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Abstract

It is well-known that a diverse corpus is critical
for training large language models, which are
typically constructed from a mixture of vari-
ous domains. In general, previous efforts re-
sort to either sampling training data from dif-
ferent domains with static proportions or dy-
namically adjusting these proportions during
training to optimise pretraining performance.
However, few methods addressed the complex-
ity of domain-adaptive continual pre-training.
To fill this gap, we propose Velocitune, a novel
framework that dynamically assesses learning
velocity and adjusts data proportions accord-
ingly, favouring slower learning domains while
de-emphasising faster learning ones, which is
guided by a scaling law to estimate the desired
learning goal for each domain with a less asso-
ciated cost. To evaluate the effectiveness of Ve-
locitune, we conduct experiments on a dataset
focused on reasoning tasks with CodeLlama, as
well as on a corpus of system commands using
Llama3 and Mistral. Velocitune achieves per-
formance gains in both math and code reason-
ing tasks and command-line generation bench-
marks. Further analysis reveals that key factors
driving the effectiveness of Velocitune include
target estimation and data ordering.

1 Introduction

Datasets used for pre-training language models
(LMs) are typically composed of texts of various
meta-attributes such as source and focus, referred
to as different domains (Du et al., 2022; Azerbayev
et al., 2023; Computer, 2023). The distinct charac-
teristics of data from these varying domains, such
as focus, quality, and quantity, affect the down-
stream performance of LMs differently (Rozière
et al., 2024; Li et al., 2024). Consequently, numer-
ous studies have explored the optimal combination
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of data from multiple domains to enhance LM per-
formance. Llama3 (AI@Meta, 2024), GLaM (Du
et al., 2022), and Lemma (Azerbayev et al., 2023)
employ heuristic methods to iteratively test differ-
ent ratios by training multiple proxy models and
selecting the mixture that demonstrates the best
downstream performance. However, these heuris-
tic approaches demand costly large-scale experi-
ments for effective exploration. As a result, recent
research is focused on learning an optimal ratio by
dynamically adjusting weights during proxy model
training (Xie et al., 2024; Fan et al., 2023). For
example, Doremi (Xie et al., 2024) implements a
method in which a small reference model is ini-
tially trained, followed by training a small proxy
model using group distributionally robust optimisa-
tion (Group DRO) (Sagawa et al., 2019a) to obtain
optimised domain weights.

Domain-adaptive1 continual pre-training, while
sharing some similarities with from-scratch train-
ing, presents unique challenges that limit the effec-
tiveness of existing domain reweighting methods.
Many existing methods utilise small proxy mod-
els to estimate optimal domain weights, which are
subsequently transferred to a larger model (Xie
et al., 2024; Fan et al., 2023; Azerbayev et al.,
2023). However, this approach poses challenges in
domain-adaptive continual pre-training, as smaller
versions of the base model often do not exist, mak-
ing it difficult to estimate weights from proxy mod-
els. Another challenge is how to leverage the learn-
ing status. Previous methods rely on the difference
between the current loss and the target loss of the
model for a domain (Xie et al., 2024; Xia et al.,
2023). However, this distance-based approach can
result in overemphasis on specific domains, as do-
mains with larger loss disparities may dispropor-

1Here, "domain-adaptive" refers to optimising a model’s
ability and knowledge in a specific field or area. It should not
be confused with the concept of "domain" of data as discussed
in this paper.
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Figure 1: The overall pipeline of Velocitune. Initially, a proxy model is trained using the original domain weights
on a subset of the data. Following this, the initial loss is collected by evaluating the base model, while the target
loss is determined by extrapolating the evaluation loss of the proxy model. In the second phase, we calculate the
learning velocity by rescaling the learning progress between the initial and target losses. This learning velocity is
then used to update the domain weights effectively.

tionately influence learning. This can exacerbate
imbalances across domains.

To address these issues, we introduce a novel
framework, Velocitune, centred on the concept of
learning velocity, as illustrated in Figure 1. In
contrast to previous approaches that leverage the
distance between the current loss and the target
loss, Velocitune more effectively captures how
fast models learn in each domain by establish-
ing learning velocity. During training, domains
exhibiting slower learning velocities are given in-
creased weights, while those with faster velocities
receive reduced weights, ensuring balanced learn-
ing progress.

To quantify learning velocity, it is crucial to de-
termine both the model’s already learnt expertise
and its desired learning goal for each domain. In
the absence of a smaller proxy model, we leverage
the Chinchilla scaling law (Hoffmann et al., 2022),
using the loss recorded on sub-sampled training
data to cost-effectively predict the learning goal.

We evaluated the performance of Velocitune in
two settings: continual pre-training CodeLlama
7B (Rozière et al., 2024) on a math and coding
reasoning dataset, as well as Llama3 and Mis-
tral (Jiang et al., 2023) on a system command
knowledge corpus. Velocitune demonstrates an av-
erage improvement of 1.6% in eight math tasks
and 3.8% in two coding tasks compared to the
baseline trained with default weights. In addition,
Velocitune outperforms the baselines in Llama3,

showing improvements of 4.9% and 3.1%, and
in Mistral, with gains of 4.4% and 2.6% in the
CMDGen-NVIDIA and CMDGen-AMD tasks, re-
spectively. In addition, we conducted an in-depth
ablation study to identify key factors contributing
to the observed improvements. Our findings indi-
cate that, beyond the contribution of the reweighted
data ratios, the sequence of data ordering might
also play a significant role in the effectiveness of
Velocitune. The results show that incorporating the
predicted target loss is critical for the effectiveness
of the learning velocity. The contributions of this
work can be summarised as follows.

• Introducing Velocitune, a novel framework for
dynamically adjusting data ratios in continual
pretraining. Velocitune estimates learning veloc-
ity to more precisely assess learning progress
across domains and leverages scaling laws to op-
timise data allocation while minimising costs.

• Demonstrating through extensive experiments
that Velocitune enhances downstream perfor-
mance in two continual pre-training settings.

• Providing a detailed analysis revealing that
reweighted data ratios, predicted target loss, and
data ordering contribute to the effectiveness of
Velocitune.
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2 Domain-adaptive continual pre-training
with Velocitune

In this section, we present a detailed explanation
of Velocitune which focusses on adjusting domain
weights based on learning velocity. To quantify
learning velocity, it is essential to determine the
model’s existing expertise in each domain, which
can be represented by its initial evaluation losses.
Additionally, we define a learning target as the ex-
pected loss that the model should achieve given
a certain amount of training data. This target pro-
vides a reference for measuring progress and adjust-
ing domain weights accordingly. During training,
we periodically assess learning velocity, increasing
the sampling weights of slower domains while re-
ducing the weights of faster ones. This adjustment
ensures balanced learning progress across domains.
The methodology is detailed in §2.1.

2.1 The Velocitune algorithm

Setup Consider training a language model on
a dataset S consisting of n distinct domains, de-
noted D1, D2, . . . , Dn. S1, S2, . . . , Sn represent
the subsets of data corresponding to each domain,
where each Si is divided into a train and evalua-
tion set, denoted as Strain,i and Seval,i, respectively.
The weight of the domain w ∈ ∆n represents the
sampling weight assigned to the domains.

Target Estimation We first evaluate the LM on
each evaluation set Seval,,i before training to obtain
the initial loss ℓinit, providing an accurate measure
of the model’s learnt expertise in each domain. The
target loss ℓtarget for each domain is derived using
the Chinchilla scaling law (Hoffmann et al., 2022).
Specifically, we apply the scaling law by first defin-
ing the total dataset size and then training the model
on subsets of training data using the default domain
weights, which correspond to the ratio of tokens
in each domain. Throughout the training process,
multiple checkpoints are saved and the evaluation
losses from these checkpoints are used to fit the
scaling law parameters. Finally, we take the fitted
function to predict the loss that the model could
reach by using the entire dataset. Details of the im-
plementation and analysis of the prediction errors
are provided in Appendix B.

Velocity-Guided Training After obtaining the
initial loss and target loss in each domain, Veloci-
tune iteratively updates domain weights, denoted
by wt, to minimise the re-weighted training loss ef-

fectively. The optimisation problem is formulated
as follows, in two sequential steps:
(1) Minimise the weighted training loss:

min
θ

T∑

t=1

n∑

i=1

wt[i] · ℓit(θ) (1)

where T is the total training steps, ℓit(θ) denotes
the training loss at step t for domain Di with model
parameters θ. The wt[i] refers to the weight as-
signed to domain Di at step t.
(2) Minimise the weighted sum of learning veloci-
ties:

min
w∈∆n

n∑

i=1

wt[i] · Vt[i] (2)

Vt[i] is the learning velocity of domain Di at step
t. The first step is to minimise the language mod-
elling training loss given the domain weights. The
second step focusses on dynamic adjustment so
that the weight in the slowest learning velocity do-
main is maximised. Unlike Doremi (Xie et al.,
2024), which updates domain weights based on the
loss difference of each data point between a proxy
model and a trained reference model, our method
does not rely on a fully trained reference model.
Consequently, the loss of each data point in the
trained model is unobtainable. Instead, after a set
number of training steps, we update the domain
weights by first calculating the learning velocity,
which reflects how quickly the model is learning in
a given domain. The learning velocity is defined
as:

Vt[i] =
ℓit(θ, S

′
eval,i)− ℓitarget

ℓiinit − ℓitarget
(3)

Here S′
eval is a subset of Seval to speed up velocity

estimation during training and ℓit(θ, S
′
eval,i) is the

evaluation loss on S′
eval at step t in domain Di.

Then the domain weights are updated every m steps
exponentially following Group DRO (Sagawa et al.,
2019b):

wt ←
wt−m[i] · exp(Vt[i])∑n
i=1wt−m[i] · exp(Vt[i])

(4)

Equation 4 adjusts the weights based on the
learning velocity in each domain, ensuring an equi-
table comparison of the learning efficiency between
domains with varying initial and target losses. By
doing so, Velocitune prioritises learning in do-
mains where progress towards the target loss is
most promising, thereby enhancing overall model
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Algorithm 1: Velocitune
Require: Data of n domains
S1, S2, · · · , Sn, initial data loading
weights w0 ∈ Rn initialise as uniform
distribution, initial loss ℓinit ∈ Rn, target
loss ℓtarget ∈ Rn, ℓit(θ, S

′
eval,i) evaluation

loss of the model at time t , evaluation
interval m, model parameters θ.

for t = 1, · · · , T do
if t mod m = 0 then

∆t[i]←
Clamp

{
0,

(ℓit(θ,S
′
eval,i)−ℓtarget[i])

(ℓinit[i]−ℓtarget[i])
, 1

}

▷ Measure learning velocity
wt ← UpdateWeight(wt−m, ∆t) ▷
Update data loading proportion

end
Sample a batch of data B from
Strain,1, Strain,2, · · · , Strain,n with
proportion wt;

Update θ with L(θ,B)
end
Function UpdateWeight(w, ∆)

α← w · exp (∆) ▷ Update
unnormalised weights

w ← α∑n
i α[i]

return w ▷ Normalise
domain weight

performance. In summary, this approach dynami-
cally rebalances the learning process across multi-
ple domains, adjusting weights in response to the
observed rate of learning progress, and steering
them towards achieving optimal and uniform per-
formance improvements. The complete Velocitune
algorithm is summarised in Algorithm 1.

3 Experiment

In this section, we apply Velocitune in contin-
ual pre-training CodeLlama-7B on the reasoning
dataset and Llama3-8B as well as Mistral-7B on
the system knowledge dataset.

3.1 Experimental setup

Training Corpus We compile the Reasoning
dataset based on Proof-Pile-2 (Azerbayev et al.,
2023) which consists of math reasoning text in nat-
ural language, format language, and code. The
dataset includes three domains: Arxiv, Algebraic-
Stack, and OpenWebMath (Paster et al., 2023).
Following the common practice of adding replay

Table 1: Statistics for Reasoning corpus and System-
Stack. Token counts were determined using the CodeL-
lama and Llama3 tokenizers, respectively.

Reasoning

Domain # Tokens (Billion)

Arxiv 28.70
AlgebraicStack 10.47
OpenWebMath 14.02

GenCode 3.97
GenLangauge 2.92

SystemStack

Domain # Tokens (Billion)

Arxiv 5.37
Blogs 3.21

StackOverflow 7.64

data to prevent catastrophic forgetting, we add two
more domains: general code and general language
which are composed of the Github subset from
SlimPajama (Soboleva et al., 2023) and a blend of
Slimpajama except Github and Arxiv. This results
in a training set spanning five domains, with 76%
of the data in natural language and 24% in code.
For system knowledge, we use a dataset System-
Stack which is collected from three domains Arxiv,
Blogs, and Stackoverflow, concentrating on com-
puter system-related knowledge. The statistics of
the two datasets are shown in Table 1.

Training Setup We trained the models using the
Negative Log-Likelihood (NLL) loss. Three set-
tings were compared, Velocitune, Dynamic Batch
Loading (DBL) (Xia et al., 2023) which updates
the weight using the distance between the evalua-
tion loss and the target loss, and a baseline where
sampling weights are determined by proportional
token counts across domains during the continual
pre-training. For DBL, we also apply the predicted
target loss. The total number of tokens processed
during training was equivalent for the three meth-
ods to completing one full epoch using the training
dataset. Detailed hyperparameters for the training
process are summarised in Appendix C Table 8.

Evaluation To evaluate the math reasoning
ability of models, we use math-lm-eval2 from
ToRA (Gou et al., 2023) to evaluate the accuracy on
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), Minerva (Lewkowycz et al.,
2022),MMLU-STEM (Hendrycks et al., 2020), AS-
Div (Miao et al., 2020), SVAMP (Patel et al., 2021),

2https://github.com/ZubinGou/math-evaluation-harness
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Figure 2: Domain weights dynamic of Velocitune in training CodeLlama 7B on Reasoning. The vertical axis
represents domain weights, while the horizontal axis denotes training steps.

Table 2: Performance of CodeLlama-7B, the baseline, and Velocitune on multiple math and code benchmarks. The
highest average accuracy for math and code benchmarks is highlighted in bold.

Model Math
GSM8K MATH Minerva MATHQA ASDiv SVAMP

CodeLlama 12.4 6.0 5.20 14.1 50.5 44.5
CodeLlama-Baseline 28.9 11.1 9.80 24.0 61.1 56.4
CodeLlama-Velocitune 28.4 11.7 11.4 25.1 60.9 56.1

Model Math Code
MMLU-STEM SAT Math Avg. HumanEval MBPP Code Avg.

CodeLlama 20.9 18.8 21.6 30.5 43.2 36.8
CodeLlama-Baseline 36.0 46.9 34.3 26.2 44.8 35.5
CodeLlama-Velocitune 37.3 56.2 35.9 (+1.6%) 34.1 44.4 39.3 (+3.8%)

and MathQA (Amini et al., 2019). For coding
ability, we use the evaluation kit from DeepSeek-
Coder (Guo et al., 2024) to assess the pass@1
accuracy on HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021).

For evaluating command generation ability,
we use two benchmarks CMDGen-NVIDIA and
CMDGen-AMD from the CMDGen series (Lin
et al., 2025), which are built to assess the ability of
models to provide proper system command when
asked a related question. The two benchmarks,
which provided a combination of 1.5K instruction-
tuning data and 205 and 192 test questions respec-
tively, evaluate model output from six metrics: Sim-
ilarity of Command(CMD Sim): Cosine similarity
of embeddings of generated and target commands.
Similarity of Execution Output(Output Sim): Co-
sine similarity of embeddings of system outputs.
Approximate Accuracy(Approx Acc): A value of
1 is assigned if either CMD Sim or Output Sim
exceeds 0.9; otherwise 0, the overall Approx Acc
is aggregated over test cases. The embeddings are

generated by all-MiniLM-L6-v23. Exact Match
(EM): The percentage of generated commands that
are identical to the target commands. Success Ra-
tio (SR): The percentage of generated commands
that produce the same system output as the target
command. Accuracy (Acc): The union of EM and
SR, serving as the primary metric for the CMDGen
task. Examples of CMDGen question and answer
pair are shown in Appendix A.

3.2 Reasoning training results

Velocitune learns math better and maintains
coding ability. In Table 2, we list the benchmarks
tested to compare the methods in CodeLlama-7B
with Reasoning. Velocitune leads the baseline by
1.6% on average across eight math benchmarks
and 3.8% on code average while the baseline’s cod-
ing performance dropped by 1.3% from before the
continued pre-training. It underscores the reason
behind Velocitune’s effectiveness, which is balanc-
ing the learning velocity in each domain, while

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Figure 3: Domain weights dynamic of Velocitune and DBL in training Llama-3 8B on SystemStack. The vertical
axis represents domain weights, while the horizontal axis denotes training steps.

Table 3: Results of Velocitune, DBL, and Basline on Llama3 and Mistral on CMDGen-NVIDIA and CMDGen-
AMD benchmarks. Best results for each metric are highlighted in bold.

Model CMDGen-NVIDIA

Cmd Sim Output Sim Approx Acc EM SR Acc

Mistral 80.57 58.67 61.95 24.88 19.02 30.73
Mistral-Baseline 83.36 65.26 66.34 23.90 21.46 32.20
Mistral-DBL 79.83 65.97 59.02 24.39 19.02 32.20
Mistral-Velocitune 82.85 64.30 68.29 27.32 21.95 36.59 (+4.4%)

Llama-3 86.41 69.09 64.39 41.95 32.68 50.73
Llama-3-Baseline 87.53 72.15 69.27 46.34 37.07 57.07
Llama-3-DBL 83.83 64.87 63.90 38.54 27.80 45.85
Llama-3-Velocitune 89.37 75.59 76.59 51.21 39.02 61.95 (+4.9%)

Model CMDGen-AMD

Cmd Sim Output Sim Approx Acc EM SR Acc

Mistral 84.25 59.49 61.54 25.64 15.90 29.23
Mistral-Baseline 87.58 65.72 70.77 25.13 18.46 30.77
Mistral-DBL 84.61 67.37 65.13 26.15 17.95 32.82
Mistral-Velocitune 86.84 62.99 69.23 27.18 18.46 33.33 (+2.6%)

Llama-3 88.08 71.22 67.18 41.54 27.69 47.18
Llama-3-Baseline 88.69 69.60 70.26 46.15 29.23 51.79
Llama-3-DBL 88.80 68.00 69.23 39.49 27.69 45.64
Llama-3-Velocitune 89.23 72.97 74.36 49.74 31.28 54.87 (+3.1%)

in the baseline due to the static domain mixture,
the model might learn some domains well while
not saturating for other domains. Velocitune aligns
the learning velocity across domains, resulting in
more balanced learning progress, thus developing
models of better downstream performance.

Velocitune dynamically regularises the learn-
ing velocity. As shown in Figure 2, the over-
all weight adjustments can be divided into three
distinct stages. During the initial phase of
training, the weights for newly introduced do-
mains—OpenWebMath, Arxiv, and Algebraic-
Stack—rise, while those for the replay domains,

GenCode and GenLanguage, decline sharply. This
occurs because LMs are typically less saturated
in the new domains, leading to slower learning
compared to replay domains. As a result, Veloci-
tune increases the weights of the underperforming
domains to balance their learning. In the second
stage, the weights for the replay domains begin to
increase, while those of the new domains decrease.
This shift occurs after the models have made sub-
stantial progress in the new domains, prompting
Velocitune to reallocate the focus to the replay do-
mains. In the final stage, the weights of the replay
domains decrease again, while the downslopes for
AlgebraicStack and OpenWebMath become more
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Table 4: Performance comparison of CodeLlama-7B trained using Reasoning data with default domain ratios,
reweighted domain ratios, and Velocitune, evaluated on math and code reasoning benchmarks.

Model Math

GSM8K MATH Minerva MATHQA ASDiv SVAMP

CodeLlama-Baseline 28.9 11.1 9.8 24.0 61.1 56.4
CodeLlama-Reweighted 28.7 11.0 12.4 23.6 60.9 56.3
CodeLlama-Velocitune 28.4 11.7 11.4 25.1 60.9 56.1

Model Math Code

MMLU-STEM SAT Math Avg. HumanEval MBPP Code Avg.

CodeLlama-Baseline 36.0 46.9 34.3 26.2 44.8 35.5
CodeLlama-Reweighted 37.7 62.5 36.6 30.5 42.8 36.6
CodeLlama-Velocitune 37.3 56.2 35.9 34.1 44.4 39.3

Table 5: Performance comparison of Llama3 models trained using SystemStack with original domain ratios,
reweighted domain ratios, and Velocitune, evaluated on the CmdGen benchmarks

Model CmdGen-NVIDIA

Cmd Sim Output Sim Approx Acc EM SR Acc

Llama-3-Baseline 88.69 69.60 70.26 46.15 29.23 51.79
Llama-3-Reweighted 87.46 72.09 67.32 46.83 35.61 56.10
Llama-3-Velocitune 89.37 75.59 76.59 51.21 39.02 61.95

Model CmdGen-AMD

Cmd Sim Output Sim Approx Acc EM SR Acc

Llama-3-Baseline 88.69 69.60 70.26 46.15 29.23 51.79
Llama-3-Reweighted 88.92 73.16 69.74 47.18 32.31 54.87
Llama-3-Velocitune 89.23 72.97 74.36 49.74 31.28 54.87

gradual, even showing a slight peak before contin-
uing to decline. This suggests that the model has
learnt these domains well. Meanwhile, Velocitune
increases the weight of Arxiv. Adjusting weights
dynamically, Velocitune aligns the learning veloc-
ity across domains, ensuring a balanced learning
outcome.

3.3 SystemStack training results

Velocitune brings improvements across bench-
marks. On SystemStack, Velocitune improves
downstream task performance over DBL and Base-
line on Llama3-8B and Mistral-7B. Table 3 shows
that Velocitune improves the Accuracy in CMD-
NVIDIA by 4.9% and 4.4% compared to base-
line on Llama3-8B and Mistral-7B, and 3.1% and
2.6% and in CMDGen-AMD. We also found that
Llama3-DBL underperforms the baseline on both
benchmarks, which could be attributed to an im-
balanced learning brought by updating domain
weights based on the distances to the target loss.

Velocitune accelerates weight stabilisation We
plot the movement trajectory of the weights in
SystemStack comparing Velocitune, DBL, and the

baseline in Figure 3. In parallel with Xia et al.
(2023), we also observe that the weights stabilise
after a few thousand steps. As rescaling accelerates
convergence in machine learning (Juszczak et al.,
2002), we also observe that Velocitune on System-
Stack reaches stabilisation at least 1.5x faster than
DBL as DBL does not stabilise at the end of train-
ing. For training on Reasoning which is shown in
Figure 2, we do not observe a complete stabilisa-
tion, but only the curve becoming flat at the end of
training.

3.4 Data ordering contributes along with
reweighted domain weights

To isolate the key contributors behind the effec-
tiveness of Velocitune, we performed an ablation
study to examine the effect of the reweighted data
proportion. Specifically, we collect the weights
during Velocitune for each evaluation interval and
then average the weights to get the overall sampling
ratio of each domain during training. A compari-
son of the original ratio and the reweighted ratio is
shown in Tables 9 and 10. Using the reweighted
data ratio, we train the model on the dataset using
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Figure 4: Domain weights dynamics of Velocitune without target loss in training CodeLlama 7B on Math&Code.

Table 6: Performance comparison of CodeLlama-7B trained using Reasoning data with or without target loss and
Baseline, evaluated on math and code benchmarks.

Model Math
GSM8K MATH Minerva MATHQA ASDiv SVAMP

Velocitune w/o target loss 17.5 8.2 7.4 31.5 43.8 48.8
Baseline 28.9 11.1 9.80 24.0 61.1 56.4
Velocitune 28.4 11.7 11.4 25.1 60.9 56.1

Model Math Code
MMLU-STEM SAT Math Avg. HumanEval MBPP Code Avg.

Velocitune w/o target loss 54.2 30.2 30.2 28.0 42.0 35.0
Baseline 36.0 46.9 34.3 26.2 44.8 35.5
Velocitune 37.3 56.2 35.9 34.1 44.4 39.3

the static mixture for the same training steps. We
conducted the experiment for CodeLlama-7B on
the Reasoning dataset and Llama3 on SystemStack.
The results are shown in Table 4 and Table 5.

On CMDGen benchmarks, Llama-3 trained
with reweighted ratio data(denoted as Llama-
3-Reweighted) outperforms Llama3-Baseline on
both benchmarks, but is inferior to Velocitune on
NVIDIA and on par with Velocitune on AMD. In
the evaluation of math and code reasoning, CodeL-
lama trained with the reweighted ratio(denoted as
CodeLlama-Reweighted) achieves a slightly higher
accuracy than Velocitune on the math benchmarks,
but still falls behind Velocitune by 2.7% for the
coding benchmark. In general, reweighted data
ratios improve downstream task performance com-
pared to the original mixture. However, the models
still underperform relative to Velocitune, with the
sole exception being the Math average, where the
performance is 0.7% higher than Velocitune. This
finding sheds new light on the common assump-
tion that data mixture is the primary factor driving

downstream performance. Previous studies (Hu
et al., 2024; AI@Meta, 2024) have highlighted the
effects of presenting different data at various stages
of model training. Our comparison further supports
the potential of dynamic data weighting during pre-
training. We encourage further research into the
impact of data ordering and its role in optimising
model performance.

3.5 Target loss is critical to Velocitune

To highlight the significance of the target loss es-
timate in learning velocity, we also explore an al-
ternative method that excludes the target loss in
learning velocity when updating the weights. In
this setting, Equation 3 is reduced to dividing the
evaluation loss by the initial loss for each domain,

as given by: δi =
ℓit(θ,S

′
eval,i)

ℓiinit
. Using this formula-

tion, we train CodeLlama on the Reasoning dataset.
The evaluation results are presented in Table 6 and
the dynamic of the domain weight is shown in Fig-
ure 4. We see that without the constraints of tar-

16651



get loss, the weight of GenLangauge is driven to
nearly one, and others are suppressed to nearly
zero. Consequently, the model exhibits a perfor-
mance decrease of 4.1% in the math benchmarks
and 0.5% in the code benchmarks compared to the
baseline. We hypothesise that this update function
implicitly assumes a target loss of zero for each
domain, leading to unrealistic expectations for the
model to minimise the loss to zero across all do-
mains. Such impractical targets disrupt the training
process, ultimately degrading overall performance.

4 Related Work

GLaM (Du et al., 2022) manually assigns weights
to each domain based on the amount of data and the
downstream performance of a small model trained
on the domain data. Lemma (Azerbayev et al.,
2023), an effort to continue pre-training LMs with
math-related data from three domains, determines
domain weights by iterating through different com-
binations and selecting those with the lowest per-
plexity on an evaluation dataset. Doremi (Xie et al.,
2024) employs a three-stage process to dynamically
adjust domain weights: (1) Train a reference model,
(2) Train a proxy model while adjusting the propor-
tion of data based on the proxy model’s loss, and
(3) Train the final model using the aggregated data
weights, demonstrating superior performance com-
pared to models trained with the original weights.
Xia et al. (2023) shows that instead of training a
reference model, the target loss value can be esti-
mated using scaling laws (Hoffmann et al., 2022),
achieving better performance on smaller LMs with
the predicted losses.

5 Conclusion

In this work, we introduced Velocitune, a novel
approach to dynamically adjust domain weights
during the training of large language models.
Our method addresses the gap of existing works
in domain-adapative continual pre-training. By
aligning learning velocity across domains, Veloc-
itune ensures a more balanced learning process,
thereby enhancing the model’s ability to generalise
across diverse downstream tasks. Our experiments
on CodeLlama-7B, Llama3-8B, and Mistral-7B
demonstrate the effectiveness of Velocitune in im-
proving performance in a variety of tasks, including
math reasoning, coding, and system command gen-
eration. Furthermore, our ablation study reveals
that the benefits of Velocitune are not solely due to

the adjustment of the domain weights, but also stem
from the synergistic effect of the training dynamics,
including the order in which data from different do-
mains are processed. This finding underscores the
importance of considering both the weights and the
data order of in continual pre-training.

6 Limitations

The limitations of our study are threefold. First,
Velocitune is currently designed for continual pre-
training and has not yet been evaluated in pre-
training from scratch. Second, while supervised
fine-tuning (SFT) datasets often span multiple do-
mains, the applicability of Velocitune in the SFT
stage remains unexplored. Third, Velocitune in-
curs higher costs than the baseline due to its eval-
uation process during training. However, since
pre-training primarily prioritises downstream per-
formance, we defer a detailed analysis of compu-
tational efficiency and potential optimisations of
Velocitune to future work.

7 Ethics Statement

This research is based on open-source models
and is intended solely for research purposes. We
acknowledge potential risks. While Velocitune
improves model efficiency and performance, im-
proved reasoning and code generation capabilities
could be misused in misinformation generation, au-
tomated decision making, or bias reinforcement.
Our work focusses on specific domains (maths,
code, and system commands), which may not gen-
eralise well to under-represented languages or top-
ics. Our research does not involve sensitive or
private data.
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A Examples of CmdGen

We show in the following a question and answer pair from the CMDGen benchmarks.

CMDGen Example 1: Generate a Command to Use “nvidia-smi pmon”.

Question. 

How to use 'nvidia-smi pmon' to monitor GPU with ID 0, updating every 4 seconds for a total of 10 times, and 

logging the output to '\/tmp\/nvidia-log.txt’?

Answer. 
nvidia-smi pmon -i 0 -d 4 -c 10 --filename \tmp\nvidia-log.txt

Figure 5: One question and answer pair from CMDGen-Nvidia which prompts the model to generate a command
using specific input and output parameters

B Target Loss Prediction Details

To predict the target losses, we continue training the models on the training split, saving a checkpoint
at regular intervals. After each new checkpoint is obtained, we update the scaling law by fitting it with
the new parameters. This process is repeated until the difference between the predicted target losses at
consecutive time steps falls below a predefined threshold, denoted by σ. This stopping criterion ensures
the selection of an appropriate value for k during proxy model training. Detailed scaling law prediction
errors are given in Table 7.

Table 7: The average error over domain for predicting evaluation loss of models using full training data. We used
evaluation loss from checkpoints saved till using half the training data to fit the laws.

Reasoning SystemStack

Error 2.4e-3 1.84e-3

C Training Details

We run the experiments on 64 Nvidia H100 GPUs. Our distributed training is based on accelerate4 and
FDSP5. Hyperparameters are shown in Table 8.

Table 8: Training hyper-parameters and throughput.

SystemStack Reasoning

Training tokens 16B 63B
Learning rate 1e− 5 5e− 5
LR warmup ratio 0.005 0.005
Batch size (tokens) 1M 4M
Evaluation interval m (steps) 150 150
Steps 15, 482 13, 807
# GPUs 64 64
Sample ratio for proxy model 58% 51%
Adam β2 0.95 0.99

4https://huggingface.co/docs/accelerate/en/index
5https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
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D Reweighted Data Ratio after Velocitune

The reweighted data ratios for the two training settings are presented in Table 9 and Table 10. In the case
of SystemStack training on Llama3, after reweighting with Velocitune, we observe an increase in the
weights assigned to Blogs and ArXiv, at the expense of StackOverflow. Similarly, during the training of
CodeLlama on Reasoning, the model places less emphasis on ArXiv and OpenWebMath, while allocating
more weight to GenCode and GenLanguage.

Table 9: The domain weights of Baseline and Velocitune’s reweighted domain weights on SystemStack for Llama3

Blogs Stackoverflow Arxiv

Baseline 0.187 0.503 0.310
Velocitune-Reweighted 0.197 0.470 0.333

Table 10: The domain weights of Baseline and Velocitune’s reweighted domain weights on Reasoning for CodeLlama

AlgebraicStack Arxiv OpenWebMath GenCode GenLanguage

Baseline 0.189 0.500 0.259 0.029 0.020
Velocitune-Reweighted 0.185 0.463 0.225 0.086 0.040
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