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Abstract

Training LLMs on data containing unfamiliar
knowledge during the instruction tuning stage
can encourage hallucinations. To address this
challenge, we introduce NOVA, a novel frame-
work designed to identify high-quality data that
aligns well with the LLM’s learned knowledge
to reduce hallucinations. NOVA includes In-
ternal Consistency Probing (ICP) and Seman-
tic Equivalence Identification (SEI) to measure
how familiar the LLM is with instruction data.
Specifically, ICP evaluates the LLM’s under-
standing of the given instruction by calculating
the tailored consistency among multiple self-
generated responses. SEI further assesses the
familiarity of the LLM with the target response
by comparing it to the generated responses, us-
ing the proposed semantic clustering and well-
designed voting strategy. Finally, to ensure
the quality of selected samples, we introduce
an expert-aligned reward model, considering
characteristics beyond just familiarity. By con-
sidering data quality and avoiding unfamiliar
data, we can utilize the selected data to effec-
tively align LLMs to follow instructions and
hallucinate less. Extensive experiments and
analysis show that NOVA significantly reduces
hallucinations and allows LLMs to maintain a
strong ability to follow instructions.1

1 Introduction

Alignment is a critical procedure to ensure large
language models (LLMs) follow user instructions
(OpenAI, 2023a; Yang et al., 2024). Despite sig-
nificant progress in LLM alignment and instruc-
tion tuning (Ouyang et al., 2022; Anthropic, 2022),
state-of-the-art aligned LLMs still generate state-
ments that appear credible but are actually incor-
rect, referred to as hallucinations (Ji et al., 2023;
Huang et al., 2024). Such hallucinations can un-
dermine the trustworthiness of LLMs in real-world

* Corresponding Authors.
1 The data and code will be available at https://github.com/

S1s-Z/NOVA. Email: ssz24@mails.tsinghua.edu.cn.
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Figure 1: Instruction following ability on MT-Bench
vs hallucination on LongFact. NOVA simultaneously
aligns LLMs to follow instructions and hallucinate less.

applications (Si et al., 2023; Min et al., 2023; Rawte
et al., 2023; Wei et al., 2024a).

Previous studies (Kang et al., 2024; Gekhman
et al., 2024; Lin et al., 2024b) indicate that tuning
LLMs on instruction data that contains new or un-
familiar knowledge can encourage models to be
overconfident and promote hallucinations. In other
words, once the knowledge in the instruction data
has not been learned during the pre-training stage
of LLMs, the fine-tuned LLMs tend to produce
more errors when generating responses. Therefore,
there is a dilemma in instruction tuning: On the
one hand, the LLMs need to learn to follow user
instructions during this stage, which is crucial for
user interaction in real-world applications (Wang
et al., 2023b; Chen et al., 2024b); On the other
hand, using high-quality data (whether manually
labeled or generated by other advanced LLMs) for
instruction tuning can introduce unfamiliar knowl-
edge to LLMs, thereby encouraging hallucinations
(Kang et al., 2024; Lin et al., 2024b). Thus, a crit-
ical question arises: How can we align LLMs to
follow instructions and hallucinate less during
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the instruction tuning stage?
Certain efforts (Lin et al., 2024b; Zhang et al.,

2024b; Tian et al., 2024) apply reinforcement learn-
ing (RL) to teach LLMs to hallucinate less after
the instruction tuning stage. For example, Zhang
et al. (2024b) leverages the self-evaluation capabil-
ity of an LLM and employs GPT-3.5-turbo (Ope-
nAI, 2022) to create preference data, subsequently
aligning the LLM with direct preference optimiza-
tion (DPO) (Rafailov et al., 2023). However, Lin
et al. (2024b) finds that such RL-based methods can
weaken the model’s ability to follow instructions.
These methods also necessitate additional prefer-
ence data and API costs from the advanced LLMs,
making them inefficient. Different from RL-based
methods, an intuitive strategy to align LLMs to fol-
low instructions and hallucinate less is to filter out
the instruction data that contains unfamiliar knowl-
edge for the instruction tuning. Unfortunately, pre-
vious studies (Liu et al., 2024a; Cao et al., 2024)
solely focus on selecting high-quality data to im-
prove the instruction-following abilities of LLMs.
Even worse, these selected high-quality data may
present more unknown knowledge to the LLM and
further encourage hallucinations, as these data may
contain responses with expert-level knowledge and
often delve into advanced levels of detail.

Therefore, we introduce NOVA, which includes
Internal Consistency Probing (ICP) and Seman-
tic Equivalence Identification (SEI), a framework
designed to identify high-quality instruction sam-
ples that align well with LLM’s knowledge, thereby
aligning the LLM to follow instructions and hal-
lucinate less. NOVA initially uses ICP and SEI to
measure how well the LLM understands the knowl-
edge in the given instruction and target response.
For ICP, we prompt the LLM to generate multiple
responses to demonstrate what it has learned about
a specific instruction during pre-training. Then we
use the internal states produced by the LLM to as-
sess how consistent the generated responses are. If
the internal states of these responses exhibit greater
consistency for the instruction, it indicates that the
LLM has internalized the relevant knowledge dur-
ing pre-training. For SEI, we first integrate a well-
trained model to classify the generated responses
that convey the same thing into a semantic cluster.
Next, we employ the designed voting strategy to
identify which semantic cluster the target response
fits in. This helps us find out how many gener-
ated responses are semantically equivalent to the
target response, indicating how well the LLM un-

derstands the target response. If the target response
matches well with the largest cluster, it shows the
LLM is familiar with its content. Based on ICP
and SEI, we can measure how well the model un-
derstands the knowledge in instruction data and
avoid training it on unfamiliar data to reduce hallu-
cinations. Lastly, to ensure the quality of selected
samples, we introduce an expert-aligned quality
reward model, considering characteristics beyond
just familiarity, e.g., the complexity of instructions
and the fluency of responses. By considering data
quality and avoiding unfamiliar data, we can use
the selected data to effectively align LLMs to fol-
low instructions and hallucinate less.

We conduct extensive experiments to evaluate
the effectiveness of NOVA from both instruction-
following and hallucination perspectives. Experi-
mental results demonstrate that NOVA significantly
reduces hallucinations while maintaining a compet-
itive ability to follow instructions.

2 Related Work

Hallucinations in LLMs. Hallucinations occur
when the generated content from LLMs seems be-
lievable but does not match factual or contextual
knowledge (Ji et al., 2023; Huang et al., 2024; Si
et al., 2025). Recent studies (Lin et al., 2024b;
Kang et al., 2024; Gekhman et al., 2024) attempt to
analyze the causes of hallucinations in LLMs and
find that tuning LLMs on data containing unseen
knowledge can encourage models to be overconfi-
dent, leading to hallucinations. Therefore, recent
studies (Lin et al., 2024b; Zhang et al., 2024b; Tian
et al., 2024) attempt to apply RL-based methods
to teach LLMs to hallucinate less after the instruc-
tion tuning stage. However, these methods are
inefficient because they require additional corpus
and API costs for advanced LLMs. Even worse,
such RL-based methods can weaken the instruction-
following ability of LLMs (Lin et al., 2024b). In
this paper, instead of introducing the inefficient RL
stage, we attempt to directly filter out the unfamil-
iar data during the instruction tuning stage, aligning
LLMs to follow instructions and hallucinate less.
Data Filtering for Instruction Tuning. Accord-
ing to Zhou et al. (2023), data quality is more
important than data quantity in instruction tun-
ing. Therefore, many works attempt to select high-
quality instruction samples to improve the LLMs’
instruction-following abilities. Chen et al. (2023);
Liu et al. (2024a) utilize the feedback from well-
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Figure 2: The process of NOVA. NOVA identifies and selects high-quality instruction data that aligns well with the
LLM’s learned knowledge to reduce hallucination. Then it uses selected instruction data for training LLMs.

aligned close-source LLMs to select samples. Cao
et al. (2024); Li et al. (2024a); Ge et al. (2024); Si
et al. (2024); Xia et al. (2024); Zhang et al. (2024a)
try to utilize the well-designed metrics (e.g., com-
plexity) based on open-source LLMs to select the
samples. However, these high-quality data always
contain expert-level responses and may contain
much unfamiliar knowledge to the LLM. Unlike
focusing on data quality, we attempt to identify the
samples that align well with LLM’s knowledge,
thereby allowing the LLM to hallucinate less.

3 Methodology

In this section, we will detail our proposed frame-
work NOVA as shown in Figure 2. Previous stud-
ies (Lin et al., 2024b; Kang et al., 2024; Gekhman
et al., 2024) find that tuning LLMs on data contain-
ing new or unfamiliar knowledge can encourage
models to be overconfident and further lead to hal-
lucinations. Inspired by this finding, NOVA aims
to filter out the unfamiliar instruction data for the
instruction tuning, thereby aligning the LLM to
follow instructions and hallucinate less.

3.1 Internal Consistency Probing

To comprehensively measure the LLM’s familiar-
ity with instruction data, the first challenge is to
evaluate how well the LLM understands the knowl-
edge within the instructions. Prompting LLMs to
generate multiple responses to the same instruc-
tion and measuring how consistent those responses

are has been proven to be an effective way (Wang
et al., 2023a; Chen et al., 2024a). This is because if
LLMs understand the question and are confident in
their answers, they will produce similar responses.
A practical way to measure the consistency of free-
form responses is to utilize lexical metrics (e.g.,
Rouge-L) (Lin et al., 2024c) or sentence-level con-
fidence scores (e.g., perplexity) (Ren et al., 2023).
However, these straightforward strategies neglect
highly concentrated semantic information within
the internal states of LLMs, and thus fail to capture
the fine-grained differences between responses.

Hence, we propose Internal Consistency Prob-
ing (ICP) to measure the semantic consistency in
the dense embedding space. For an instruction data
s “ pq, rq, q denotes the instruction, and r denotes
the target response. For instruction q, we first sam-
ple K responses rr1

1, ..., r
1
Ks from a base LLM and

apply few-shot demonstrations (Lin et al., 2024a)
to ensure the coherence of generated responses. For
K generated responses, we use the internal states
of the last token of each response in the last layer as
the final sentence embeddings E “ re1, e2, ..., eKs,
as it effectively captures the sentence semantics
(Azaria and Mitchell, 2023). We further utilize
differential entropy (DE) to assess the semantic
consistency in continuous embedding space, which
is the extension of discrete Shannon entropy:

DEpXq “ ´
ż

x
fpxq logpfpxqqdx. (1)

We process and treat sentence embeddings E as

16471



a multivariate Gaussian Distribution E „ Npµ,Σq.
Then, the differential entropy can be expressed as:

DEpEq “ 1

2
logpp2πeqddetpΣqq, (2)

where detpΣq represents the determinant of the
covariance matrix Σ, d is the dimension of the sen-
tence embedding, and e is the natural constant. Σ
denotes the covariance matrix that captures the rela-
tionship between K different sentence embeddings,
which takes the form:

Σ “ 1

K ´ 1

Kÿ

i“1

pei ´ µqpei ´ µqT . (3)

Finally, we measure semantic consistency using
DEpEq, term as Finspqq for a given instruction q
in data s. Also, DEpEq in Eq.(2) simplifies to:

Finspqq “ 1

2
logdetpΣq ` d

2
plog2π ` 1q “ 1

2

dÿ

i“1

λi ` G,

(4)

where λi denotes the i-th eigenvalue of the covari-
ance matrix Σ, which can be easily calculated by
singular value decomposition. G is a constant.

If the LLM is familiar with the given instruction,
the sentence embeddings of generated responses
will be highly correlated and the value of Finspqq
will be close to G. On the contrary, when the LLM
is indecisive, the model will generate multiple re-
sponses with different meanings leading to a signif-
icant value of Finspqq. In this way, we can exploit
the dense semantic information to effectively mea-
sure the LLM’s familiarity with the instruction.

3.2 Semantic Equivalence Identification
Another challenge is to estimate the knowledge in
the target response and measure the LLM’s famil-
iarity with it, since the target response can con-
tain expert-level and unfamiliar knowledge for the
LLM. Training LLMs on such data can encourage
hallucinations. Therefore, we propose Semantic
Equivalence Identification (SEI) to measure the
LLM’s familiarity with the target response by calcu-
lating how many generated responses are semanti-
cally equivalent to the target response. If the target
response and more generated responses convey the
same meaning, it indicates that the LLM is more
familiar with it, thereby training the LLM on this
target response will reduce hallucinations.

As the target response is manually labeled or
derived from advanced LLMs (e.g., GPT-4) instead

of generated by the LLM itself, the internal states
of the LLM cannot effectively represent the target
response. Thus, unlike utilizing internal states as
the proposed ICP, we calculate LLM’s familiarity
with target responses using the proposed seman-
tic clustering strategy. In detail, we first cluster
the generated responses that convey the same thing
into a semantic cluster. This is because these re-
sponses are often free-form, and multiple generated
responses can have the same meaning in differ-
ent ways. Therefore, we employ an off-the-shelf
natural language inference (NLI) model to cluster
these responses. NLI models are trained to infer
the logical entailment between an arbitrary pair of
sentences. Thus, NLI models are well-suited to
identify semantic equivalence, as two generated re-
sponses mean the same thing if you can entail (i.e.
logically imply) each from the other (Kuhn et al.,
2023; Jung et al., 2024). In this way, we can use an
NLI model to consider two responses that can be
entailed from each other as semantically equivalent
responses. Specifically, we test each pair pr1

i, r
1
jq

of i-th and j-th generated responses as:

Fequivalentpr1
i, r

1
jq “ I

!
LNLIpr1

i ñ r1
jq “ Lentailment ^

LNLIpr1
j ñ r1

iq “ Lentailment

)
,

(5)

where LNLI represents the predictions of the NLI
model, Lentailment means the label of entailment
relation. I is the indicator function.

In this way, we can identify the semantic equiva-
lence of each pair of generated responses and then
cluster these generated responses rr1

1, ..., r
1
Ks into

M different semantic clusters rc1, ..., cM s, where
m-th semantic cluster cm contains km generated
responses. Each semantic cluster c is a set of gen-
erated responses that convey the same thing. We
further apply the NLI model to determine which
semantic cluster the target response r fits in. Specif-
ically, we use the model to test the target response
r and each generated response r1

i P rr1
1, ..., r

1
Ks:

Fequivalentpr, r1
iq “ I

!
LNLIpr ñ r1

iq “ Lentailment ^
LNLIpr1

i ñ rq “ Lentailment

)
.

(6)

Using this method, we can determine how many
generated responses in a semantic cluster are se-
mantically equivalent to the target response r. For
semantic clusters rc1, ..., cM s, the counts of such
generated responses are rk1

1, k
1
2, ..., k

1
M s. We use

the votes in each semantic cluster to decide which
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cluster the target response belongs to:

Indexpctargetq “ argmaxprk
1
1

k1
,
k1
2

k2
, ...,

k1
M

kM
sq.

(7)

We calculate the ratio of the number of responses
ktarget in the target cluster ctarget to the total num-
ber of generated responses as Fresprq:

Fresprq “ ktargetřM
m“1 km

. (8)

According to Eq.(8), when the LLM is familiar
with the knowledge within the target response r,
most of the generated responses will have the same
meaning as target response r, thus the value of
Fresprq will be close to 1. On the contrary, if the
target response contains unseen knowledge, i.e.,
none of the generated responses have the same
meaning as it, the value of Fresprq will be close
to 0. To this end, we can effectively measure the
LLM’s familiarity with the target response.

3.3 Ranking, Selecting, and Training

To comprehensively estimate the knowledge and
consider both the LLM’s familiarity with the in-
struction and the target response, we calculate the
ratio between Finspqq and Fresprq for an instruc-
tion data pq, rq as the final score:

Ffamiliaritypq, rq “ Fresprq
Finspqq . (9)

This score effectively measures how well the
LLM understands the knowledge in instruction
data. High Ffamiliarity values indicate that the
knowledge in the data aligns well with the LLM,
as they show that the generated responses are very
consistent for a given instruction (i.e., low Finspqq
values) and the generated responses are very se-
mantically similar to the target response (i.e., high
Fresprq values). Based on the principle of filter-
ing unfamiliar instruction data, the data with high
Ffamiliarity should be selected to train the LLM.

However, our early experiments observed that se-
lecting instruction data solely based on the LLM’s
familiarity Ffamiliarity significantly reduces hallu-
cinations but hinders the model’s ability to follow
instructions. This is because considering only fa-
miliarity ignores other important characteristics of
instruction data, e.g., the complexity of the instruc-
tion and the fluency of the response. Therefore,

we further introduce an expert-aligned quality re-
ward model to measure the data quality. We use an
expert-labeled preference dataset (Liu et al., 2024b)
which contains 3,751 instruction data to train a re-
ward model (more details are shown in Appendix
B). To take both familiarity Ffamiliaritypq, rq and
quality Fqualitypq, rq into consideration, we define
the mixed rank R

piq
final for i-th data as the average

of the two ranks corresponding to the two metrics:

R
piq
final “ 1

2
pRpiq

familiarity ` R
piq
qualityq, (10)

where R
piq
familiarity and R

piq
quality refer to the ranks

of the i-th data point in the degree of familiarity
and quality. In this way, we can effectively consider
data quality and avoid unfamiliar data.

Finally, we rank all the instruction data with their
corresponding mixed rank Rfinal to select the top-
ranked data, e.g., selecting the top 5% data to apply
the supervised finetuning on the LLM. Based on
the proposed NOVA, we can use the suitable data to
effectively align LLMs to follow instructions and
hallucinate less during the instruction tuning stage.

4 Experiment

In this section, we conduct experiments and pro-
vide analyses to justify the effectiveness of NOVA.

4.1 Setup

Instruction Dataset. We conduct instruction tun-
ing with two different instruction datasets. Alpaca
(Taori et al., 2023) contains 52,002 samples that
are created by employing Text-Davinci-003 model
(Ouyang et al., 2022) and Self-instruct framework
(Wang et al., 2023c). Alpaca-GPT4 (Peng et al.,
2023) further employs more powerful GPT-4 (Ope-
nAI, 2023b) to get high-quality instruction data.
Evaluation. To evaluate our method comprehen-
sively, we select widely adopted benchmarks for
the targeted abilities. (1) Factuality hallucination
benchmark: BioGEN (Min et al., 2023) and Long-
Fact (Wei et al., 2024b); (2) Faithfulness hallucina-
tion benchmark: FollowRAG-Faithfulness (Dong
et al., 2024), including 4 different QA datasets;
(3) Instruction-following benchmark: MT-Bench
(Zheng et al., 2023) and FollowRAG-Instruction.
Comprehensive descriptions of tasks, datasets, and
evaluation metrics are detailed in Appendix A.
Baselines. We compare several strong baselines,
including (1) Vanilla Instruction Tuning: Vanilla
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Model BioGEN: LongFact: FollowRAG - Faithfulness;

FactScore Respond Facts Objects Concepts Avg. NaturalQA TriviaQA HotpotQA WebQSP Avg.

Alpaca
Vanilla - 100% 42.4 100.0 17.1 85.8 80.3 83.1 40.5 53.5 16.0 49.5 39.9
FLAME-DPOfact 47.2 100.0 15.6 88.3 81.2 84.8 43.5 57.0 17.5 52.0 42.5
SELF-EVAL 48.3 100.0 16.9 87.8 81.0 84.4 43.0 58.0 16.5 52.5 42.5

IFD - 5% 48.1 100.0 21.0 87.2 80.5 83.9 41.5 57.0 15.5 51.5 41.4
CaR - 5% 47.9 100.0 16.2 86.6 79.1 82.9 42.5 58.0 16.5 51.0 42.0
Nuggets - 5% 48.2 100.0 18.3 88.6 81.2 84.9 42.5 56.0 16.5 51.0 41.5
NOVA - 5% 50.3 100.0 17.9 92.4 82.7 87.6 46.5 60.0 19.0 53.5 44.8
∆ compared to Vanilla - 100% +7.9 - +0.8 +6.6 +2.4 +4.5 +6.0 +6.5 +3.0 +4.0 +4.9

IFD - 10% 43.2 100.0 20.5 86.3 79.2 82.8 40.5 60.0 17.5 53.5 42.9
CaR - 10% 45.2 100.0 24.3 87.1 81.3 84.2 44.0 59.5 18.0 48.5 42.5
Nuggets - 10% 45.8 100.0 27.1 86.7 80.4 83.6 43.0 58.5 17.0 52.5 42.8
NOVA - 10% 46.8 100.0 18.4 89.1 81.6 85.4 46.0 63.0 20.0 59.0 47.0
∆ compared to Vanilla - 100% +4.4 - +1.3 +3.3 +1.3 +2.3 +5.5 +9.5 +4.0 +9.5 +7.1

IFD - 15% 42.2 100.0 19.4 84.7 80.7 82.7 43.5 63.0 23.0 50.0 44.9
CaR - 15% 43.9 100.0 20.9 86.4 78.0 82.2 45.5 61.5 22.0 48.0 44.3
Nuggets - 15% 44.3 100.0 23.4 86.5 80.1 83.3 45.0 62.5 21.0 49.0 44.4
NOVA - 15% 45.9 100.0 18.7 88.1 82.1 85.1 48.5 68.0 25.0 52.0 48.4
∆ compared to Vanilla - 100% +3.5 - +1.6 +2.3 +1.8 +2.0 +8.0 +14.5 +9.0 +2.5 +8.5

Alpaca - GPT4
Vanilla - 100% 41.9 100.0 32.0 84.7 80.4 82.6 39.5 49.5 14.5 49.0 38.1
FLAME-DPOfact 46.3 100.0 27.6 87.3 84.1 85.7 42.0 55.5 16.5 52.0 41.5
SELF-EVAL 47.2 100.0 31.6 86.7 83.7 85.2 43.5 59.0 15.5 51.5 42.4

IFD - 5% 46.7 100.0 39.2 84.4 79.6 82.0 42.5 58.0 16.5 52.0 42.3
CaR - 5% 46.9 100.0 41.1 86.2 81.1 83.7 43.5 57.5 17.0 51.5 42.4
Nuggets - 5% 47.2 100.0 42.3 87.0 82.3 84.7 41.0 56.0 17.0 52.0 41.5
NOVA - 5% 50.5 100.0 33.8 90.1 85.2 87.7 45.0 62.0 20.5 53.5 45.3
∆ compared to Vanilla - 100% +8.6 - +1.8 +5.4 +4.8 +5.1 +5.5 +12.5 +6.0 +4.5 +7.2

IFD - 10% 43.6 100.0 39.2 86.5 77.8 82.2 40.5 56.0 16.0 49.5 40.5
CaR - 10% 45.9 100.0 38.0 87.1 78.3 82.7 43.0 55.0 15.5 48.0 40.4
Nuggets - 10% 46.8 100.0 35.7 88.2 80.1 84.2 41.5 54.5 16.5 50.0 40.6
NOVA - 10% 48.1 100.0 32.3 90.6 81.8 86.2 44.5 59.0 18.0 51.0 43.1
∆ compared to Vanilla - 100% +6.2 - +0.3 +5.9 +1.4 +3.6 +5.0 +9.5 +3.5 +2.0 +5.0

IFD - 15% 42.9 100.0 32.2 85.2 80.3 82.8 46.0 54.5 15.0 52.0 41.9
CaR - 15% 44.6 100.0 33.6 85.8 81.5 83.7 43.5 55.0 18.0 53.5 42.5
Nuggets - 15% 44.8 100.0 34.5 86.1 80.7 83.4 45.0 52.0 16.0 53.0 41.5
NOVA - 15% 46.9 100.0 32.1 88.0 82.5 85.3 49.5 56.5 18.5 55.0 44.9
∆ compared to Vanilla - 100% +5.0 - +0.1 +3.3 +2.1 +2.7 +10.0 +7.0 +4.0 +6.0 +6.8

Table 1: Results on three hallucination benchmarks. : indicates the factuality hallucination benchmark. ; indicates
the faithfulness hallucination benchmark. We conduct the experiments based on LLaMA-3-8B.

- 100% fine-tunes the model on the whole instruc-
tion dataset; (2) Instruction Data Filtering Meth-
ods: IFD (Li et al., 2024a) proposes instruction-
following difficulty to select a subset of instruction
data. CaR (Ge et al., 2024) simultaneously con-
siders the data quality and diversity by introducing
two scoring methods. Nuggets (Li et al., 2024b)
focuses on selecting high-quality data by identify-
ing samples that notably boost the performance of
different tasks after being learned as one-shot in-
stances; (3) RL-based Methods: FLAME-DPOfact

(Lin et al., 2024b) introduces atomic fact decompo-
sition and retrieval augmented claim verification to
construct preference data and apply DPO. SELF-
EVAL (Zhang et al., 2024b) leverages the self-
evaluation capability of LLMs and employs GPT-
3.5 to create preference data, aligning the LLM
with DPO. We apply these RL-based methods after
tuning LLMs on the whole instruction dataset.

Implementation Details. Our main experiments
are conducted on LLaMA-3-8B and LLaMA-3-
70B (Grattafiori et al., 2024). More implementation
details are shown in Appendix B, e.g., the training

of quality reward model and hyperparameters.

4.2 Main Results

NOVA Significantly Reduces Hallucinations. As
shown in Table 1, NOVA shows consistent and
significant improvements on three hallucination
benchmarks measuring factuality and faithfulness.
Compared to indiscriminately using the whole in-
struction dataset (i.e., Vanilla - 100%), using sam-
ples selected by NOVA to train LLMs can improve
3.5-8.6% on BioGEN, 2.0-5.1% on LongFact, and
4.9-8.5% on FollowRAG-Faithfulness. This is be-
cause NOVA effectively filters out the unfamiliar
instruction data and avoids training LLMs on these
data thereby reducing the hallucinations. Com-
pared to instruction data filtering methods that fo-
cus on data quality, like IFD, our method consis-
tently improves the performance across different se-
lected sample ratios (5-15%) on three benchmarks.
Meanwhile, these data selected by quality-focused
methods may present unfamiliar knowledge to the
LLM and encourage hallucinations on LongFact.
On the contrary, NOVA aims to identify the sam-
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Model MT-Bench FollowRAG-Intruction

Alpaca
Vanilla - 100% 51.9 38.7
FLAME-DPOfact 46.7 39.2
SELF-EVAL 48.3 38.5

IFD - 5% 60.1 39.6
CaR - 5% 56.6 41.4
Nuggets - 5% 60.0 40.6
NOVA - 5% 60.5 39.1
∆ compared to Vanilla - 100% +8.6 +0.4

IFD - 10% 57.2 40.4
CaR - 10% 58.3 42.3
Nuggets - 10% 58.2 41.1
NOVA - 10% 56.6 38.8
∆ compared to Vanilla - 100% +4.7 +0.1

IFD - 15% 56.0 40.2
CaR - 15% 57.4 41.0
Nuggets - 15% 57.0 40.6
NOVA - 15% 57.2 40.1
∆ compared to Vanilla - 100% +5.3 +1.4

Alpaca - GPT4
Vanilla - 100% 64.3 36.9
FLAME-DPOfact 56.2 37.2
SELF-EVAL 53.1 36.5

IFD - 5% 65.0 37.0
CaR - 5% 65.4 38.0
Nuggets - 5% 66.2 38.5
NOVA- 5% 64.6 37.8
∆ compared to Vanilla - 100% +0.3 +0.9

IFD - 10% 65.0 37.8
CaR - 10% 65.8 38.0
Nuggets - 10% 67.5 38.0
NOVA - 10% 64.6 39.1
∆ compared to Vanilla - 100% +0.3 +2.1

IFD - 15% 62.3 37.9
CaR - 15% 61.1 38.1
Nuggets - 15% 66.5 38.0
NOVA - 15% 64.5 37.5
∆ compared to Vanilla - 100% +0.2 +0.5

Table 2: Results on two instruction-following bench-
marks implemented on LLaMA-3-8B.

ples that align well with LLM’s knowledge, helping
the LLM to hallucinate less. NOVA also achieves
better performance than RL-based methods with-
out introducing additional preference data. These
findings underline the effectiveness of our method
in aligning LLMs to hallucinate less.

NOVA Maintains a Good Balance between Fol-
lowing Instructions and Reducing Hallucina-
tions. As shown in Table 2, NOVA achieves a
better instruction-following ability compared to
vanilla tuning methods, especially when the LLM
is trained on Alpaca. It shows that NOVA can ef-
fectively align LLMs to follow instructions. In
some cases, our method surpasses data filtering
methods that enhance instruction-following ability,
demonstrating its effectiveness in identifying suit-
able data for LLMs. Unlike RL-based methods that
weaken the model’s instruction-following ability,
our method shows superior instruction-following
ability while greatly reducing hallucinations.

NOVA Mitigates Overconfidence Phenomenon.
We select 15 samples with the lowest scores for
each model from LongFact-Objects and calculate

Vanilla IFD CaR Nuggets SELF-EVAL FLAME-DPO NOVA
1.0
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Figure 3: Average perplexity score of 15 samples
with the lowest scores for each model from LongFact-
Objects. Models are trained on Alpaca-GPT4.

Model BioGEN MT-Bench

NOVA - 5% - 70B 60.9 74.3
-w/o. Data Filtering 53.7 73.2
NOVA - 5% - 8B 50.5 64.6
-w/o. Data Filtering 41.9 64.3
-w/o. ICP 47.6 64.1
-w/o. SEI 48.3 63.8
-w/o. Quality RM 55.6 48.6
-w/o. ICP & SEI 43.7 65.2

Table 3: Results of ablation and scalability study. We
report FactScore results on BioGEN. Models are trained
on Alpaca-GPT4. RM represents the reward model.

its average perplexity on these samples. We find
that NOVA generates a high perplexity score (i.e.,
low sentence-level confidence score) on these bad
cases as shown in Figure3, showing that NOVA mit-
igates overconfidence in these false statements.

4.3 Analysis

Ablation Study. We conduct the ablation study
in Table 3. We can find that the proposed ICP and
SEI can both help LLMs to reduce hallucinations.
Also, considering only familiarity (i.e., -w/o. Qual-
ity RM) ignores other important characteristics of
instruction data and limits the instruction-following
ability of LLMs. Thus, even if considering famil-
iarity alone would greatly reduce hallucinations,
it is still necessary to introduce a quality reward
model to maintain a good balance between follow-
ing instructions and reducing hallucinations.
Scalability Study. We implement our method on
the LLaMA-3-70B in Table 3 to explore whether
NOVA can fit in larger LLMs. Results indicate that
NOVA scales effectively to larger-scale models.
Case Study. We conduct a case study in Table 4 to
visually show the advantages of NOVA. Compared
to using the whole training data, our method en-
sures the statements are correct and comprehensive,
and the generated text is fluent and natural.
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Instruction: Who is the character Geralt of Rivia from The Witcher series?
Vanilla - 100%: Geralt of Rivia is a character and the main protagonist of
the fantasy novel series "The Witcher" written by Andrzej Sapkowski (✓).
He is a witcher, a rare human mutation born with powers (✗) to fight against
the monsters that threaten the world of the living (✗). Geralt is known for his
intelligence, skill in combat, and his use of magical artifacts, particularly his
silver sword (✓). Throughout the series, Geralt faces numerous challenges and
battles as he journeys across the Continent, accompanied by his friends and
lovers, in a quest to protect the world and the people he cares about (✓).

NOVA- 5%: Geralt of Rivia is a character from The Witcher series, a fantasy
franchise that includes a series of novels, short stories, and video games (✓).
He is a witcher, a member of a guild of professional monster hunters, and his
role is to protect the innocent from supernatural threats (✓). Geralt is a complex
and brooding character, with a strong sense of honor and duty, and a deep
understanding of the world around him (✓). He is often portrayed as a loner,
but he is also capable of forming close relationships with others, particularly
with those who share his beliefs and values (✓).

Table 4: Case study from LongFact-Objects. We high-
light the statements that share the same semantics using
the same color. Models are trained on Alpaca-GPT4.

Model BioGEN MT-Bench

NOVA - 5% - Alpaca-GPT4 50.5 64.6
-w/o ICP

-w. Confidence Score (Perplexity) 48.4 62.2
-w. Lexical Similarity (Rouge-L) 47.9 61.5
-w. Using Embedding Model 49.8 63.9

-w/o SEI
-w. K-means Clustering via Internal States 47.8 60.2
-w. K-means Clustering via Embedding Model 48.5 63.2
-w Voting without Semantic Clustering 47.3 60.8

Table 5: Evaluation results of NOVA that employ vari-
ous methods for measuring the LLM’s familiarity. We
report FactScore results on BioGEN.

Variant Methods Testing. As shown in Table 5,
we further explore the variant methods in measur-
ing the LLM’s familiarity. For ICP, we separately
replace it with sentence-level confidence (Perplex-
ity) and lexical metrics (Rouge-L). Specifically, we
use the average perplexity score of generated re-
sponses to represent sentence-level confidence and
use the average Rouge-L score between each pair
of two generated responses as lexical metrics. How-
ever, these straightforward strategies neglect highly
concentrated semantic information within the inter-
nal states, and thus fail to capture the fine-grained
differences between responses and limit the final
performance. We also explore the effectiveness
of an advanced embedding model, we use TEXT-
EMBEDDING-3-LARGE2 from OpenAI and set the
dimension as 4096. We find that using the internal
states achieves better performance, showing the ef-
fectiveness of our method. This is because internal
states may reflect more dense and fine-grained in-
formation from LLM itself that may have been lost
in the decoding phase of the responses. For SEI,
we explore whether using k-means clustering based
on internal states computed as ICP and sentence
embedding from TEXT-EMBEDDING-3-LARGE can

2https://platform.openai.com/docs/guides/embeddings

Ours Wins Tie Vanilla Wins

Figure 4: Human evaluation across four key dimensions.
The models are trained on Alpaca-GPT4.

identify suitable semantic clusters. We can find that
our method achieves better performance because
the k-means algorithm is not based on semantic
equivalence to get the clusters. Also, the internal
states of LLMs cannot efficiently represent the tar-
get response, as this response is manually labeled
or generated by other advanced LLMs instead of
generated by the LLM itself. We also find that sim-
ply voting based on the textual contents instead of
semantic clustering limits the final performance, as
these responses are often free-form and can have
the same meaning in different ways.
Discussion. We conduct the parameter study to test
the robustness of our method in Appendix C. We
also conduct a transferability study in Appendix D
and find NOVA can fit in other LLMs. We further
explore the design of our method in Appendix E
and find our design is effective. We conduct a
case study in Appendix G to qualitatively show the
difference between samples with different scores.
Human Evaluation. We conduct a human evalua-
tion on the 50 generated biographies from BioGEN
across four key dimensions: factuality, helpfulness,
relevance, and naturalness. For each comparison,
three options are given (Ours Wins, Tie, and Vanilla
Fine-tuning Wins) and the majority voting deter-
mines the final result. Figure 4 shows that our
method significantly reduces hallucinations and
effectively follows instructions with high-quality
responses. Details can be found in Appendix F.

5 Conclusion

In this paper, we introduce NOVA, a novel frame-
work designed to identify high-quality data that
aligns well with the LLM’s learned knowledge to
reduce hallucination. NOVA includes Internal Con-
sistency Probing and Semantic Equivalence Identi-
fication, which are designed to separately measure
the LLM’s familiarity with the given instruction
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and target response, then prevent the model from
being trained on unfamiliar data, thereby reduc-
ing hallucinations. Lastly, we introduce an expert-
aligned reward model, considering characteristics
beyond just familiarity to enhance data quality. By
considering data quality and avoiding unfamiliar
data, we can use the selected data to effectively
align LLMs to follow instructions and hallucinate
less in the instruction tuning stage. Experiments
and analysis show the effectiveness of NOVA.

Limitations

Although empirical experiments have confirmed
the effectiveness of the proposed NOVA, two major
limitations remain. Firstly, our proposed method
requires LLMs to generate multiple responses for
the given instruction, which introduces additional
execution time. However, it is worth noting that
this additional execution time is used to perform
offline data filtering, our proposed method does not
introduce additional time overhead in the inference
phase. Additionally, NOVA is primarily used for
single-turn instruction data filtering, thus exploring
its application in multi-turn scenarios presents an
attractive direction for future research.
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Appendix

A Evaluation

In this section, we will detail the benchmarks and
evaluation metrics.

BioGEN. (Factuality) This benchmark requires
generating short biographies for particular people
entities, with a total of 500 samples. The task of
generating people biographies is effective, because
generations consist of verifiable statements rather
than debatable or subjective ones, and the scope is
broad (i.e., covering diverse nationalities, profes-
sions, and levels of rarity). To evaluate each gener-
ated response, we follow the FactScore procedure
to extract the number of correct and incorrect facts.
Following Min et al. (2023), we first employ GPT-
3.5-Turbo-0125 to break a generation into a series
of atomic facts and utilize GPT-3.5-Turbo-0125 to
compute the percentage of atomic facts supported
by a reliable knowledge source. The percentage of
the correct statements (% FactScore), the number
of generated statements (# Facts), and the ratio of
generations that do not abstain from responding (%
Respond) are adopted as the evaluation metrics.

LongFact. (Factuality) LongFact requests de-
tailed descriptions for a queried entity and expects a
document-level response that is typically very long,
often exceeding a thousand tokens. Specifically,
LongFact consists of two subtasks: LongFact-
Concepts and LongFact-Objects, separated based
on whether the questions ask about concepts or
objects. Following Cheng et al. (2024), we use
120 samples of each task for evaluation. The eval-
uation process is similar to BioGEN. We employ
GPT-3.5-Turbo-0125 and report the FactScore of
LongFact-Concepts and LongFact-Objects, termed
as % Concepts and % Objects.

FollowRAG. (Faithfulness and Instruction Fol-
lowing) FollowRAG aims to assess the model’s
ability to follow user instructions in complex
multi-document contexts, covering 22 fine-grained
atomic instructions across 6 categories. The queries
in FollowRAG are sourced from 4 QA datasets
across NaturalQA (Kwiatkowski et al., 2019), Triv-
iaQA (Joshi et al., 2017), HotpotQA (Yang et al.,
2018), and WebQSP (tau Yih et al., 2016). It
collects and verifies definitions and examples of
atomic instructions using rules (e.g., code), exclud-
ing those irrelevant to retrieval-augmented gener-
ation (RAG) scenarios. FollowRAG identifies 22

types of instruction constraints, encompassing lan-
guage, length, structure, and keywords. Thus, it is
suitable to use FollowRAG to evaluate the model’s
ability to follow user instructions. Utilizing the ver-
ifiable nature of designed atomic instructions, Fol-
lowRAG automates the verification of the model’s
adherence to each instruction through code val-
idation. We calculate the average pass rate for
each atomic instruction across all samples to deter-
mine the instruction-following score and name this
task as FollowRAG-Intruction. Also, FollowRAG
provides retrieved passages as contextual informa-
tion to evaluate the model’s faithfulness. We name
this task as FollowRAG-Faithfulness. Under new
instruction constraints, the model’s target output
differs from the gold answers in the original QA
dataset, rendering traditional metrics like EM in-
effective. Following Dong et al. (2024), we use
the original gold answers as a reference and uti-
lize GPT-4o-2024-05-13 to evaluate whether the
model’s outputs address the questions. The scoring
criteria are as follows: Completely correct (1 point),
Partially correct (0.5 points), Completely incorrect
(0 points). The average score of all samples is taken
as the final score for FollowRAG-Faithfulness.

MT-Bench. (Instruction Following) MT-Bench
is a benchmark consisting of 80 questions, designed
to test instruction-following ability, covering com-
mon use cases and challenging questions. It is also
carefully constructed to differentiate chatbots based
on their core capabilities, including writing, role-
play, extraction, reasoning, math, coding, STEM
knowledge, and social science. For evaluation, MT-
Bench prompts GPT-4 to act as judges and assess
the quality of the models’ responses. For each turn,
GPT-4 will give a score on a scale of 10. Notably,
since we only fine-tune on single-turn instruction
data (e.g., Alpaca and Alpaca-GPT4), the evalua-
tion is restricted to Turn 1 of MTBench, similar to
previous studies (Li et al., 2024b).

B Implementation Details

Hyperparameters and Devices. We use Adam
optimizer (Kingma and Ba, 2017) to train our
model, with a 2 ˆ 10´5 learning rate and a batch
size of 16, steers the training across three epochs.
We set the maximum input length for the models
to 1024. To get the generated initial responses for
knowledge estimation, we set the temperature as
0.7 and set hyperparameter K as 10 to generate 10
responses for the given instruction q. We conduct
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our experiments on NVIDIA A800 80G GPUs with
DeepSpeed+ZeRO3 and BF16.

Training of NLI Model. Natural language in-
ference (NLI) is a well-studied task in the NLP
community. We employ a well-trained NLI model
DeBERTa-large-mnli3 (He et al., 2021) (0.3B) as
our model to conduct the experiments and report
the results. DeBERTa-large-mnli is the DeBERTa
large model fine-tuned with multi-genre natural lan-
guage inference (MNLI) corpus (Williams et al.,
2018), which is a crowd-sourced collection of
433k sentence pairs annotated with textual entail-
ment information. DeBERTa-large-mnli shows ad-
vanced performance in various NLI benchmarks
e.g., 91.5% accuracy on MNLI test set.

Traning of Quality Reward Model. Our train-
ing data is derived from an expert-revised dataset
(Liu et al., 2024b), which consists of 3,751 instruc-
tion pairs from Alpaca refined by linguistic experts
to enhance fluency, accuracy, and semantic coher-
ence between instructions and responses. Mean-
while, Liu et al. (2024b) employs the edit distance
metric (i.e., Levenshtein distance) to assess the
quality of the original instruction pair and revised
instruction pair. Thus, we can treat this edit dis-
tance metric as the target reward value and use the
point-wise loss function to train the reward model.
Specifically, following Ge et al. (2024), we con-
catenate instruction pairs as text inputs and use
the given reward value in the dataset as the tar-
get outputs. We use the average pooling strategy
and introduce the additional feed-forward layer to
transform the hidden states of the model into a
scalar. Then we use Mean Squared Error as the
loss function to train the reward model. We se-
lect DeBERTa-large (He et al., 2021) (0.3B) as our
model. We use Adam optimizer to train our model,
with a 1.5 ˆ 10´5 learning rate and a batch size of
8. We train our model on a single NVIDIA A800.

Prompt Template. We use the prompt template
from Alpaca (Taori et al., 2023). We keep the same
template in training and inference.

C Parameter Study

We explore the effects of two important hyperpa-
rameters in our method: the number of generated
responses K and the temperature T during the re-
sponse generation. As shown in Figure 5, increas-
ing the number of generated responses improves

3https://huggingface.co/microsoft/deberta-large-mnli
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Figure 5: FactScore results on BioGEN with the differ-
ent number of generated responses K. We conduct the
experiments based on LLaMA-3-8B.

Model Dataset BioGEN

NOVA Alpaca 50.3
- T “ 0 Alpaca 43.2
- T “ 0.2 Alpaca 49.3
- T “ 0.7 (Ours) Alpaca 50.3
- T “ 1.0 Alpaca 50.1
- T “ 1.3 Alpaca 49.7
NOVA Alpaca-GPT4 50.5
- T “ 0 Alpaca-GPT4 43.6
- T “ 0.2 Alpaca-GPT4 48.9
- T “ 0.7 (Ours) Alpaca-GPT4 50.5
- T “ 1.0 Alpaca-GPT4 49.8
- T “ 1.3 Alpaca-GPT4 49.5

Table 6: FactScore results on BioGEN with different
temperature T during the response generation. We con-
duct the experiments on LLaMA-3-8B and use 5% se-
lected instruction data from different datasets.

the performance of our method, but when the num-
ber of generated responses is greater than 10, the
performance will be stable. Therefore, we empiri-
cally recommend setting the number of generated
responses K to 10, which makes our method ef-
fective and efficient. For the temperature T , we
find that the performance of the model improves
as long as the temperature T is chosen wisely and
not at an extreme value (e.g., 0, as this would result
in multiple generated responses that are exactly
the same). We recommend that the temperature
take a moderate value, as this ensures both that
there is diversity in the responses generated and
that the generated responses do indeed match the
model’s perceptions (rather than being too random).
Overall, our method NOVA is robust to these hy-
perparameters, making our method easy to follow.
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Model BioGEN: LongFact: FollowRAG - Faithfulness;

FactScore Respond Facts Objects Concepts Avg. NaturalQA TriviaQA HotpotQA WebQSP Avg.

LLaMA-1
Vanilla - 100% 38.6 100.0 16.6 84.3 78.2 81.3 37.5 50.5 16.0 47.5 37.9
FLAME-DPOfact 41.2 100.0 14.8 86.7 81.2 84.0 41.5 55.0 21.5 52.5 42.6
SELF-EVAL 41.8 100.0 15.7 87.0 80.8 83.9 42.5 56.5 22.5 53.5 43.8

IFD - 5% 40.2 100.0 20.1 83.2 80.4 81.8 38.0 53.5 18.5 49.0 39.8
CaR - 5% 39.6 100.0 18.2 85.9 80.1 83.0 38.0 53.0 19.0 50.5 40.1
Nuggets - 5% 39.3 100.0 19.4 85.1 77.3 81.2 39.5 54.5 20.0 50.0 41.0
NOVA - 5% 43.6 100.0 21.5 88.1 82.5 85.3 44.5 58.5 24.0 55.5 45.6
∆ compared to Vanilla - 100% +5.0 - +4.9 +3.8 +4.3 +4.1 +7.0 +8.0 +8.0 +8.0 +7.7

IFD - 10% 40.7 100.0 19.2 85.2 80.3 82.8 40.0 54.5 20.0 51.0 41.4
CaR - 10% 40.3 100.0 21.1 83.4 79.2 81.3 41.0 52.0 18.0 49.5 40.1
Nuggets - 10% 41.0 100.0 18.8 84.2 78.6 81.4 39.5 53.0 17.5 51.0 40.3
NOVA - 10% 43.2 100.0 20.7 87.6 83.2 85.4 43.5 59.5 22.5 53.0 44.6
∆ compared to Vanilla - 100% +4.6 - +4.1 +3.3 +5.0 +4.2 +6.0 +9.0 +6.5 +5.5 +6.7

IFD - 15% 39.2 100.0 18.7 86.1 81.1 83.6 39.5 52.0 17.5 49.5 39.6
CaR - 15% 40.2 100.0 19.3 84.2 80.4 82.3 38.0 51.5 17.0 48.0 38.6
Nuggets - 15% 40.9 100.0 18.1 83.3 80.0 81.7 40.0 52.5 15.5 50.5 39.6
NOVA - 15% 44.1 100.0 19.4 89.6 83.7 86.7 42.5 56.5 23.5 54.5 44.3
∆ compared to Vanilla - 100% +5.5 - +2.8 +5.3 +5.5 +5.4 +5.0 +6.0 +7.5 +7.0 +6.4

Qwen-2
Vanilla - 100% 40.3 100.0 17.3 83.4 80.2 81.8 39.5 57.5 18.5 49.0 41.1
FLAME-DPOfact 47.1 100.0 16.9 87.8 82.7 85.3 44.5 58.0 20.5 53.0 44.0
SELF-EVAL 46.8 100.0 14.2 88.2 81.6 84.9 43.5 59.0 21.0 53.0 44.1

IFD - 5% 44.2 100.0 16.5 85.2 81.2 83.2 42.5 56.5 20.5 53.5 43.3
CaR - 5% 45.7 100.0 18.6 84.1 81.5 82.8 44.5 55.5 21.0 52.0 43.3
Nuggets - 5% 46.6 100.0 17.8 84.7 81.0 82.9 43.0 57.5 21.5 52.5 43.6
NOVA - 5% 49.1 100.0 18.3 90.2 83.2 86.7 46.0 59.6 23.5 55.5 46.1
∆ compared to Vanilla - 100% +8.8 - +1.0 +6.8 +3.0 +4.9 +6.5 +2.1 +5.0 +6.5 +5.0

IFD - 10% 44.5 100.0 17.8 84.2 80.5 82.4 41.5 59.5 19.5 51.0 42.9
CaR - 10% 45.2 100.0 20.3 84.5 79.8 82.2 42.5 60.0 18.5 53.0 43.5
Nuggets - 10% 46.1 100.0 23.5 85.2 79.7 82.5 42.0 60.0 20.0 51.5 43.4
NOVA - 10% 47.5 100.0 18.6 89.6 83.5 86.6 45.0 62.0 21.5 53.5 45.5
∆ compared to Vanilla - 100% +7.2 - +1.3 +6.2 +3.3 +4.7 +5.5 +4.5 +3.0 +4.5 +4.4

IFD - 15% 43.7 100.0 19.2 82.5 79.5 81.0 42.0 61.5 18.5 52.0 43.5
CaR - 15% 44.8 100.0 20.8 81.2 81.3 81.3 43.0 62.5 19.5 53.0 44.5
Nuggets - 15% 45.7 100.0 21.7 80.8 80.1 80.5 40.5 62.5 20.0 52.5 43.9
NOVA - 15% 47.2 100.0 19.3 88.8 82.9 85.9 44.5 64.5 22.0 54.0 46.3
∆ compared to Vanilla - 100% +6.9 - +2.0 +5.4 +2.7 +4.0 +5.0 +5.0 +3.5 +5.0 +5.2

Table 7: Results on three hallucination benchmarks. : indicates the factuality hallucination benchmark. ; indicates
the faithfulness hallucination benchmark. We conduct the experiments based on Alpaca dataset.

D Transferability Study

To verify the transferability of the NOVA method,
we conducted experiments on different foundation
models using the Alpaca instruction dataset shown
in Table 7 and Table 8. We select LLaMA (Touvron
et al., 2023) and Qwen-2 (Yang et al., 2024) at
the 7B size as the new base models. We aim to
gain deeper insights into the applicability of the
NOVA method across different models, providing
a reference for further research and applications.
We find that the NOVA method is also applicable
to other models, showing strong transferability and
robustness to other models and further research.
Compared to other baselines, NOVA significantly
reduces hallucinations and keeps a strong ability to
follow instructions.

E Design Exploration

The Design of NLI Model We further explore
the effects of the NLI model on the final perfor-
mance of NOVA. We first attempt to analyze the

effect of the size of the model on the final results.
Specifically, we introduce DeBERTa-base-mnli4,
DeBERTa-xlarge-mnli5 and DeBERTA-xxlarge-
mnli6. As shown in Table 9, we can find that
increasing the size of the NLI model can pro-
vide some improvement in the final result, espe-
cially when changing the DeBERTa-base-mnli to
DeBERTa-large-mnli. However, continuing to in-
crease the model parameters did not have a signif-
icant impact on the final performance. Therefore,
in order to balance the performance and the infer-
ence time of NLI models, we select the DeBERTa-
large-mnli to report the final results in our paper.
Meanwhile, we further explore whether we use the
advanced LLMs (e.g., GPT-4o and GPT-3.5-Turbo)
to directly identify the semantic equivalence and
get the correct semantic clusters. Specifically, we
use the prompt shown in Figure 6 to test the gener-

4https://huggingface.co/microsoft/deberta-base-mnli
5https://huggingface.co/microsoft/deberta-xlarge-mnli
6https://huggingface.co/microsoft/deberta-v2-xxlarge-

mnli
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Model MT-Bench FollowRAG-Intruction

LLaMA-1
Vanilla - 100% 47.8 37.7
FLAME-DPOfact 40.6 37.5
SELF-EVAL 42.2 38.1

IFD - 5% 48.3 37.8
CaR - 5% 50.1 38.2
Nuggets - 5% 48.6 38.0
NOVA - 5% 49.8 38.1
∆ compared to Vanilla - 100% +2.0 +0.4

IFD - 10% 47.9 38.6
CaR - 10% 49.5 38.1
Nuggets - 10% 48.4 38.7
NOVA - 10% 49.3 39.0
∆ compared to Vanilla - 100% +1.5 +1.3

IFD - 15% 48.5 38.2
CaR - 15% 50.3 37.6
Nuggets - 15% 49.5 38.6
NOVA - 15% 48.3 38.0
∆ compared to Vanilla - 100% +0.5 +0.4

Qwen-2
Vanilla - 100% 50.2 38.2
FLAME-DPOfact 47.8 38.7
SELF-EVAL 49.5 37.3

IFD - 5% 59.5 39.2
CaR - 5% 61.2 39.5
Nuggets - 5% 60.3 40.2
NOVA - 5% 60.8 39.7
∆ compared to Vanilla - 100% +10.6 +1.5

IFD - 10% 59.8 40.1
CaR - 10% 60.1 40.5
Nuggets - 10% 58.8 41.1
NOVA - 10% 58.4 40.1
∆ compared to Vanilla - 100% +8.2 +1.9

IFD - 15% 59.3 40.5
CaR - 15% 57.5 39.8
Nuggets - 15% 58.5 40.3
NOVA - 15% 59.2 40.0
∆ compared to Vanilla - 100% +9.0 +1.8

Table 8: Results on two instruction-following bench-
marks based on Alpaca dataset.

ated responses and the target response by querying
the advanced LLMs to identify semantic equiva-
lence. We use the same method as SEI, utilizing the
outputs of advanced LLMs to derive semantic clus-
ters and calculate the score of Fresprq. As shown
in Table 9, the direct application of results from ad-
vanced LLMs proves effective in identifying seman-
tic equivalence. Nevertheless, using NLI models
delivers competitive or superior final performance
while avoiding API-related costs. Consequently,
employing NLI models to identify semantic equiv-
alence is both efficient and effective, substantiating
the efficacy of our designed SEI approach.
The Design of Quality Reward Model We also
explore the effectiveness of the quality reward
model. We introduce UltraFeedback (Cui et al.,
2024) and sample 100 instructions and their cor-
responding responses as the test set (we find that
most of the selected data are in English, but some of
the selected instruction types are translation tasks,
so a few data contain Chinese responses). Specifi-

Model Size BioGEN

Alpaca
DeBERTa-base-mnli 0.1B 49.7
DeBERTa-large-mnli 0.3B 50.3
DeBERTa-xlarge-mnli 0.7B 50.1
DeBERTa-xxlarge-mnli 1.3B 50.5
GPT-3.5-Turbo-0125 unknown 49.8
GPT-4o-2024-05-13 unknown 50.2

Alpaca- GPT4
DeBERTa-base-mnli 0.1B 49.4
DeBERTa-large-mnli 0.3B 50.5
DeBERTa-xlarge-mnli 0.7B 51.2
DeBERTa-xxlarge-mnli 1.3B 50.3
GPT-3.5-Turbo-0125 unknown 49.2
GPT-4o-2024-05-13 unknown 50.0

Table 9: FactScore results on BioGEN with different
models. We conduct experiments on LLaMA-3-8B and
use selected 5% data from different datasets.

Model Accuracy

Our Used Reward Model 92.0
GPT-3.5-Turbo-0125 85.0
GPT-4o-2024-05-13 90.0

Table 10: Accuracy of our used reward model and other
advanced LLMs on the constructed test set.

cally, for each instruction, we randomly select 2 re-
sponses and determine the ranking between the re-
sponses based on their labeled scores of instruction-
following, honesty, truthfulness, and helpfulness.
Only if all four scores are higher will the response
be considered a high-quality response. Meanwhile,
we involve two Ph.D. students to conduct the hu-
man evaluation to ensure the correctness of the
response ranking of each sample. Afterwards, we
take the instructions and the responses as inputs
to each model, and let the model determine the
ranking between the responses and calculate the
accuracy of the model’s prediction of the ranking.
We compare our used Quality Reward Model with
GPT-3.5-Turbo-0125 and GPT-4o-2024-05-13. We
use the same prompt for each model as Ge et al.
(2024). As shown in Table 10, our reward model
achieves better performance, showing the effec-
tiveness of our method. Despite GPT-4o’s strong
alignment with human preferences in most gen-
eral tasks, our reward model trained on the expert-
revised preference dataset can perform better, high-
lighting the subtle gap between expert preferences
and advanced GPT-4o preferences.
The Design of Obtaining Sentence Embedding.
Alpaca-GPT4 For K generated responses, we use
the internal states of the last token of each response
in the last layer as the final sentence embeddings
E “ re1, e2, ..., eKs, as it effectively captures the
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The Prompt for Identifying the Semantic Equivalence

Please compare the following two sentences and determine whether they are semantically the same.
If they are semantically identical, respond with "Identical"; if not, respond with "Different." Consider
the meaning, context, and any implicit nuances of the sentences.

Sentence 1: {Sentence 1}
Sentence 2: {Sentence 1}

Provide your judgment below:

Figure 6: The prompt for identifying the semantic equivalence.

Model BioGEN MT-Bench

NOVA - 5% 50.5 64.6
-w. Average Pooling 49.5 64.2
-w. The First Layer 48.9 63.7
-w. The Middle Layer 49.8 64.4
-w. The Last Layer (Ours) 50.5 64.6

Table 11: Evaluation results of NOVA that employ var-
ious methods for obtaining sentence embedding. We
conduct the experiments based on LLaMA-3-8B and the
Alpaca-GPT4 dataset. We report the FactScore results
on BioGEN.

sentence semantics (Azaria and Mitchell, 2023).
We further explore the different ways to obtain sen-
tence embedding. Specifically, we first average all
the internal states of tokens in the sentence to obtain
the sentence embedding (named Average Pooling),
which is an intuitive method to get the sentence
embedding for decoder-only models. As shown in
Table 11, we can find the design of NOVA achieves
better performance in both reducing hallucinations
and following instructions, showing the effective-
ness of our designed SEI. We further explore the
internal states from which layer in the LLMs can be
used to effectively measure the consistency. Except
for the internal states from the last layer, we select
both internal states from the first layer and internal
states from the middle layer (layer 16 for LLaMA-
3-8B), and use the internal states of the last token
to represent the sentence embeddings. We can find
that using sentence embedding in the shallow layer
yields inferior performance compared to using sen-
tence embedding in the deep layers, as the shallow
layer may not effectively model the rich semantic
information. Overall, extensive experiments show
that our design of NOVA is sound and effective.
The Design of Using Few-shot Demonstration.
As detailed in Sec. 3.1, we sample K responses
rr1

1, ..., r
1
Ks from a base LLM with few-shot demon-

Model BioGEN MT-Bench

NOVA - LLaMA-3-8B - 5% 50.3 60.5
-w/o. Few-shot Demonstrations 50.1 59.8
NOVA - LLaMA-1-7B - 5% 43.6 49.8
-w/o. Few-shot Demonstrations 41.9 49.2

Table 12: The effects of used few-shot demonstrations.
We conduct the experiments based on two base models
and the Alpaca dataset. We report the FactScore results
on BioGEN.

strations (Lin et al., 2024a) to ensure the coherence
of generated responses. We use the same demon-
strations as Lin et al. (2024a). We further con-
duct experiments to explore the effects of these
used demonstrations. We find that using few-shot
demonstrations in the process of generating re-
sponses for a given instruction allows the base
LLMs to better express what they have learned in
the pre-training stage. In turn, this will enable ICP
and SEI to better estimate the knowledge contained
in the instruction data and thus better identify the
high-quality instruction data that aligns well with
the LLM’s learned knowledge to reduce halluci-
nation and improve instruction-following ability.
At the same time, we find that this strategy im-
proves more for base models with poor capabilities
(e.g., LLaMA-1-7B), which is due to the fact that
a poor base LLM may hold relevant knowledge in
response to a query, yet occasionally falters in con-
veying accurate information (Zhang et al., 2024b).

F Human Evaluation

During the human evaluation, the participants fol-
low the principles in Figure 7 to make the decision.
For each comparison, three options are given (Ours
Wins, Tie, and Vanilla Fine-tuning Wins) and the
majority voting determines the final result. We in-
vite three Ph.D. students to compare the responses
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The Principles of Human Evaluation

You are asked to evaluate the biographies generated by different models. You should choose the
preferred biography according to the following perspectives independently:

1. Factuality: Whether the biography provides relatively more factual statements over the non-factual
statements?
2. Helpfulness: Whether the biography provides useful information?
3. Relevance: Whether the statements contained in the biography relevant to the provided people
entity?
4. Naturalness: Whether the biography sound natural and fluent?

Finally, please make a decision among 3 opinions, including Win, Tie, and Loss.

Figure 7: The principles of human evaluation.

generated by the models. Before participants begin
to make judgments, we describe the principles of
our design in detail and ensure that each participant
correctly understands the principles. If the final
result can not be determined by the majority voting,
we will make the discussion among the participants
and vote on the result again.

G Case Study for Selected Samples

To evaluate our proposed NOVA qualitatively, we
also select some instruction samples from the Al-
paca dataset for case studies as shown in Figure 8.
Firstly, we can find that simply using Rfamiliarity

in Eq. (10) can effectively identify the simple and
straightforward instruction samples that align well
with LLM’s knowledge. On the contrary, the sam-
ple ranked last according to Rfamiliarity contains
the open-ended instruction and the very subjective
target response. Meanwhile, further using Rfinal in
Eq. (10) that considers characteristics beyond just
familiarity Rfamiliarity by introducing the quality
reward model further enhances data quality, e.g.,
the complexity of instructions. We can also observe
that the sample ranked last according to Rfinal

also contains the open-ended instruction and the
detailed target response, which may introduce fa-
miliar knowledge to LLMs and further promote
hallucinations.
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Case Study for Selected Samples

� Sample ranked first according to Rfamiliarity in Eq. (10):
Instruction: Find a word that is opposite in meaning to the given word: assured.
Target Response: Doubtful.

⌢ Sample ranked last according to Rfamiliarity in Eq. (10):
Instruction: Could you pick a set of five songs which will fit our theme: a summer night’s party?
Target Response:
1. Billie Eilish – “Bad Guy”
2. Ed Sheeran – “Shape of You”
3. Maroon 5 – “Summer Nights”
4. DNCE – “Cake by the Ocean”
5. Drake – “In My Feelings”.

� Sample ranked first according to Rfinal in Eq. (10):
Instruction: Given a dictionary, create a JSON representation. dict = {"name": "John", "age": 18,
"is_adult": True}
Target Response:
{
"name": "John",
"age": 18,
"is_adult": true
}

⌢ Sample ranked last according to Rfinal in Eq. (10):
Instruction: Describe how to impress a customer.
Target Response: Listen to the customer carefully, acknowledge their needs and desires, make sure
to follow up on commitments, and strive to exceed expectations.

Figure 8: Case study for selected samples.
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