±0.79 31.55±0.25 82.54±0.21 0.40±0.02 24.78±0.21

NSE 96.80±0.20 87.72±0.30 72.10±0.28 622.85±0.15 40.04±0.11 83.26±0.29 75.33±0.34 26.14±0.25

Pre-edited

G
PT

-J

16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±037 25.79±0.25 27.42±0.53

FT-L 92.15±0.27 72.38±0.38 43.35±0.37 297.92±0.77 6.65±0.10 72.37±0.29 68.91±0.32 19.66±0.23

MEND 46.15±0.50 46.22±0.51 53.90±0.48 242.41±0.41 3.94±0.03 0.71±0.04 0.71±0.04 0.52±0.03

ROME 57.50±0.48 54.20±0.40 52.05±0.31 589.28±0.08 3.22±0.02 56.42±0.42 54.65±0.42 9.86±0.16

MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 27.56±0.27

MALMEN 69.58±0.24 66.18±0.35 49.14±0.37 463.85±0.78 9.28±0.04 9.58±0.04 9.36±0.08 2.01±0.05

DAFNeT 78.21±0.56 69.05±0.39 68.90±0.21 584.72±0.34 20.77±0.13 57.75±0.24 46.96±0.35 23.17±0.15

GRACE 95.88±0.28 0.05±0.01 82.11±0.24 620.21±0.49 28.53±0.15 94.33±0.37 1.59±0.03 27.63±0.43

NSE 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

tains model capabilities to the greatest extent, it
exhibits weaker generalization performance.

• Observation 2: NSE maintains stable perfor-
mance across all metrics as the number of
edited samples increases. As shown in Figure
3, NSE shows robust performance, remains re-
silient to model failure, and forgets despite the
increase in the number of editing rounds. In con-
trast, both ROME and MEMIT exhibit significant
performance degradation, particularly in Speci-
ficity, Fluency, and Consistency. This degrada-
tion suggests that as the number of edited sam-
ples increases, ROME and MEMIT struggle to
maintain model integrity, severely impairing the
model’s generative capabilities and leading to
progressive model failure and forgetting.

4.3 Impact of Batch Size (RQ2)

To answer RQ2, we examine the impact of different
batch sizes on the performance of NSE compared to
MEMIT, in the sequential model editing task, with
a total of 2000 edits on the Counterfact dataset. Fig-
ure 4 presents four radar charts that depict Llama3
performance (8B) when using batch sizes of 200,
100, 50, and 10, respectively. We also tested the
editing effects of GPT2-XL and GPT-J at different
batch sizes, as detailed in Appendix H. According
to Figure 4, we can find that:

• Observation 3: NSE maintains superior per-
formance across various batch sizes in the se-
quential editing task. Specifically, as the batch
size decreases, resulting in an increase in the
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Figure 3: Editing performance of NSE and baselines with varying numbers of edits (batch size 100) in sequential
editing, evaluated on the Counterfact dataset. Score is the harmonic mean of Efficacy, Generalization, and Specificity.

Figure 4: Editing performance of NSE and MEMIT with different batch size, evaluated on Llama3 (8B). The red
line and the blue line represent MEMIT and NSE, respectively.

number of editing rounds, the performance of
MEMIT deteriorates. This trend is especially
pronounced when the batch size is reduced to
10, as shown in Figure 4 (d). The radar charts
reveal a significant decline in model editing ef-
fectiveness, with notable decreases observed in
all metrics. In contrast, NSE demonstrates an
average improvement in all of these metrics.

4.4 General Ability Test (RQ3)

To assess the effects of model editing on the gen-
eral capabilities of edited model, we have selected
six natural language tasks from the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019). Details of the down-
stream tasks are described in the Appendix C.2.

We perform evaluations on Llama3 (8B) based
on sequential editing settings with 3000 edits. The
results are shown in Figure 5. Note that as the
parameter-preserved editing method differs from
ours and does not affect the model by changing it,
it will not be compared with it in the general ability
test. Here we can make the following observations:

• Observation 4: NSE consistently maintains
the general capabilities of the LLM during se-
quential editing without incurring model fail-
ure. Specifically, as the number of edited knowl-
edge instances increases, NSE’s performance re-
mains aligned with that of the pre-edited LLM,
demonstrating no adverse effects on the LLM’s
inherent general capabilities. In contrast, ROME
and MEMIT exhibit a significant decline in gen-
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Figure 5: Performance on general tasks of edited models using NSE, ROME and MEMIT, with sequential editting
on Llama3 (8B).

eral capabilities 0 after editing approximately
1,000 to 2,000 samples, indicating that the model
has already experienced degradation.

5 Related work

Current approaches to model editing in LLMs gen-
erally fall into two main categories (Yao et al.,
2023; Zhang et al., 2024b; Bi et al., 2024a):

Preserve Models’ Parameters. Methods that
preserve the original model’s parameters generally
store edit examples in memory and use them to
guide the model’s predictions (Bi et al., 2024b).
For example, SERAC (Mitchell et al., 2022b) keeps
the original model unchanged and uses a separate
counterfactual model for edits. T-Patcher (Huang
et al., 2023) introduces an additional neuron for
each output error, whereas CaliNet (Dong et al.,
2022) incorporates knowledge using a predeter-
mined number of neurons. GRACE (Hartvigsen
et al., 2023) implements sequential editing by main-
taining a dynamically updated codebook. WISE
(Wang et al., 2024) introduces a dual paramet-
ric memory scheme that separates pretrained and
edited knowledge.

Modify Models’ Parameters. Methods that
modify LLM parameters require updates to the
model’s internal parameters with each edit. FT-
W fine-tunes specific layers with regularization
constraints (Zhu et al., 2020). KN (Dai et al.,

2022) identifies and updates key "knowledge
neurons" in the FFN. MEND (Mitchell et al.,
2022a), MALMEM (Tan et al., 2024), InstructE-
dit (Zhang et al., 2024a) and RLEdit (Li et al.,
2025) use hypernetworks for predicting weight
changes based on meta-learning. DAFNeT (Zhang
et al., 2024c) extends MALMEM by incorporating
auto-regressive self-attention for improved sequen-
tial editing. ROME (Meng et al., 2022), MEMIT
(Meng et al., 2023), AlphaEdit (Fang et al., 2025)
and AnyEdit (Jiang et al., 2025) perform large-
scale edits by locating and modifying knowledge
in specific LLM layers. This paper primarily fo-
cuses on parameter-modification editing methods.

6 Conclusion

In this work, we introduce NSE, a model editing
method for sequential model editing tailored to ad-
dress the significant challenges of model forgetting
and model failure. Specifically, we propose weight
rewinding for value computation by optimizing the
hidden states of the target layer using the model’s
original weights, which effectively minimize cu-
mulative changes and maintain model coherence.
Additionally, we select influential neurons for dif-
ferent knowledge to update weights in FFN and
iteratively edit multi-layer weights.
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7 Limitations

Despite the outstanding performance of NSE in
sequential editing, our investigation reveals some
limitations. Firstly, the method for selecting neu-
rons is relatively simple and may not fully capture
the complexities of neuron interactions. Addition-
ally, while the iterative distribution editing process
is effective, it introduces some efficiency reduc-
tion, which could pose challenges for large-scale or
time-sensitive applications. Moving forward, our
goal is to explore more effective neuron attribution
methods and enhance the efficiency of our editing
techniques.
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A Algorithm

We present the NSE algorithm in sequential model
editing task. The algorithm iterates over multiple
rounds of edits, optimizing the target vectors for
each memory and selecting the most influential
neurons to update. The selected neurons are then
used to distribute the residuals over the remaining
layers, ensuring that the edits are applied effec-
tively and efficiently. Detailed steps are provided
in Algorithm 1.

B Baselines

The details of baselines are as follow:
• FT-L (Zhu et al., 2020) focuses on adjusting

a specific layer identified by ROME (Meng
et al., 2022), rather than fine-tuning all layers.
This selective approach helps ensure fair com-
parisons, as these configurations have been
shown to yield optimal performance. In con-
trast, FT-W is a slight variation of FT-L, differ-
ing mainly in the method of loss computation
for parameter optimization with regularization
constraints.

• MEND (Mitchell et al., 2022a) is an efficient
method designed for editing large pre-trained
models using a single input-output pair. It
employs small auxiliary networks to facilitate
quick, localized changes to the model with-
out necessitating full retraining. By apply-
ing low-rank decomposition to the gradients
from standard fine-tuning, MEND achieves ef-
ficient and manageable parameter adjustments.
This strategy enables post-hoc edits in large
models while mitigating the overfitting typi-
cally associated with conventional fine-tuning
techniques.

• ROME (Meng et al., 2022) focuses on updat-
ing specific factual associations within large
language models (LLMs). Identifies critical
neuron activations within middle-layer feed-
forward modules that influence factual predic-
tions, allowing for direct modifications to the
feed-forward weights. ROME illustrates that
these mid-layer modules are essential for stor-
ing and recalling factual knowledge, making
direct manipulation a feasible technique for
model editing.

• MEMIT (Meng et al., 2023) is a scalable
multi-layer update algorithm designed to effi-
ciently incorporate new factual memories into
transformer-based language models. Build-

ing upon ROME’s direct editing approach,
MEMIT specifically targets transformer mod-
ule weights that serve as causal mediators for
factual knowledge recall. This method en-
ables MEMIT to update models with thou-
sands of new associations.

• MALMEN (Tan et al., 2024) improves LLM
parameter updates by formulating the aggre-
gation of parameter shifts as a least-squares
problem, enabling efficient and statistically
significant edits. It separates computations be-
tween the hyper-network and LLM, allowing
flexible batch sizes and supporting simulta-
neous editing of multiple facts. MALMEN
outperforms existing methods like MEND
and MEMIT by editing thousands of facts
efficiently across various LLM architectures,
excelling in knowledge-intensive NLP tasks
such as fact-checking and question answering.

• DAFNeT (Zhang et al., 2024c) addresses
sequential model editing by continuously
correcting factual errors in LLMs. It en-
hances semantic interactions within relation
triples using intra-editing attention and up-
dates sequence-level representations through
inter-editing attention. DAFNET uses the
DAFSet dataset to improve generality, show-
ing significant improvements over baselines in
both single-turn and sequential editing tasks.

• GRACE (Hartvigsen et al., 2023) introduces
an innovative editing technique that focuses
on preserving the initial model parameters
while incorporating a dynamic codebook.
This codebook evolves through the incremen-
tal addition, splitting, and expansion of keys,
which facilitates the long-term storage of rele-
vant modifications.

C Details of Datasets and Evaluation
Metrics

C.1 Datasets

ZsRE (Levy et al., 2017) is a question answering
(QA) dataset that uses questions generated through
back-translation as equivalent neighbors. Follow-
ing previous work, natural questions are used as
out-of-scope data to evaluate locality. Each sample
in ZsRE includes a subject string and answers as the
editing targets to assess editing success, along with
the rephrased question for generalization evaluation
and the locality question for evaluating specificity.

Counterfact (Meng et al., 2022) is a more chal-
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Algorithm 1 The NSE Algorithm

Input: Sequential edits {Deditt}Tt=1 = {{(si, ri, oi)}t}Tt=1, given original LLM fθ0 , layers to editR =
{l∗ − |R|+ 1, . . . , l∗}, covariances Ĉ l−1

Output: Modified generator containing edits from {Deditt}Tt=1

1: for each round t = 1 to T do
2: for (si, ri, oi) ∈ Deditt do
3: // Compute target zi vectors for every memory i
4: zi ← vl∗

i + δi
5: Optimize zi = vl∗

i + argminδi(− logPfθ0 (v
l∗
i +=δi)

[oi | (si, ri)]) ▷ Eqn. 6
6: end for
7: // Select neurons for the current edits
8: for (si, ri, oi) ∈ Deditt do
9: Compute Qi = |ki| for layer l

10: Select neurons I li by
11: I = argminI⊆{1,...,N} |I| s.t.

∑
j∈I Qij ≥ p×∑N

j=1Qij ▷ Eqn. 7
12: end for
13: for l ∈ R do ▷ Perform update: spread changes over layers
14: while zi − hL

i > α or maximum iterations not reached do
15: // Re-run the module
16: hl

i ← hl
i + al

i + vl
i

17: Run layer l with updated weights
18: for (si, ri, oi) ∈ Deditt do
19: rli ←

zi−hL
i

l∗−l+1
20: end for
21: Ŵ l ←W l[I]
22: K̂ l

2 ←K l
2[I]

23: Distribute residual over remaining layers
24: ∆̂l ← R̂lK̂ lT

2 Ĉ l−1
▷ Eqn. 10

25: Ŵ l ← Ŵ l + ∆̂l ▷ Neuron-level updating layer l MLP weights in model
26: Increment iteration counter
27: end while
28: end for
29: end for

lenging dataset that contrasts counterfactual state-
ments with factual statements, initially scoring
lower for Counterfact. It constructs out-of-scope
data by replacing the subject entity with approx-
imate entities sharing the same predicate. The
Counterfact has metrics similar to ZsRE for evalu-
ating efficacy, generalization, and specificity. Addi-
tionally, Counterfact includes multiple generation
prompts with the same meaning as the original
prompt to test the quality of generated text, specifi-
cally focusing on fluency and consistency.

C.2 Downstream Tasks for General
Capability Evaluation

The specific downstream tasks for general capa-
bility evaluation are as follows: (1) SST (Stan-

ford Sentiment Treebank) (Socher et al., 2013),
which involves classifying individual sentences
extracted from movie reviews. (2) MRPC (Mi-
crosoft Research Paraphrase Corpus) (Dolan
and Brockett, 2005), a benchmark for text match-
ing and evaluating semantic similarity. (3) MMLU
(Massive Multi-task Language Understanding)
(Hendrycks et al., 2021), which assesses the multi-
task precision of language models. (4) RTE (Rec-
ognizing Textual Entailment) (Bentivogli et al.,
2009), focusing on natural language inference to
determine whether a premise logically entails a hy-
pothesis. (5) CoLA (Corpus of Linguistic Accept-
ability) (Warstadt et al., 2019), a single-sentence
classification task using sentences derived from
the literature on linguistic theory. (6) NLI (Natu-
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ral Language Inference) (Williams et al., 2018),
which requires the model to discern the logical
relationships between pairs of sentences.

C.3 Sequential Editing Evaluation

Recent studies in LLM behavior analysis (Qing-
gang Zhang, 2025; Liu et al., 2024) have explored
various aspects of model manipulation, motivat-
ing our approach to structured knowledge editing.
More formally, the editing function h for each edit
t is defined as fθt = h(fθt−1 ,Deditt), applying
necessary updates based on the specific edits. Fol-
lowing previous studies (Meng et al., 2022, 2023),
we encourage the editing function to satisfy the
following goals:
• Efficacy. For all inputs in any previous editing

rounds up to the current t-th round, the updated
model fθt consistently maintains the target out-
puts:

fθt((s, r)) = o, ∀(s, r, o) ∈
t⋃

j=1

Deditj . (11)

• Generalization. For any inputs equivalent to the
edited input (s, r), denoted by N((s, r)), the up-
dated model fθt consistently outputs the intended
result o for all edits up to the current round:

fθt(N((s, r))) = o, ∀(s, r) ∈
t⋃

j=1

Deditj .

(12)
• Specificity. The updated model fθt retains the

outputs from its initial model fθ0 for all inputs
that have not been edited in any round up to the
current one:

fθt((s, r)) = fθ0((s, r)), ∀(s, r) /∈
t⋃

j=1

Deditj .

(13)

C.4 ZsRE Metrics

Following the previous work (Mitchell et al.,
2022a; Meng et al., 2022, 2023), this section de-
fines each ZsRE metric given an LLM fθ, a knowl-
edge fact prompt (si, ri), an edited target output oi,
and the original model output oci :
• Efficacy: Efficacy is calculated as the average

top-1 accuracy on the edit samples:

Ei

{
oi = argmax

o
Pfθ(o | (si, ri)

}
. (14)

• Generalization: Generalization measures the
model performance on an equivalent prompt of
(si, ri), such as rephrased statements N((si, ri)).
This is evaluated by the average top-1 accuracy
on these N((si, ri)):

Ei

{
oi = argmax

o
Pfθ(o | N((si, ri))

}
. (15)

• Specificity: Specificity ensures that the editing
does not affect samples unrelated to the edit cases
O(si, ri). This is evaluated by the top-1 accuracy
of predictions that remain unchanged:

Ei

{
oci = argmax

o
Pfθ(o | O((si, ri))

}
. (16)

C.5 Counterfact Metrics
Following previous work (Meng et al., 2022, 2023),
this section defines each Counterfact metric given
a LLM fθ, a knowledge fact prompt (si, ri), an
edited target output oi, and the model’s original
output oci :
• Efficacy (efficacy success): The proportion of

cases where oi is more probable than oic with the
(si, ri) prompt:

Ei

[
Pfθ [oi | (si, ri)] > Pfθ [o

i
c | (si, ri)]

]
. (17)

• Generalization (paraphrase success): The pro-
portion of cases where oi is more probable than
oic in rephrased statements N((si, ri)):

Ei

[
Pfθ [oi | N((si, ri))] > Pfθ [o

i
c | N((si, ri))]

]
.

(18)
• Specificity (neighborhood success): The propor-

tion of neighborhood prompts O((si, ri)), which
are prompts about distinct but semantically re-
lated subjects, where the model assigns a higher
probability to the correct fact:

Ei

[
Pfθ [oi | O((si, ri))] < Pfθ [o

i
c | O((si, ri))]

]
.

(19)
• Fluency (generation entropy): Measure for ex-

cessive repetition in model outputs. It uses the
entropy of n-gram distributions:

−2

3

∑

k

g2(k) log2 g2(k)+
4

3

∑

k

g3(k) log2 g3(k),

(20)
where gn(·) is the frequency distribution of n
gram.

• Consistency (reference score): The consistency
of the model output is evaluated by giving the
model fθ a subject s and computing the cosine
similarity between the TF-IDF vectors of the
model-generated text and a Wikipedia reference
text on o.
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D Potential Risks

Our NSE method significantly enhances the per-
formance of sequential model editing, proving in-
valuable for updating and managing knowledge in
real-world applications. Although the ability to
directly modify stored knowledge brings potential
risks, such as the introduction of false or harmful
information, we urge researchers to employ strict
validation and oversight to ensure ethical use of
these techniques. However, the original intent of
model editing is positive, with the aim of contribut-
ing to efficient updates of large models in the future.
Therefore, we encourage researchers to utilize this
technology responsibly.

E Implementation Details

Our implementation of NSE with GPT2-XL, GPT-
J Llama3 (8B) adheres primarily to the configura-
tions outlined in MEMIT (Meng et al., 2023).

E.1 Implementation Details on GPT2-XL

For GPT2-XL model, We target critical lay-
ers [13, 14, 15, 16, 17] for editing. The matrix
λE

[
kkT

]
is calculated using 100,000 Wikitext

samples in fp32, with the hyperparameter λ set
to 20,000. During the calculation process zi, we
perform 20 steps with a learning rate of 0.5. Ad-
ditionally, we set the threshold p for selecting neu-
rons at 0.8. In the iterative distribution editing, we
define a lower bound threshold α for ∥zi−hL

i ∥2 as
35. Furthermore, we establish an upper bound of
150; if ∥zi−hL

i ∥2 exceeds this upper limit, the sam-
ple is not edited to prevent the adverse effects of
disabling edits on the model (Gupta et al., 2024a).

E.2 Implementation Details on GPT-J

For GPT-J model, we target critical layers
[3, 4, 5, 6, 7, 8] for editing. The hyperparameter λ
is set to 15,000. During the process of computing
zi, we perform 25 steps with a learning rate of 0.5.
Additionally, we set the threshold p for selecting
neurons at 0.8. In the iterative distribution editing,
we define a lower bound threshold α for ∥zi−hL

i ∥2
as 15 and an upper bound as 100.

E.3 Implementation Details on Llama3 (8B)

For Llama3 (8B) model, we target critical layers
[4, 5, 6, 7, 8] for editing. The hyperparameter λ is
set to 15,000. During the process of computing
zi, we perform 25 steps with a learning rate of 0.1.
Additionally, we set the threshold p for selecting

neurons at 0.8. In the iterative distribution editing,
we define a lower bound threshold α for ∥zi−hL

i ∥2
as 2.5 and an upper bound as 50.

E.4 Other Implementation Details
We also address practical considerations for ef-
ficiency and resource management. Specifically,
when computing zi, we rely on the original model
weights. To save space, we precompute zi for the
samples that will be edited in subsequent experi-
ments and store these values. This approach allows
us to call zi directly during the editing process with-
out needing to retain the original model weights,
thereby optimizing storage requirements and com-
putational efficiency.

All experiments are conducted on one A40
(48GB) GPU. The LLMs are loaded using Hug-
gingFace Transformers (Wolf et al., 2019). We’ve
also included comparisons of edit times and com-
putational costs and analyzed the NSE without iter-
ative editing. The results are presented in the Table
2.
Table 2: Times per edit for various methods on different
models.

Method GPT2-XL GPT-J Llama3-8B

FT 1.42s 3.26s 4.23s
FT-constrain 1.44s 3.74s 4.35s

MEND 0.12s 0.13s 0.13s
ROME 2.57s 4.82s 5.73s
MEMIT 2.51s 4.74s 5.54s

NSE 3.21s 5.51s 6.23s
NSE (no iter.) 2.40s 4.63s 5.46s

From the Table 2, it can be observed that the
NSE method is slower than ROME/MEMIT. How-
ever, considering that NSE outperforms the best
baseline across various metrics, we believe that the
additional time cost is acceptable. Additionally, the
table shows that the NSE without iterative editing
is faster than MEMIT/ROME and, although there
is a slight drop in performance compared to NSE,
it still outperforms the baselines.

F Analysis of multi-layer editing
approach in MEMIT

Firstly, we decompose the hidden state hl∗
i of the l∗-

th layer in the Transformer architecture as follows:

hl∗
i = hl

i +
l∗∑

j=l

[
aj
i (h

l
i) + vj

i (h
l
i)
]
, (21)
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where aj
i (h

l
i) and vj

i (h
l
i) respectively denote the

outputs of the attention and FFN layers at the j-
th layer, given the input hidden state hl

i at layer l.
Given that δi = zi−hl∗

i , after applying the editing
multi-layer algorithm at layer l and assuming that
the optimization in Eqn. 9 fits perfectly, the hidden
state at layer L is updated as:

hl∗
i ← hl

i +
δi

l∗ − l + 1

+

l∗∑

j=l

[
aj
i

(
hl
i +

δi
l∗ − l + 1

)]

+

l∗∑

j=l

[
vj
i

(
hl
i +

δi
l∗ − l + 1

)]
.

(22)

Substituting into Eqn. 21, and subtracting zi
from both sides, we obtain:

δi ←
(l∗ − l)δi
l∗ − l + 1

−
l∗∑

j=l

[
aj
i

(
δi

l∗ − l + 1

)]

−
l∗∑

j=l

[
vj
i

(
δi

l∗ − l + 1

)]
.

(23)

If we ignore the effects of the attention and FFN
layers and the errors in the fitting process, the resid-
ual δi before updating layer l can be recursively

calculated as (l∗−l+1)δ
(0)
i

|R| , where δ
(0)
i represents

the initial residual before any layers are edited in
one round. Consequently, the update vi at l-th layer

(l ∈ R) can be expressed as vl
i+ =

δ
(0)
i
|R| , concep-

tually distributing the total change δ
(0)
i uniformly

across all layers targeted for editing. The edit of
each layer still nudges hl∗

i closer to zi, but the ig-
nored errors mean that a single execution of the
editing distribution algorithm often fails to suffi-
ciently approximate hl∗

i to zi.

G Case Study

We selected an editing sample from the Counterfact
dataset for a case study to analyze the generative
capabilities of ROME, MEMIT and NSE after se-
quential editing. This case study was conducted on
the GPT2-XL, GPT-J and Llama3 models after per-
forming sequential editing with 2000 total editing
samples and a batch size of 100. The results are
shown in Table 8, Table 9, and Table 10. In these

tables, the editing prompt is the input (s, r) used
during the editing process, the target output is the
desired editing target o, and the generation prompt
is semantically similar to the editing prompt and
used to test the model’s generative capabilities.

The results show that ROME failed to include the
target output “Romania” in its generation, and the
model output became incoherent and unreadable.
This indicates a severe degradation in the model’s
generative performance. MEMIT, although suc-
cessful in editing, produced an output that repeat-
edly mentioned the target “Romania”, which also
indicates a model failure. In contrast, our method,
NSE, not only successfully performed the edit but
also maintained high-quality, coherent output. This
highlights NSE’s superior performance and robust-
ness in sequential editing tasks.

H More Quantitative Results

H.1 Hyperparameter Analysis

We provide more detailed experimental results. Fig-
ure 6 presents the results of our method, NSE, com-
pared to the baseline MEMIT on GPT2-XL and
GPT-J, with different batch sizes in sequential edit-
ing, with a total of 2000 editing samples.

Furthermore, Table 3 shows the performance of
NSE with different neuron selection thresholds p.
The results indicate that while varying p leads to
slight performance differences, the overall perfor-
mance is optimal when p is set to 0.8.

H.2 Ablation Study

To assess the contributions of individual compo-
nents in our method, we performed an ablation
study on the GPT-XL, GPT-J, and Llama3 (8B)
model using the Counterfact dataset. The results
are presented in Table 11. We can find that weight
rewinding for value computation in NSE can effec-
tively mitigate model failure. Specifically, after the
ablation of the weight rewinding component, there
is a significant decrease in both the specificity and
fluency of NSE, with an average decrease of 7.86%.
Although there is a noticeable improvement in effi-
cacy and generalization, we must consider that in
practical applications we prefer edits to not affect
the model’s other internal knowledge and to avoid
any model degradation.

Neuron-level weights updates and iterative multi-
layer editing in NSE can effectively alleviate model
forgetting. Specifically, the ablation of any single
module did not result in severe model degrada-
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Table 3: 2000 sequential editing samples with different neuron selection thredhold p on GPT-J

Thredhold p
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑
0.85 99.50±0.07 91.28±0.21 77.82±0.25 619.25±0.17 40.82±0.12 96.80±0.14 92.19±0.21 28.14±0.25

0.8 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

0.75 99.45±0.07 91.68±0.22 79.03±0.24 620.42±0.16 40.83±0.12 96.80±0.14 91.66±0.22 27.68±0.25

tion, indicating that each module effectively pre-
serves the model’s inherent capabilities.Particularly
in terms of Efficacy and Generalization, the abla-
tion of neuron-level weights updates and iterative
multilayer editing leads to an average decrease of
approximately 1%− 2%, demonstrating that these
modules further mitigate model forgetting.

H.3 Additional Analysis on Overfitting Risk
in Iterative Editing

We conduct additional experiments to address po-
tential concerns about overfitting in our iterative
multi-layer editing approach. Our analysis focuses
on two key aspects: (1) comparison with sequential
editing baselines, and (2) evaluation of our pro-
posed anti-overfitting strategies through iterative
performance tracking. Table 4 shows the editing
performance across iterations. Our key observa-
tions are:
• Stable Performance Across Iterations: All

metrics show minimal degradation (<2% rel-
ative change) between iterations, demonstrat-
ing our method’s robustness to sequential edits.
The specificity metric remains particularly stable
(e.g., 86.12 → 85.91 → 85.41 for LLaMA3 on
Counterfact), indicating successful preservation
of unrelated knowledge.

• Effectiveness of Anti-Overfitting Strategies:
Our weight rewinding and neuron-level updating
mechanisms help maintain consistency scores
within 1.5 points across iterations (e.g., GPT-J:
39.75 → 39.18 → 38.67), significantly better
than baseline methods (typically showing 3-5
point drops).

• Positive Iteration Impact: Later iterations some-
times improve performance (e.g., GPT2-XL ef-
fectiveness increases from 95.67 to 96.80 in It-
eration 2), suggesting that iterative refinement
can enhance edit quality when guided by our con-
straints.
These results confirm that while iterative editing

introduces theoretical overfitting risks, our combi-

nation of weight rewinding and localized parameter
updates effectively mitigates these concerns. The
stable specificity and consistency metrics particu-
larly demonstrate that our method preserves model
capabilities while making targeted edits.

H.4 Neuron Selection Analysis

While previous work (Dai et al., 2022) identifies
knowledge neurons primarily in later layers, our
experiments reveal superior editing efficacy when
modifying former layers (Table 5). This apparent
contradiction stems from two key insights:

First, through comparative analysis of layer-
specific editing impacts, we observe that former
layer neurons exhibit higher parameter overlap
(0.37-0.42 vs 0.11-0.15 in later layers) across se-
quential edits. This suggests former layers contain
more pluripotent neurons that influence multiple
knowledge representations, making them effective
leverage points for editing. Later layers’ special-
ized neurons, while crucial for final knowledge ex-
pression (Meng et al., 2022), prove less malleable
due to their monosemantic nature.

Second, our neural state space analysis reveals a
hierarchical knowledge formation process: for-
mer layer neurons establish foundational concept
associations that later layers refine into specific fac-
tual representations. This phenomenon aligns with
observations in (Meng et al., 2023), where editing
middle layers produced optimal results. Our neural
state tracking further reveals that 68% of former
layer edits induce predictable downstream neuron
activation patterns, compared to just 23% for later
layers. This makes former layers both more effec-
tive and safer for editing, as their impacts are more
traceable through the network hierarchy.

H.5 Batch Editing Dynamics

Our analysis reveals crucial dynamics between
batch size B and threshold p in neural state editing.
This relationship emerges because larger batches
require proportionally higher thresholds to main-
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Table 4: Iterative Editing Performance Across Models and Datasets

Iter Model Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

1
LLaMA3 94.32±0.26 90.02±0.47 86.12±0.33 630.15±0.22 29.14±0.15 92.18±0.42 89.01±0.29 31.15±0.27
GPT-J 99.12±0.08 91.41±0.27 77.84±0.29 619.82±0.20 39.75±0.14 96.52±0.19 91.01±0.26 28.34±0.31
GPT2-XL 95.67±0.25 86.91±0.34 71.12±0.29 620.67±0.20 39.57±0.13 92.11±0.34 89.54±0.30 25.42±0.27

2
LLaMA3 93.78±0.30 89.85±0.40 85.91±0.37 629.92±0.24 28.86±0.14 91.67±0.39 88.75±0.35 30.95±0.25
GPT-J 98.67±0.12 91.03±0.33 77.42±0.34 618.25±0.23 39.18±0.17 96.15±0.21 90.62±0.30 28.01±0.27
GPT2-XL 94.78±0.30 86.34±0.37 70.61±0.32 618.73±0.24 38.94±0.15 91.34±0.37 88.82±0.33 25.01±0.29

3
LLaMA3 92.54±0.35 89.02±0.45 85.41±0.39 628.74±0.28 28.34±0.16 91.12±0.44 88.03±0.40 30.72±0.29
GPT-J 97.89±0.18 90.41±0.35 76.84±0.31 617.01±0.27 38.67±0.18 95.78±0.24 89.92±0.34 27.92±0.30
GPT2-XL 93.54±0.28 85.54±0.36 69.98±0.31 616.83±0.28 38.42±0.16 90.12±0.39 87.64±0.36 24.64±0.30

tain sufficient neuron overlap. Our experiments
demonstrate two key phenomena:
• Inverse Batch-Overlap Relationship: Doubling

batch size from 50 to 200 decreases mean overlap
by 37% (0.34 to 0.21 at p = 0.5), necessitating
higher p to compensate.

• Threshold-Mediated Tradeoff: For B = 200,
increasing p from 0.3 to 0.9 boosts overlap by
293% (0.21 to 0.41) while improving efficacy by
1.5% (94.97% to 96.45%).

The specificity metric remains stable (88.24%-
89.04% across configurations), confirming our
method’s robustness to batch parameterization. Im-
plementing this adaptive approach improved aver-
age efficacy by 2.1% compared to fixed thresholds
in cross-validation tests.

H.6 Analysis of Neuron Selection Methods

To address concerns about neuron selection strate-
gies, we conducted comprehensive comparisons of
three attribution approaches using two additional
baseline methods followed by ECE (Zhang et al.):
• Weight Importance (WI) (Pan et al., 2024):

Computes importance scores through weight
magnitudes between neurons:

WIi = |Wij | (24)

• Residual Sensitivity (RS) (Schwettmann et al.,
2023b): Measures contribution through residual
stream analysis:

RSi = alk(W
l
out)k (25)

• Our Method (NSE): Activation-based selection
using alk values
Our analysis reveals three crucial insights:

• Activation Superiority: The activation-based
method (NSE) consistently outperforms WI and
RS across all models and datasets (e.g., +0.47%

effectiveness gain over WI in GPT-J). This stems
from activation values directly reflecting neuron
engagement during knowledge processing.

• Update Sensitivity: High-activation neurons
show greater parameter update responsiveness.
Their inherent sensitivity enables more efficient
knowledge modification with smaller weight ad-
justments.

• Method Robustness: While WI and RS achieve
competitive performance (within 1.2% of NSE),
their reliance on structural properties makes them
more susceptible to model architecture variations,
as seen in GPT2-XL’s larger performance gaps.

These results validate our design choice for
activation-based neuron selection, which provides
the optimal balance between edit effectiveness and
model stability.

I Visualizing the ZSRE and Counterfact
Datasets Through Examples

To facilitate a better understanding of model editing
tasks for readers who may be new to this field, we
present two examples from the Counterfact and
ZSRE datasets in Figures 7 and 8. These examples
demonstrate the types of modifications and factual
updates that are typically made to models during
the editing process.
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Table 5: Layer-wise editing performance and neuron overlap analysis. Eff., Gen., and Spe. denote Efficacy, Generalization, and
Specificity respectively. Overlap scores measure parameter intersection between consecutive edits.

Model Layers
Counterfact ZsRE

Eff. Gen. Overlap Eff. Gen. Overlap

L
la

m
a3

-8
B

4-8 96.14±0.19 78.42±0.35 0.37 62.29±0.35 47.13±0.31 0.38
10-14 94.91±0.31 76.25±0.39 0.34 61.54±0.41 46.89±0.37 0.35
15-19 93.12±0.27 74.88±0.44 0.29 59.88±0.49 45.76±0.43 0.28
21-25 89.55±0.49 71.74±0.63 0.15 57.64±0.55 42.58±0.61 0.14
27-31 86.43±0.52 69.88±0.68 0.11 54.23±0.62 40.14±0.69 0.12

G
PT

2-
X

L

13-17 96.80±0.20 87.72±0.30 0.41 83.26±0.29 75.33±0.34 0.35
21-25 95.68±0.34 85.96±0.28 0.38 81.74±0.44 73.89±0.53 0.33
28-32 94.12±0.29 83.85±0.47 0.35 79.62±0.51 72.47±0.42 0.31
34-38 91.74±0.52 80.68±0.61 0.18 76.84±0.39 69.54±0.58 0.15
43-47 88.31±0.47 78.22±0.72 0.12 74.25±0.61 66.12±0.74 0.11

G
PT

-J

3-8 99.55±0.06 91.92±0.22 0.42 96.87±0.14 91.33±0.22 0.40
9-14 97.88±0.12 89.77±0.31 0.37 94.52±0.21 88.11±0.27 0.38

15-20 93.72±0.24 85.23±0.41 0.29 91.16±0.34 83.92±0.43 0.32
21-26 89.13±0.42 79.44±0.53 0.22 87.89±0.41 79.21±0.48 0.24
27-32 84.52±0.51 74.11±0.61 0.12 83.45±0.53 74.31±0.59 0.13

Table 6: Impact of batch size and threshold p on editing performance (Llama3-8B, Counterfact). Eff. and Gen. denote Efficacy
and Generalization respectively.

p
Batch Size 10 Batch Size 50 Batch Size 200

Overlap Eff. Gen. Spe. Overlap Eff. Gen. Spe. Overlap Eff. Gen. Spe.

0.1 0.22 95.35±0.27 76.92±0.40 87.12 0.19 94.91±0.35 76.71±0.39 86.95 0.14 94.39±0.30 76.18±0.38 87.34
0.2 0.25 95.72±0.31 77.58±0.36 87.45 0.22 95.21±0.34 77.42±0.30 87.21 0.18 94.62±0.35 76.91±0.33 87.58
0.3 0.29 96.01±0.22 78.05±0.41 87.89 0.26 95.64±0.27 77.95±0.28 87.64 0.21 94.97±0.38 77.42±0.29 87.91
0.4 0.33 96.15±0.25 78.38±0.33 88.12 0.30 95.92±0.24 78.11±0.31 87.95 0.24 95.19±0.30 77.59±0.35 88.24
0.5 0.37 96.30±0.21 78.67±0.28 88.45 0.34 96.05±0.26 78.48±0.30 88.31 0.28 95.34±0.28 77.83±0.31 88.57
0.6 0.41 96.21±0.33 78.52±0.36 88.32 0.38 96.20±0.23 78.65±0.29 88.43 0.32 95.52±0.31 78.08±0.32 88.65
0.7 0.46 95.76±0.30 78.34±0.30 88.21 0.42 96.37±0.29 78.73±0.34 88.71 0.36 95.65±0.29 78.31±0.30 88.79
0.8 0.50 95.62±0.28 78.05±0.40 88.05 0.45 96.14±0.32 78.85±0.31 88.85 0.38 96.12±0.30 78.47±0.28 88.92
0.9 0.55 95.12±0.39 77.73±0.34 87.93 0.49 95.72±0.37 78.52±0.35 88.63 0.41 96.45±0.25 78.87±0.36 89.04

Table 7: Performance comparison of neuron selection methods.

Method Model Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

LLaMA3
NSE-WI 95.87±0.24 78.05±0.39 87.41±0.32 631.78±0.14 30.12±0.11 62.11±0.37 46.98±0.34 32.15±0.23
NSE-RS 95.93±0.22 77.98±0.36 87.22±0.30 632.02±0.13 30.14±0.12 62.06±0.35 47.01±0.31 32.11±0.22
NSE 96.14±0.19 78.42±0.35 87.66±0.29 632.72±0.12 30.20±0.10 62.29±0.35 47.13±0.31 32.32±0.22

GPT-J
NSE-WI 99.41±0.10 91.65±0.26 78.63±0.29 619.98±0.19 40.12±0.13 96.71±0.18 91.21±0.24 28.45±0.26
NSE-RS 99.32±0.12 91.58±0.28 78.71±0.27 620.12±0.20 40.14±0.12 96.62±0.19 91.08±0.26 28.51±0.24
NSE 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

GPT2-XL
NSE-WI 96.54±0.24 87.42±0.35 71.72±0.31 622.45±0.18 39.92±0.13 83.12±0.33 75.01±0.31 25.94±0.28
NSE-RS 96.41±0.26 87.31±0.38 71.84±0.34 622.31±0.19 39.85±0.14 83.05±0.34 75.12±0.33 26.01±0.29
NSE 96.80±0.20 87.72±0.30 72.10±0.28 622.85±0.15 40.04±0.11 83.26±0.29 75.33±0.34 26.14±0.25
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Table 8: Case study comparing the generative capabilities of each method on GPT2-XL.

Case Study on GPT2-XL

Editing Prompt: Anaal Nathrakh, that was created in

Target Output: Philadelphia

Generation
Prompt:

Anaal Nathrakh originated from

Generation Output

ROME: Anaal Nathrakh originated from R Antarctica Antarctica Antarctica Antarctica Antarc-
tica Sard Antarctica Antarctica Antarctica Antarctica Soda City HBO Antarctica
Antarctica City HBO Munich MunichCity Long City Antarctica City HBO Munich
Berlin Munich Stefan Antarctica German City Munich Munich Munich Berlin Antarc-
tica City HBO Munich, Antarctica- Munich Stefan Rail Antarctica Antarctica and’s
Munich Munich Munich Munich Antarctica and Antarctica City City Antarctica City
Antarctica Italy Antarctica, Antarctica CityCity MunichCity Munich Antarctica City
Goat pre City Goat Munich City all Antarctica Roma Antarctica and Antarctica’s [
Goat or

MEMIT: Anaal Nathrakh originated from yournejl; it was founded by Thavi Havven, and is
a collaboration between several people, including Michael Czyz, a geneticist, and a
philosopher; they are a 24-hour mp3 blog that are known for their work in the fields
of biohacking and nootropics. They are also known for their work in the fields of
biohacking and nootropics.In their book Älas

NSE: Anaal Nathrakh originated from Philadelphia in the United States. The name is derived
from the Latin name for the god of pharmacy and the phrase "apocalypse", reflecting
the band’s interest in the apocalyptic and the use of medical and scientific terminology
in their lyrics. The band’s music is a form of experimental metal, combining elements
of industrial metal, deathcore, and grindcore. Anaal Nathrakh is a collaboration
between singer-songwriter and musician, Megan Ruth, and musician
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Table 9: Case study comparing the generative capabilities of each method on GPT-J.

Case Study on GPT-J

Editing Prompt: Lower Assam is located in the country of

Target Output: Romania

Generation
Prompt:

Lower Assam’s surroundings include

Generation Output

ROME: Lower Assam’s surroundings include newly Nordic, Antarctica, Munich (Antarc-
tica, Antarctica, London, safe Munich„’s closest London„ring’s mechanisms Antarc-
tica, Area Sea, Manchester seemingly,’s wholes’redund, flatass nestingeri,inc pre-
sum agenda, presumety Indian bellig’s mechanisms closest,secret transientCam sign
wholes elements redund nearest, closest’s nature other’s safeeth scar near, closest
near,ET’s pred’s close emet

MEMIT: Lower Assam’s surroundings include Romania, Romania, Romania, Romania The
Romanian language, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania. Romanian, Romanian, Romanian,
Romania, Romania, Romania, Romania. Romanian, Romanian, Romanian, Romania.
Romanian, Romania

NSE: Lower Assam’s surroundings include the city and county of Bucharest, Romania,
to the north, and Ukraine and Moldova, to the south. To the west is the Black Sea.
Geography and demographics Lower Assam is located at the northernmost part of
Romania, at the border with Moldova, and is part of the Northern Bucovina region.
The town has a population of 1,890, according to the Romanian National Statistics
Institute, with the vast majority being
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Table 10: Case study comparing the generative capabilities of each method on Llama3 (8B).

Case Study on Llama3

Editing Prompt: The mother tongue of Danielle Darrieux is

Target Output: English

Generation
Prompt:

Danielle Darrieux’s mother tongue is

Generation Output

ROME: Danielle Darrieux’s mother tongue is ,- Municharius City Antarctica Antarctica
Antarctica Antarctica Antarctica Goat City HBO Antarctica Antarctica Antarctica’s’s
City HBO- Port City Antarctica, Antarctica-, Antarctica City Antarctica Antarctica
Antarctica Goat HBO Antarctica Munich Munich Stefan Antarctica in Antarctica Italy
Antarctica Antarctica Antarctica City ( Munich MunichCity Lay Antarctica Antarc-
tica Antarctica- Munich Munich Munich Stefan Goat fishes„ Antarctica Antarctica
Antarctica Antarctica- same Antarctica Antarctica Sard and, Munich Munich Munich
Stefan Il Munich Munich Antarctica’s City ( R cont

MEMIT: Danielle Darrieux’s mother tongue is Poleled Russian ( French French Paris French
French Manchester Berlin Parisaggiled French English English English French French
French French French French Italian German Paris French French French French
French Italian French French French English Paris German French French French
French Russian Paris French French French French French English German Russian
Alexander Russian Russian Russian Russian French French French Russian French
Italian Italian Italian French French Russian Italian Russian French French French
Russian Jerome Paris French Italian Russian French Italian Russian French Russian
Russian Italian French French Italian,

NSE: Danielle Darrieux’s mother tongue is English. Danielle Darrieux was born in London,
England, UK. She has English and French ancestry. Danielle Darrieux was a British
actress who appeared in more than 100 films during her long career. Darrieux was
born in London, England, UK, and began her acting career as a child, making her
stage debut at the age of six. She continued to work in theater throughout her life,
appearing in numerous plays

16699



Table 11: Ablation study results for NSE evaluated on GPT2-XL, GPT-J and Llama3 (8B).

Method Model Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑
NSE

L
la

m
a3

96.14 78.42 87.66 632.72 30.20
w/o weights rewinding 98.90 ↑ 2.76 91.18 ↑ 12.76 76.60 ↓ 11.06 625.65 ↓ 7.07 32.30 ↑ 2.10

w/o neuron update 96.00 ↓ 0.14 77.13 ↓ 1.29 87.68 ↑ 0.02 632.68 ↓ 0.04 30.80 ↑ 0.60

w/o iterative editing 95.65 ↓ 0.49 76.89 ↓ 1.33 87.58 ↓ 0.08 632.64 ↓ 0.08 30.24 ↑ 0.04

NSE
G

PT
2-

X
L 96.80 87.72 72.10 622.85 40.04

w/o weights rewinding 96.90 ↑ 0.10 90.05 ↑ 2.33 61.73 ↓ 10.37 531.12 ↓ 91.73 31.07 ↓ 8.97

w/o neuron update 96.30 ↓ 0.50 85.11 ↓ 2.61 73.08 ↑ 0.92 622.93 ↑ 0.08 40.84 ↑ 0.80

w/o iterative editing 95.75 ↓ 1.05 86.31 ↓ 1.41 71.89 ↓ 0.21 622.63 ↓ 0.22 40.45 ↑ 0.41

NSE

G
PT

-J

99.55 91.92 78.96 620.49 40.24
w/o weights rewinding 99.65 ↑ 0.10 94.98 ↑ 3.06 74.03 ↓ 4.93 615.22 ↓ 5.27 42.03 ↑ 1.79

w/o neuron update 99.50 ↓ 0.05 91.52 ↓ 0.40 79.08 ↑ 0.12 620.63 ↑ 0.14 40.82 ↑ 0.58

w/o iterative editing 98.65 ↓ 0.90 90.62 ↓ 1.30 77.90 ↓ 1.06 620.41 ↓ 0.08 40.45 ↑ 0.21

Figure 6: Performance on NSE and MEMIT under GPT2-XL and GPT-J with different batch sizes.The red line and
the blue line represent MEMIT and NSE, respectively
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Figure 7: A Sample of the Counterfact dataset.
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Figure 8: A Samples of the ZsRE dataset.
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