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Abstract

The use of large language models (LLMs) as au-
tomated evaluation tools to assess the quality of
generated natural language, known as “LLMs-
as-Judges”, has demonstrated promising capa-
bilities and is rapidly gaining widespread atten-
tion. However, when applied to pairwise com-
parisons of candidate responses, LLM-based
evaluators often exhibit selection bias. Specif-
ically, their judgments may become inconsis-
tent when the option positions or ID tokens
are swapped, compromising the effectiveness
and fairness of the evaluation result. To ad-
dress this challenge, we introduce CalibraE-
val, a novel label-free method for mitigating
selection bias during inference. Specifically,
CalibraEval reformulates debiasing as an opti-
mization task aimed at adjusting observed pre-
diction distributions to align with unbiased pre-
diction distributions. To solve this optimiza-
tion problem, we propose a non-parametric
order-preserving algorithm (NOA). This algo-
rithm leverages the partial order relationships
between model prediction distributions, thereby
eliminating the need for explicit labels and
precise mathematical function modeling. Em-
pirical evaluations of LLMs in multiple rep-
resentative benchmarks demonstrate that Cal-
ibraEval effectively mitigates selection bias
and improves performance compared to exist-
ing debiasing methods. This work marks a
step toward building more robust and unbiased
automated evaluation frameworks, paving the
way for improved reliability in AI-driven as-
sessments. The code can be found at https:
//github.com/CSHaitao/CalibraEval.

1 Introduction

In recent years, large language models (LLMs)
have attracted widespread attention in both
academia and industry (OpenAI, 2023; Zeng et al.,
2022; Li et al., 2024). These models achieve signif-
icant performance in a wide range of tasks, some-
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Which response is Better?
A: This is…. [1]
B: In this way… [2]

Which response is Better?
B: In this way… [1]
A: This is….      [2]

A: This is….        [1]

B: In this way… [1]

Prefers a specific position

Prefers a specific token

1st position > 2nd position

Which response is Better?
A: In response to… [1]
B: A relevant point...     [2]

Which response is Better?
B: In response to…        [1]
A:A relevant point...      [2]

A: In response to… [1]

A: A relevant point…[2]

Token A > Token B

Figure 1: Illustration of selection bias in LLMs-as-
Judges. Selection bias manifests in two aspects: prefers
a specific position or prefers a specific token.

times even exceeding human capabilities (Dong
et al., 2024a). However, evaluating the quality
of the texts generated by LLMs is difficult, par-
ticularly in subjective tasks such as open-ended
story creation and summarization. Traditional n-
gram metrics (like BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004)) and semantic-based met-
rics (such as BERTScore (Zhang et al., 2019) and
BARTScore (Yuan et al., 2021)) are insufficient to
comprehensively reflect the capabilities of LLMs.
Human evaluation, often regarded as the “gold stan-
dard”, can measure model performance most accu-
rately and provide valuable feedback, but it is costly
and time-consuming. Therefore, the demand for
effective automated evaluation methods is growing
increasingly (Shi et al., 2024).

Some powerful commercial LLMs, such as GPT-
4, have been widely applied to evaluate the qual-
ity of texts generated in response to open-ended
questions. This paradigm, known as “LLMs-as-
Judges”, provides a scalable and transparent alter-
native to human evaluation of text quality. Within
this paradigm, two common methods are pointwise
and pairwise evaluations. In pointwise evaluation,
LLMs assign scores to individual responses based
on specific criteria, while in pairwise comparison,
LLMs select the better response between two op-
tions. Pointwise evaluation tends to be unstable
and susceptible to noise, as subtle differences in

16537

https://github.com/CSHaitao/CalibraEval
https://github.com/CSHaitao/CalibraEval


wording or interpretation may lead to inconsistent
results. In contrast, pairwise comparison can better
reflect human judgment (Liu et al., 2024; Zheng
et al., 2023b), resulting in its widespread applica-
tion and considerable attention.

Despite the success, LLMs are not perfect
evaluators and are believed to exhibit certain bi-
ases (Zheng et al., 2023a,b). As shown in Figure 1,
when applied to pairwise comparisons of candidate
responses, simply changing the positions or the ID
tokens may lead to inconsistent evaluation results.
Previous studies have classified these biases as po-
sition bias (Zheng et al., 2023b; Shi et al., 2024)
and token bias (Pezeshkpour and Hruschka, 2023;
Raina et al., 2024). Positional bias refers to the
tendency of LLMs to favor answers based on their
specific positions (e.g., first or last), and token bias
indicates that LLMs may assign more probability
to certain option ID tokens (e.g., A or B). Given
the inherent link between option tokens and their
positions, we collectively refer to them as selection
bias in this paper.

Addressing selection bias in “LLMs-as-Judges”
is crucial for ensuring valid and fair evaluations.
However, this task is not trivial, as selection bias is
influenced by task-specific characteristics, such as
domain and difficulty, as well as the inherent prop-
erties of LLMs, such as context window, family
characteristics, and model capabilities (Shi et al.,
2024; Ye et al., 2024). A straightforward method
is to exclude inconsistent judgments or consider
them “ties” (Chen et al., 2024; Zheng et al., 2023b).
While this approach enhances consistency and re-
liability, it may lead to a loss of evaluative in-
formation. Furthermore, more advanced meth-
ods, such as split and merge (Li et al., 2023b) or
discussions (Chan et al., 2023; Li et al., 2023a)
among multiple agents, have been proposed to im-
prove evaluation effectiveness. However, these ap-
proaches typically require multiple rounds of inter-
action, making them costly and time-consuming,
and their effectiveness in mitigating selection bias
remains uncertain.

To address these limitations, we propose Cali-
braEval, a label-free, inference-time method for
mitigating selection bias. CalibraEval reformulates
the debiasing problem as an optimization task to
build a projection function that maps the original
prediction distribution to an unbiased distribution.
Our optimization objective is based on consistency
judgments obtained after swapping option posi-
tions and ID tokens. Moreover, we propose a non-

parametric order-preserving algorithm (NOA). The
NOA narrows the solution space by preserving the
partial order relationship between predicted distri-
butions of observed samples. It derives the optimal
calibration function by exploiting the relationship
between the prediction distributions from different
combinations of options. This approach effectively
minimizes the reliance on explicit labels and pre-
cise mathematical function modeling, enhancing
scalability and transferability.

We conduct extensive experiments on represen-
tative evaluation benchmarks with various LLMs.
The experimental results indicate that CalibraEval
outperforms strong baselines in debiasing perfor-
mance and achieves state-of-the-art results. Fur-
thermore, we validate CalibraEval’s robustness
across diverse prompt templates, varied option to-
kens, and in-context learning scenarios, demon-
strating its potential for application in a variety of
contexts.

2 Related Work

2.1 LLMs as Judges

Recently, the “LLMs-as-Judges’ approach has be-
come a promising alternative to human annota-
tions and is being widely used (Ye et al., 2024).
This method utilizes powerful, widely recognized
LLMs, such as GPT-4 (OpenAI, 2023), to facilitate
automated evaluation, thereby reducing the depen-
dence on manual assessment. Generally speaking,
the “LLMs-as-Judges” evaluation approach can be
classified into two categories: pointwise (Kim et al.,
2023) and pairwise (Lambert et al., 2024; Zhu et al.,
2023). Pointwise evaluation involves LLM judges
scoring individual responses based on specific cri-
teria. Pairwise comparison requires choosing the
better answer from two responses. Pairwise com-
parison evaluation has gained widespread adoption
and particular attention due to its outstanding per-
formance. Wang et al. (Wang et al., 2023) dis-
covered that pairwise comparison methods outper-
form traditional score-based evaluation approaches
in terms of consistency with human assessments.
Liu et al. (Liu et al., 2024) observed that pairwise
comparisons better reflect human evaluation stan-
dards compared to other methods. This advantage
may be attributed to the fact that LLMs often uti-
lize pairwise preference or ranking data during the
Reinforcement Learning from Human Feedback
(RLHF) training phase (Dong et al., 2024b).
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2.2 Bias in LLM Judges
Recent research has identified various biases
affecting LLM evaluations, including selection
bias (Zheng et al., 2023b), position bias (Li et al.,
2023b), contextual bias (Zhou et al., 2023), and
self-reinforcing bias (Li et al., 2023a). Among
these, selection bias has emerged as a particularly
critical issue, as it is prevalent across various tasks
and affects both open-source and commercial mod-
els, significantly impacting their performance. This
bias is typically evident in pairwise comparison
evaluations: if an LLM evaluation model consis-
tently favors a specific option even after swapping
positions or IDs, this indicates the presence of se-
lection bias. Two types of bias may contribute to
selection bias: position bias and token bias. How-
ever, there is still no consensus on which of these
two is the dominant factor (Pezeshkpour and Hr-
uschka, 2023).

Effectively mitigating bias remains an unre-
solved issue. Scholars are exploring various
approaches to identify and reduce biases in
LLMs (Shi et al., 2024). Zheng et al. (Zheng et al.,
2023a) use prior estimates from partial samples to
address selection bias. Furthermore, Liu et al. (Liu
et al., 2024) argued that existing calibration tech-
niques aimed at reducing bias are insufficient for
calibrating LLM evaluators, even with supervised
data. Therefore, mitigating biases in “LLM-as-
Judges” is a widespread, significantly impactful,
and challenging issue.

3 CalibraEval

3.1 Problem Statement
In this paper, we focus on addressing the selec-
tion bias present in “LLMs-as-Judges”. Selection
bias refers to the phenomenon where LLMs con-
sistently prefer a specific option during pairwise
comparisons, regardless of the content.

To standardize the terminology, we define the
following terms: ti represent the option ID tokens
(e.g., A, B), and oi denotes the specific option con-
tents (e.g., Response_x, Response_y). Addition-
ally, let I represent the input instruction, and X0

represent the default connection of option ID to-
kens and contents, that is, X0 = [(t1, o1); (t2, o2)].

Following previous studies (Zheng et al., 2023a),
we assume that when the LLM serves as an evalua-
tor, the observed probability distribution Pob on ti
can be decomposed into a combination of the prior
distribution Ppr and the debiased distribution Pde,

i.e.,

Pob(ti|I,X0) = f(Ppr(ti|I,X0), Pde(ti|I,X0))
(1)

where f(·) is a function that represents the rela-
tionship between Pob, Ppr and Pde. Accurately
estimating the form of f(·) is challenging. Firstly,
the interaction between Ppr and Pde is complex and
may not be simply multiplicative or additive. Sec-
ondly, the observed probability distributions Pob

may be affected by noise, complicating the iden-
tification of the precise form of f(·). In previous
work, Zheng et al. (Zheng et al., 2023a) proposed
Pride, which simplify the problem by assuming
that f(·) is a linear multiplication, i.e.,

Pob(ti|I,X0) ∝ Z−1
I,X0

Ppr(ti|I,X0)×Pde(ti|I,X0)
(2)

where Z−1
I,X0

is the normalization item. Zheng et
al. (Zheng et al., 2023a) select a subset of test sam-
ples and then use the average observed probability
distributions from different arrangements as the
prior estimates P̃pr(ti). The debiasing is then per-
formed using the following equation:

Pde(ti|I,X0) ∝ Pob(ti|I,X0)/P̃pr(ti) (3)

Although Pride is effective, its simplified as-
sumption overlooks the complex relationships be-
tween probability distributions, leading to subopti-
mal performance.

In this paper, considering the complexity of f(·),
we do not attempt to directly create a precise math-
ematical function of f(·). Instead, we focus on
determining a calibration function g(·), which can
map the observed probabilities to an unbiased prob-
ability distribution, i.e.,

Pde(ti|I,X0) = g(Pob(ti|I,X0)) (4)

3.2 Optimization Objective

In this section, we reformulate the debiasing prob-
lem as an optimization task, with the unbiased prob-
ability distribution serving as the optimization ob-
jective. Intuitively, an unbiased evaluator should
provide consistent judgments even when the option
position or ID tokens are swapped. Specifically,
in pairwise comparisons, there are four possible
combinations of positions and ID tokens:

X0 = [(t1, o1); (t2, o2)], X1 = [(t2, o2); (t1, o1)]
(5)
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Tokens

Swap 
Positions

Swap 
Positions

Swap 
Tokens

Which response is 
Better?
A: Response 1
B: Response 2

𝑋! = [ 𝑡", 𝑜" ; 𝑡#, 𝑜# ]

Which response is 
Better?
B: Response 2
A: Response 1

𝑋" = [ 𝑡#, 𝑜# ; 𝑡", 𝑜" ]

Which response is 
Better?
A: Response 2
B: Response 1

𝑋# = [ 𝑡", 𝑜# ; 𝑡#, 𝑜" ]

Which response is 
Better?
B: Response 1
A: Response 2

𝑋$ = [ 𝑡#, 𝑜" ; 𝑡", 𝑜# ]

Figure 2: Four different types of combinations. t1/t2
represents the option IDs (A/B), while o1/o2 denotes
the corresponding option contents.

X2 = [(t1, o2); (t2, o1)], X3 = [(t2, o1); (t1, o2)]
(6)

In Figure 2, we present the relationship among
these four combinations. An unbiased evaluator
can accurately determine the correct option context,
regardless of changes in option orders (Swap Posi-
tions) or option ID tokens (Swap Tokens). Suppose
that the ground truth is o1, the evaluator should
satisfy the following conditions:

Pde(t1|I,X0) = Pde(t1|I,X1) = Pde(t2|I,X2)
(7)

Pde(t2|I,X2) = Pde(t2|I,X3) = Pde(t1|I,X0)
(8)

Since Equations (7) and Equations (8) are du-
als, we only need to select one as the optimization
objective. Also, we can simply normalize the orig-
inal token prediction probabilities, ensuring that
the sum of the probabilities for outputs t1 and t2
equals 100%, i.e.,

Pde(t1|I,X0) = 1− Pde(t2|I,X0) (9)

With the above reasoning, we formulate the de-
biasing problem on K samples as follows:

min
g∈G

K∑

i=1

[g(si0)+g(si2)−1]2+[g(si0)−g(si1)]
2−λ[g(si0)−g(si2)]

2

(10)

s.t.sij = Pob(t1|I,Xj), j = 0, 1, 2, i = 1, ...,K.
(11)

where g(·) is the mapping function for the proba-
bility of token t1. G denotes the solution space of
g(·). λ is a hyper-parameter. For each option ID
token, a corresponding mapping function g(·) is
defined. In the following process, we use g(·) as

an example. In Equations (10), the first term en-
sures consistent judgments when option ID tokens
are swapped. The second term aims to maintain
consistent judgment when option positions are ex-
changed. The third term serves as a regularization
term, which prevents convergence to the trivial so-
lution g(·) = 0.5.

3.3 Non-parametric Order-Preserving
Algorithm (NOA)

The optimization problem presented in Equation
(10) is an NP problem, featuring an extensive solu-
tion space G. Furthermore, the absence of explicit
labels prevents us from employing supervised meth-
ods to determine g(·).

To address these limitations, we propose a non-
parametric order-preserving algorithm called NOA.
Non-parametric methods do not rely on specific
model assumptions, making them well-suited for
handling high-dimensional data or complex func-
tions. NOA searches for the optimal solution by
directly evaluating the output of the calibration
function, eliminating the need for explicit labels or
precise mathematical modeling.

To narrow the solution space G, we assume that
the mapping function g(·) is order-preserving for
the same ID token. This assumption, widely and
implicitly applied in previous work (Zheng et al.,
2023a), rests on the premise that the prior distribu-
tion Ppr reflects the LLM’s inherent bias toward
certain option ID tokens, which remains condition-
ally independent of the unbiased probability distri-
bution Pde. Intuitively, for a given LLM, the partial
order relationship under the same prior bias should
remain consistent, meaning higher observed prob-
abilities generally correspond to higher unbiased
probabilities for the same ID token.

Specifically, we first collect an estimation set
with K samples. Each sample is processed by
swapping ID tokens and swapping positions, re-
sulting in three probabilities s0 (default output), s1
(swap positions), and s2 (swap ID tokens). The
probabilities from all samples are combined into a
set S = {si0, si1, si2|i ∈ 1, ...,K}. Then, we sort S
in ascending order to form a sequence z1 ≤ z2 ≤
... ≤ zM−1, where M = 3K + 1. We then ap-
pend boundary conditions to the sorted sequence
by defining z0 = 0 and zM = 1, producing the
complete sequence Z = {z0, z1, ..., zM−1, zM}.

To optimize the model, we introduce a set of
parameters dk (k = 0, 1, 2, ...,M ) initialized to the
values of zk. These parameters will be optimized
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during the process. Then, we define the mapping
function g(·) using the softmax-like expression:

g(zk) =

∑k
i=0 exp(di)∑M
i=0exp(di)

(12)

g(·) is a discrete mapping function with parameters
dk, which satisfies the constraint of order preser-
vation. We employ gradient descent methods to
iteratively update the parameters dk. The update
rule is given by:

d
(new)
k = d

(old)
k − γ

∂L

∂dk
(13)

where γ is the learning rate, L = [g(si0) + g(si2)−
1]2 + [g(si0) − g(si1)]

2 − λ[g(si0) − g(si2)]
2. This

iterative process allows the parameters to converge
toward the optimal values that minimize the loss,
thereby reducing the bias in the probability distri-
bution.

For ∂L
∂dk

, we derive the following equation. The
detailed derivation process can be found in Ap-
pendix C.

∂L

∂dk
=
(
2
[
g
(
si0
)
+ g

(
si2
)
− 1
]
+ 2

[
g
(
si0
)
− g

(
si1
)]) ∂g

(
si0
)

∂dk

+
(
−2
[
g
(
si0
)
− g

(
si1
)]) ∂g

(
si1
)

∂dk

+
(
2
[
g
(
si0
)
+ g

(
si2
)
− 1
]) ∂g

(
si2
)

∂dk

−
(
2λ
[
g
(
si0
)
− g

(
si2
)]) ∂g

(
si2
)

∂dk
(14)

∂g (zj)

∂dk
=





−
∑j

i=0 exp(di) exp(dk)

(
∑M

i=0 exp(di))
2 (j < k)

exp(dk)
(∑M

i=0 exp(di)−
∑j

i=0 exp(di)
)

(
∑M

i=0 exp(di))
2 (j ≥ k)

(15)

We note that there are infinite solutions that sat-
isfy the optimization problem. This is because any
constant change in the value of dk does not affect
the relative values in the exponential terms of Equa-
tion (12). To obtain a unique solution, we apply the
normalization constraint

∑M
i=0 di = 0 after each

iteration. The optimization proceeds until a con-
vergence criterion is met, such as the loss function
L reaching a minimum threshold or the parameter
updates becoming sufficiently small.

After the solution process converges, we ob-
tain the sample points Z = {z1, ..., zM−1}
and their corresponding calibrated values y =
{g(z1), ..., g(zM−1}. For sample points not in-
cluded in Z, we use existing sample points to learn
the continuous calibration function g∗(·). The goal

is to identify a set of non-decreasing piecewise
linear functions that minimize the sum of squared
deviations between the estimated values and the cal-
ibrated values of the samples. Specifically, we fit
the calibration values by minimizing the following
objective function:

min
M−1∑

i=1

wi(g(zi)− g∗(zi))2 (16)

s.t.z1 ≤ z2... ≤ zM−1 (17)

M−1∑

i=1

wi = 1, wi ≥ 0 (18)

The above problem is a weighted least squares
quadratic programming problem. We ap-
ply the Pool Adjacent Violators Algorithm
(PAVA) (Zadora et al., 2014) to derive the continu-
ous calibration function g∗(·).

It is worth noting that CalibraEval does not re-
quire explicit labels and can be executed during in-
ference with minimal computational cost. The cali-
bration function can be calculated after observing
all test samples or by utilizing a subset of samples.
The entire process of CalibraEval is summarized in
Algorithm 1 in the Appendix.

4 EXPERIMENT SETUP

4.1 Datasets and Metrics

We conduct experiments on three representative
benchmarks: RewardBench (Lambert et al., 2024),
MTBench (Zheng et al., 2023b), and Prefer-
enceBench (Kim et al., 2024). Due to space limita-
tions, their detailed descriptions and statistics are
provided in Appendix D.1.

In the evaluation, we primarily utilize reference-
free metrics to measure the consistency of model
evaluations. We compute Fleiss’s Kappa (Falotico
and Quatto, 2015) and intraclass correlation coeffi-
cient (ICC) (Bartko, 1966) between the evaluation
results obtained after swapping option ID tokens
and option positions. We report two specific ICC
metrics: ICC(2,k) and ICC(3,k) in this paper.

For the reference-based evaluation, we report
the standard deviation of recalls (RStd) and accu-
racy. Following Zheng et al. (Zheng et al., 2023a),
the balance of recalls serves as an effective measure
of the extent of selection bias. A greater imbalance
in recalls signifies a more pronounced selection
bias. In addition, MTBench includes “tie” options
assessed by human evaluators. We exclude all “tie”
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options when calculating the reference-based met-
rics. In Appendix D.2, we provide the details of
evaluation metrics.

4.2 Baselines

We employ the following methods as our baselines.
Since CalibraEval is a label-free method, we do not
compare it with supervised methods.

• Debiasing Instruct (DI) is implemented by in-
cluding the instruction: “Avoid any position bias
and ensure that the order in which the responses
were presented does not influence your decision.
Do not allow the length of the responses to influ-
ence your evaluation. Do not favor certain tokens
of the option. Be as objective as possible”.

• Contextual Calibration (CC) (Zhao et al., 2021)
involves applying an affine transformation to
model outputs in order to calibrate LLM pre-
dictions. It estimates the bias for each option
tokens by requesting its prediction with a prompt
alongside a content-free input, such as “N/A”.

• Domain-context Calibration (DC) (Fei et al.,
2023) is designed to minimize label bias in in-
context learning. It estimates a contextual prior
by using a random in-domain sequence, achiev-
ing state-of-the-art results.

• Pride (Zheng et al., 2023a) estimates the model’s
prior bias toward option ID token by reorganizing
the test samples and then removes this bias using
a division operation.

4.3 Implementation Details

We evaluate six models from three LLM-families
including: Llama-3-8B (Touvron et al., 2023),
Llama-3.1-8B (Touvron et al., 2023), Qwen-
14B (Bai et al., 2023), Qwen-72B (Bai et al., 2023),
ChatGPT (OpenAI, 2023), and GPT-4o (OpenAI,
2023). The version of ChatGPT used is gpt-3.5-
turbo-1106. The estimation set used to derive the
calibration function can be constructed either by
sampling from the test data or by using the entire
test set without the gold labels. For a fair com-
parison, we opted for the latter approach. In the
main experiment, all baselines used the full test
data as the prior estimation set. For CC, we use
the predefined token “N/A” to replace the option
contents, generating content-free input. For DC,
we randomly extract words from the task corpus
to construct the content-free input. Moreover, we

set λ = 0.5 and γ = 10. We employ the batch
gradient descent method with a batch size of 32.
The optimization process stops when the parame-
ters change range is less than the threshold ϵ i.e.,∑N

i=1△di < ϵ. The ϵ is set to 0.001. All experi-
ments presented in this paper are conducted on 8
NVIDIA Tesla A100 GPUs. All the prompts used
in this paper can be found in Appendix F.

5 Experiment Result

5.1 Main Results

The performance comparison of CalibraEval with
baselines is presented in Table 1. Based on the
experimental results, we can draw the following
conclusions.

• Debiasing Instruct does not consistently lead to
improved or more robust performance, as its ef-
fectiveness is limited by the instruction-following
capabilities of LLMs and the nature of tasks. In
some cases, adding debiasing instructions may
even result in consistency degradation. Conse-
quently, relying solely on instructions is not a
reliable approach for effective debiasing.

• CC and DC are originally designed to mitigate
label bias in in-context learning. Therefore, their
estimated priors may not accurately reflect the in-
herent selection bias in LLMs-as-Judges, leading
to suboptimal debiasing performance and diffi-
culties in interpretation.

• When applied to lower-capability LLMs, such as
Llama-3-8B and Qwen-14B, Pride effectively es-
timates bias and improves consistency. However,
its effectiveness diminishes with more advanced
models (e.g., GPT4o). This limitation may arise
from the simplified probabilistic relationships
employed in Pride.

• CalibraEval consistently improves performance
across various LLMs and tasks. On average, Cal-
ibraEval shows enhancements over all the base-
lines. Overall, CalibraEval is a versatile tech-
nique applicable to multiple evaluation tasks, de-
livering stable performance improvement. This
also indicates that CalibraEval can effectively re-
duce selection bias in LLMs-as-judges, leading
to more consistent and fair evaluation results.

Table 2 presents the performance of the
reference-based metrics. Due to space constraints,
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Model RewardBench MTBench PreferenceBench Average
Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k) Kappa ICC(2,k) ICC(3,k)

Llama-3-8B 20.81 66.24 71.79 14.36 60.96 73.08 58.25 86.23 86.61 31.14 71.14 77.16
DI 19.63 64.98 70.87 15.93 59.11 65.00 39.90 76.77 80.87 25.15 66.95 72.25
CC 15.49 58.77 63.70 5.60 39.48 52.45 54.84 83.60 86.26 25.31 60.62 67.47
DC 23.57 69.04 72.79 25.28 69.83 72.75 50.78 84.88 85.09 33.21 74.58 76.88

Pride 27.65 72.72 73.77 27.38 72.27 74.50 57.01 85.49 86.33 37.35 76.83 78.20
CalibraEval 30.32 86.51 86.66 28.63 75.45 76.80 58.54 88.17 89.43 39.16 83.38 84.30

Llama-3.1-8B 15.02 68.82 76.65 16.91 62.51 67.60 38.73 74.61 78.46 23.55 68.65 74.24
DI 21.59 74.04 80.00 15.12 53.24 57.08 36.59 68.47 72.14 24.43 65.25 69.74
CC 16.89 59.24 60.09 2.59 32.42 33.96 40.80 76.69 78.44 20.09 56.12 57.50
DC 23.17 72.89 76.22 16.02 65.86 68.80 41.61 77.23 78.81 26.55 71.68 74.18

Pride 14.63 66.62 76.02 17.98 63.76 67.51 38.58 76.84 79.35 23.73 69.07 74.29
CalibraEval 20.67 83.23 86.68 19.12 66.00 69.26 43.04 81.56 82.78 27.61 76.93 79.57
Qwen-14B 19.69 63.41 66.86 17.53 54.43 65.11 48.94 84.90 88.78 28.72 67.58 73.58

DI 11.90 50.46 53.20 4.98 36.83 46.02 30.76 74.41 82.95 15.88 53.90 60.72
CC -1.62 -4.71 -4.93 -5.48 18.08 31.20 40.35 73.79 75.56 11.08 29.05 33.94
DC 16.04 45.10 45.26 25.51 64.37 66.46 48.15 82.29 84.52 29.90 63.92 65.41

Pride 24.73 67.46 68.30 13.00 51.73 57.39 52.79 90.86 91.20 30.17 70.02 72.30
CalibraEval 26.40 75.75 76.11 17.68 53.64 63.43 62.91 92.56 92.57 35.66 73.98 77.37
Qwen-72B 78.28 92.77 93.13 71.35 90.33 91.16 82.77 94.78 94.90 77.47 92.63 93.06

DI 77.33 92.27 92.63 68.17 89.13 89.99 83.31 95.09 95.11 76.27 92.16 92.58
CC 69.23 88.71 89.92 70.64 90.29 90.72 78.08 92.63 93.24 72.65 90.54 91.29
DC 66.61 87.03 87.90 64.59 87.46 88.45 74.03 91.01 92.01 68.41 88.50 89.45

Pride 78.64 92.99 93.30 71.50 90.54 91.27 83.44 94.89 95.00 77.86 92.81 93.19
CalibraEval 82.80 95.47 95.75 71.88 95.70 96.71 85.25 97.56 97.57 79.98 96.24 96.68
ChatGPT 20.08 62.67 70.75 37.25 73.90 76.92 64.62 87.63 87.81 40.65 74.73 78.49

DI 24.52 70.23 71.58 24.33 66.80 67.69 56.00 82.90 84.89 34.95 73.31 74.72
CC 24.28 57.25 58.23 23.71 64.06 71.91 61.63 86.18 86.38 36.54 69.16 72.17
DC 27.94 66.09 70.54 16.68 58.37 70.26 55.33 81.92 82.58 33.32 68.79 74.46

Pride 28.25 70.38 73.16 39.02 76.61 77.61 64.64 87.56 87.82 43.97 78.18 79.53
CalibraEval 32.02 77.25 77.60 39.71 79.07 79.85 65.52 87.77 87.92 45.75 81.36 81.79

GPT4o 82.57 94.83 94.89 72.42 92.99 93.20 79.42 93.50 94.11 78.14 93.77 94.07
DI 78.57 93.72 94.01 74.21 93.35 93.50 79.97 94.48 94.93 77.58 93.85 94.15
CC 81.38 94.47 94.48 67.10 90.30 90.78 77.56 92.76 93.43 75.35 92.51 92.90
DC 76.89 92.28 92.35 68.94 90.94 91.64 70.48 89.30 90.02 72.10 90.84 91.34

Pride 82.53 94.94 94.98 70.34 92.35 92.74 79.74 93.62 94.20 77.54 93.64 93.97
CalibraEval 83.25 96.25 96.27 72.60 95.04 95.20 79.73 97.29 97.60 78.53 96.19 96.36

Table 1: Performance comparison between CalibraEval and baselines. We report the Fleiss’ Kappa (%) and
Intraclass Correlation Coefficient (%) for each dataset and the averages. The row corresponding to the model name
represents the default results without applying any debiasing methods. Best performances are marked bold.

we only report the experimental results for Llama-
3-8B, Qwen-14B, and ChatGPT, while the com-
plete results are available in Appendix E. For a fair
comparison, we report the average values of Rstd
and Accuracy under the conditions of swapping
option positions and option IDs. Across the aver-
age performance of the three datasets, CalibraEval
consistently achieves lower Rstd and higher accu-
racy, outperforming other baselines. Surprisingly,
although this is not the original intent, CalibraEval
frequently improves accuracy. We believe this may
indicate that selection bias influences the model’s
judgments, leading to reduced accuracy. Therefore,
effective bias mitigation methods can enhance the
model’s performance in its evaluative role. Addi-
tionally, we found that lower Rstd is often associ-
ated with higher accuracy. The more pronounced
the debiasing effect, the more significant the per-
formance improvement. For example, on Reward-
Bench, ChatGPT’s Rstd decreased from 16.79 to
5.51, while its accuracy increased from 65.27 to
67.13. Overall, CalibraEval not only enhances the
reliability of model evaluations but also unlocks
the potential for these LLMs to perform optimally
in various tasks.

Model RewardBench MTbench Preference Bench
Rstd↓ Acc.(%) Rstd↓ Acc.(%) Rstd↓ Acc.(%)

Llama-3-8B 15.01 65.79 16.42 67.08 3.36 83.43
Pride 7.51 66.54 11.64 70.63 4.35 83.24

CalibraEval 6.48 68.12 5.22 70.63 3.42 83.98
Qwen-14B 11.63 63.14 17.24 65.61 11.99 80.68

Pride 4.18 64.09 16.31 65.29 7.36 83.55
CalibraEval 2.72 64.25 6.26 68.64 5.12 83.88
ChatGPT 16.79 65.27 7.66 72.67 3.04 85.61

Pride 8.54 66.36 6.01 72.86 3.51 85.68
CalibraEval 5.51 67.13 5.20 72.98 2.82 85.98

Table 2: Results of reference-based metrics. ↓ indicates
that lower values correspond to better performance.

5.2 Robustness Analysis

In this section, we conduct additional experiments
to further validate the effectiveness of CalibraEval
across diverse scenarios. Due to the high cost of
GPT-4o, we opt for Qwen-72B and ChatGPT on
the RewardBench for the following experiments.
Unless otherwise stated, the ICC for subsequent ex-
periments is ICC(2,k). Due to space limitations, we
present the model’s robustness regarding Different
ID tokens and the number of in-context learning
examples in Appendix E.1 and Appendix E.2.

5.2.1 Different prompt templates
We conduct experiments on four distinct prompt
templates (see Appendix F for details). Figure 3
shows performance comparisons on RewardBench.
We observed that model outputs without bias cor-
rection exhibit low consistency and high variance.
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(a) ChatGPT-ICC (b) ChatGPT-Kappa

(c) Qwen72B-ICC (d) Qwen72B-Kappa
Figure 3: Performance comparison across different
prompt templates.

Model Kappa ICC(2,k) ICC(3,k) Rstd↓ Acc.
ChatGPT 20.08 62.67 70.75 16.79 65.27

w. L1 26.78 72.04 73.66 10.32 65.33
w. L2 27.38 72.73 75.99 8.64 66.04
w. both 32.02 77.25 77.60 5.50 67.13

Qwen-72B 78.28 92.77 93.13 4.01 87.20
w. L1 81.95 94.94 95.04 2.42 87.78
w. L2 81.32 93.77 95.52 2.78 87.74
w. both 82.80 95.47 95.75 0.94 88.06

Table 3: Ablation study on RewardBench. Best results
are marked bold.

While Pride improves consistency, it still exhib-
ited considerable variance. In contrast, CalibreE-
val demonstrates substantial performance enhance-
ment while maintaining low variance, indicating
its consistent effectiveness across different prompt
templates.

5.3 Ablation Studies
To better illustrate the rationality and effectiveness
of model design, we conduct two ablation experi-
ments. We first analyze the effectiveness of well-
defined optimization objectives. Specifically, we
consider two variants. The first variant focuses
solely on ensuring that the model maintains consis-
tent judgments after swap ID tokens, i.e.,

L1 = argmin
g∈G

K∑

i=1

[g(si0)+ g(si2)− 1]2 −λ[g(si0)− g(si2)]
2

(19)

The other variant focuses on ensuring that the
model maintains consistent judgments after posi-
tion exchanges, represented as:

L2 = argmin
g∈G

K∑

i=1

[g(si0)− g(si1)]
2 −λ[g(si0)− 0.5]2 (20)

Since this variant does not involve si2, the regular-
ization term is modified to [g(si0)−0.5]2 to prevent
the model from converging to a trivial solution.

Table 3 illustrates the impact of different opti-
mization objectives. Both objectives contribute
to the calibration benefits observed. When the

(a) ChatGPT (b) Qwen-72B

Figure 4: Performance of CalibraEval across different
estimate set sizes. “Percentage” refers to the proportion
of the test set selected for use as the estimation set.

model is significantly influenced by position bias,
the improvements from L2 are more substantial.
Conversely, when token bias is more prevalent, L1

leads to better improvements. The combination
of both objectives, which defines our CalibraEval
optimization goal, achieves optimal performance.
These experiments validate the effectiveness of our
chosen optimization settings.

In Figure 4, we further test the impact of the es-
timation set size on the performance. We randomly
sampled a certain proportion of test data to estimate
the calibration function, which is then applied to
debias the entire test set. We found that increasing
the size of the estimation set can better enhance
consistency. Additionally, a smaller estimation set
can also effectively support CalibraEval in reduc-
ing bias. For ChatGPT, using only 10% of the data
resulted in improvements of over 85% compared
to the full dataset. Overall, even with limited data,
CalibraEval can still produce reliable calibration
functions.

6 Conclusion

In this paper, we propose CalibraEval to mitigate
the selection bias present in LLM-as-judges. We
reformulate the debiasing problem as an optimiza-
tion problem and utilize the characteristics of un-
biased evaluators as our optimization objectives.
Moreover, we propose the non-parametric order-
preserving algorithm (NOA) to determine the cali-
bration function. Experiments involving six LLMs
across three representative datasets demonstrate
that CalibraEval effectively reduces selection bias
while enhancing accuracy. We argue that mitigat-
ing selection bias is essential for developing more
reliable LLM evaluators. In the future, we plan
to investigate additional biases in LLM-as-judges
applications to create even more robust and trust-
worthy automated evaluations of large models.
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A Limitation

We acknowledge several limitations in this study
and aim to address them in future work. First, Cali-
braEval limits selection bias to position and token
swapping scenarios. However, in real-world sit-
uations, other types of bias, such as context and
trend biases, may also be present. In the future, we
will investigate the factors that influence these addi-
tional biases and explore methods to mitigate them.
Futhermore, CalibraEval relies on pairwise com-
parisons. Although pairwise comparisons can be
extended to listwise comparisons, this increases the
time complexity. In the future, we aim to broaden
the scope of CalibraEval to accommodate a wider
range of scenarios.

B Legal and Ethical Considerations

Our research prioritizes ethical considerations
throughout the development process. We ensure
that our work does not involve any discriminatory
content or personal privacy violations. We take
great care in using only publicly available, autho-
rized datasets, and we avoid incorporating any data
that could lead to biased or harmful outcomes. All
models, datasets, and code related to this research
are publicly available, fostering transparency and
enabling further research and validation by the com-
munity.

C SUPPLEMENTARY PROOF

To compute ∂L
∂dk

for the given loss function:

[g(si0)+g(si2)−1]2+[g(si0)−g(si1)]
2−λ[g(si0)−g(si2)]

2 (21)

Applying the chain rule, we have:

∂L

∂dk
=

∂L

∂g
(
si0
) ∂g

(
si0
)

∂dk
+

∂L

∂g
(
si1
) ∂g

(
si1
)

∂dk
+

∂L

∂g
(
si2
) ∂g

(
si2
)

∂dk
(22)

For g(si0):

∂L

∂g
(
si0
) = 2

[
g
(
si0
)
+ g
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si2
)
− 1
]
+ 2

[
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(
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)
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(
si1
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(23)

For g(si1):

∂L

∂g
(
si1
) = −2

[
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(
si1
)]

(24)

For g(si2):
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∂g
(
si2
) = 2

[
g
(
si0
)
+ g

(
si2
)
− 1
]
− 2λ

[
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(
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)
− g

(
si2
)]

(25)

Then, We substitute the derivatives back into the
equation 22:
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∂dk
=
(
2
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(
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(
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(26)

Next, using the quotient rule, the derivative of
g(zj) with respect to dk is:

∂g (zj)

∂dk
=

∂

∂dk

(∑j
i=0 exp (di)∑M
i=0 exp (di)

)
(27)

For j < k, dk affects the denominator:

∂g (zj)

∂dk
=

−∑j
i=0 exp (di) exp (dk)(∑M

i=0 exp (di)
)2 (28)

For j >= k, dk affects both the numerator and
the denominator:

∂g (zj)

∂dk
=

exp (dk)
(∑M

i=0 exp (di)−
∑j

i=0 exp (di)
)

(∑M
i=0 exp (di)

)2 (29)

The final formula is as follows.

∂g (zj)

∂dk

=





−
∑j

i=0
exp(di) exp(dk)
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i=0
exp(di))

2 (j < k)

exp(dk)
(∑M

i=0 exp(di)−
∑j

i=0
exp(di)

)

(
∑M

i=0
exp(di))

2 (j ≥ k)

(30)

D Details of Dataset and Metrics

D.1 Details of Datasets
We conduct experiments on three representative
benchmarks: RewardBench, MTBench, and Prefer-
enceBench.

• RewardBench (Lambert et al., 2024) is a bench-
mark dataset designed for evaluating reward mod-
els. It contains 2,985 prompt-choice-rejection
trios across four task categories: Chat, Chat Hard,
Safety, and Reasoning.

• MTBench (Zheng et al., 2023b) is a multi-turn
response dataset. It contains 3,355 expert-level
pairwise human preferences for responses, gen-
erated by 6 models for 80 MTBench questions.

• PreferenceBench (Kim et al., 2024) is a test set
designed to assess the evaluation capabilities of
LLMs, comprising 2,000 response pairs (clas-
sified as “win” or “lose”) and 200 evaluation
criteria.

16547



Table 4 presents the statistical of benchmarks.
The average answer length of different options in
each dataset is nearly identical, and the distribu-
tion of label categories is balanced. This design
minimizes the potential influence of other biases
on the evaluation results. Overall, the datasets ex-
hibit a well-balanced difficulty distribution and are
thoughtfully constructed, ensuring a fair and robust
evaluation process.

D.2 Details of Metrics

D.2.1 Reference-Free Metrics

Fleiss’s Kappa is a statistical measure used to as-
sess the reliability of agreement between multiple
raters. It is calculated using the formula:

K =
Po − Pe

1− Pe
(31)

where Po is the observed agreement among raters.
Pe is the expected agreement by chance. The value
of Kappa ranges from -1 to 1, where values closer
to 1 indicate strong agreement among raters, values
around 0 suggest no agreement beyond chance, and
negative values indicate systematic disagreement.

Intraclass Correlation Coefficient (ICC) is a mea-
sure of reliability that assesses the consistency
or agreement of measurements made by different
raters or instruments. In this paper, we report two
specific Intraclass Correlation Coefficient (ICC)
metrics: ICC(2,k) and ICC(3,k). ICC(2,k) mea-
sures the consistency of ratings from multiple raters
for the same set of subjects under a random effects
model, while ICC(3,k) assesses the consistency of
ratings from specific and fixed raters for the same
subjects under a fixed effects model. Both are use-
ful for measuring the reliability and consistency of
ratings.

The ICC(2,k) is calculated using the formula:

ICC(2, k) =
σ2
B − σ2

W

σ2
B + (k − 1)σ2

W

(32)

The ICC(3,k) is calculated using the formula:

ICC(3, k) =
σ2
B − σ2

W

σ2
B + k · σ2

W

(33)

where σ2
B is the variance between the subjects. σ2

W

is the variance within the subjects. k is the number
of raters.

D.2.2 Reference-based Metrics
The standard deviation of recalls (RStd) quantifies
the variability in recall scores across different eval-
uations. It is calculated using the formula:

RStd =

√√√√ 1

N − 1

N∑

i=1

(
Ri − R̄

)2 (34)

where Ri is the recall for the i-th evaluation. R̄
is the mean recall across all evaluations. N is the
total number of evaluations.

Accuracy is a widely used evaluation metric that
measures the overall correctness of a model’s pre-
dictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(35)

where TP represents the number of instances that
are correctly predicted as positive, while TN de-
notes the number of instances that are correctly
predicted as negative. Conversely, FP indicates
the number of instances that are incorrectly pre-
dicted as positive, and FN refers to the number of
instances that are incorrectly predicted as negative.

E More Evaluation Result

In Table 5, we present the complete results of the
reference-based experimental metrics. On aver-
age, CalibraEval achieved better improvements in
Rstd and accuracy. This indicates that CalibraEval
effectively reduces selection bias and enables the
model to realize its potential. By mitigating se-
lection bias in the evaluation process, CalibraEval
contributes to achieving more accurate and reliable
results, paving the way for further advancements in
model calibration and evaluation methodologies.

E.1 Different ID tokens

We also conduct experiments using four distinct
sets of ID tokens: A/B, a/b, Alice/Bob, and X/Y.
Figure 5 illustrates the performance comparison.
CalibraEval consistently achieves significant per-
formance improvements with low variance across
all tested ID tokens. This highlights its robustness
and effectiveness regardless of the specific tokens
used. Furthermore, when applied to the highly
consistent model Qwen-72B, the improvement of
Pride is negligible, while CalibreEval continued to
enhance consistency even further.
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(a) ChatGPT-ICC (b) ChatGPT-Kappa

(c) Qwen72B-ICC (d) Qwen72B-Kappa

Figure 5: Performance comparison across different ID
tokens.

E.2 Different number of in-context learning
examples

We further investigate the effectiveness of CalibraE-
val when conducting in-context learning. Specifi-
cally, we provided the LLMs with 1-shot, 2-shot,
and 3-shot examples, respectively. As shown in
Figure 6, CalibraEval remains effective even when
examples are provided for in-context learning. We
find that as the number of examples increases,
the consistency of the model’s judgments also im-
proves. This may be because examples help the
model better understand the task, leading to more
confident and consistent evaluations. Additionally,
we also observed that the effectiveness of calibra-
tion methods like Pride and CalibraEval decreases
as the number of examples increases. This may
be due to these examples introducing new biases,
which affect the effectiveness of the calibration.
Therefore, we believe that calibration methods have
greater potential for application in zero-shot sce-
narios.

F THE DESIGN OF PROMPT

Table 6 presents all the prompts used in this pa-
per. The default prompt, employed in the main
experiments, serves as the foundational basis for
assessing model performance. In the robustness
experiments, four distinct prompts are utilized to
evaluate variations in model responses.

(a) ChatGPT

(b) Qwen-72B

Figure 6: Performance comparison under in-context
learning.
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Algorithm 1: Calibration process of Cali-
braEval
Input: Language model, test samples D,

estimate set size K, threshold ϵ
Output: Debiased Prediction Y

1 Sample K estimation samples from the test
samples D

2 for each sample i ∈ {1, ...,K} do
3 Generate the probabilities after

exchanging option IDs and positions.
4 Obtain the set si = {si0, si1, si2}
5 end
6 Combine all sets s to form a global set

S =
⋃K

i=1 S
i

7 Sort S in ascending order and append
z0 = 0, z3K+1 = 1. Obtain the sequence
Z = {z0, z1, ..., z3K , z3K+1}

8 Initialize the parameter dk as zk for each k

9 while
∑3K+1

i=0 △di > ϵ do
10 for i = 0 to 3K + 1 do
11 Calculate ∂L

∂di
using Equation (14)

and Equation (15)
12 Update the di using Equation (13)
13 end
14 end
15 Standardize di to satisfy

∑3K+1
i=0 di = 0

16 Obtain the discrete mapping function g(·)
by using Equation (12)

17 Obtain the continuous calibration function
g∗(·) by solving Equation (16)

18 for q ∈ D do
19 Debias the model prediction with g∗(·)
20 Add the predicted answer to Y
21 end
22 return Debiased Prediction Y
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Datasets Total_num Average_Length Label_num Type Type_numprompt answer_a answer_b first second tie

RewardBench 2985 1771 667 658 1490 1495 0

Chat 358
Chat_Hard 456
Safety 739
Reasoning 1432

MTBench 3355 4039 1524 1512 1293 1282 780 Turn1 1689
Turn2 1666

PreferenceBench 1998 2485 886 893 980 1018 0 - -

Table 4: Statistics of benchmark datasets.

Model RewardBench MTBench PreferenceBench Average
Rstd ↓ Acc.(%) Rstd↓ Acc.(%) Rstd ↓ Acc.(%) Rstd ↓ Acc.(%)

Llama-3-8B 15.01 65.79 16.42 67.08 3.36 83.43 11.60 72.10
DI 15.61 66.35 9.42 66.79 4.03 83.45 9.69 72.20
CC 14.62 64.52 8.70 69.09 9.47 82.78 10.93 72.13
DC 13.79 66.31 20.86 64.60 2.90 83.65 12.52 71.52

Pride 7.51 66.54 11.64 70.63 4.35 83.24 7.83 73.47
CalibraEval 6.48 68.12 5.22 70.63 2.42 83.98 5.04 74.24

Llama-3.1-8B 17.93 64.96 14.73 67.58 6.65 77.54 13.10 70.03
DI 12.02 64.25 13.72 67.47 12.42 75.14 12.72 68.95
CC 8.43 65.39 6.75 65.09 6.31 77.91 7.16 69.49
DC 14.54 66.90 9.72 67.74 5.91 77.98 10.06 70.87

Pride 13.94 65.90 12.63 67.56 9.47 77.92 12.01 70.46
CalibraEval 6.88 67.11 6.67 67.86 6.19 78.64 6.58 71.20
Qwen-14B 11.63 63.14 17.24 65.61 11.99 80.68 13.62 69.81

DI 9.76 61.88 19.09 62.18 15.77 76.14 14.87 66.73
CC 7.01 60.21 26.47 58.21 7.03 78.41 13.50 65.61
DC 3.02 62.47 8.23 68.48 10.07 79.96 7.11 70.30

Pride 4.18 64.09 16.31 65.29 7.36 83.55 9.28 70.98
CalibraEval 2.72 64.25 6.26 68.64 5.12 83.88 4.70 72.26
Qwen-72B 4.01 87.20 5.76 81.32 2.54 90.12 4.10 86.21

DI 3.65 86.32 5.79 80.82 0.80 90.21 3.41 85.78
CC 7.72 85.74 4.72 81.05 5.41 89.30 5.95 85.36
DC 6.57 83.87 6.76 80.52 7.04 88.83 6.79 84.41

Pride 3.82 87.25 5.24 81.23 2.27 90.26 3.78 86.25
CalibraEval 0.94 88.06 4.99 81.25 0.69 90.71 2.21 86.67
ChatGPT 16.79 65.27 7.66 72.67 3.04 85.61 9.16 74.70

DI 7.22 65.24 7.01 69.84 9.82 83.94 8.02 73.01
CC 7.93 64.89 16.31 70.49 3.13 84.83 9.12 73.40
DC 11.40 66.89 20.23 68.67 5.81 82.68 12.48 72.75

Pride 8.54 66.36 6.01 72.86 3.51 85.68 6.02 74.97
CalibraEval 5.51 67.13 5.20 72.98 2.82 85.98 4.51 75.36

GPT4o 1.95 89.34 3.23 82.27 5.29 90.44 3.49 87.35
DI 3.91 88.64 2.24 82.26 4.49 90.46 3.55 87.12
CC 0.54 89.11 4.84 81.23 5.79 90.02 3.72 86.79
DC 1.84 87.84 3.57 81.93 5.99 88.22 3.80 86.00

Pride 1.68 89.38 3.84 82.10 5.24 90.47 3.60 87.32
CalibraEval 1.42 89.54 2.89 82.29 4.29 90.49 2.87 87.44

Table 5: The complete results of reference-based metrics. We report the Standard Deviation of Recalls (RStd)
and Accuracy (Acc.), with the best results highlighted in bold. ↓ indicates that lower values correspond to better
performance.
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Default Prompt.
Given a question and two answers. Determine which one better answers the question. You only need
to output A or B directly to indicate which answer is better.
Prompt Variant One.
Please evaluate the quality of the responses to the question displayed below. Don’t provide your
explanation, only output your final verdict by strictly following this format: A if assistant A is better,
B if assistant B is better.
Prompt Variant Two.
You are an advanced evaluator, and your task is to assess which response addresses the inquiry more
effectively. Output A if response A is better, or B if response B is better.
Prompt Variant Three.
Below is a query along with two different responses generated by AI assistants. Your task is to
determine which response provides a more accurate and helpful answer to the question posed. Don’t
provide your explanation. Simply output A if response A is more effective, or B if response B is
more effective.

Table 6: Different prompt templates used in this paper
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