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Abstract

Personalized large language models (LLMs)
aim to tailor their outputs to user preferences.
Recent advances in parameter-efficient fine-
tuning (PEFT) methods have highlighted the ef-
fectiveness of adapting population-level LLMs
to personalized LLMs by fine-tuning user-
specific parameters with user history. However,
user data is typically sparse, making it chal-
lenging to adapt LLMs to specific user patterns.
To address this challenge, we propose PRO-
gressive PERsonalization (PROPER), a novel
progressive learning framework inspired by
meso-level theory in social science. PROPER
bridges population-level and user-level mod-
els by grouping users based on preferences
and adapting LLMs in stages. It combines a
Mixture-of-Experts (MoE) structure with Low
Ranked Adaptation (LoRA), using a user-aware
router to assign users to appropriate groups au-
tomatically. Additionally, a LoRA-aware router
is proposed to facilitate the integration of in-
dividual user LoRAs with group-level LoRAs.
Experimental results show that PROPER sig-
nificantly outperforms SOTA models across
multiple tasks, demonstrating the effectiveness
of our approach. Our code is available at
https://github.com/callanwu/PROPER.

1 Introduction

Though large language models (LLMs) have
demonstrated superior performance across various
tasks (Zhao et al., 2023; Chen et al., 2024), they
primarily offer a “one-size-fits-all” service, which
falls short of adapting to individual user prefer-
ences. Personalized LLMs, aimed at tailoring their
outputs to user-specific preferences, have therefore
become a hot research topic (Salemi et al., 2024;
Mysore et al., 2024; Tan et al., 2024b).

Early efforts to personalizing LLMs focused
on incorporating user history into prompts using
in-context learning (Dai et al., 2023), retrieval-
augmented generation (Mysore et al., 2024), and

* Corresponding Author.

Current personalization adaption
ignoring meso-level

Proposed personalization adaption
considering meso-level

(225
2&H8 2&
& Qedy e |

\_ Macro-level )
Q ﬁQQDn
oo}
oo = =
~ = K
Population-level Group-level User-level
LLM LLM LLM

Figure 1: The comparison between different paradigms
of LLM personalization, the solid line represents the
current paradigms, which adapt the population-level
LLM directly to the user-level LLM, while the dashed
line illustrates the proposed paradigms, which adapt
progressively through a group-level LLM using meso-
level data as a bridge.

profile-augmented generation (Richardson et al.,
2023). However, these prompt-based methods
struggle with ensuring user data privacy and
have limited generalization capabilities (Tan et al.,
2024b). Recent research has shifted towards fine-
tuning personalized LLMs, where the base LLMs
are fine-tuned on user history to better capture indi-
vidual preferences. Tan et al. (2024b) first pro-
posed to store user-specific preferences and be-
havior patterns in personalized Parameter-Efficient
Fine-Tuning (PEFT) parameters (e.g., LoORA (Hu
et al., 2022)) to enable computationally efficient
adaptation from population-level LLMs to user-
specific models. Further research has explored
training LoRAs based on representative users and
integrating them into ensembles for target users, en-
hancing both time and space efficiency (Tan et al.,
2024a).
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However, due to the difficulty in collecting user
data, data scarcity remains a significant issue. For
instance, in the LaMP benchmark (Salemi et al.,
2024), the average number of task-adaptation data
tokens exceeds 1,000k, while the average number
of tokens per user is only 48Kk, resulting in extreme
data sparsity. Additionally, user data distribution
follows the Pareto principle (Backhaus, 1980), with
the top 10% of users contributing 85% of the data,
further exacerbating this sparsity. This sparsity
makes it difficult for fine-tuning-based methods to
learn complex user behavior patterns effectively.

Social science research suggests that the meso
level, bridging macro-level (population-level) and
micro-level (user-level) analysis, is crucial for un-
derstanding the interplay between these two lev-
els (McConnell et al., 2002; Fine, 2012; Faist,
2021). Inspired by this, as shown in Figure 1,
we propose using group-level LLMs as an inter-
mediary (meso-level) layer between macro- and
micro-level LLMs. Users with similar preferences
and backgrounds can be grouped together (Wood,
1989), allowing group-level LLMs to capture com-
mon patterns from a richer dataset. Data-sparse
users can then benefit from group-level knowledge,
enhancing their personalized models.

In this paper, we propose PROPER (PROgres-
sive PERsonalization), a novel personalized LLM
framework that incorporates a group-level LLM
and gradually adapts to users via progressive learn-
ing (Fayek et al., 2020). Our framework is also
inspired by residual learning, where group-level
preferences are modeled as a residual shift from
population-level preferences, while user-level pref-
erences are further captured by individual resid-
uals beyond the group-level model. Rather than
learning user preferences directly from individual
user data, we treat personalization as a hierarchical
refinement process. In this framework, the base
model learned from population-level adaptation
remains fixed, while subsequent group-level adap-
tation captures only the residual preferences that
the population-level model fails to encode, and
similarly for user-level adaptation. PROPER thus
decomposes LLM personalization into three stages:
population-level adaptation, group-level adaptation,
and user-level adaptation. All adaptation stages
employ LoRA to improve computational efficiency.
To construct the group-level LLM, we employ a
Mixture-of-Experts (MoE) structure (Dou et al.,
2024), where each expert represents a user group,
and users are automatically assigned to appropriate
experts by a user-aware router. During user-level

adaptation, we further introduce a LoRA-aware
router that integrates group-level and user-level
LoRAs by selecting the most relevant group-level
LoRA based on user-level LoRA knowledge. Ex-
perimental results on the LaMP benchmark show
that PROPER significantly outperforms all prior
fine-tuning-based baselines.

In conclusion, our contributions are three-fold:

* New Framework: We are the first to propose
a personalized LLLM method that introduces
a group-level LLM between population-level
and user-level LLMs and integrates it into a
progressive learning framework.

* Group-level LLM Construction: we enable
automatic user grouping via LORAMOoE and
user-aware routers, while effectively integrat-
ing user and group-level knowledge through a
LoRA-aware router.

* Empirical Performance: Our method
achieves state-of-the-art results, outperform-
ing all existing fine-tuning-based baselines
across all tasks in the LaMP benchmark.

2 Method

Task Formulation Following previous stud-
ies (Tan et al., 2024b,a), we define the task ob-
jective of personalized LLM as generating a user-
specific response r,, for a given user u at time ¢,
based on the user query g, and the user history H,,:
ry = LLM(qy|Hy), where H,, = {h,} and each
history entry can take one of two forms: either a
task-specific query-response pair hy, = (qy, ry,) OF
plain text h,, = t,,. For fine-tuning-based personal-
ized LLMs, the goal is to capture user preferences
through user-specific parameter ©,,, refining the
model’s response generation as follows:

Ty = LLM(Qu|@u)' (1)

Overall Framework As shown in Figure 2,
PROPER is based on progressive learning that con-
sists of three stages:

» Stage 1 (Population-Level Adaptation): The
model learns population-level preference for
specific tasks using standard LoRA.

» Stage 2 (Group-Level Adaptation): The
population-level LoRA from Stage 1 is
kept fixed, while group-level preferences are
learned using a combination of LoRA and
MOoE.

» Stage 3 (User-Level Adaptation): The Lo-
RAs from the previous two stages remain un-
changed, and user-specific LoRA is trained to
capture individual user preferences.
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Figure 2: Overview of the training process of PROPER, which consists of three steps: (1) Population-level
adaptation, where task information is learned via regular LoRA training; (2) Group-level adaptation, where
group-level preferences are learned by LORAMOE; (3) User-level adaptation, where user preference is learned into
user-specific LORA. The LoRAs are applied to the FFN layers while other components of the Transformer blocks

are omitted for simplicity.

2.1 Population-Level Adaptation

Though LLMs are trained on large-scale data, they
are not inherently optimized for personalized tasks.
Following the methods of LaMP (Salemi et al.,
2024), we first fine-tune the backbone LLM using
task-specific query-answer pairs to align it with
population-level task preference.

To improve the computational efficiency, we
employ Low-rank Adaptation (LoRA) (Hu et al.,
2022) across all LLM adaptation stages. LoRA
assumes that the weight updates during fine-tuning
have a low intrinsic rank, allowing them to be de-
composed into two smaller matrices. Formally, the
update process of the feed-forward network (FFN)
block in a Transformer can be expressed as:

o=Wzx=Wy+ AWz, 2)

where o denotes the output hidden states, x de-
notes the input hidden states, W, is the parameters
of the backbone LLM, AW denotes the updated
parameter during training. LoRA approximates
AW € Rén*dout yging two low ranked matri-
ces A € R™¥dout gnd B € R%4n*": AW =~ BA,
where the rank r is much smaller than d;,, and d,.;.

Thus, in the population-level adaptation stage,
parameter updates are formulated as:

0= Wyz + %B(p)A(p)x, 3)

where Q, = {B), A(P)} denotes the population-
level LoRA parameters, r is the rank of LoRA
components. To control the learning rate of LoRA
components, « is introduced as a scaling factor,

which is applied consistently across all adaptation
stages.

The population-level LoRA is trained via fine-
tuning using the cross-entropy loss:

L,= Z CE{LLM(¢;|),7:}, (4

where r; is ground-truth response, and 7; =
LLM(g;|€2p) is model-generated output. The opti-
mal LoRA parameters are obtained by:

f?(p), AP = arg Hgl)in L. 5

P

Finally, the learned parameters (B® A®) are
merged into the backbone parameters for the next
training stage.

W, = W, + B®) A®) (6)

where W), is the updated weights of the population-
level LLM.

2.2 Group-Level Adaptation

Group-level adaptation aims to group users based
on shared preferences and learn distinct parame-
ters for each group. To achieve this, we employ
LoRAMOE (Dou et al., 2024), where each group is
represented by an expert, which can be represented

as:
k

o= Wyx + Z wiBi(g)AZ(»g)x, @)

i=1
where {Bfg )Agg ) }7 are the group-level LoRA pa-
rameters, k is the number of experts, and w; is the
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weight assigned to the i-th expert by the routing
mechanism. Since manually defining user groups
is impractical, we propose to assign users to groups
dynamically through a routing mechanism. Specif-
ically, we introduce a user-aware router for group-
level adaptation by merging the regular router that
takes the text embedding x as input with another
router that takes the user embedding w as input:

w(z) = softmax(h),

8
h = softmax(z M) + softmax(ulMy,), ©

where u € R¢ represents user embeddings that are
randomly initialized and updated during training,
and M, and M, are learnable weight matrices for
text router and user router respectively.

MOoE training often suffers from unbalanced ex-
pert weights, where the model overly relies on a
few active experts while neglecting the others. To
mitigate this, an auxiliary loss is typically applied
to balance expert selection (Dou et al., 2024; Luo
et al., 2024; Liu et al., 2024). In our case, however,
enforcing uniform expert selection would lead to
redundant group preferences, reducing the effec-
tiveness of user-group differentiation. Inspired by
P-tailor (Dan et al., 2024), we introduce a con-
straint loss that encourages the router to assign
distinct expert weights to different users. Sup-
pose the router weight for user u; with input x
is wy, () = [wi, ..., wg], then the constraint loss is

defined as:
S(i) = WYy
=Sl O
i#j
where s(; jy measures the cosine similarity between

the router weights of u; and u;, encouraging diver-
sity in group assignments.

Following Stage 1, the group-level adaptation pa-
rameters, (0, = {Bi(g)Agg)}f:l U{ufU{Wy, Wy},
are updated and merged into the existing parame-
ters:

Lg= Z CE{LLM(Qi‘Qg)v i},

p(9) 49 _ :
Bj ,Aj —argnélgnﬁg,

(10)

k
Wy =Wy+ = > w B AP,
j=1

where B are the optimized group-level
LoRA parameters. Here we adopt the idea of resid-
ual learning, where group-level preferences can be

(9) 4(9)
Jj Aj

regarded as a shift from population-level prefer-
ences. Thus, W, (from population-level adapta-
tion) remains fixed, ensuring that group-level adap-
tation only captures residual preferences that the
population-level adaptation did not model.

2.3 User-Level Adaptation

With population- and group-level preferences
learned, user-specific adaptations are now regarded
as fine-grained modifications to these broader pref-
erences, learned from limited personal data. In this
stage, following (Tan et al., 2024b), we assign a
unique LoRA to each user.

0=Wyz + B AV, (11)
where {B](-“),Ag-u)} are user-specific LoRA for
user j.

While the user-aware router in Stage 2 captures
user embeddings, its primary function is to guide
the group-level experts for user allocation. That
is, the router in Stage 2 is not directly optimized
for individual users. To address this, we propose
a new LoRA-aware router that dynamically inte-
grates group-level LoRAs and user-level LoRAs.

Bu(x) = softmax(Wjh,,),

hy = LoRA, (2), (12

where LoRA,, represents the learned user-specific
LoRA, h,, is the hidden state that passes x though
LoRA,. With such implementation, the LoRA-
aware router captures both the user-specific LoRA
information and the input information. The final
parameters for user-level adaptation for user u; are
trained as follows:

£ = >~ CE{LLM(g o), ),

pu)  fu) _ : j
Bj ,Aj = argléléljr)lﬁg)’
j (w) 4(u) -
W9 =W, + BWAY + > ,BY ALY,
m=1

(13)

where {qz(j ), rz(j )} are user-spefic data for user u;,
and WI(LJ ) is the merged user-specific parameters
for u;. Combined with other parameters in the
Transformer blocks, the final personalized LLM
for user j is:

7y = LLM(qu|Oy,). (14)
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Task

Metric

Prompt-based

Fine-tuning-based

OPPU PERPRO
ICL RAG  PAG kv mlp Stagel Stage2 Stage3
LAMP-1: PERSONALIZED Acc T 650 .659 756 .683 .658 .674 .663 691
CITATION IDENTIFICATION F1 ¢ 647 657 755 682 .651 .669 .667 .687
LAMP-2M: PERSONALIZED  Acc 1 499 587 534 600 .613 593 701 747
MOVIE TAGGING F1 1 441 512 476 493 528 552 611 .666
LAMP-3: PERSONALIZED MAE | 259 214 321 179 223 250 .196 178
PRODUCT RATING RMSE| 590 535 582 443 490 .517 .500 422
LAMP-4: PERSONALIZED R-171 JA87 191 187 191 197  .193 197 214
NEWS HEADLINE GEN. R-L 1 168 172 168 171 179 174 .180 192
LAMP-5: PERSONALIZED R-17 478 505 486 519 464 491 490 488
SCHOLARLY TITLE GEN. R-L 1 418 445 429 442 419 438 440 445
LAMP-7: PERSONALIZED R-171 524 568 542 539 513 528 .533 543
TWEET PARAPHRASING R-L 1 474 521 501 483 467 481 A87 504

Table 1: The comparison results of PROPER against baselines on LaMP benchmark. 1 indicates the higher values
are better, | indicates the lower values are better. The best results under fine-tuning-based setting are in Bold.

3 Experimental Setup

Datasets Following the previous work (Tan et al.,
2024b,a; Zhuang et al., 2024), we conduct exper-
iments using the Large Language Model Person-
alization (LaMP) benchmark (Salemi et al., 2024).
LaMP evaluates LLM personalization across seven
tasks, including three classification tasks (person-
alized citation identification, movie tagging, and
producing rating) and four generation tasks (per-
sonalized news headline generation, scholarly title
generation, Email subject generation, and tweet
paraphrasing)!. To make a fair comparison with
OPPU (Tan et al., 2024b), we adopt the same 100
test users selected by OPPU in user-level adapta-
tion, while all other users for population-level and
group-level adaptation. Additional task details can
be found in Appendix A.1.

Baselines We compare PROPER with both non-
personalized and personalized baselines including
the prompt-based methods and fine-tuning-based
methods. For the backbone LLM used in PROPER
and all baselines, we employ Llama-2-7B to make
a fair comparison with prior work. Further details
on the baseline can be found in Appendix A.2. Im-
plementation details and hyperparameters settings
can be found in Appendix A.3 and Appendix A.4.

Evaluation Metrics In line with LaMP (Salemi
et al., 2024), we use accuracy and F1-score for
classification tasks (LaMP-1 and LaMP-2M), Mean
Absolute Error (MAE) and Root Mean Squared

'We exclude the LaMP-6: Email subject generation task
due to restricted access to private data.

Error (RMSE) for LaMP-3, and adopt ROUGE-1
and ROUGE-L for text generation tasks (LaMP-4,
LaMP-5, LaMP-7). Higher values indicate better
performance for all metrics, except for MAE and
RMSE (where lower values are better).

4 Experimental Results

In this section, we present comprehensive experi-
ments conducted on LaMP. Through an in-depth
analysis of the results, we aim to address the fol-
lowing Research Questions (RQs):

* RQ1: How does PROPER perform compared
to baseline models in a standard setting?

* RQ2: How effectively does PROPER handle
data sparsity?

* RQ3: What impact do different architectural
structures and components have on model per-
formance?

* RQ4: What is the trade-off between personal-
ization quality and computational cost?

* RQS5: How effectively do group experts cap-
ture group-level preferences?

* RQ6: How does PROPER perform in qualita-
tive evaluations?

4.1 Main Results

To answer RQ1, we compare the performance of
PROPER with other baseline models in the regular
setting. The results, shown in Table 1, demonstrate
that PROPER consistently outperforms the base-
line methods, highlighting its strong capability in
personalization. We observe the following:
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PROPER delivers universal improvements.
Compared to OPPU, PROPER achieves significant
improvements across all six tasks, with minimal ad-
ditional computation and storage overhead. Specif-
ically, for the LaMP 2M: Personalized Movie Tag-
ging task, PROPER yields relative improvements
of 24.5% in accuracy and 35.1% in F1-score com-
pared to OPPU. For the other tasks, PROPER also
demonstrates consistent improvements, with an av-
erage relative improvement of 5.47%. We do not
include PER-PCS (Tan et al., 2024a) for compar-
ison, as it focuses primarily on time and space
efficiency and ties with OPPU in performance.

Progressive learning results in consistent im-
provements across stages. To investigate the
improvements at each stage, we present the de-
tailed performance from Stage 1 (population-level
adaptation) to Stage 3 (full model). The results
show consistent improvements from one stage to
the next, demonstrating the effectiveness of pro-
gressive training. From Stage 1 to Stage 2, the aver-
age relative improvement is 4.69%, and from Stage
2 to Stage 3, the average relative improvement is
5.02%. These results highlight the importance of
both stages.

Performance depends on the task and user his-
tory format. As shown in the results, the per-
formance of prompt-based and fine-tuning-based
methods varies depending on the task. For classi-
fication tasks (LaMP-1, LaMP-2M, and LaMP-3),
fine-tuning-based methods generally perform bet-
ter, with PROPER outperforming the prompt-based
baselines by significant margins in LaMP-2M and
LaMP-3. For generation tasks, fine-tuning-based
and prompt-based methods perform similarly, with
PROPER being outperformed by the RAG base-
line in LaMP-7 and the PAG baseline in LaMP-1.
We hypothesize that for classification tasks, LLMs
struggle to learn the mapping between input texts
and output labels using limited examples through
in-context learning. In contrast, fine-tuning-based
methods can learn the mapping more effectively
through supervised learning. For generation tasks,
LLMs can easily learn the style and background
from the examples and tailor the input query to user
preferences.

4.2 Low-Resource Results

To answer the RQ2, we compare the performance
of PROPER with other baseline models in an ex-
tremely low-resource setting, where we select the
top 100 inactive users for personalization. The

LaMP-3 LaMP-5

Settings  \/\E| RMSE| R17 RL1T
OPPU 327 64 412 439
PROPER  .303 582 522 483

Table 2: Performances comparison between PROPER
and OPPU under an extremely low-resource setting on
LaMP-3 and LaMP-5. The best results are in Bold.

LaMP-2M LaMP-7
Acct FIT R-17 R-L{
Stage 2 (group-level adaptation) .701 .611 .527 481

Settings

w/ regular router 659 564 513 515
w/o constraint loss 686 .602 .564 472
Stage 3 (user-level adaptation) 747 666 542 504
w/o LoRA-aware router 726 645 534 483
End-to-end training 723 644 528 477

Table 3: Ablation Studies for PROPER on LaMP 2M
and LaMP 7 tasks. The best results in the corresponding
stage are in Bold.

results are shown in Table 2. It can be observed
that PROPER outperforms OPPU on all metrics,
demonstrating the effectiveness of the model in
data sparsity. The results are consistent with the
main results where PROPER outperforms other
baselines by the largest margin on LaMP-2M,
which is the most data-sparse task in the LaMP
benchmark with an average user history length of
55.6.

4.3 Ablation Studies

To answer RQ3, we evaluate PROPER under differ-
ent settings on LaMP 2M (personalized movie tag-
ging) and LaMP 7 (personalized tweet paraphras-
ing). For Stage 2 (group-level adaptation), we ex-
amine the effectiveness of the user-aware router by
replacing it with a regular router based solely on the
input state x, and assess the impact of removing the
constraint loss. Note that we do not compare these
versions under full-stage training (including Stage
3), as PROPER uses progressive learning. In this
framework, earlier trained stages are fixed, so any
underperformance in Stage 2 would likely carry
over into Stage 3. For Stage 3 (user-level adapta-
tion), we evaluate the effectiveness of the LoRA-
aware router by removing it and investigate the
impact of replacing progressive training with end-
to-end training. In the end-to-end setup, we jointly
train the group-level experts with the user-specific
LoRAs, using the user-aware router and constraint
loss. As shown in Table 3, removing or replacing
components in PROPER leads to a significant drop
in performance on both tasks, demonstrating the
effectiveness of the designed components.

16404



v | Ay 5 -
. . @ Style
% s ° T’ input g
" output

- - - )
Paraphrase the following tweet without any explanation before or after it:
(@xxx: "It's unfortunate what he said, but there may be some truth to it.
Personally, I think Beyoncé is curvy, but not necessarily 'big'.

(N1}

@xxx Hey girl, its sad about what he said but its kinda true, about
Bey uhm I def think Bey is a THICk girl but big no

(@xxx I wish he didn't say that but he might be right I think Beyonce is )
curvy but not big

@xxx "I'm sorry he said that, but there may be some truth to it. I think
Beyoncé is curvy, but not 'big'.

(N1}

x
N °®
'Ii B stagel | Input
# & stage2 ©
W A stage3 ﬁ
LA
= Output
® e &
o)
.
®
]
$ . L
e
Color
@® Train others
® Train #21

Test #21

(@xxx: Aww man, that's sad. But he might be kinda right, uhm I
think Beyoncé is curvy, but 'big’ no

Figure 3: The case study on LaMP-7: Personalized Tweet Paraphrasing task. The figure on the left shows the

visualization of text embeddings for user #21. The

legends represent the test example and the model output, ®

represent the training examples for user #21, while ® represent the training examples for other users.

Training Time Batch
Training Parameter

Scaling with Users 600
#75 One-Time Process

N
o
5]

v

o

S

-
I
o

IS

S

5]

w
o
5]

._.
S
3

Training Parameter

Training Time Batch

A
o
S

N\
MAINN

OPPU Stage 3 user-LoRA
Methods

Stage 2 Stage 3 new router

Figure 4: Comparison of training time and training
parameters between OPPU and different stages of
PROPER, the training time is calculated for 100 test
users per batch, and all results are produced with a sin-
gle NVIDIA A100 GPU (80GB).

4.4 Efficiency Analysis

To answer RQ4, we compare OPPU and different
stages of PROPER in terms of trainable parame-
ters and training time. As shown in Figure 6, the
main computational and storage load in personal-
ized LLMs is in the user-level adaptation stage,
which scales with the number of users. Both OPPU
and PROPER introduce 552M parameters for 100
users. Regarding training time, PROPER takes
slightly longer (180 min per batch) than OPPU
(146 min) for 100 users. PROPER also introduces
two additional components: the group-level adap-
tation and the LoRA-aware router. These compo-
nents are one-time processes that do not scale with
user growth, adding minimal computation (146 min
for group-level adaptation and 150 min for LoRA-
aware router) and storage overhead (91M and 4M,
respectively). Despite these additions, PROPER
remains efficient overall due to its improvements.

Experts . Cluster
\ 0 expert 1 Cluster 0
| 7 expert 2 Cluster 1
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| = experta
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/ [\ ] “‘ | 3 experts
o\ | ‘
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Expert weight
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[ expert 1 TL A
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Figure 5: The Visualization of expert weights and user
embeddings learned in the group-level adaptation. The
upper left: density plot of expert weights with the user-
aware router and constraint loss; The bottom left: den-
sity plot of expert weights with regular LORAMOE; The
right: Scatter plot of user embeddings after detention
reduction, colored by the clusters.

4.5 Visualization

To answer RQS, we visualize the user embeddings
learned in Stage 2 and the expert weights for the
group experts. For the expert weights, we aver-
age the weights for each user and compare the
density plots of expert weights learned with the
user-aware router and constraint loss versus those
learned with regular LORAMOE. For the user em-
beddings, we average the embeddings across layers
for each user and apply t-SNE (Van der Maaten
and Hinton, 2008) to map them into a 2D space.
We then cluster the users into 5 groups based on
their averaged expert weights and color the user
embeddings according to their cluster. As shown
in Figure 5, the density plot of expert weights with
the user-aware router and constraint loss shows
five distinct peaks with minimal overlap, indicating
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that the experts learn distinct group preferences.
In contrast, the expert weights from regular Lo-
RAMOE are highly overlapping, suggesting that
the experts are learning redundant information. In
the user embedding visualization, we observe that
the clustering of user embeddings aligns with the
expert weight patterns, demonstrating a clear cor-
relation between the behavior of user embeddings
and expert weight distribution.

4.6 Case Study

To answer RQ6, we conduct a case study on the
LaMP-7: Personalized Tweet Paraphrasing task for
user #21 (user_id: 13002361) in the test set. To
demonstrate the effectiveness of progressive learn-
ing, we visualize the training and test samples for
user #21, as well as a subset of training samples for
other users. For text visualization, we use a BERT
encoder (Reimers and Gurevych, 2019) to generate
text embeddings and apply T-SNE for dimensional-
ity reduction. By comparing the embeddings (left
side of Figure 3) with the corresponding texts (right
side), we observe that the input tweet to be para-
phrased has a formal tone, while the user’s tweet
(i.e., the target output) is more casual with many
non-standard expressions. During the population-
level adaptation stage, the model’s output (Stage
1 output in Figure 3) retains a formal tone, and its
embedding ™ stays close to the input tweet (green
cross). However, as progressive learning advances,
the output becomes more casual, incorporating ex-
pressions like "kinda" (Stage 3 output) and the
embeddings 4 move closer to the target output
. By Stage 3, the model output closely align
with user #21’s historical data and other relevant
training samples, illustrating the effectiveness of
progressive learning in personalization.

5 Related Work

Personalized LLLMs Personalized LLMs can be
broadly categorized into two types: prompting-
based and fine-tuning-based. Prompting-based
methods augment the LLM’s input prompt with
user history while keeping the LLM itself un-
changed wiht in context learning (Dai et al., 2023;
Kang et al., 2023). Following the idea of Retrieval-
Augmented Generation (RAG), subsequent ap-
proaches refine this paradigm by retrieving relevant
user history for each query (Salemi et al., 2024;
Mysore et al., 2024). Another variant summarizes
a user profile from user history and then augments
the user prompt with the inferred profile (Richard-

son et al., 2023). Fine-tuning-based methods inject
user information directly into the LLM’s parame-
ters via fine-tuning. Tan et al. (2024b) introduced
OPPU, which assigns each user a specific LoORA
module for personalization, while PER-PCS (Tan
et al., 2024a) improves efficiency by assembling
user-specific LORA from relevant pieces trained on
representative users. Beyond adapting the LLM
itself, Zhuang et al. (2024) proposed to fine-tune
both rerankers and adapters within a retrieval-based
framework to align with black-box LLMs.

Mixture of Experts The Mixture-of-Experts
(MoE) replaces feed-forward layers with sparsely
activated experts, enabling dynamic expert selec-
tion per input, which expands capacity without
significantly increasing computational cost (Jacobs
et al., 1991). Previously, the token-level MoE ar-
chitectures are widely used in pre-trained language
models and vision models (Shazeer et al., 2017;
Lepikhin et al., 2021; Riquelme et al., 2021; Du
et al., 2022). Currently, with the fast development
of LLMs, the need for efficient tuning of a model
has become more and more important, therefore,
many works try to combine MoE with PEFT meth-
ods such as LoRA (Hu et al., 2022). The most
straightforward way is to combine LoRA and MoE
for multi-task learning (Dou et al., 2024; Luo et al.,
2024; Liu et al., 2024). P-Tailor (Dan et al., 2024)
proposed a MoE-based role-playing LLM that mod-
els the Big Five Personality Traits using specialized
LoRA experts and adapts personality traits across
topics.

6 Conclusion

In this paper, we present PROPER, a novel progres-
sive learning framework for personalized LLMs
that addresses the challenge of data sparsity by in-
troducing a group-level adaptation process. By
leveraging a Mixture-of-Experts structure and
LoRA-based routers, PROPER enables efficient
adaptation through population-level, group-level,
and user-level stages, bridging the gap between
broad and personalized models. Our extensive ex-
periments demonstrate that PROPER significantly
outperforms existing state-of-the-art approaches,
offering a promising solution for more efficient and
effective LLM personalization in diverse applica-
tions. Future work will focus on further optimizing
group-level adaptations and exploring additional
techniques to enhance model scalability and gener-
alizability.
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Limitations

We identify three key limitations in PROPER.

First, due to dataset constraints, PROPER eval-
uates LLM personalization on separate tasks. In
real-world applications, it would be more practi-
cal and beneficial to consider LLM personalization
within a multi-task learning framework, where user
preferences learned from one task can enhance per-
formance in other tasks. Despite this, PROPER can
be adapted to multi-task learning, as its LORAMoE
module is inherently suited for such integration.

Second, PROPER assumes user preferences are
static, but in reality, user preferences may evolve
over time. Future research could focus on dynami-
cally modeling these preferences or developing a
framework capable of continually learning from
streaming data.

Third, the three-stage process of PROPER in-
troduces additional training parameters and longer
training times. Although these extra parameters
and training processes are manageable and a one-
time cost, future work should aim to improve the
training and inference efficiency of the progressive
learning-based framework.

Ethical Impact

Personalized large language models (LLMs), such
as the PROPER framework, rely on user-specific
data, raising privacy concerns regarding the po-
tential inadvertent disclosure of sensitive informa-
tion. Strong privacy safeguards, including data
anonymization and encryption, must be imple-
mented to protect personal data. Additionally, bi-
ases in user data can lead to unfair or prejudiced
model outputs, emphasizing the need for diverse,
balanced data and debiasing techniques to ensure
fairness. Transparency in decision-making pro-
cesses is essential, allowing users to understand
how their data influences personalized outputs
and ensuring accountability. Accessibility is an-
other concern, as the computational demands of
advanced LLMs may limit adoption among smaller
entities and researchers, exacerbating the digital
divide. To address this, efforts to make person-
alized LLMs more accessible, such as resource-
efficient models, are crucial. Finally, user auton-
omy should be respected by allowing individuals to
control their data and the level of personalization,
ensuring ethical use and avoiding over-dependence
on Al-generated content. Addressing these ethical
considerations will promote the responsible devel-
opment and deployment of personalized LLMs, pri-

oritizing privacy, fairness, and accessibility while
mitigating potential risks.
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A Appendix

A.1 Task Details

LaMP (Salemi et al., 2024) provided seven sepa-
rate tasks to benchmark LLM personalization, fol-
lowing (Tan et al., 2024b,a), we describe the task
details as follows to help readers gain a better un-
derstanding of the task format.

* LaMP-1: Personalized Citation Identifica-
tion: is a binary text classification task. The
input query z is a paper title written by user
u, along with two candidate paper titles, the
output y is the number of the candidate paper
that » will cite in x. The user history contains
titles and abstracts of the publications of user
U.

e LaMP-2M: Personalized Movie Tagging: is
a 15-way text classification task. The labels
are pre-defined movie types. The input query
z is the movie description, and the output y
is the tag that user u will give based on .
The user history contains the user’s historical
movie-tag pairs (x,y).

e LaMP-3: Personalized Product Rating: is a
5-way text classification task. The input query
x is the review text written by user u, and the
output y is the corresponding score that user
u will given based on x. The user history is
the previous rating pairs (x, y) of user wu.

* LaMP-4: Personalized News Headline Gen-
eration: is a text generation task to test the
model’s ability to capture the stylistic patterns
in personal data. The input query x is the con-
tent of a news from the author u, and the out-
put y is the news headline generated by user w.
The user history is the historical article-title
pairs (z, y) from author w.

¢ LaMP-5:Personalized Scholarly Title Gen-
eration: similar to LaMP-4, it is a text gener-
ation task to test personalized text generation
tasks in different domains. The input query z
is the abstract of a paper, and the output y is
the title generated by user u. The user history
is the historical abstract-title pairs (z, y) from
author u.

e LaMP-7:Personalized Tweet Paraphrasing
is also a text generation task that tests the
model’s capabilities in capturing the stylistic
patterns of authors. The input query z is a
normalized tweet, and the output y is the orig-
inal tweet from user u. The user history is the
historical tweets from author .

A.2 Baseline Details

We present the task details as follows to help read-
ers gain a better understanding of the task format.

* ICL (In-Context Learning) (Dai et al., 2023):
This method randomly selects user historical
records to augment the input query for LLM.
In this paper, we take the results reported from
(Tan et al., 2024b).

* RAG (Retrieval Augmentation Genera-
tion) (Salemi et al., 2024): Following the
retrieval-augmented personalization method
presented in LaMP, the user’s query is
augmented with top k retrieved items from the
corresponding user’s history corpus. In the
paper, we take the results that the number of
retrieval items k=1 from (Tan et al., 2024b).

* PAG (Profile Augmentation Genera-
tion) (Richardson et al., 2023): In the
PAG-based method, the user’s input sequence
would concatenate the user’s profile sum-
marizing the user’s preference and behavior
patterns. In the implementation by (Tan
et al., 2024b), The vicuna-7B model is
employed for user profile generation and the
model is further enhanced with the retrieval
augmentation. In the paper, we take the
results that the number of retrieval items k=1
from (Tan et al., 2024b).

* OPPU (kv) Tan et al. (2024b): The original im-
plementation of OPPU, where the LoRA com-
ponents are placed on the KV-Cahce in the
transformer blocks. We do not include the hy-
brid integration of the prompt-based method
and fine-tuning-based method posted in (Tan
et al., 2024b) because the integration of the
prompt-based method violates the principle of
privacy of the fine-tuning-based method.

* OPPU (mlp): We implement another version
of OPPU by changing the placement of LoRA
components from the KV-Cahce in the trans-
former blocks to the mlp projection layers.

A.3 Implementaion Details

Following (Tan et al., 2024a), we incorporate train-
able low-rank adapters into the Wy, Wy, W, W, ,
setting the rank r=8. Additionally, we set the factor
of o to 16, using a learning rate of 3e-4 and adapt
batch size of 2 at stage 1 population adaptation for
all tasks.

For the subsequent stages, We maintain the orig-
inal weights of the backbone which merged LoRA
from stage 1 unchanged and integrate low-rank
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Figure 6: Compartion of the different number of experts
on LaMP-2M.

adapters (Hu et al., 2022; Zhang et al., 2024) into
the Feed-Forward Network(FFN) components of
all layers. Specifically, in the LLaMA2 model (Tou-
vron et al., 2023), the FFN layer utilizes the
SwiGLU structure (Shazeer, 2020), which consists
of three components: down projection, up projec-
tion, and gate.

The number of experts is set to be 5 for all tasks
based on the primary experiments. These low-rank
adapters are configured with a rank of 4 and a
factor of « set to 8, alongside a dropout rate of
0.05 to mitigate overfitting. The model parame-
ters are optimized by AdamW (Loshchilov and
Hutter, 2018). We use a batch size of 1 to facili-
tate the identification of specific users and a learn-
ing rate of 2e-4 for all tasks. Our implementation
leverages the PyTo rch? framework, HuggingFace
Transformers? (Wolf et al., 2020) and PEFT* li-
brary. All experiments are carried out with an
NVIDIA A100 80GB GPU.

A.4 HyperParameter Analysis

As the number of experts k serves as a very impor-
tant hyperparameter in PROPER, we perform an
analysis on the number of experts 2, 5, and 8 on the
LaMP-2M task. As shown in Figure 6, with an in-
crease of experts number, the performance increase
then decrease, suggesting a peak around 5. This
can be explained that with fewer experts, the group-
level pattern can not be fully distinguished and
some experts learn the overlapped pattern, while
with many experts, the experts are redundant and
the group-level patterns are overfitted. As it is
costly to perform a fine-grained hyperparameter
search for all tasks, we set the number of experts
as 5 for all the tasks.

Zhttps://github.com/pytorch/pytorch
3https://github.com/huggingface/transformers
*https://github.com/huggingface/peft
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